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Abstract

The Internet as of 2014 connects billions of devices, and is expected to
connect tens of billions by 2020. To meet escalating requirements, networks
must be scalable, easy to manage, and be able to efficiently execute programs
and disseminate data. The prevailing use of centralized systems and control
in, e.g., pools of computing resources, clouds, is problematic for scalability.
A promising approach to management of large networks is decentralization,
where independently acting network nodes communicate with their immediate
neighbors to achieve desirable results at the global level.

The research in this thesis addresses three distinct but interrelated prob-
lems in the context of cloud computing, networks, and programs running
in clouds. First, we show how implementation correctness of active objects
can be achieved in decentralized networks using location independent rout-
ing. Second, we investigate the feasibility of decentralized adaptive resource
allocation for active objects in such networks, with promising results. Third,
we automate an initial step of a process for converting programs with thread-
based concurrency using shared memory to programs with message passing
concurrency, which can then run efficiently in clouds.

Specifically, starting from fragments of the distributed object modeling
language ABS, we give network-oblivious descriptions of runtime behavior of
programs, where the global state is a flat collection of objects and method
calls. We then provide network-aware semantics, that place objects on net-
work nodes connected point-to-point by asynchronous message passing chan-
nels. By relying on location independent routing, which maps object identi-
fiers to next-hop neighbors at each node, inter-object messages can be deliv-
ered, regardless of object mobility among nodes. We establish that network-
oblivious and network-aware behavior in static networks correspond in the
sense of contextual equivalence. Using a network protocol reminiscent of a
two-phase commit for controlled node shutdown, we extend the approach to
dynamic networks without failures.

We investigate node-local procedures for object migration to meet re-
quirements on balanced allocations of objects to nodes, that also attempt
to minimize exchange of object-related messages between nodes. By relying
on coin-flips biased on local and neighbor load to decide on migration, and
heuristics to capture object communication patterns, we show that balanced
allocations can be achieved that make headway towards minimizing commu-
nication and latency.

Our approach to execution of object-oriented programs in networks relies
on message-passing concurrency. Mainstream programming languages gener-
ally use thread-based concurrency, which relies on control-centric primitives,
such as locks, for synchronization. We present an algorithm for dynamic prob-
abilistic inference of annotations for data-centric synchronization in threaded
programs. By making collections of variables in classes accessed atomically
explicit, these annotations can in turn suggest objects suitable for encapsula-
tion as a unit of message-passing concurrency.
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Sammanfattning

2014 års Internet sammankopplar miljarder enheter, och förväntas sam-
mankoppla tiotals miljarder år 2020. För att möta eskalerande krav måste
nätverk vara skalbara, enkla att underhålla, och effektivt exekvera program
och disseminera data. Den nuvarande användningen av centraliserade system
och kontrollmekanismer, t ex i pooler av beräkningsresurser, moln, är proble-
matisk för skalbarhet. Ett lovande angreppssätt för att hantera storskaliga
nätverk är decentralisering, där noder som agerar oberoende av varandra ge-
nom kommunikation med sina omedelbara grannar åstadkommer gynnsamma
resultat på den globala nivån.

Forskningen i den här avhandlingen addresserar tre distinkta men rela-
terade problem i kontexten av molnsystem, nätverk och program som körs
i moln. För det första visar vi hur implementationskorrekthet för aktiva ob-
jekt kan åstadkommas i decentraliserade nätverk med hjälp av platsoberoende
routning. För det andra undersöker vi genomförbarheten i decentraliserad ad-
aptiv resursallokering för aktiva objekt i sådana nätverk, med lovande resultat.
För det tredje automatiserar vi ett initialt steg i en process för att konverte-
ra program med trådbaserad samtidighet och delat minne till program med
meddelandebaserad samtidighet, som då kan köras effektivt i moln.

Mer specifikt ger vi, med utgångspunkt i fragment av modelleringssprå-
ket ABS baserat på distribuerade objekt, nätverksomedvetna beskrivningar
av körningstidsbeteende för program där det globala tillståndet är en platt
samling av objekt och metodanrop. Vi ger därefter nätverksmedvetna seman-
tiker, där objekt placeras på nätverksnoder sammankopplade från punkt till
punkt av asynkrona kanaler för meddelandetransmission. Genom att vid varje
nod använda platsoberoende routning, som associerar objektidentifierare med
grannoder som är nästa hopp, kan meddelanden mellan objekt levereras oav-
sett hur objekt rör sig mellan noder. Vi etablerar att nätverksomedvetet och
nätverksmedvetet beteende i statiska nätverk stämmer överens enligt kontex-
tuell ekvivalens. Genom att använda ett nätverksprotokoll som påminner om
en tvåstegsförpliktelse, utökar vi vår ansats till felfria dynamiska nätverk.

Vi undersöker nodlokala procedurer för objektmigration för att möta krav
på balanserade allokeringar av objekt till noder, som också försöker minimera
utbyte av objektrelaterade meddelanden mellan noder. Genom att använda
oss av slantsinglingar viktade efter lokal last och grannars last för att besluta
om migration, och tumregler för att fånga kommunikationsmönster mellan ob-
jekt, visar vi att balanserade allokeringar, som gör framsteg mot att minimera
kommunikation och tidsfördröjning, kan uppnås.

Vår ansats för exekvering av objektorienterade program i nätverk an-
vänder meddelandebaserad samtidighet. Vanligt förekommande programspråk
använder sig generellt av trådbaserad samtidighet, som kräver kontrollcentre-
rade mekanismer, som lås, för synkronisering. Vi presenterar en algoritm som
med dynamisk probabilistisk analys härleder annoteringar för datacentrerad
synkronisering för trådade program. Genom att göra samlingar av variabler
i klasser som läses och skrivs atomiskt explicita, kan sådana annoteringar
antyda vilka objekt som är lämpliga att kapsla in som en enhet i meddelan-
debaserad samtidighet.
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Chapter 1

Introduction

In the early 1960s, J. C. R. Licklider, a psychologist and computer scientist at
the Massachusetts Institute of Technology, described the concept of an Intergalac-
tic Computer Network, in which geographically separate interconnected computers
would provide access to computational resources to individuals, regardless of loca-
tion, and facilitate information exchange [118, 165]. Since then, with the develop-
ment of the Internet, expected to connect a number of devices upwards of 50 billion
in 2020 [67], significant strides have arguably been made towards making that con-
cept a reality. However, the growth of networking and networks has brought to the
fore a wealth of problems spanning across computer engineering and theoretical
computer science, among them (1) the problem of effectively scaling networks to
handle more complex computations and larger amounts of data for processing and
dissemination, (2) the problem of allocating resources in networks to meet perfor-
mance objectives, and (3) the problem of using interconnected computers to execute
programs correctly and predictably.

The research presented in this thesis follows a line of investigation that pro-
poses decentralization as a promising way to achieve scalability and manageability
of large-scale networks [122], while maintaining predictable and correct concurrent
program execution on network nodes. The perspective is mainly from the view-
point of formal methods and programming languages, and thus focuses on rigorous
analysis using logic and algebra.

Overview This chapter is structured as follows. Section 1.1 gives the background
of the research in the thesis, both in terms of the scientific literature and the associ-
ated real-world problems. Section 1.2 motivates the general approach. Section 1.3
describes the research problems in more detail. Section 1.4 gives a high-level view
of several rigorous models of concurrency and distribution relevant to this thesis.
Section 1.5 defines and motivates the choice of network model. Section 1.6 describes
the specific problems addressed in this thesis, and Section 1.7 gives an overview of
the papers found in later chapters. Section 1.8 concludes and covers future work.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background

The research in this thesis is motivated by several trends and strands in the evolu-
tion of the Internet, networking and programming languages research.

1.1.1 The Internet: Past, Present, and Future

Development of large-scale, packet-switched data networks from the 1960s and on-
wards was motivated by both visions of universal access to computing resources
and the potential applications in military communications [118, 91]. Early work
on internetworking focused on robustness and survivability, in particular preserved
communications in the face of significant losses of nodes in underlying networks
[118]. Such properties were deemed desirable both for use in warfare conditions
[175] and for providing remote access in face of inherent failures of network com-
ponents and computers [91].

The multitude of networks comprising the Internet were assumed to be largely
static over time, with addresses, as specified by the Internet Protocol (IP), corre-
sponding to computers on specific sites (locations) [166]. Processes, in contrast,
were described as the active computation element, executing on such host comput-
ers and communicating reliably one-on-one with other processes, whether near or
remote, via the Transmission Control Protocol (TCP) running on top of IP [35].

192.0.2.100

P0

192.0.2.101

203.0.113.100

P1

Location A Internet Location B

TCP connection

Figure 1.1: Illustration of internetworking

Figure 1.1 gives a conceptual view of internetworking. To the left, at Location A,
there is one computer with IP address 192.0.2.100, where the process P0 runs. At
the same location, there is another computer with IP address 192.0.2.101, with a
direct physical connection to the first computer; their proximity is reflected in the
small address difference. To the right, at Location B, there is a single computer
with IP address 203.0.113.100, where the process P1 runs. The processes at the two
sites have established a TCP connection between them, with data flowing in packets
from one local network, via a gateway router, through a number of heterogenous
networks, to the other local network.



1.1. BACKGROUND 3

The Open Systems Interconnection (OSI) model [99] standardizes and abstracts
the functionality involved in networked communication into different layers, and
was formulated in the beginning of the 1980s from the experiences with the early
Internet and its progenitor ARPANET [210]. As with any standard, one purpose
was to allow modularity and promote competition between implementors.

# Name

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Application

Data Transport

Figure 1.2: The OSI model

Figure 1.2 gives a conceptual view of the model. The bottom layer (1) is the
physical layer, which deals with (possibly unreliable) physical transmission of bits.
Layer 2 is the data link layer, which concerns exchange of blocks (units) of data be-
tween named devices connected through physical links. Layer 3 is the network layer,
which handles transmission of packets between hosts, possibly residing on separate
physical networks (any network connected to the Internet). Layer 3 data transmis-
sion may therefore require inter-network routing based on host addresses. Layer
4 is the transport layer, which allows for ordered, lossless data (packet) transmis-
sion across hosts. This layer can provide an abstraction similar to a closed circuit
between two parties to transmit information, as in telecommunications. Layer 5
is the session layer, that abstracts interhost communication, e.g., in terms of mes-
sages. Layer 6 is the presentation layer, that handles delivery and formatting of
data for the topmost application layer (7). The layers can be partitioned into two
sets, as shown in the figure, with the four lowest layers comprising the set con-
cerned with data transport, and the three upper layers comprising the set related
to applications.

A realization, or implementation, of a layer in a communication model such as
OSI is a network protocol. An implementation of several contiguous layers (a suite
of protocols) is usually referred to as a stack. Figure 1.3 illustrates communication
between two stacks based on the OSI model, making the distinction between actual
data flow, and data flow as it appears to layers above, the logical flow. In operating
systems, a “network stack” usually refers to an implementation of the complete
TCP/IP protocol suite, which notably collapses OSI layers 1 and 2 into a network
access layer, and layers 5, 6, and 7 into an application layer. In this thesis, the
network functionality and characteristics assumed corresponds to OSI layer 2, as
described in more detail in Section 1.5.
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7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Stack 1

Application 7
Presentation 6

Session 5
Transport 4
Network 3

Data Link 2
Physical 1

Stack 2

actual data flow

logical data flow

Figure 1.3: Two-party transport-layer communication in the OSI model

A number of assumptions underlying the design of the TCP/IP protocol suite
have become less convincing over time, although the main abstraction it introduces
for process-to-process communication—the network socket—is still widely used.
For example, computers can be, and often are, mobile across locations, and in
some systems it may be advantageous for processes themselves to be mobile across
computers [28]. Furthermore, computer communication is increasingly transmission
of content, such as video, from producers to consumers, which is more efficient if
performed as a broadcast from one source to multiple receivers rather than as a
number of (possibly concurrent) two-party socket-based sessions [113].

The Internet as of 2014 contains a multitude of workarounds for the deficiencies
of TCP/IP, mostly implemented at the application level. For example, Content
Distribution Networks (CDNs) build application-layer solutions for geographically-
sensitive content retrieval by unreliably mapping IP addresses to approximate lo-
cations [170]. Other workarounds, such as Mobile IP [167], that provides basic
support for mobile devices using IP, introduce some conservative protocol changes.

In the long run, it is preferable to address the fundamental architectural issues
from a clean slate rather than maintaining increasingly complex workarounds that
are backwards compatible, but the short-run costs to change architectural compo-
nents can be large or require significant coordination among otherwise competing
parties [10]. For example, IPv6, a conservative extension to the prevailing IPv4
protocol which solves the problem of a shrinking global reserve of 32-bit IP ad-
dresses, is as yet not widely used [49]. In addition, enormous amounts of resources
have been invested in the current Internet infrastructure; hence, there is significant
inertia in the adoption of new basic components and principles of networking, which
has been referred to as Internet ossification [138].

Researchers have developed an abundance of solutions for perceived problems in
internetworking. In Europe, the EU 7th Framework Programme project 4WARD [1]
proposes an architecture of the future Internet, called Network of Information (Net-
Inf) [55], that puts data itself at the center, rather than devices or locations; this
concept was initially suggested under the name content-centric networking [100].
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In the USA, the National Science Foundation has funded several projects related to
a clean-slate future Internet, such as the Named Data Networking (NDN) project
[149]. Similarly to NetInf, NDN proposes an architecture that enables content dis-
tribution without knowledge of devices or locations [209]. Many of these proposals
involve radical changes to the boundaries of the network stack, and come with a
host of new assumptions about services and software.

An important aspect of the future Internet is the struggle between centralized
and distributed control. Commercial and governmental interests generally favor
centralized systems and decision-making, because they can be more easily con-
trolled and regulated. Besides the potential clash of interest with network users,
this ease of management can be accompanied by higher susceptibility to failure,
as shown by an incident that involved the hierarchical (and thus not fully decen-
tralized) DNS system of name-to-address lookup that rerouted a significant part of
Internet’s traffic away from intended destinations [140, 202]. On the other hand,
development of systems with distributed control, e.g., peer-to-peer systems, is not
always motivated by a desire of performance or robustness, but the desire to avoid
regulation or surveillance [5].

The research in this thesis uses decentralization for its technical merits, and can
be viewed as an argument to design for decentralization by default, and only cen-
tralize data and control when absolutely necessary, similarly to the proposed zero
method in social science research [171], in which rationality of actors is an assump-
tion only deviated from when other options have been ruled out. A decentralized
architecture using asynchronous message passing can ensure adequate performance
in the face of unexpected deterioration of deployment conditions for a system, e.g.,
load increases or increased uncertainty on latency bounds.

1.1.2 The Cloud Computing Paradigm

The early Internet provided remote access to specific computers for researchers, with
specific installed programs and data stored on the hard disks. However, most users
are not interested in the computers themselves, but in the resulting computations
and data (or, more accurately, the presentation of the resulting data through some
interface). There is therefore no inherent reason for them to directly access and
manipulate the computing resources they are using, beyond providing commands
or programs as input. In fact, installing and maintaining computing infrastructure
is a daunting task [41].

Cloud computing is a paradigm that has come to prominence in the last decade,
where pools of computing resources are shared between applications accessed over
a network, usually the Internet [102]. When a pool is provided by an organization
to third parties (often at a cost related to usage), it is referred to as a public cloud,
while a pool maintained for organization-internal use is a private cloud. For reasons
of cost effectiveness and flexibility, the primary way to construct (public) clouds is
by using commodity hardware [83].
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From a resource management perspective [102], the roles of the actors in cloud
computing can be divided into (1) Cloud Provider, (2) Cloud User, and (3) End
User. The Cloud Provider manages data centers and system software to provide ei-
ther an application directly to the End User, or interfaces for use by the Cloud User
to provide applications to the End User. The Cloud Provider shoulders the respon-
sibility of provisioning resources from its pool as they are needed by Cloud Users or
End Users, as codified in Service Level Agreements (SLAs). Cloud Users, in turn,
can provide SLAs to End Users of their applications. A common classification of
public clouds, based on the types of interfaces provided by the Cloud Provider, is
as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-
as-a-Service (IaaS). The meaning of these terms is still somewhat in flux, since
cloud computing abstractions are not yet completely standardized. Figure 1.4 il-
lustrates the different roles in cloud computing and their interrelations, and shows
the structure of Cloud Provider interfaces.

End User · · · End User

Application

Platform

Infrastructure

SaaS

PaaS

IaaS

Cloud User

Cloud Provider

Figure 1.4: Roles and relationships in cloud computing

One example of a public PaaS cloud is Google App Engine [81], which lets
Cloud Users run web applications through Google’s infrastructure, with automatic
resource provisioning (scaling) as traffic increases. Amazon Web Services (AWS)
[8] is a de facto standard cloud computing platform that offers both IaaS and PaaS
interfaces. The automatically scaling AWS PaaS for web applications is largely built
on top of the IaaS interface, and is thus more flexible than Google App Engine.

While services such as AWS offer SLAs and extensive monitoring facilities for
Cloud Users, the physical realization of processes and data in the datacenters is as
a rule opaque; there is no way for a Cloud User to know whether an application be-
haves as expected except by black box testing or through the Cloud Provider’s inter-
face. Certain Cloud Users may require, for example, that data is never transported
across country borders, or that data is never transported unencrypted through any
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network, but be unable to find out whether this actually occurs. Additionally, with
an opaque cloud environment, there is no way for a Cloud User to make his own
due diligence on whether a proposed SLA is fair given the price, except through
historical data. With increased standardization and development of formal tech-
niques for cloud management, Cloud Providers can provide iron-clad, transparent
guarantees of correct execution of programs and show calculations behind SLAs
backed by system design [199].

1.1.3 A Software-Hardware Divide in Flux

In a classic book on operating systems [194], Tanenbaum notes that, in the de-
sign of computer systems, whether certain components are realized physically in
hardware or abstractly in software is often a question of tradeoffs between cost,
performance, and flexibility that can be reconsidered over time. This observation is
particularly pertinent in the design of networking systems, where expected network
speeds have increased by at least three orders of magnitude over the last twenty
years, all while requirements on, e.g., management and security have multiplied
[146]. Traditionally, commercial vendors of networking forwarding devices, such as
routers, have traded off flexibility for lower cost by producing Application Specific
Integrated Circuits (ASICs) that incorporate the forwarding logic. This tradeoff
becomes inadequate in environments where the forwarding logic must be changed
frequently. The other extreme option is to run all the forwarding logic in software,
e.g., on top of commodity hardware, in effect trading off performance for flexibility.
Hybrid approaches are an active research area [146].

At a slightly higher level of abstraction, there has recently been attention to-
wards Software-Defined Networking (SDN) [154], or programmable networks. In
this approach, network forwarding logic is separated from control decisions, which
are instead moved into software controllers that typically have access to more
context-specific information. Software developers can thus tailor network behavior
for specific applications and enforce policies as they would with other resources
such as storage. Where previously many different network devices made separate
and possibly uncoordinated decisions, in SDN they can be centralized.

The interest in cloud computing has motivated recent work on virtualization
of operating system instances [16]. Historically, sharing of a physical computer
between individuals has been done at the operating system level, so that the op-
erating system maintains information on users, their credentials, and access rights,
and enforced access policies for logical storage and devices. In addition, the oper-
ating system ensures, more or less successfully [172], separation of physical mem-
ory access and division of Central Processing Unit (CPU) time between different
processes. Now, using support for virtualization in both operating systems and
hardware, a physical computer can host many operating system instances, or vir-
tual machines, each accessed by different users who usually remain oblivious to one
another. With a verified hypervisor, which manages instances and checks system
calls, such separation properties can be certified [50].
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1.1.4 Towards Concurrency, Distribution, and Asynchrony

For a long time, programmers could assume that performance on sequential tasks
roughly doubled every other year due to advances in computer hardware alone
[147]. This is no longer the case, since clock rates of chips no longer increase at the
required pace. Instead, the number of cores per chip has increased [80], and effective
use of multiple cores for performance generally requires careful use of concurrency
primitives in programs. Theoretically, performance is then constrained mainly by
the program parts that must be run sequentially [9].

While the development of multi-core chips is motivated principally by the pos-
sibility of performance increases in existing programs through parallelism, there
are many types of systems that incorporate simultaneity by nature, such as sensor
networks [206]. One useful description of concurrency in such contexts is as nonde-
terministic composition of programs or their components [85]. Understood in this
way, concurrency is ubiquitous in computing [142], both as the way to implement
sequential programs and systems, and in its own right.

Mainstream operating systems and programming languages generally expose a
thread-based model to programmers. In thread-based concurrency, a number of
separate control flows (lightweight processes) run side-by-side in a shared-memory
environment. Hence, all such threads can potentially access and modify the same
global state. This model is the norm both in classical imperative programming
languages such as C [196], and in object-oriented languages such as Java [164] and
C++ [98]. Without the use of primitives that restrict concurrent behavior, running
threads can interfere with each other, e.g., compete for reading and writing cer-
tain global variables, with unexpected results. Whether consciously formulated by
programmers or not, many sets of variables in threaded programs have certain log-
ical relationships between them, often called invariants; with unrestricted thread
behavior, such invariants cannot reliably be upheld, making predictable program
execution all but impossible. Concurrency primitives allow programmers to guaran-
tee that certain sequences of operations in a thread are performed atomically, that
is, without the possibility of interference from another thread. Still, conventional
control-centric primitives, such as locks and monitors, are notoriously difficult to
use; a real-world study of concurrency bugs in multithreaded programs suggests
that fully half of all such bugs are atomicity violations [128].

Figure 1.5 shows an example of a how, due to timing of unconstrained read and
write operations, one thread can end up with inconsistent information about a data
structure in shared memory; the inconsistency can be described as being due to a
(high-level) data race. In the scenario, there are two threads, A and B, and two
shared data fields: a linked list, e.g., as represented by its first element and a next
pointer, and an integer that is the size of the list. Initially, thread A writes a new
value to the list field. However, before thread A updates the size field, thread B
reads that field, which holds the value relevant for the old list. Thread B then reads
the list field, containing the updated list, and thus ends up with inconsistent data.
The situation could have been prevented if atomicity was separately enforced for
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both the writing operations of thread A, and the reading operations of thread B.

Thread A Shared Memory Thread B
write list

read size

size
write size

read list

list

Figure 1.5: Data race causing violation of an invariant

The main alternative to thread-based concurrency is message-passing concur-
rency, where processes interact only by sending and receiving discrete messages
through some medium (e.g., network wire, or memory buffers). This enables local-
ized reasoning about the state of each process; interference freedom [156], which is
necessary to provide guarantees about behavior in a threaded setting, holds triv-
ially inside procedures executed in isolation. However, there is still the possibility
of deadlocks, manifested as processes possibly waiting forever to receive messages
that will not arrive, and livelocks, where processes are somehow active but unable
to progress.

Systems that are concurrent by nature are often distributed: the components
that are nondeterministically composed run on physically (or, given Section 1.1.3,
logically) separate sites [86], as do networks. Famously, a distributed system can
be defined as one in which an unknown computer located elsewhere can cause local
failures [115]. In distributed systems, the message-passing model generally mirrors
more closely what actually goes on, and is thus more straightforward to implement,
although a shared memory can be simulated with some difficulty [120]. In fact, even
at the single-chip level, modern processor architectures resemble message-passing
systems.

A fact of life in distributed message-passing systems is asynchrony: the lax,
or nonexistent, bounds on latency of communication between sites and processes
residing there. With a low latency, processes can perform actions that appear as
though they were handshakes to observers. One of the crucial properties of a mostly
synchronous system is that conclusions can be drawn from the absence of some mes-
sage or event. Mostly asynchronous systems cannot draw reliable conclusions from
the timings of events—only through causality, i.e., the happens-before relation.
If possible, designing systems to function correctly and efficiently in distributed,
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asynchronous environments is arguably to be preferred, since at the time of con-
struction, runtime details such as latency or deployment sites may not be known,
or be uncertain to a large extent. Algorithms designed for running in synchronous
systems can divide computations into rounds to, e.g., ensure participation of every
node. Asynchronous algorithms can simulate similar behavior using synchronizers
[13], at the cost of being limited by the latency of the slowest component.

1.2 Motivation

The research in this thesis focuses directly or indirectly on what may be called
an extreme case of networking: nodes without centralized control communicating
via point-to-point asynchronous message passing using OSI layer 2 interconnects.
Since fundamental problems such as consensus, i.e., agreement on some data value
among nodes, cannot be solved in a fully asynchronous setting in the presence of
faults [70], it is sometimes necessary to introduce some synchrony to achieve appli-
cability to real-world settings. By way of operating system virtualization, virtual
networks, and clouds, systems designed with decentralization and asynchrony in
mind have wider applicability than simply running them in physical networks with
these properties.

The strongest argument for decentralized networks is that resource control in
such systems can be expected to scale to beyond in the order of thousands of nodes,
the limit in centralized systems [102]. In addition, they can offer easier scaling; new
nodes that are added do not need to registered and processed centrally, and nodes
that are to be retired only need to finish communication with their neighboring
nodes, if at all. The neighbors may be few or even constant relative to the size of
the network, in particular for grid topologies, as demonstrated in Figure 1.13.

If self-managed decentralized networks are used as a foundation for building a
public cloud, such as a PaaS, developers can be freed from the burden of resource
allocation even outside of specific domains such as web applications. Cloud Users
can also be isolated from management of various failures, related to, e.g., hardware,
network congestion, and unresponsiveness. Ultimately, End Users can be provided
with better services at lower cost than before.

Cloud Users require correct behavior of their programs when deployed in a PaaS.
Correct means that the program behavior in the cloud in some way corresponds
to the behavior the programmer expects after reading the program code and ob-
serves when running the program locally. This correspondence can be defined and
reasoned about rigorously when (1) the semantics of the programming language
is itself rigorously defined and (2) the cloud environment (consisting of nodes and
links) is modelled precisely and accurately.

From the Cloud Provider’s perspective, correctness is only the base requirement
for an IaaS or PaaS cloud; resource management such as relocation of computa-
tions and data between nodes, and (de)activation of nodes needs to be done while
maintaining the semantic correspondence. A commercial Cloud Provider, aiming
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to maximize enterprise value, will attempt to minimize resource usage costs over
time while upholding SLAs.

The programming languages considered in this research for PaaS deployment
use asynchronous message-passing as the fundamental operation, which is not the
default in commonly used object-oriented languages. Hence, for Cloud Users to be
able to use a PaaS, programs must be designed from scratch for message-passing
semantics or be converted from the thread-based model. Because it is not reasonable
to expect large-scale manual conversions of legacy programs in the latter case, there
is a need for automatically inferring concurrency semantics, to repurpose programs
for the message-passing model.

1.3 Research Problems

Consider a network of nodes with OSI link-layer interconnects. If all control, e.g.,
decision-making on resource allocation, is node-local, all coordination must be ac-
complished through message passing between neighboring nodes. The only way
for nodes to obtain global information, such as the average load, is then through
aggregation of information by coordinated message passing, e.g., by the formation
of a tree overlay on the network graph and flow of partial aggregates along branches
[54]. Generally, the problem is one of devising (and proving correct) distributed
algorithms for efficient coordination and data aggregation that do not require sig-
nificant synchrony or rely on centralized facilities.

Notoriously, without using problem-specific restrictions, proofs of properties in
rigorous models of networked systems must consider all possible compositions of
node events, which, without a bound on the number of nodes, is infinite. Without
sound abstraction, this rules out techniques based on analysis of bounded state
spaces, e.g., on-the-fly, or symbolic, model checking [39], except as an aid to debug-
ging. One possible route is to formulate the system as a transition system in an
inductive framework. This enables using rule induction to prove safety properties
[86]. Bisimulation-like equivalences between systems, explained in Section 1.4, are
more straightforwardly established through coinductive proof methods [179].

To have guarantees of program execution at runtime, proofs need to be done
on the level of the language, rather than at some more abstract level that does not
capture all implementation-relevant details. For example, the Java standard library
implementation of a binary search algorithm on arrays, proven correct on mathe-
matical integers, for a long time provided incorrect results for large inputs due to
unforeseen machine integer overflows [23]. Executable programs proven functionally
correct still generally rely on many assumptions about the runtime environment.
To achieve greater reliability it can therefore be argued that all significant parts
of the computing environment, such as networking hardware, computer hardware,
and operating systems, should also have their functionality specified formally, and
be proven correct with respect to specifications.

If the computational unit in a cloud is referred to as an object, the problem
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that faces the Cloud Provider may be called the object placement problem. More
precisely, it is the problem of continually allocating these objects to nodes so that
certain performance objectives are met (as specified in SLAs), possibly with the
side condition of minimizing costs related to infrastructure. For an IaaS cloud, mo-
bile objects would be operating system instances—virtual machines—rather than
containers of processes and data as in the PaaS case. Note that the cost of mobility
itself, in terms of lost throughput and increased latency, must also be taken into
account. Figure 1.6 shows one possible solution to an object placement problem,
with dotted lines indicating assignment of objects to nodes, and dashed lines be-
tween objects indicating the possibility of object-to-object communication. Note
that while the assignment is balanced, in that no load is unnecessarily over- or
under-loaded in terms of objects, it is not optimal with respect to minimizing com-
munication, since all pairs of possibly communicating objects, e.g., o4 and o3, are
located at different nodes.

Objects

o0 o1

o2

o3o4

Network of Nodes

u0

u1 u2

u3

Figure 1.6: An object placement problem solution

Even if object placement can be addressed, solving the problem of location
transparency among mobile objects is necessary to enable inter-object messaging,
which is important many areas of distributed computing. When one object located
at some node sends a message to another object, possibly located elsewhere, the
message cannot simply be forwarded to some location to ensure delivery. Suppose
each object can be assigned a globally unique indivisible identifier, i.e., an identifier
that cannot be hierarchically decomposed as can IP addresses. The solution implied
by content-centric networking is to have messages be explicitly addressed to the
identifier of the recipient. The problem remains, however, of how to route these
messages to their destinations in spite of mobility.

Figure 1.7 illustrates the problem of host-based addressing of messages via
TCP/IP to implement location transparency. In Figure 1.7(a), a message from
object o0 at node u0 to o1 at u1 has been dispatched with address u1, after query-
ing a location database, whose mappings are shown in the upper rectangle. The
message is then transported across the network using TCP/IP, but in Figure 1.7(b),
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when the message arrives, o1 has moved to some other node u3—as reflected in the
location database. It is possible to avoid or recover from this scenario in several
ways, such as by forwarding the message to the new location, or using locking to
ensure that an object does not move when a message to it has been dispatched.
But the fact remains that, as soon as o1 relocates, the message suddenly has the
wrong address, and is being transmitted to the wrong destination. If the message
is explicitly addressed to o1 instead, this conceptual problem disappears, and no
explicit “recovery” becomes necessary.

u0

o0 TCP/IP

u1

o1

o0 7→ u0, o1 7→ u1

u1

a

u0

o0 TCP/IP

u1

o0 7→ u0, o1 7→ u3

u1

b

Figure 1.7: Location transparency with host-addressed communication

In a particular network configuration, an inter-object message is traversing a
specific path, or route, to reach its destination. The stretch of a route is defined as
the ratio of its length, in terms of hops between nodes, to the length of the shortest
possible path. A low stretch is desirable for routes in general; if a route is optimal,
its stretch is one. Schemes for location transparency can thus be judged partly on
their propensity to achieve low stretch, which is particularly difficult if they depend
on hierarchical address formats for routing, as does IP.

The examples given of PaaS clouds with automatic scaling are specific to web
applications, which have many restrictions that make implementation easier; web
application frameworks such as Ruby on Rails [176] follow a shared nothing ap-
proach, where any state persistent between two web server requests is either due
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to the client (e.g., web browser cookies) or a separate database. Consequently,
web server instances can be started or stopped at any time without regard to state
(except possibly connection states of requests). The generalized problem of auto-
matically scaling clouds must take node-local state into account when exercising
power control over both virtual and physical instances.

1.4 Models of Concurrency and Distribution

The research in this thesis, while also of conceptual interest, mainly attempts to
analyze network systems in terms of abstract, rigorous notions from logic and al-
gebra. To rigorously describe sequential computational behavior, there are several
established and widely accepted models, the two most prominent of which are the
Turing machine [197] and the λ-calculus [38]. The basic element in the former is the
reading or writing of data on a storage medium; in the latter, it is function invoca-
tion with actual parameters. None of these activities correspond well to what goes
on in networks, where information exchange, or interaction, is central. Interaction
also implies that several computational processes are active concurrently, usually
on computers at different locations. In this setting, pure computation without
interaction becomes a special case of the behavior of distributed processes.

Interaction between two parties in the physical world can be of at least two dis-
tinct kinds: a “handshake” that requires simultaneous (synchronous) action from
both, or a signal (message) being transmitted from one to the other without the
requirement of simultaneity. In providing a fundamental, rigorous description of in-
teractive behavior, the decision whether to make handshakes or signaling primitive
has fundamental consequences.

The research in this thesis brings together elements from both the π-calculus
[144], which builds on synchronous handshakes, and the Actor model [3], which
builds on asynchronous message-passing. Both of these formalisms have well-
studied, rigorous foundations [181, 4] and have a wide variety of applications in
both theory and practice [168, 177, 6, 65]. The main programming language used
in the presented research, ABS, has a semantics that is close to the Actor model,
but is here analyzed mainly using techniques that were established and popularized
in the π-calculus tradition.

1.4.1 Process Algebras and π-calculus

Investigations into the foundations of concurrency beginning in the 1970s yielded
several rigorous accounts of describing and reasoning about concurrent processes,
notably CCS [141] and CSP [94]. In both CCS and CSP, processes, defined equa-
tionally, can perform labeled actions, possibly chosen nondeterministically, and be
composed with other processes, with which they can interact. The meaning of a
process expression is given in terms of a Labeled Transition System (LTS), which
is a tuple of consisting of a set of states S, a set of actions Act, and a transition
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relation T ⊆ S × Act × S. An execution of a process is a possibly infinite sequence

s0
α0−→ s1

α1−→ · · ·
αn−1

−→ sn
αn−→ · · ·

where si ∈ S and (si, αi, si+1) ∈ T for i ≥ 0. The trace of such an execution is the
sequence α0, α1, . . . , αn−1, αn, . . . of actions.

Figure 1.8 shows three processes represented as transition systems, with circles
as states and labeled arrows defining the transition relation. Figure 1.8(a) and
Figure 1.8(b) are classic systems [143] intended to abstractly capture the behavior
of simple beverage vending machines. The machines provide either coffee or tea
after the proper number of coins are deposited: one coin for tea, and two coins for
coffee. It is easily seen that coin, coin, coffee, coin, coin, coffee, . . . is a valid trace of
both systems. In fact, the possible traces are the same.

a

coin

coin

tea

coffee

b

coin coin tea

coin

coffee

c

coin

tea

drink

Figure 1.8: Labeled transition systems

Figure 1.8(c), represents the behavior of a compulsive tea drinker of limitless
wealth, who repeatedly inputs one coin, gets a cup of tea, and then drinks it.
Consider what happens when the tea drinker is composed in parallel with each
vending machine, in turn, and starts to interact with them. In CCS, interaction
is defined as two processes performing a mutual, synchronous transition on actions
with complementary labels, in this case either coin and coin, or tea and tea. When
interaction takes place, the result is a silent action, τ , which is not observable in a
trace. Hence, in both composed systems, the only observable action is drink. Yet,
to the tea drinker, the machines behave very differently; the first is a joy to use,
but the second sometimes gets stuck, unable to provide him with the required tea.
In these situations, the only way to progress, he finds, is to locate a coffee drinker
and have that person deposit a single coin and retrieve the resulting cup of coffee.

π-calculus [144] is a more recent formalism, descended from CCS, which also
relies on synchronous interaction as its primitive notion. π-calculus allows rep-
resenting communication links and transmission of information among processes
by primitive names. Since names are simultaneously channels and data, mobility,
in the form of mobility of links in the virtual space of linked processes, becomes
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possible to describe and analyze. Among processes, access to channels can be con-
trolled through the use of name binding, similar to variable binding in λ-calculus
and algebra in general.

In the context of this thesis, the most important aspect of CCS and π-calculus
are their notions of behavioral equalities between processes, and the methods for
proving them. While equality is not a trivial notion is sequential computation, it can
be straightforwardly understood through extensionality—equivalence by compari-
son of external properties. Regardless of how they are defined, two mathematical
functions can be considered equal if they always map the same input value to the
same output value. Two finite-state automatons, e.g., in the form of transition
systems as in Figure 1.8, can be considered equal if they produce the same traces.
Nondeterminism in a finite-state automaton, e.g., the automaton in Figure 1.8(b),
does not fundamentally affect externally observable traces, since nondeterministic
action can be reduced to the deterministic case [173].

The situation is different after introducing concurrency and interaction. To
the tea drinker, there is a clear way in which the LTS in Figure 1.8(a) behaves
differently from the LTS in Figure 1.8(b); for the former, it is always possible to
get tea after depositing a coin, while for the latter, it is not possible if the machine
is in the leftmost state. There is a distinct way in which the behavior of the first
machine and the second machine are distinguishable by an agent interacting with
both—if the second machine ends up in the leftmost state, it is unable to match, or
simulate, the capabilities of the first machine. If an interacting agent is unable to
find any such differences between two processes, they are said to be bisimilar [179],
i.e., the first simulates the second and the second simulates the first.

One way of understanding bisimulation is as a game played between two pro-
cesses, P0 and P1, that perform labeled actions. Suppose P0 and P1 are bisimilar,
written P0 ∼ P1, and P0 performs an action, say α, and then evolves into the
process P ′

0. P1 is then also able to perform α and then evolve into P ′

1, such that
P ′

0 and P ′

1 are bisimilar. The converse case, when P1 performs α, also holds. Fig-
ure 1.9(a) gives a diagrammatic presentation of the property, referred to in the
literature as strong bisimilarity [143]. If, instead, a process is allowed to make
an arbitrary, but finite, number of unobservable transitions τ before matching the
action of the other process, the resulting equivalence is weak bisimilarity, written
P0 ≈ P1. Figure 1.9(b) shows a corresponding diagram, writing P1

α
=⇒ P ′

1 for
P1

τ
−→ · · ·

τ
−→ P ′′

1
α

−→ P ′

1.

1.4.2 The Actor Model and Active Objects

The Actor model was originally developed in the context of artificial intelligence
research [92], but is now relevant as a foundation for designing, reasoning about,
and implementing concurrent and distributed systems in general [3]. An actor
has a unique name, independent control, and local state, and is able to send and
receive messages from other actors. Messages received by an actor are placed in
a (theoretically unbounded) private buffer, usually called a mailbox, until they are
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P0 ∼ P1

a

P ′

0 ∼ P ′

1

α α

P0 ≈ P1

b

P ′

0 ≈ P ′

1

α α

Figure 1.9: Strong and weak bisimilarity

processed; hence, messaging is inherently asynchronous. In response to messages,
actors can change their behavior, and thus their internal state, and spawn new
actors. Figure 1.10 gives a conceptual view of an actor system.

thread

procedures

state

mailbox

thread

procedures

state

mailbox

thread

procedures

state

mailbox

outgoing messages

incoming messages

Figure 1.10: A system of actors

In an object-oriented programming language, the behavior of an object in re-
sponse to a method call is determined by the definition of the corresponding method
in the class of the object. The Actor model itself does not prescribe that behavior
in response to a message is determined by the method name in this way. Instead,
behavior can be determined by, e.g., pattern matching on the message, as in the
Erlang programming language [65]. The combination of object-oriented program-
ming language conventions, such as classes and methods, with the Actor model, is
usually referred to as active objects [30, 31], although the difference from actors is
not precisely defined in the literature [183].

Four key semantic properties of Actor systems [108] are (1) encapsulation of
local state and messages, (2) fair scheduling, (3) location transparency, and (4)
mobility. Encapsulation requires that an actor is unable to directly affect another
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actor’s state—ruling out data races—and that messages contents are sent by value
(immutable) and not by reference. Fair scheduling requires that messages are al-
ways delivered to their destinations, unless the recipient is disabled; this is taken to
imply that no actor is permanently starved. Location transparency, as explained
above, puts the burden on the system to separate locations from message destina-
tions, even when locations can change as a result of mobility. In a survey of Actor
frameworks for the JVM platform [108], however, only two out of seven frameworks
guaranteed all of the key properties. In addition, programmers in practice tend to
mix message-passing and control-centric concurrency primitives, e.g., locks, when
using frameworks that permit this [195]. Still, the Actor model has had more im-
pact in practice than process algebras and π-calculus, with industry-used languages
and frameworks such as Erlang and its OTP libraries [66], and Akka on the JVM
platform [6].

Futures [32, 72, 124, 207, 153, 56] are an abstraction for handling return values
in active objects. A future, generated when a method is called asynchronously, can
be viewed as a placeholder for the return value that may eventually be computed
by the recipient object (the callee). When there is no value corresponding to the
placeholder, the future is unresolved. After the destination object has received the
message and computed the return value, the future becomes resolved, and stays that
way forever. An object with access to a future f can attempt to claim the value
associated with f , which could then result in blocking (busy waiting) or retrieval
of the value, if it is available. Figure 1.11 illustrates how futures work in a system
of active objects. Initially, object A, to the left, call a method in object B, thereby
both dispatching a method call and creating a new future. When object B has
received the method call and computed the resulting value, it updates the future
with this value. Object A then gets the value of the future, possibly after doing
other meaningful work.

Object A Future Object B

create

call

update

get

value

Figure 1.11: Sequence chart illustrating future creation and updating
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1.4.3 The ABS Language

Most of the research in this thesis is related to the Abstract Behavioral Specification
(ABS) language [103], developed in the EU FP7 HATS project. ABS is designed for
expressing executable models of distributed object-oriented systems, and is related
to the Creol language [104] and the CoBox model of concurrent objects [183]. Since
ABS uses asynchronous message passing for method calls, and rules out data races,
it can also be viewed as an actor language. More accurately, since actors do not
use classes and methods, ABS can be called a language of active objects.

The canonical calculus of ABS, called Core ABS, consists of two distinct parts, or
levels. First, it has a functional level of algebraic data types and terms, and enables
defining side-effect free functions on such data. Second, above the functional level,
is the object level, in which object interfaces and classes are defined, and which
allows the concurrency semantics to be expressed.

The functional level code fragment in Listing 1.1 defines a parameterized binary
tree data type Tree and a function contains, which, given a term t of type Tree

and a term a of the abstract type A of tree elements, returns True if there is a
such an element in t, and False otherwise. For instance, if t is the ground term
Node(1, Node(2, Tip, Tip), Node(3, Tip, Tip)), then t has type Tree<Int>, and
the expression contains(t, 3) is well-typed and reduces to True.

data Tree<A> = Tip | Node(A, Tree<A>, Tree<A>);

def Bool contains<A>(Tree<A> t, A a) =

case t {

Tip => False;

Node(a, _, _) => True;

Node(_, xt, yt) => contains(xt, a) || contains(yt, a);

};

Listing 1.1: ABS functional level data type and function definitions

The code fragment in Listing 1.2 shows an example Core ABS interface and two
implementing classes. The classes allow a programmer to construct a binary tree of
objects, with each object holding an integer value val. If the method aggregate() is
called on the root object in such a tree, the result is a cascade of method invocations
flowing out towards the tree leaves, resulting in the summation of all values of the
tree nodes. Note that, due to the initial non-blocking use of futures, the method
calls of a non-leaf object to its two successors can be made concurrently.

ABS abstracts from many implementation-level concerns in distributed systems,
which makes it more suitable for foundational investigations, at the cost of some
relevance to actual implementations. One such abstraction, the use of interface
types for objects, and by extension the mandatory hiding of implementation details
for objects, is arguably necessary for distributed execution. ABS uses asynchronous
method calls which return futures that can be claimed when values are needed. The
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interface CastNode {

Int aggregate();

}

class LeafCastNode(Int val) implements CastNode {

Int aggregate() { return val; }

}

class BranchCastNode(Int val, CastNode left, CastNode right)

implements CastNode {

Int aggregate() {

Fut<Int> fLeft = left!aggregate();

Fut<Int> fRight = right!aggregate();

Int aggregateLeft = fLeft.get;

Int aggregateRight = fRight.get;

return val + aggregateLeft + aggregateRight;

}

}

Listing 1.2: ABS class and interfaces

semantics implements synchronous inter-object method calls by blocking the sender
until the future is resolved.

The functional and object levels are accompanied by a type system, and a stan-
dard runtime semantics of Core ABS that can be described informally in terms
of an evolving “soup” of objects with tasks and method calls in the form of mes-
sages. Specifying runtime behavior of objects in this way is influenced by Berry
and Boudol’s Chemical Abstract Machine [18] and the rewriting logic style of mod-
eling distributed systems [40]. For well-typed programs, the semantics guarantees
that certain undesirable events cannot happen, such as attempted invocation of
nonexistent methods in the class of an object.

Figure 1.12 shows conceptual representations of three Core ABS runtime con-
figurations, corresponding to snapshots of the same executing program. In Fig-
ure 1.12(a), there are two objects, o0 and o1, where the former knows the identifier
of the latter. In addition, there is a resolved future f0 whose value is accessible to
both objects. In Figure 1.12(b), o0 has made a call to a method in o1, resulting
in the creation of an unresolved future f1 and a message addressed to o1. In Fig-
ure 1.12(c), o1 has received the message, computed the return value, and resolved
f1, as indicated by the changed container color.

The formal definition of Core ABS used in the research presented here is given
in Appendix A; in comparison to the original definition [103], a number of ambi-
guities and minor errors have been fixed, and the unit of concurrency is a single
object rather than a group of objects (concurrent object group, or cog). The latter
change is motivated by making object migration between network nodes conceptu-
ally simpler, and is not fundamental for the research results.

The combination of a separate category of expressions, which are evaluated
without side effects, and a semantics where all access to objects is through interfaces,
makes it easier to implement a language in a distributed setting. Specifically, inter-
object messages only need to contain as arguments immutable ground terms (fully
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a { o0 o1 f0 f1 o1 }

b { o0 o1 f0 f1 o1 }

c { o0 o1 f0 f1 o1 }

Figure 1.12: ABS runtime configurations

evaluated expressions), future identifiers, and object identifiers typed by interfaces.
In a language such as Java, where expression evaluation can have side effects, and
knowledge of the implementing class may be necessary to access an object, it is
problematic to simply serialize arguments in method calls for network transport—
the meaning of an argument can be different at the site of the receiver.

1.5 A Network Model With OSI Layer 2 Interconnects

The research in this thesis assumes a network model corresponding to OSI layer
2: nodes interconnected point-to-point by asynchronous message channels. Each
node thus has a unique name (or identifier) and is aware of a number of neigh-
boring nodes with which it can communicate by dispatching messages through the
appropriate channel, with no chance of loss (unless the receiver shuts down). At
any time, a message may be available through an incoming channel, but there is
no requirement to process available messages immediately; hence, a node cannot
know when a sent message has been received—only indirectly through a message
received in return. Underlying layers are assumed to perform error correction so
that dispatched messages are never lost. Nodes are assumed to act cooperatively
and honestly. The model does not consider resources, e.g., in terms of CPU cores
or memory, explicitly. In general, network messaging is considered much more
expensive than local computation.

In more rigorous terms, a network is a graph with nodes as vertices and channels
as directional edges. The graph is symmetric, i.e., whenever some vertex u has an
edge to another vertex u′, there is a corresponding edge from u′ to u. The graph is
also reflexive in that all vertices have an edge to themselves (a self-loop channel).
Finally, the graph is connected, so that there is always a path between all pairs of
vertices. Figure 1.13 gives a pictorial representation of this kind of network graph,
in this case one which has a grid topology.

Interpreting a node, or a site, as a possible world in the sense of modal logic,
the model corresponds to S5, where the accessibility relation between worlds is an
equivalence relation [86]. For messaging, each edge in the graph is associated with
an unbounded First In First Out (FIFO) message queue. Vertices can be associated
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u0 u1 u2

u4 u5 u6 u7

u3

Figure 1.13: Network graph with grid topology

with local state, which can be related to programs executing in the network (e.g.,
objects) or management information (e.g., routing). The graph can be realized in
several ways, most straightforwardly as a physical non-IP network, or a TCP-based
overlay on an IP-based network.

A network corresponding to OSI layer 3 supports direct messaging between
all nodes, commonly implemented using address-based routing, as for the Internet
itself. The corresponding rigorous model is then most closely a complete graph,
where all pairs of vertices have edges between them. OSI layer 4 ensures that, in
addition, an abstraction resembling a closed circuit can be used for communication,
i.e., communication order is preserved and error-checking and retransmission is
performed when needed. In a decentralized system, where objects (either active
objects or VMs) are the destinations of messages, there is no inherent reason for a
node to communicate directly with non-neighboring nodes. As long as the network
topology corresponds reasonably well to the physical layout, forwarding of messages
to objects by nodes can also be done at least as effectively as when using OSI layer
3 functionality, and possibly with even less latency, when schemes with low stretch
are used. There is, in addition, no reason for communication to resemble a closed
circuit, since the aim is not communication between nodes themselves, but between
objects. As long as communication is non-lossy at the link level, which is arguably
a problematic assumption in realistic settings, the retransmission functionality of
layer 4 is not needed.

1.6 This Thesis: Problems Addressed

1.6.1 Implementation Correctness of Active Objects in

Decentralized Networks

In the research in this thesis, we consider several fragments the ABS language
and its network-oblivious runtime semantics and propose several network-aware
runtime semantics that take aspects of location, routing, and message-passing into
account, i.e., describe execution at a level of abstraction close to implementation in a
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network. The network-aware semantics incorporate the network model described in
Section 1.5 and use location independent routing for realizing location transparency
for distributed objects. We consider relatively simple routing schemes where each
node maintains a routing table that maps message destinations, which are object
identifiers, to the identifiers of neighboring nodes which are the next hops to reach
the destination (as far as is known locally). A central property of the set of reduction
rules in all the network-aware semantics is that they are local, in the sense that each
rule, corresponding to an atomic action in a distributed system, only uses node-local
entities, e.g., links, routing tables, and local objects.

Figure 1.14 shows a fragment of a network-aware execution. In Figure 1.14(a),
a message from o0 to o1 has been routed by the node u2 towards u1, according
to the next hop entry in its local routing table, shown as the mapping o1 7→ u1.
In Figure 1.14(b), o1 has successfully migrated to u3, with the routing tables at
u1 and u3 updated as a result (although the routing table at u0 remains stale).
Consequently, the message is being routed using the new information towards u3.

a u0

o0

o1 7→ u2

u2

o1 7→ u1

u3

o1 7→ u1

u1

o1

o1 7→ u1

o1

b u0

o0

o1 7→ u2

u2

o1 7→ u1

o1

u3

o1 7→ u3

u1

o1 7→ u3

o1

o1

Figure 1.14: Network-aware program execution using location independent routing

With the precise formulation of the two program execution modes, it becomes
possible to express whether program behavior in the network-aware semantics in
some sense corresponds to the abstract behavior in the network-oblivious semantics.
The notion of equivalence between runtime configurations in the two semantics used
in this research is contextual equivalence [169], previously studied in the context
of the π-calculus family of process formalisms, and related to weak bisimilarity,
described in Section 1.4.1. Ultimately, Paper I and Paper II, summarized below,
establish equivalences of this kind between network-oblivious configurations and
their networked counterparts for two different ABS fragments.

The equivalence proofs rely critically on the possibility, at any point in an
execution, of the information in routing tables becoming stabilized, i.e., sound
and complete, if objects stay in their places. This makes it possible to deliver
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all outstanding object-addressed messages to their destinations, and, by extension,
enables the formulation of normal forms for network-aware configurations that are
close to the form of network-oblivious configurations.

Although the equivalence proofs are done at the language level, referencing spe-
cific ABS constructs, the techniques used are general and apply to similar languages
and more sophisticated routing schemes. If convenient, a hierarchy of network-
aware semantics at increasing levels of detail can be formulated, to come closer to
actual implementation code. An advantage of this type of implementation correct-
ness argument is the simplicity when compared to verifying the complete network
stack, which was not constructed with formal analysis in mind [20].

In summary, the research contributes to theory and practice of implementing a
network-based decentralized runtime system to support distributed, communicat-
ing, mobile active objects. In particular, the results provide arguments in favor
of realizing location transparency by routing messages directly on object identities
(actor names), and by extension, against relying on the transport or network layer
in the current (TCP/IP) network stack.

1.6.2 Adaptive Resource Allocation for Distributed Objects in

Decentralized Networks

A network-aware programming language semantics with unconstrained nondeter-
minism that, according to a suitable notion of contextual equivalence, corresponds
to a network-oblivious semantics, effectively describes the state space available for
object migrations in a given (static) network. But most “allowed” executions in a
networked setting are nonsensical when viewed from a resource allocation stand-
point; for example, objects can migrate to already-overloaded nodes, and objects
can migrate forever without their tasks progressing. For a Cloud Provider, execu-
tions must fulfill certain performance objectives, e.g., evenly balanced load among
network nodes. The problem is then to determine node-local behavior that ac-
complishes these objectives. An advantage to this approach is that objectives are
ensured by the runtime system itself, rather than some separate, centralized re-
source allocator.

In existing clouds, resource allocation is typically performed in a centralized
fashion [102], and may be considerably specialized for certain domains, such as for
running web applications [81, 8]. An alternative approach, considered in Paper III,
which is summarized below, is to run decentralized algorithms for achieving load
balancing and other resource objectives. The algorithm in effect determines the
scheduling of transitions in a network-aware semantics for a language of active
objects. We study a measure of node load defined at the language level: the
number of active computational tasks related to objects located at the node. In
the Core ABS semantics, an object has at most one active task. Consequently, in
the network-aware semantics for Core ABS, the node load is the number of objects
with an active task. For load balancing, a key issue is to avoid oscillation, i.e.,
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alternating, unstable allocations of resources over time. One promising technique to
avoid oscillation is by introducing decision making based on results of coin flips [71].

The main probabilistic algorithm we evaluate for load balancing of distributed
objects assumes a complete network graph for convergence to an evenly balanced
allocation in expected polynomial time in the number of nodes. Such high con-
nectivity is far from realistic in physical networks with link-layer interconnects. In
addition, when the topology of a network is sparse, it becomes important to con-
sider messaging between objects when migrating objects. If two objects located
many hops away from each other exchange messages often, the result is significant
network traffic and high latency of messages in terms of number of hops. It is thus
important to consider at least two other measures besides node load, namely, link
load (the number of messages passing through a link per unit of time) and message
latency (the number of hops messages need to be routed).

Figure 1.15 shows a configuration that evolves to an ideal allocation through
migration. In Figure 1.15(a), messages between, on one hand, o1 and o0, and on
the other hand, o3 and o4, must be transported across the network. Additionally,
node u1 is overloaded with objects, and both u0 and u2 are underloaded. In Fig-
ure 1.15(b), all object messaging can be taken care of locally, and no single object
migration can be performed which makes load more evenly balanced.

a u0

o0

u1

o1 o2 o3

u2

o4

b u0

o0 o1

u1

o2

u2

o3 o4

Figure 1.15: Object migration for load balancing and minimizing network traffic

A fundamental assumption in our resource allocation approach is that all deci-
sions are made at runtime, rather than at development time (in the form of, e.g.,
annotations [105]) or at compilation time. Hence, no information about program
characteristics is derived statically.

Our approach is to run the main load balancing algorithm, based on coin-
flipping, in static networks with grid, hypercube, or full mesh topologies. We
prioritize load balancing over other objectives. To achieve progress towards min-
imizing link load and message latency, we apply various heuristics when selecting
objects to migrate and the destination neighboring nodes.

In Paper IV, also summarized below, we consider the case of benignly dynamic
networks with asynchronous message passing, where there is no unexpected shut-
down (or addition) of nodes, only due to stimuli from, e.g., the environment. Be-
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cause crashes are ruled out, it is then not necessary to use replication, which can
be a costly measure [136]. Instead, however, there is a requirement to ensure that
no object-related message or object that is located on or inbound to a node are
lost, when that node is shutting down. Only a node that has no objects, and
whose outgoing and ingoing queues to all neighboring nodes contain no object
or object-related message, can safely disappear without consequences to program
execution—assuming the remaining network is connected.

In a decentralized asynchronous setting, a node that aims to shut down thus
has to obtain agreement from its neighbors to ensure that no new objects or object-
addressed messages are sent to it during the phase when all objects are migrated
elsewhere. This process has the characteristics of a distributed transaction, or a
two-phase commit [82, 117, 187]. Besides existing neighboring nodes, new adjacent
nodes may also become activated as a node is shutting down, which could cause
unwanted messages to be inbound from the new node. To avoid such situations,
newly added nodes must not send object-related messages to a neighbor without
agreement. As in a static network, the ultimate aim is to provide behavior that can-
not be distinguished from the network-oblivious behavior, when “invisible” actions
such as messaging related to node shutdown are disregarded.

From a resource allocation perspective, even if nodes can be triggered to safely
shut down, there is still the problem of determining which nodes should be shut
down at what time to simultaneously (1) maintain connectivity and (2) meet per-
formance and power-related objectives, such as to minimize the number of active
nodes for a given average load, when variance is within a certain interval.

There are limits to what can be achieved in practice with only asynchronous
message passing, not least because of fundamental issues, such as the impossibility
of consensus in the presence of failures. Nevertheless, many problems can be tackled
to some degree, which raises the question of quantifiable tradeoffs between the
amount of synchrony and how accurately problems in distributed computing, e.g.,
distributed aggregation and assignment of computational tasks to nodes, can be
solved.

1.6.3 Program Conversion From Thread-Based to

Message-Passing Concurrency

Concurrent programs written in mainstream languages, such as Java and C++, as a
rule use thread-based concurrency primitives. As argued in Section 1.1.4, threaded
code frequently contains atomicity bugs, and the assumption of shared memory is
anathema to large-scale distributed systems, preventing execution in a PaaS cloud.
Conversion of legacy programs to the message-passing model can thus lead to many
benefits, most prominently the possibility of execution in a decentralized, scalable
cloud environment. This may not be necessary or beneficial for all programs, e.g.,
those with highly optimized, fine-grained threading and synchronization. Yet, even
when constructs for message-passing are available, many programmers still use,
e.g., locks, because of familiarity and other non-fundamental reasons [195].
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To properly convert an object-oriented program with locking to use message-
passing, the concurrency semantics of the program must be understood and pre-
served. The concurrency semantics can be described, e.g., in terms of the control
flows of multiple threads and how locking is used to guarantee atomicity in certain
sections of the program—a difficult task. A more promising route is to consider
concurrency semantics in terms of properties that hold between fields inside, and
across, objects. In formal verification of sequential object-oriented programs, a
common way to organize behavioral specifications is as class invariants, namely, as
properties which hold at entrance and exit for all class methods, and at the exit
of the constructor [133]. While weak class invariants, e.g., that some class field
is never null or the null pointer, are feasible to formulate and establish for large
programs, stronger invariants that fully capture the intention of the class, are much
more time-consuming and consequently unfeasible to develop in most contexts [37].
In a multithreaded setting, however, invariants involving certain fields can only be
upheld if these fields are only modified inside code sections that are executed atom-
ically. In Java, the most common way to achieve atomicity is through methods that
have the modifier synchronized, and thus use monitors associated with objects at
runtime to ensure execution of code one thread at a time, with classical locks and
semaphores available through libraries [164].

Even when a program’s invariants and the associated atomicity requirements
are understood separately from the actual code, there still remains the problem of
splitting up the runtime state into units of concurrency. To distinguish between the
sequential notion of object and active object, the unit of concurrency is most easily
referred to as an actor, and the conversion process as actorization. Between one
extreme, where all objects are included in one actor (thus losing all concurrency),
and another extreme, where each object (possibly decomposed) becomes an actor,
with significant additional messaging for synchronization needed as a result, there
is a wide spectrum. For example, objects that encapsulate data structures such
as lists, whose references are never visible outside the scope of the object they are
used in, are arguably not candidates to become actors in their own right. A set
of actors resulting from an actorization are similar to a set of concurrent object
groups (cogs) in the CoBox model, where objects inside a cog collaboratively pass
control around [183].

The research described in Paper V, summarized below, makes specific contribu-
tions to the first stage of actorization: determining whether invariants exist between
fields in concurrent programs and specifying atomicity requirements separately from
the code. This is done by analyzing runtime traces of legacy programs, i.e., by dy-
namic analysis of behavior. In Section 1.8.3, we describe current and future work
to automate the full actorization process.
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1.7 This Thesis: Contributions

1.7.1 Paper I: Location Independent Routing in Process

Network Overlays

Any implementation of mobile active objects (or, actors) in a networked setting
must consider the problem of location transparency. If active objects are statically
allocated to nodes, communication between objects is easily reduced to communi-
cation between nodes, using, e.g., TCP/IP. An object identifier could then simply
be represented by the IP address of the node at which it is located, along with
some identifier unique in the scope of that node, such as a serial number. This is
in effect what is done in the implementation of JCoBox with remoting, which uses
Java’s Remote Method Invocation mechanism [47]. The situation is quite different
when objects are mobile: sending an inter-object message to some location which
is only a temporary host of an object does not guarantee delivery, as is made clear
in Section 1.3.

The network model used, as described in Section 1.5, is that of a connected
graph of nodes with edges in the form of OSI layer 2 interconnects. Although
the lower layers of the OSI model may have been formulated as a guide for phys-
ical implementors, they can also be realized, or simulated, using higher layers as
abstractions that enable convenient organization of software. Hence, our network
model is perhaps most easily implemented on top of TCP/IP, which we also did in
our simulator described in Paper III, summarized in Section 1.7.3 below.

This paper uses what is possibly the smallest nontrivial asynchronous fragment
of ABS, called µABS (micro-ABS) to demonstrate and analyze the approach of
implementing active objects with location independent routing in OSI layer 2 net-
works. The absence of return values for procedures, i.e., the omission of a “return”
statement for methods in classes of programs, means that two-sided communication
sessions between objects is only possible if the sender (caller) passes its own iden-
tifier in a message. Then, the callee can invoke some method on the caller when
done, in effect a callback routine, as is common in Erlang [155]. It can thus be
argued that omission of return values is not a fundamental restriction.

To the best of our knowledge, this paper for the first time brings together ideas
from content-centric networking, process algebras, and active objects to show the
formal correctness of network-aware object behavior, in the form of contextual
equivalence between a network-oblivious and a network-aware µABS semantics. To
make the theoretical treatment more straightforward, no fundamental distinction
is made between behavior related to program execution and behavior related to
node management. Hence, processing of object and routing messages is done at the
same level of abstraction as the processing of call messages. Arguably, this makes
the paper somewhat less relevant to implementors, who may want to support many
different languages in the same management infrastructure. Compared to Paper II,
there are fewer language details to get in the way of the correctness analysis; the
contextual equivalence argument is more distilled.
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Statement of Contribution This paper was coauthored with Mads Dam. Ideas
were discussed jointly, with both authors contributing to the writing of the paper.
Mads wrote an initial draft, and Karl then assumed responsibility for detailed
proofs, refined the text, and made many additions.

An earlier, shorter version of the paper was published in the proceedings of the
22nd Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP ’14) [52]. The paper here is essentially the same as the
paper version accepted for publication in the journal Service Oriented Computing
and Applications [53]; only slight typesetting-related details differ.

1.7.2 Paper II: Efficient and Fully Abstract Routing of Futures

in Object Network Overlays

One of the main differences between µABS and Core ABS is the absence of return
statements of methods in the former, which necessitates using Erlang-style callbacks
for mutual exchange of messages between objects. This paper extends µABS with
futures as return values, bringing the resulting language, mABS (milli-ABS), much
closer to Core ABS than µABS. As in Paper I, both a network-oblivious and a
network-aware semantics is then provided, along with a correctness analysis based
on contextual equivalence along the same lines.

In the network-oblivious reduction semantics of mABS (and Core ABS), a future
is represented in a runtime configuration as a container having a unique identifier,
f , and either a value or ⊥. The former indicates that, at the configuration level,
the future f is regarded as resolved, the latter that it is unresolved, as explained
in Section 1.4.2. When a method call is dispatched, a new future container with ⊥
is created. The receiver of the method call spawns a task, which produces a value
which is put in the container. All computational tasks that have access to the future
identifier can then retrieve, in an atomic action, the value from the centralized store
in the container.

In a distributed setting based on asynchronous message passing, future values
cannot be obtained directly in this way—the task that produces the value of a fu-
ture may be at a different site than the task that will eventually retrieve the future.
The problem of resolving and retrieving futures in programming language runtimes
via message passing has been studied in the literature under the name future update
strategies [90]. Three main strategies have been identified, which are characterized
as either eager or lazy depending on whether update messages, containing values
associated with futures, are delivered to all objects that have access to a future iden-
tifier, but do not necessarily attempt to retrieve the value, or only to those objects
that attempt to retrieve the value. The first is an eager forward-based strategy,
where objects that share future identifiers with other objects assume the obligation
to share the resulting value, when possible. The second is an eager message-based
strategy, where all recipients (“consumers”) of future identifiers immediately regis-
ter their interest with the object (“producer”) that hosts the task computing the
result of the associated method call; the producer object then sends out the value
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when available. Finally, in a lazy message-based strategy, objects request the future
value they need at the point when it has been determined that the value is needed.

The paper applies the eager forward-based strategy to update futures in the
mABS network-aware semantics. The primary reason is that the associated messag-
ing load is then better dispersed among objects at runtime than for other strategies.
When objects are allocated evenly between network nodes, as when using an object
migration strategy from the paper summarized in Section 1.7.3, the messaging load
related to futures becomes dispersed among nodes as well, which is desirable both
from the point of view of maintaining decentralization and performance. Generally,
an eager strategy is desirable to minimize latency if communicating objects can be
many hops apart in the network. As a side-effect of depending on location inde-
pendent routing, eager future message delivery also benefits from the low stretch
of paths that results when routing tables are close to stable state.

A related Scala-based ABS backend [178, 148], supporting distribution without
mobility, represents future containers as actors in their own right. One argument
against this design is that future containers behave largely like memory cells, and
are thus not active in the same sense as objects are. Yet, the distinction between
active and passive in concurrency is not always clear [142]. However, in a mobile
setting with performance objectives to uphold, having only one unit of mobility—
the object—simplifies the dynamics.

The main differences between mABS and Core ABS are (1) the omission in
mABS of an explicit syntax of functional terms and expressions, and an expression
evaluation semantics, (2) the lack of a type system in mABS and accompanying
safety theorem (subject reduction). With an implicit term and expression syntax,
object identifiers and futures cannot be used as if they were terms in expressions,
i.e., mixed in with other expression syntax. Consequently, while Core ABS values
(ground terms) can contain an arbitrary (but bounded) number of futures, an
mABS value is either a future, an object identifier, or an implicit ground term that
contains neither object identifiers or futures. These omissions are motivated by the
focus on the correctness argument, which is not fundamentally different, but more
extensive, when expressions and types are explicitly included.

Statement of Contribution This paper was coauthored with Mads Dam. Both
authors contributed to the writing of the paper, with Karl taking main responsibility
for the formalization and proof details.

An earlier, shorter version of this paper was published in the proceedings of
the 2013 Workshop on Programming Based on Actors, Agents, and Decentralized
Control (AGERE! ’13) [51]. Modulo typesetting-related details, this paper is the
same as a longer paper submitted for journal publication.
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1.7.3 Paper III: ABS-NET: Fully Decentralized Runtime

Adaptation for Distributed Objects

This paper provides a network-aware semantics for the full Core ABS language and
explores how nondeterminism in executions can be restricted to perform runtime
adaptation in terms of object mobility. The contextual equivalence proof with
respect to the standard Core ABS semantics is not carried over from mABS, but
little of fundamental interest is different in Core ABS. The combination of the Core
ABS syntax, type system, expression evaluation semantics, and the network-aware
semantics is referred to as ABS-NET.

The ABS-NET semantics is formulated to emphasize the separation between
object behavior at runtime and node behavior. Conceptually, each node in the
network has an interpreter layer, where objects execute (if any). The interpreter
layer interacts with a node controller, where logic for message passing and load
balancing resides. The interaction goes both ways. Migrating objects are received
by the controller and placed in the interpreter layer, and outgoing object-addressed
messages are dispatched to the controller to be routed to their destinations. The
separation in the reduction semantics between nodes and objects makes clear what
information is exchanged and when, going some way to suggest an Application
Programming Interface (API) between implementations of a node controller and
an interpreter layer.

The node controller running at each node decides, without involvement from
centralized facilities, the scheduling of local objects and when to migrate objects to
other nodes. In other words, the only knobs available for a controller are for object
task execution and migration. Due to the asynchronous point-to-point message
passing links, new objects and messages can arrive at any time.

We consider three performance objectives, in order of priority, for node con-
trollers to achieve in cooperation: (1) node load, (2) link load, and (3) message
latency. A node’s load in a runtime configuration is defined as the number of ob-
jects located on the node which have an active task. The load of a link is the number
of messages traversing it per unit of time. The latency of a particular message is the
number of hops it traverses until it reaches its destination. To investigate how well
these objectives can be achieved in a decentralized network, we use a TCP-based
simulator for the ABS-NET semantics implemented in Java, parameterized on the
migration strategy. The simulator introduces a degree of synchrony by executing
node controller actions at an even pace.

The core migration strategy is based on coin-flipping for determining whether
to migrate objects, and is based on a probabilistic algorithm with attractive conver-
gence properties in fully connected graphs with synchronous rounds [17]. The idea
is that, at intervals, node controllers attempt to migrate away some of their objects
with active tasks by repeatedly picking a random neighbor whose load is known,
and flipping a coin with a bias based on the node’s own load and the neighbor’s
load to determine whether migration takes place. This avoids the oscillation that
tends to happen with deterministic migration. To achieve progress towards mini-
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mizing link load, node controllers record the affinity, or communication intensity,
of each object to other objects. When a random neighbor is selected and the coin
flip determines that migration is to take place, the object with the highest affinity
towards objects located in the direction of the neighbor is chosen. To account for
the dynamics of communication patterns, the affinity added by observing a single
message exchange decreases over time.

The results for grid, hypercube, and complete network topologies suggest that,
at least for systems with long-running active objects, load can be balanced using
the coin-flipping approach (even with a constant number of links per node), while
making some headway towards meeting other performance objectives. One problem
in sparser networks such as grids is that global minimization of some property may
require intermediate allocations which are locally suboptimal.

Statement of Contribution This paper was coauthored with Mads Dam, An-
dreas Lundblad, and Ali Jafari. Karl developed and investigated the feasibility of
the ABS-NET semantics of Core ABS, with input mostly from Mads. The quality
of service criteria and outlines of the migration strategies were determined jointly.
Karl implemented most of the strategies and evaluated them. Karl also wrote most
of the paper.

This paper was, modulo minor typesetting changes, published in the proceedings
of the 6th Interaction and Concurrency Experience (ICE ’13) [159].

1.7.4 Paper IV: Decentralized Adaptive Power Control for

Process Networks

In previous papers, the network of processing nodes, on which an ABS program
executes, is assumed to be static throughout. Most immediately, static networks
rule out node crashes, which would require use of replication to preserve network-
oblivious behavior. However, the assumption also rules out benign dynamicity, in
the form of controlled addition and shutdown of nodes. Even in a tentative cloud
where nodes do not crash, there is still the need for nodes to be added or removed,
or turned on and off, based on requirements on, e.g., computational load and energy
consumption.

This paper introduces a largely language-independent model for programs exe-
cuting in a benignly dynamic network, where nodes host mobile objects. The main
contribution is a protocol for decentralized asynchronous networks that preserves
objects and object-related messages located at nodes in the process of shutting
down, by diverting them to other nodes. The protocol is reminiscent of a two-
phase commit, in that nodes that decide to shut down send preparation messages
to all their neighbors and require confirmation before proceeding to the next step.
If a neighboring node simultaneously sends such preparation messages, a “winner”
is eventually decided, and the loser reverts to normal state, able to make another
attempt later. An abtract, bounded version of the protocol has been verified in
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an on-the-fly model checker, but this does not cover correctness in networks of
unbounded size, which the network model permits. Consequently, we provide an
alternative transition system model, defined in an inductive framework, to enable
reasoning by induction about the safety side of correctness. A number of necessary
properties are proven in this way, but fall short of establishing full correctness,
which also includes liveness. This is left as future work.

As the protocol is formulated, with maximum nondeterminism, maintaining the
connectedness of the network is left to the discretion of a scheduler. Although it
does not in itself threaten the integrity of objects and object-related messages, a
disconnected network must be avoided for program execution to proceed. Whether
a network graph becomes disconnected or not through the removal of a single
node can sometimes be determined locally, by knowledge of edges in the immediate
neighborhood, but in the general case, it is a global property of the graph. Hence,
when local, sound heuristics become inapplicable, a distributed algorithm which
collects information from all nodes in the network must be used.

Finally, the paper discusses strategies for turning nodes on and off to achieve
performance objectives, but a full evaluation in practice is left as future work.

Statement of Contribution This paper was coauthored with Mads Dam. Karl
developed an outline of the shutdown protocol, modelled it in Spin, and refined
it during model checking. Karl developed the transition system and the inductive
proof approach. Karl wrote the paper. Mads contributed mainly through discus-
sions and criticism.

The paper is previously unpublished, and has not been submitted for publication
elsewhere.

1.7.5 Paper V: Dynamic Probabilistic Inference of Atomic Sets

Data-centric synchronization [62] is an approach to concurrency control in object-
oriented languages where atomic access is specified directly for data in class fields
and method arguments, as annotations. Synchronization is defined in terms of
atomic sets of class fields, and methods that are units of work for atomic sets. The
intention is that fields in the same atomic set have some, stated or unstated, invari-
ant connecting them. A unit of work is a method which, when executed, guarantees
atomic access to the instances of fields in the associated atomic sets. Finally, aliases
allow atomic sets to cross object boundaries. In effect, these data-centric annota-
tions comprise a statement of a program’s concurrency semantics, with atomic sets
capturing invariants and units of work capturing atomicity requirements.

In a shared-memory setting, how to best use concurrency primitives to imple-
ment this behavior can then be determined by a compiler rather than a programmer.
A simple class definition in the AJ dialect of Java, annotated with atomic set an-
notations, is shown in Listing 1.3. For this particular class seen in isolation, the
effect of adding the atomic set is equivalent to adding a synchronized modifier on
the method setNames().
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public class Person {

atomicset P;

atomic(P) private String firstName;

atomic(P) private String lastName;

public void setNames(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

}

Listing 1.3: Java class annotated with atomic sets

As for formal verification of object-oriented programs, the major threat to even-
tual adoption of data-centric synchronization is the requirement to annotate exist-
ing code to facilitate use, in this case for Java programs. This paper addresses the
problem of dynamic inference of atomic set-based annotations. The algorithm de-
scribed in the paper, called Bait, uses Bayesian inference [163] to compute atomic
sets, aliases, and units of work on-the-fly while a program executes. The algorithm
records accesses to variables, and, for pairs of variables accessed subsequently, deter-
mines whether accesses are atomic. When this is the case, it is considered Bayesian
evidence that the variables are connected by some (unknown) invariant. Over the
course of the execution, evidence is weighed based on observed accesses; a data race
counts against the existence of an invariant, but is not conclusive. One advantage
of this approach is that it is not dependent on the specific mechanism used for
concurrency control.

The Bait implementation is a tool chain that infers annotations in the AJ
dialect for Java programs [62]. The tool chain consists of a byte code instrumenter
and an inferencer. Given the byte code of a program, the instrumenter embeds code
to record variable accesses and track necessary metadata during an execution. After
the modified byte code is run, evidence of atomic sets and aliases are accumulated
in data structures called belief configurations, which is finally used by the inferencer
tool to derive annotations.

In the evaluation of the implementation, the annotations produced by Bait are
compared to manual annotations for almost all AJ-annotated programs that are
publicly available. The annotations are largely the same, with notable differences
due to either bugs in the original annotations, or, in a small minority of cases,
omissions by the tool. Two case studies are performed for the widely used Java
open source programs Lucene [131] and Xalan [205], using benchmarks from the
DaCapo benchmark suite [22], with favorable results.

Compared to other tools inferring atomicity specifications, Bait has an edge in
that it (1) is robust against rare data races in traces, (2) takes distance between
variable accesses into account, in terms of basic instructions, and (3) infers cross-
object synchronization constraints in the form of aliases and unitfor annotations.
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Data-centric synchronization allows for more fine-grained atomicity than Java’s
monitors, but coarser atomicity than locks or semaphores. Consequently, a program
using synchronization based on atomic sets can be more concurrency-constrained,
and thus execute with lower performance on multi-core computers. Related work
referenced in the paper [203] shows that the slowdown need not be significant,
however. Determining atomic sets is thus of interest both in its own right and for
enabling actorization, as described in Section 1.6.3.

Statement of Contribution This paper was coauthored with Peter Dinges and
Gul Agha. Karl tuned the algorithm and its parameters, did the evaluation, and
helped clarify the algorithm’s foundation in Bayesian inference theory. Karl wrote
significant parts of the paper.

The paper is previously unpublished, and has not been submitted for publication
elsewhere.

1.7.6 Other Papers

Karl has coauthored one paper on applications of distributed tree-based aggregation
to search in a network of information [160]. Specifically, in NetInf [55], this approach
is useful for continuous searches based on queries referencing metadata properties.
Karl has also coauthored one paper on secure distributed top-k aggregation [106].
The topics and contents of these papers were considered outside the scope of this
thesis, and they are therefore not included.

1.8 Conclusions and Future Work

1.8.1 Correctness and Decentralized Management of

Distributed Objects

Paper I, II, and III demonstrate that location independent routing is a promising
way to realize location independence for active objects. For Cloud Providers, the
approach is useful both for virtual machines in IaaS clouds, or, more directly, for
programs running in PaaS clouds. A central argument for location independence
is that it enables resource management, and Paper III shows that balancing load
is feasible using only migration of objects. As long as a migration strategy falls
within the bounds of the state space established by the network-aware semantics for
contextually equivalent execution, the result will be correct as far as a Cloud User
can tell. Papers I to IV describe how Cloud Providers can perform decentralized
resource management in clouds by migrating objects around and by turning nodes
on and off. However, several other aspects of resource management remain to be
considered in this setting, such as adjustment of buffer sizes, caches, memory usage,
and processor load.

By virtue of the local nature of the reduction rules, there are no rules that simul-
taneously mutate the internal state of two nodes or more. Hence, each reduction
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rule that mutates node state corresponds to a function that takes current state as
input and produces the new state. Assuming all elements of node state, such as
routing tables, can be represented in an equivalent way in the semantics and an
implementation, these functions can then be used directly in an implementation. In
addition, as shown in the ABS-NET semantics, rules that mutate object state can
be separated from rules that pertain to node state and message passing through
links. The implementation of a language-specific interpreter layer can thus be done
separately from a node implementation, with an interface along the lines of that in
ABS-NET, and one node can run several different interpreters.

To ensure full implementation correctness down to the machine instruction level,
the most straightforward approach is to encode a network-oblivious and a network-
aware semantics in the logic of a proof assistant, e.g., Coq [43] or Isabelle [97].
Then, a machine-checked contextual equivalence proof can be made, and the cor-
responding implementation code can be extracted [119]. However, the code would
still rely on its execution environment and primitives for message passing on the
network. One possibility is to adapt work on verified operating systems, along the
lines of seL4 [109], running virtualized inside a verified hypervisor [50]. The com-
plexity of verifying the TCP/IP protocol suite [20] is an argument for relying on a
non-IP network in such an environment.

The network-aware semantics for the ABS fragments in the papers are formu-
lated to enable proving properties rather than to achieve high runtime performance.
Hence, many optimizations to the sets of rules are possible:

• Unroutable object-addressed messages can be stored in a separate data struc-
ture, rather than sent to a self-loop link; when new routing information be-
comes available, the data structure can be searched for messages that have
become routable.

• When an object sends a message, and the destination object is located on
the same node (in the same interpreter layer), the message can be delivered
directly to the destination without passing through the node controller at all;
this includes self-calls.

• Object out-queues can be removed, replaced either by some general node
message queue or by having the node synchronize with the object for outgoing
messages; this makes runtime objects more similar to actors.

• The simple distance vector routing scheme can be replaced by a more sophis-
ticated one, as long as it has similar self-stabilization properties.

For an optimized network-aware semantics to guarantee correct execution, con-
textual equivalence must be proved with the original semantics. The result is a
hierarchy of refinements, capturing concerns ever closer to the implementation en-
vironment.

Besides adaptability of objects at runtime, there are other notions of adapt-
ability, e.g., code adaptability, that can be added to a network-aware framework.
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Program updates at runtime are already possible in, Erlang, and approaches in
languages close to ABS can be adopted [208]. ABS has been extended with deploy-
ment components [105] to allow programmers to control resource usage at runtime.
These extensions can be implemented in an ABS-NET runtime, with nodes acting as
deployment components. The result is in effect a reflective middleware layer [111].

1.8.2 Computation in Dynamic and Adversarial Networks

Scaling a processing network up and down in a controlled way is made possible
through the shutdown protocol in Paper IV. Still, failures such as node crashes are
not considered. An important issue is whether to consider node crashes and link
failures separately. If only node crashes are considered, messages in links going to
and from a crashing node are lost. The principal theory for dealing with failures
in distributed systems, failure detectors [36], is most straightforwardly considered
at the level of nodes. Generally, it cannot be assumed that node crashes and
link failures are distinguishable, and thus, can be dealt with differently. Arguably,
locally at a node, a permanently lost link to another node is indistinguishable from
that node crashing. In addition, a falsely reported crash from an imperfect detector
requires the same measures—e.g., recovery and retransmission of messages—as a
temporary link failure. Hence, a network model with eventually consistent failure
detectors seems appropriate for capturing robustness against both node crashes
and link failures in practice. It still remains, however, to investigate how and
when replication is to be used to preserve objects and messages, to uphold the
correspondence with a non-networked execution. The state checkpointing approach
of Field and Varela for actors is one option [69].

Dealing with nondeterministic failures in this way still assumes that nodes do not
deviate from established protocols when communicating with neighbors. In a model
with Byzantine failures [116], such deviations are possible. One way to deal with
Byzantine failures is by using cryptographic primitives to, e.g., certify integrity of
object states and object-addressed messages. Designers of content delivery networks
address similar problems [188], but for passive objects such as video and audio files,
rather than active objects. Inlined monitors and proof-carrying code [132] can
ensure programs received from potentially unreliable sources behave as expected.
Finally, privacy may be a concern for both Cloud Users and End Users, and is left
as future work.

1.8.3 Data-Centric Synchronization and Actorization

Paper V provides one piece of a solution to the problem of making programs written
in object-oriented mainstream languages ready to execute in PaaS clouds using
message-passing concurrency control. Suppose the concurrency semantics of some
program is captured precisely and accurately with data-centric annotations. For
reasonable performance, even with a lock-based implementation, it may still be
necessary to perform various refactorings. For example, a class having multiple
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atomic sets (which by definition are disjoint) can be decomposed into several classes,
each with a single atomic set of fields, with methods divided according to which
fields are accessed. The annotations can then be used to produce an actorized
version of the program, ready for execution in a PaaS cloud. In the actorized
program, objects are still not necessarily mapped to actors one-to-one, because
of the presence of aliases between atomic sets in different classes. Generally, the
problem is one of correctly partitioning runtime objects into disjoint subsets, each
with separate control flow and local data, so that when an object in one subset calls
a method on an object in another subset, this is translated to asynchronous message
passing, as in ABS. Two possible semantics-preserving partitions of a collection of
objects can be different in terms of degree of concurrency, and requirements on
communication and synchronization. Decomposing tightly connected cliques of
objects into different sets inevitably leads to more messaging, but can speed up
execution on multi-core machines.

In finding a robust theoretical description of the actorization process, Java itself
is not an ideal language as a starting point. Java makes no fundamental distinction
between mutable and immutable objects, and object references are not necessarily
serializable or accessed through interfaces. One option is to define a subset of the
Java-like Jinja language [110] with a formalized threading model [126], or define a
Java-like threaded version of ABS with monitors and locks. To properly capture
the semantics of unitfor annotations in methods, which can join together atomic
sets in otherwise unrelated objects, additional synchronization must be used, e.g.,
in the form of two-phase commits between actors.

After determining the source language, a pipeline for actorization can be defined,
as follows. After performing annotation inference, a program can be annotated with
atomic sets, aliases, and units of work, and all control-centric concurrency primitives
removed. Then, the program can either be executed in the threaded model through
a compiler (similar to the now defunct AJ compiler [62]), or be converted to a
language where boundaries between actors and objects are made clear. JCoBox
is one example of such as language, in that when an object is created, it is either
part of the same concurrent object group (cog) that spawned it, or becomes a new
cog. If an ABS-like language is used, the language can be directly executable in
an implementation along the lines of ABS-NET. Alternatively, the program can be
converted into another language and have actor-spawning primitives replaced by
API calls to an actor library, such as Akka for Java [6]. A conceptual overview of
the process is shown in Figure 1.16.

To illustrate the process in greater detail, consider the Java program in List-
ing 1.4, derived from Paper V, which uses monitors to prevent concurrent access to
a list of Uniform Resource Locators (URL) in objects of the class Downloadmanager.
In the main() method, located in the class Download, a number of URLs are added to
the list, and then retrieved by either of two worker threads of class DownloadThread,
running in parallel, for download.

Ideally, after annotation inference, and removal of monitors by dropping the
synchronized modifier for the getNextURL() method in the class DownloadManager,
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Figure 1.16: Proposed actorization process

the AJ program in Listing 1.5 is produced. Note that there is an alias from the
atomic set U in DownloadManager to the atomic set L in class List, which ensures
that the method getNextURL() atomically accesses the associated List instance.

Since there is no obvious need for decomposition of classes, the program in
Listing 1.5 can be used to produce the actorized JCoBox-like program in Listing 1.6,
where some object instantiations in the main() method now include the keyword
actor. In fact, the classes in these instantiations either have an atomic set in
Listing 1.5, or are subclasses of Thread. Because of the alias between the classes,
the List instance in DownloadManager is not initialized in this way. Note that the
actorized classes, DownloadManager and DownloadThread, are now accessed through
interfaces, extracted in the obvious way.

To enable running the program in Listing 1.6, one possibility is to do a source-
to-source translation, e.g., using abstract syntax tree transformation in a framework
such as JastAddJ [64], to a program that uses the Akka actor library. Assume a
statically imported method create(), that takes as arguments an interface and an
Akka Creator object that sets up an actor-wrapped object instance. The actorized
Download class then becomes as shown in Listing 1.7; the remaining classes are
unchanged from Listing 1.6.

In summary, the CoBox model of concurrent object groups, while not ideal to
implement at the network level, appears to be a useful as an intermediate level of
organization between sequential objects and actors.

Data-centric annotations are useful also for local execution, and one important
task is therefore the development of an efficient lock-based AJ compiler to replace
the defunct Eclipse-based prototype compiler [62]. Such a compiler is useful as
a point of reference when running actorized programs, and for extending the use
of data-centric annotations beyond Java. As actor libraries become mature, the
performance differences between a lock-based version of a program annotated with
atomic sets, and the corresponding actorized version, can be expected to decrease,
at least for programs with coarse-grained synchronization.
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class List {

int size;

Object[] elements;

/* ... */

public int size() { return this.size; }

public Object get(int index) {

if (0 <= index && index < this.size) {

return this.elements[index];

} else { return null; }

}

/* ... */

}

class DownloadManager {

// Atomic access ensured by monitors

List urls;

/* ... */

public synchronized URL getNextURL() {

if (this.urls.size() == 0) return null;

URL url = (URL) this.urls.get(0);

this.urls.remove(0);

announceStartInGUI(url);

return url;

}

/* ... */

}

class DownloadThread extends Thread {

DownloadManager manager;

/* ... */

public void run() {

URL url;

while((url = this.manager.getNextURL()) != null) {

download(url); // Blocks while waiting for data

}

}

/* ... */

}

public class Download {

public static void main(String[] args) {

DownloadManager manager = new DownloadManager();

for (int i = 0; i < 31; i++) {

manager.addURL(new URL("http://www.example.com/file" + i));

}

DownloadThread thread1 = new DownloadThread(manager);

DownloadThread thread2 = new DownloadThread(manager);

thread1.start();

thread2.start();

}

}

Listing 1.4: Java program using monitors
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class List {

atomicset L;

atomic(L) int size;

atomic(L) Object[] elements;

/* ... */

public int size() { return this.size; }

public Object get(int index) {

if (0 <= index && index < this.size) {

return this.elements[index];

} else { return null; }

}

/* ... */

}

class DownloadManager {

atomicset U;

atomic(U) List urls|L=this.U|;

/* ... */

public URL getNextURL() {

if (this.urls.size() == 0) return null;

URL url = (URL) this.urls.get(0);

this.urls.remove(0);

announceStartInGUI(url);

return url;

}

/* ... */

}

public class DownloadThread extends Thread {

DownloadManager manager;

/* ... */

public void run() {

URL url;

while((url = this.manager.getNextURL()) != null) {

download(url); // Blocks while waiting for data

}

}

/* ... */

}

public class Download {

public static void main(String[] args) {

DownloadManager manager = new DownloadManager();

for (int i = 0; i < 31; i++) {

manager.addURL(new URL("http://www.example.com/file" + i));

}

DownloadThread thread1 = new DownloadThread(manager);

DownloadThread thread2 = new DownloadThread(manager);

thread1.start();

thread2.start();

}

}

Listing 1.5: AJ program without monitors
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class List {

int size;

Object[] elements;

/* ... */

public int size() { return this.size; }

public Object get(int index) {

if (0 <= index && index < this.size) {

return this.elements[index];

} else { return null; }

}

/* ... */

}

class DownloadManager implements IDownloadManager {

List urls;

/* ... */

public URL getNextURL() {

if (this.urls.size() == 0) return null;

URL url = (URL) this.urls.get(0);

this.urls.remove(0);

announceStartInGUI(url);

return url;

}

/* ... */

}

public class DownloadThread extends Thread implements IDownloadThread {

IDownloadManager manager;

/* ... */

public void run() {

URL url;

while((url = this.manager.getNextURL()) != null) {

download(url); // Blocks while waiting for data

}

}

/* ... */

}

public class Download {

public static void main(String[] args) {

// Actorized initializations

IDownloadManager manager = new actor DownloadManager();

for (int i = 0; i < 31; i++) {

manager.addURL(new URL("http://www.example.com/file" + i));

}

IDownloadThread thread1 = new actor DownloadThread(manager);

IDownloadThread thread2 = new actor DownloadThread(manager);

thread1.start();

thread2.start();

}

}

Listing 1.6: JCoBox-like actorized program
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public class Download {

public static void main(String[] args) {

final IDownloadManager manager =

create(IDownloadManager.class,

new Creator<IDownloadManager>() {

@Override

public IDownloadManager create() throws Exception {

return new DownloadManager();

}

});

for (int i = 0; i < 31; i++) {

manager.addURL(new URL("http://www.example.com/file" + i));

}

IDownloadThread thread1 =

create(IDownloadThread.class,

new Creator<IDownloadThread>() {

@Override

public IDownloadThread create() throws Exception {

return new DownloadThread(manager);

}

});

IDownloadThread thread2 =

create(IDownloadThread.class,

new Creator<IDownloadThread>() {

@Override

public IDownloadThread create() throws Exception {

return new DownloadThread(manager);

}

});

thread1.start();

thread2.start();

}

}

Listing 1.7: Download class with Akka-based actor initialization

1.8.4 Tradeoffs Between Asynchrony and Accuracy

The successful application of round-based, synchronous algorithms for decentral-
ized, asynchronous load balancing (without synchronizers [13]) opens up the ques-
tion of the tradeoffs between, on one hand, timeliness and accuracy, and on the other
hand, the amount of synchrony. Besides for load balancing, similar concerns apply
for stabilization of routing tables, and for distributed aggregation. A conjecture is
that, at least for specific problems, there are precise requirements of synchrony to
achieve specific bounds on convergence, or of result accuracy.
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Abstract

In distributed computing, location transparency—the decoupling of ob-
jects from their physical location—is desirable in that it can simplify applica-
tion development and enable efficient resource allocation. Many systems for
location transparency are built on TCP/IP. We argue that addressing mo-
bile objects in terms of temporary hosts may not be the best design decision.
Object migration makes it necessary to use dedicated routing infrastructures,
e.g., location servers, to deliver inter-object messages. This incurs high costs
in terms of complexity, overhead, and latency. Here, we defer object overlay
routing to a networking layer, by replacing TCP/IP with a location inde-
pendent routing scheme which directs messages to destinations determined
by flat identifiers instead of IP addresses. Consequently, messages are deliv-
ered directly to objects, instead of possibly out-of-date locations. We explore
the scheme using a small object-based language with asynchronous message
passing, similar to Core Erlang. We provide a standard, network-oblivious
operational semantics of this language, and a network-aware semantics which
accounts for many aspects of distribution and routing. The main result is
that program execution on top of an abstract network of processing nodes
connected by asynchronous point-to-point communication channels preserves
network-oblivious behavior in a sound and fully abstract way, in the sense
of contextual equivalence. This is a novel and strong result for such a low-
level model. Previous work has addressed distributed implementations only
for fully connected TCP underlays, where contextual equivalence is typically
too strong, due to the need for locking to resolve preemption arising from
mobility.
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2.1 Introduction

The decoupling of computational tasks, objects, or virtual machines from their
physical realization, and particularly their location, can be beneficial for both ap-
plication developers and providers of computing infrastructures. If tasks are adap-
tively allocated to nodes in a processing network, application developers can avoid
explicit resource management, and infrastructure providers can achieve high uti-
lization while fulfilling requirements such as power consumption and response time.
This approach can result in simpler application logic, better service quality, and,
ultimately, lower cost of development, operations, and management. The question
is how to realize this potential with minimal overhead, and in such a way that
applications behave predictably.

A key problem is how to handle object and task mobility in an efficient manner.
Since the allocation of objects to nodes needs to be dynamic, some form of mes-
sage routing is needed to ensure that inter-object messages reach their destinations
quickly, and with minimal overhead. Various approaches have been considered in
the literature; Sewell et al. provide a comprehensive survey [184]. One option is to
maintain a centralized or distributed database of object locations. Such a database
can be used for both forwarding, by routing messages through the forwarding server,
and for location querying, by using the database to look up destination object lo-
cations. In either case, object location and the location database must be kept
consistent, which requires synchronization. Many experimental object mobility sys-
tems in the literature use some form of replicated or distributed location databases
[63, 19, 87, 184]. Another option is for nodes to maintain forwarding pointers, as in
the Emerald system [107]. Migration then causes forwarding pointer chains to be
extended by one further hop, and some mechanism is typically used to piggyback
location update information onto messages, to ameliorate forwarding chain growth.
This mechanism is used, for instance, in the JoCaml programming language [42].
Many solutions involve some form of broadcast or multicast search. For instance,
an object may use multicasting to find an object if a pointer for some reason has
become stale, as in Emerald, or for service discovery, as in Jini [11]. Other solutions
have been explored too, such as tree-structured DNS-like location directories [198],
Awerbuch and Peleg’s distributed directories [14], and Demmer and Herlihy’s arrow
protocol [57].

We argue that the main source of the difficulties these approaches are designed
to solve is the distinction between destination host identifier (e.g., IP address) and
search identifier (e.g., object identity). In a fully mobile setting, the location at
which an object resides has no intrinsic interest1. What is of interest is the message
destination, i.e., that an RPC destined for the object with identity o is routed to
the location where o resides, and not somewhere else. In other words, we suggest
that inter-object message routing should really be done using the destination object
identity. An assumed host can for all the sender knows be out-of-date.

1Location has interest as a source of latency, for instance, but that is another matter.
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In the networking community, variations of this idea have been the subject of
significant attention over the last decade. There are several proposals to replace the
location-based routing of traditional IP networks with location independent schemes
that route messages according to names, or content. Names can be flat, unstruc-
tured identifiers [27], or they can encode some form of signed content identity, as in
content-centric networking [100]. The general goal is to devise routing schemes for
flat name spaces that are compact, i.e., such that routing tables can be represented
at each node using space sublinear in the number of destinations, and such that
path lengths, and hence message latencies, do not grow too far from the optimal.
This requirement of low stretch, defined as the ratio of route length to shortest
path length, precludes the use of location registers and hierarchical IP-like naming
schemes.

In this paper, we examine location independent routing in the context of a rudi-
mentary language of message-passing objects, in the style of Core Erlang [29], and
propose a formal, maximally nondeterministic, network-aware runtime semantics of
this language. The main purpose is to show that this routing scheme offers a new
space for solutions to the object mobility problem with some attractive properties:

Minimalism A whole swathe of software becomes superfluous, which manages ad-
dress lookups, message forwarding, rerouting, and address bookkeeping, and
the synchronization overhead between location registers and the migrating
objects is eliminated. As a result, the “trusted computing base” of the net-
worked execution platform is significantly reduced, both in terms of size and
complexity.

Decentralization No centralized or decentralized object location database is re-
quired, since the routing mechanism itself ensures that inter-object messages
are routed to the proper host.

Low stretch Traffic overhead is decreased. First, mobility support on top of IP
needs to perform routing both at the IP and at the application level. Name-
based routing in effect eliminates the need for IP-level routing. Moreover,
in steady state, the simple distance vector (d.v.) routing scheme we use has
stretch 1, so message delivery overhead is minimal. (However, d.v. routing is
not compact: routing tables have size Ω(n), with n the number of destinations.
We leave such scalability issues for future work.)

Self-stabilization In faulty situations, if connection to a location register is lost,
message delivery becomes impossible (or possible only through costly mech-
anisms such as broadcasting, as in Emerald or Jini). Routing can be made
self-stabilizing, and thus be able to adapt to any type of disturbance, as long
as connectivity is maintained. This allows computation to progress, including
delivery of messages and migration of objects, even when the network is under
considerable churn.
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The scheme we propose assumes only a network graph with OSI layer 2 connectiv-
ity, i.e., the possibility of non-lossy, ordered communication between neighboring
nodes. Such a graph can be realized in many ways—for instance, as a physical non-
IP network, or as a TCP-based virtual network overlay with some desired topology.
A hybrid approach, were our scheme runs without TCP/IP for physically connected
network nodes inside datacenters, and use TCP-based bridging to transport mes-
sages between different datacenters, is one way to carry out an implementation in
current networks.

The object-based language defined in Section 2.3, µABS, is a rudimentary frag-
ment of the ABS (Abstract Behavioral Specification) language [103] used in the
EU FP7 project HATS for studying phenomena related to software evolvability
and adaptation. µABS includes a minimal set of features for method invocation,
object creation, and sequential control, which is sufficient, however, to allow sim-
ple object-oriented programs to be programmed in a natural way. In Section 2.4,
we give an initial “reference” semantics of µABS in the style of rewriting logic
[40], which does not take into account aspects related to location, naming, routing,
or communication. The second semantics in Section 2.5 takes these aspects into
account by describing program execution on top of an arbitrary, but concrete, pro-
cessor network where nodes are connected point-to-point by asynchronous channels.
With the help of runtime configuration normal forms, defined in Section 2.6, we
state the main result in Section 2.7: that the network-aware semantics is sound
and fully abstract with respect to the reference semantics. We base the analysis on
contextual equivalence [169], which requires a witness relation that preserves some
primitive observations, here calls to the outside world, in both directions, and is
preserved under weak reductions and when applying a context.

In an implementation of the network-aware semantics, many choices left open
through the use of unrestricted nondeterminism must be resolved. Hence, in Sec-
tion 2.8, we discuss scheduling. Finally, Section 2.9 describes related work, and
Section 2.11 concludes. All proofs are deferred to Section 2.12.

2.2 Notation

We use a vector notation to abbreviate sequences, for compactness. Thus, x abbre-
viates x1, . . . , xn, possibly empty; x0, x abbreviates x0, . . . , xn. Let g : A → B be a
finite map. The update operation for g is defined by g[b/a](x) = g(x) if x 6= a and
g[b/a](a) = b. We use ⊥ for bottom elements, and A⊥ for the lifted set with partial
order ⊑ such that a ⊑ b if and only if either a = b ∈ A or else a = ⊥. Also, if x
is a variable ranging over A, we often use x⊥ as a variable ranging over A⊥. For g
a function g : A → B⊥ we write g(a) ↓ if g(a) ∈ B, and g(a) ↑ if g(a) = ⊥. The
product of sets (flat CPOs) A and B is A × B with pairing (a, b) and projections
π1 and π2.
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2.3 The µABS Language

We define µABS, short for micro-ABS, a small, distributed, object-based language
with asynchronous method calls. Its syntax is shown in Table 2.1.

x, y ∈ Var Variable
e ∈ Exp Expression
C, m ∈ SID Static identifier
P ::= CL {x, s} Program
CL ::= class C(x){y, M} Class definition
M ::= m(x) {y, s} Method definition
s ::= s1; s2 | x = rhs | skip | e!m(e) Statement

| if e {s1} else {s2} | while e {s}
rhs ::= e | new C(e) Right-hand side

Table 2.1: µABS abstract syntax

Programs are sequences of class definitions, appended with a sequence of vari-
ables x, and a “main” statement s, which can use those variable to set up an initial
collection of objects. The class hierarchy is flat and fixed. Objects have parameters
x, local variable declarations y, and methods M . Methods have parameters x, local
variable declarations y and a statement body s. For simplicity, we assume that
variables have unique declarations. The definition of expressions e is left open, but
we require that expression evaluation can be made side-effect free. We omit types
from the presentation—types could be added, but would not affect the results of
the paper in any significant way.

Besides the standard sequential control structures, statements include con-
structs for asynchronous method invocation and object creation. Sequential com-
position is associative with unit skip, i.e., the statements s; skip, skip; s, and s are
identified. Methods lack return statements; method bodies are simply evaluated to
the end, at which point the evaluating task is removed. In the absence of return
statements, objects can communicate using callbacks in a manner similar to inter-
process communication in Erlang, as illustrated in Example 2.3.1. In other work,
we have extended the language with lazy return values for method calls in the form
of futures, making the analysis more involved [51].

Example 2.3.1. The µABS program in Listing 2.1 constructs an object ring with
(here) 42 elements. After the method serve is invoked on a server object, values are
circulated in the ring that is being constructed, finally resulting in the computation
of foo(...foo(foo(42,42),41)...,1). When it passes its value, each ring
cell decrements the counter i, which is initialized to the value 42 when received by
the first cell. The final cell returns the final value to the server, which sends it to
the client. The client then finally calls the output method on the reserved object
identifier ext.
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class Server() { ,

serve(from, x) { c,

c = new Cell(self, from);

c!process(x, x)

}

return(to, result) {

to!response(result)

}

}

class Client(arg) { ,

use(server) { ,

server!serve(self, arg)

}

response(y) { ,

ext!output(y)

}

}

{ server, client,

server = new Server();

client = new Client(42);

client!use(server)

}

class Cell(root, to) { ,

process(x, iter) { c, r,

if iter = 0 {

root!return(to, x)

} else {

c = new Cell(root, to);

r = foo(x, iter);

c!process(r, iter-1)

}

}

}

Listing 2.1: µABS ring program

2.4 Reference Semantics

We first present a standard reduction semantics for µABS in the style of rewriting
logic [40], which is important as the point of reference for later refinements. The
semantics uses a reduction relation cn → cn′ where cn and cn′ are configurations,
as determined by the runtime syntax in Table 2.2. Later on, we introduce differ-
ent configurations and transition relations, and so use index 1, or mention, e.g.,
configurations of “type 1” for this first semantics when we need to disambiguate.

With respect to the runtime syntax, � is the subterm relation, and we use
disjoint, denumerable sets of object identifiers o ∈ OID and primitive values p ∈
PVal. Lifted values are ranged over by v⊥ ∈ Val⊥. We often refer to OIDs as
names, and bind OIDs using the binder bind, which is reminiscent of the restriction
binder in π-calculus [144]. The free names of the configuration cn is the set fn(cn),
and OID(cn) is the set of OIDs of object containers occurring in cn. Standard
alpha congruence applies to name binding. Later on, in the type 2 semantics, we
drop name binding entirely.

Configurations are multisets of containers of which there are three types: tasks,
objects, and calls. Configuration juxtaposition is assumed to be commutative and
associative with unit 0. In addition, we assume the standard structural identities
bind o.0 = 0 and bind o.(cn1 cn2) = (bind o.cn1) cn2 whenever o 6∈ fn(cn2). We
often use a vectorized notation bind o.cn as abbreviation, letting bind ε.cn = cn,
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x ∈ Var Variable
o ∈ OID Object identifier
p ∈ PVal Primitive value
v ∈ Val = PVal ∪ OID Value
l ∈ TEnv = Var → Val⊥ Task environment
a ∈ OEnv = Var ∪ {self} → Val⊥ Object environment
tsk ∈ Tsk ::= t(o, l, s) Task
obj ∈ Obj ::= o(o, a) Object
call ∈ Call ::= c(o, m, v) Call
ct ∈ Ct ::= tsk | obj | call Container
cn ∈ Cn ::= 0 | ct | cn cn′ | bind o.cn Configuration

Table 2.2: µABS type 1 runtime syntax

where ε is the empty sequence. The structural identities then allow us to rewrite
each configuration into a standard form bind o.cn, such that each member of o
occurs free in cn, and cn has no occurrences of the binding operator bind.

Tasks are used for method body elaboration. Task and object environments l
and a, respectively, map local variables to assignable values. Object environments
are aware of a special variable self, which is mapped to the identifier of the asso-
ciated object. Upon method invocation, a task environment is initialized using the
operation locals(o, m, v) by mapping the formal parameters of the method m in
the class of o to the corresponding actual parameters in v, and initializing the task-
local variables to suitable null values. Object environments are initialized with the
operation init(C, v, o), which maps the parameters of C to v, initializes the object-
local variables as above, and maps self to o. In addition to locals and init, we
use the auxiliary operation body(o, m), which retrieves the statement of the shape
s in the definition body for method m in the class of o, and JeK(a,l) ∈ Val is used
for evaluating the expression e in the object environment a and task environment
l to a value.

Figure 2.1 presents the reduction rules, using the notation cn ⊢ cn′ → cn′′

as shorthand for cn cn′ → cn cn′′. The reduction rules obey some basic sanity
properties.

Proposition 2.4.1. Suppose cn → cn′. Then, the following holds:

1. fn(cn′) ⊆ fn(cn).

2. If o(o, a) � cn, then o(o, a′) � cn′ for some object environment a′.

Executions of programs in the semantics are sequences of configurations derived
by the rules, starting from an initial configuration, as defined below.

Definition 2.4.2 (Type 1 Initial Configuration). Suppose we are given a program
CL {x, s}, and that omain is a reserved object identifier different from ext. Then,
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ctxt-1: If cn1 → cn2, then cn ⊢ cn1 → cn2

ctxt-2: If cn1 → cn2, then bind o.cn1 → bind o.cn2

wlocal: If x ∈ dom(l), then let v = JeK(a,l) in
o(o, a) ⊢ t(o, l, x = e; s) → t(o, l[v/x], s)

wfield: If x ∈ dom(a), then let v = JeK(a,l) in
o(o, a) t(o, l, x = e; s) → o(o, a[v/x]) t(o, l, s)

skip: t(o, l, skip) → 0

if-true: If JeK(a,l) 6= 0, then
o(o, a) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s1; s)

if-false: If JeK(a,l) = 0, then
o(o, a) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s2; s)

while-true: If JeK(a,l) 6= 0, then
o(o, a) ⊢ t(o, l, while e {s1}; s) → t(o, l, s1; while e {s1}; s)

while-false: If JeK(a,l) = 0, then
o(o, a) ⊢ t(o, l, while e {s1}; s) → t(o, l, s)

call-send: Let o′ = Je1K(a,l), v = Je2K(a,l) in
o(o, a) ⊢ t(o, l, e1!m(e2); s) → t(o, l, s) c(o′, m, v)

call-rcv: Let l = locals(o, m, v), s = body(o, m) in
o(o, a) ⊢ c(o, m, v) → t(o, l, s)

new: Let v = JeK(a,l), a′ = init(C, v, o′) in o(o, a) ⊢
t(o, l, x = new C(e); s) → bind o′.t(o, l[o′/x], s) o(o′, a′)

Figure 2.1: µABS type 1 reduction rules

a type 1 initial configuration cninit for the program has the shape

bind omain.o(omain, ⊥) t(omain, linit , s)

where ⊥ is the everywhere undefined initial object environment and linit is the
initial task environment assigning default values to the variables x.

Definition 2.4.3 (Type 1 Well-formedness). A configuration cn is type 1 well-
formed (WF1) if cn satisfies:

1. OID Uniqueness: If o(o1, a1), o(o2, a2) � cn are distinct object occurrences
in cn, then o1 6= o2.

2. Task-Object Existence: If t(o, l, s) � cn, then o(o, a) � cn for some object
environment a.
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We note that well-formedness holds for initial configurations and is preserved
under reduction.

Proposition 2.4.4 (WF1 Preservation). Let cn be a type 1 configuration. Then,
the following holds:

1. If cn is a type 1 initial configuration, then cn is WF1.

2. If cn is WF1 and cn → cn′, then cn′ is WF1.

Well-formedness preservation is important, as it ensures that objects, if defined,
are defined uniquely, and that there are no dangling tasks.

Our approach to implementation correctness is based on the notion of contextual
equivalence [169]. The goal is to show that it is possible to remain strongly faithful
to the reference semantics in a networked setting, while leaving nondeterminism
to be handled by a separate scheduler. This allows us to draw strong conclusions
also in the case when a scheduler is added, as described in Section 2.8. Contextual
equivalence requires of a pair of equivalent configurations, first, that the internal
transition relation → is preserved in both directions, and second, that the relation
is preserved when applying a context configuration, while preserving a set of exter-
nal observations. A number of works [101, 180] have established strong relations
between contextual equivalence for reduction oriented semantics and bisimulation/-
logical relation based equivalences for sequential and higher-order computational
models.

Assume an OID ext representing the “outside world”, not allowed to be bound
or defined in well-formed configurations. An observation, or barb, is a method
call to ext with evaluated arguments, of the shape ext!m(v), and ranged over by
obs. The observation predicate cn ↓ obs is defined to hold just in case cn =
bind o.cn′ c(ext, m, v) for some cn′. The derived predicate cn ⇓ obs holds just in
case cn →∗ cn′ ↓ obs for some cn′.

Definition 2.4.5 (Type 1 Witness Relation, Type 1 Contextual Equivalence). Let
R range over binary relations on type 1 well-formed configurations. The relation
R is a type 1 witness relation, if cn1 R cn2 implies

1. Reduction Closure: If cn1 → cn′

1, then cn2 →∗ cn′

2 for some cn′

2 such that
cn′

1 R cn′

2.

2. Context Closure: If cn1 cn is WF1, then cn2 cn is WF1 and cn1 cn R cn2 cn.

3. Barb Preservation: If cn1 ↓ obs, then cn2 ⇓ obs.

Additionally, the converse properties must hold with R−1 for R above. We define
type 1 contextual equivalence, ≃1, as the union of all type 1 witness relations. Ad-
ditionally, we say that the WF1 configurations cn1 and cn2 are type 1 contextually
equivalent whenever cn1 ≃1 cn2, i.e., whenever cn1 R cn2 for some type 1 witness
relation R.



54

CHAPTER 2. LOCATION INDEPENDENT ROUTING IN PROCESS NETWORK

OVERLAYS

2.5 Network-Aware Semantics

The type 1 semantics for µABS is quite abstract, and does not account for several
issues which must be faced by an actual implementation, in particular if the goal is
high performance and scalability. For instance, the type 1 semantics has no concept
of proximity or name space. Any two objects, regardless of their “location”, can,
without any overhead or search, communicate via message passing in two steps,
using the rules call-send and call-rcv. Instead, we want a semantics that is
network aware in the sense that it brings out proximity and location without unduly
constraining the model, e.g., to a particular naming discipline, or to a centralized
name or location lookup service.

Our proposal is to execute µABS objects on a network of nodes in a fully
decentralized and lock-free manner, where the only means of communication or
synchronization is by asynchronous message passing along edges connecting nodes,
each edge having an associated directional, buffered communication channel. In this
section, we accordingly introduce a refinement of the standard semantics, a network-
aware, type 2 semantics, which adds explicit network components to the type 1
semantics. The key idea is to use location independent routing, as explained in
Section 2.1. Hence, nodes are equipped with explicit routing information, allowing
messages to be addressed to specific receiving objects, rather than their last known
host, from which they may have migrated.

The type 2 runtime syntax is presented in Table 2.3. We reuse symbols from
the type 1 runtime syntax and use indices to disambiguate, and apply the same
syntactical conventions. In particular, we continue to assume the commutativity
and associativity properties of configuration juxtaposition, now with the empty list
of containers as unit.

u ∈ NID Node identifier
t ∈ RTable = OID → (NID × ω)⊥ Routing table
q ∈ Q = Msg∗ Message queue
obj ∈ Obj2 ::= o(o, a, u, qin, qout) Object
nd ∈ Nd ::= n(u, t) Network node
lnk ∈ Lnk ::= l(u, q, u′) Network link
ct ∈ Ct2 ::= tsk | obj | nd | lnk Runtime container
cn ∈ Cn2 ::= ct1 . . . ctn Configuration
msg ∈ Msg ::= table(t) | object(cn) Message

| call(o, m, v)

Table 2.3: µABS type 2 runtime syntax

The network-aware runtime state is still a configuration cn, but most of the con-
tainers and their structure are different. We introduce two new types of containers
to reflect the underlying network graph, namely nodes and links. A node container
n(u, t) has a primitive node identifier u ∈ NID with t an associated routing table.
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Node identifiers (NIDs) take the place of IP addresses in the usual IP infrastruc-
ture. Nodes are connected by directed links of the form l(u, q, u′), where u ∈ NID is
the source NID, u′ ∈ NID is the sink NID, and q ∈ Q is the associated FIFO mes-
sage queue. The node and link containers in a configuration cn induce a network
graph graph(cn), which contains a vertex u for each node container, and an edge
(u, u′) for each link container. The type 2 semantics given below does not allow
identifiers in node or link containers to be changed, so in the context of any given
transition (or, execution), the network graph remains constant. Note that there is
no a priori guarantee that graph(cn) is well-formed; for the remainder of the paper
we therefore implicitly impose some well-formedness constraints on configurations
concerning their network graphs.

Definition 2.5.1 (Network Graph Well-formedness). A configuration cn has a
well-formed network graph if it satisfies:

1. Vertex Existence: n(u, t) � cn for some u and t.

2. Edge Endpoint Existence: If we have l(u1, q, u2) � cn, then n(u1, t1) � cn

and n(u2, t2) � cn.

3. Unique Vertices: If n(u1, t1) and n(u2, t2) are distinct occurrences in cn, then
u1 6= u2.

4. Unique Edges: If l(u1, q1, u′

1) and l(u2, q2, u′

2) are distinct occurrences in cn,
then u1 6= u2, or u′

1 6= u′

2, or both.

5. Reflexivity: If n(u, t) � cn, then l(u, q, u) � cn.

6. Symmetry: If we have n(u1, t1) � cn, n(u2, t2) � cn, and l(u1, q, u2) � cn,
then l(u2, q′, u1) � cn.

7. Connectedness: If n(u1, t1) � cn and n(u2, t2) � cn, then there is a path from
u1 to u2 in graph(cn).

For routing, we assume a rudimentary Bellman-Ford d.v. routing discipline
[193]. More elaborate and practical routing schemes exist that are better equipped
for, e.g., disconnected operation, and with better combinations of scalability and
stretch. However, the d.v. scheme is sufficient for our purposes. Consequently, a
routing table t is a partial function associating to the OID o a pair t(o) = (u, n),
where n is the minimum number of hops believed by t to be needed to reach the
node hosting object o from the current node, and where u is the NID of the next
hop destination.

Next hop lookup is performed by the operation nxt, defined by nxt(o, t) =
π1(t(o)). The operation reg returns the routing table t′, obtained by registering a
given object identifier o with distance n at the current node u of t; it is defined by

reg(o, u, t, n)(o′) =

{

(u, n) if o = o′

t(o′) otherwise.
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The operation upd updates a table to incorporate the routing table belonging to a
(neighboring) node, with upd(t, u, t′)(o) defined by

⊥ if o 6∈ dom(t) ∪ dom(t′)
t(o) else, if o 6∈ dom(t′)
(u, π2(t′(o)) + 1) else, if o 6∈ dom(t) or π1(t′(o)) = u
(u, π2(t′(o)) + 1) else, if π2(t′(o)) + 1 < π2(t(o))
t(o) otherwise.

The operations for FIFO message queues are standard: enq(msg, q) enqueues
the message msg onto the tail of q, hd(q) returns the head of q, and deq(q) returns
the tail of the q, i.e. q with hd(q) removed. If q is empty, i.e., q = ε, then hd(q)
and deq(q) are both undefined.

Messages in queues have one of three forms:

• call(o, m, v) is a call message addressed to object o, for method m, with argu-
ments v;

• table(t) is a routing table update message, with the origin NID implicit, as
the message is dequeued from a link queue with explicit source NID;

• object(cn) is an object migration message, where cn is an object closure, as
explained below.

We write m(cn) for the multiset {msg | msg � cn}. Call messages are said to be
object bound, and table and object messages are said to be node bound. We define
dst(msg), the destination of msg, to be o for call messages, and ⊥ for the two other
message forms.

In the type 2 semantics, object containers are now attached to a node u and
have the shape o(o, a, u, qin, qout), where o ∈ OID and a ∈ OEnv as before, and
qin and qout is an ingoing and an outgoing FIFO message queue, respectively. This
buffering of messages in object state is not essential, since messages are already
buffered at the link level, but allows for a more straightforward formalization of
object behavior. In contrast to many actor languages, e.g., Erlang, which use only
ingoing queues or mailboxes, we find it more convenient to use an outgoing queue
as well, although this is mainly a matter of taste. Tasks are unchanged from the
type 1 semantics.

For an object message object(cn) to be valid, the configuration cn needs to be
an object closure which wraps an object container with all its tasks. For example,
if the object o has precisely n tasks, its closure has the form

cn = o(o, a, u, qin, qout) t(o, l1, s1) . . . t(o, ln, sn).

Note that containers inside object closures are included in the subterm relation
� for configurations where the object message resides. To handle closures in the
semantics, we define three auxiliary operations:
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• clo(cn, o) is the closure of object o with respect to cn, defined as the multiset
of all type 2 containers in cn which are of the form o(o′, a′, u′, q′

in, q′

out) or
t(o′, l′, s′), and are such that o′ = o;

• oidof(cn) is a partial function returning o if all type 2 containers in cn are
object or task containers with OID o;

• place(cn, u) places all object containers in the configuration cn at the node
u, i.e., cn and place(cn, u) are identical, except that each object container
o(o′, a′, u′, q′

in, q′

out) in cn is replaced by an object container o(o′, a′, u, q′

in, q′

out)
in place(cn, u).

Example 2.5.2. Figure 2.2 shows a pictorial representation of a network-aware
µABS runtime configuration, with two nodes u0 and u1, an object o0 located at
u0 with tasks t0 and t1, and an object o1 located at u1 with a task t2. Note that
routing table information on both nodes is accurate and complete.

u0

o0

t0 t1

o0 7→ (u0, 0)

o1 7→ (u1, 1)

u1

o1

t2

o0 7→ (u0, 1)

o1 7→ (u1, 0)

Figure 2.2: µABS network-aware runtime configuration

An important distinction between the reference semantics and the network-
aware semantics is the absence of binding. For the standard semantics, name bind-
ing plays a key role in avoiding clashes between locally generated names. However,
in a language with NIDs, this device is no longer needed, since globally unique
names can be guaranteed by augmenting names with their generating NID. Since
all name generation takes place in the context of a given NID, we can simply as-
sume an operation newo(u) that returns a new OID which is globally fresh for the
“current configuration”. Another important point to note is that all transitions in
the type 2 semantics are fully local, in the sense that all operations applied, and all
conditions determining whether or not a transition is enabled, can be determined
by inspecting only one node and, possibly, the head of incoming link queues, or by
enqueuing messages to the tail of an outgoing queue.

The reduction rules in Figure 2.1, except ctxt-2, call-send, call-rcv, and
new, are transferred to the type 2 setting with minor modifications—more precisely,
wlocal, wfield, if-true, if-false, while-true, and while-false are changed in the
obvious way to accommodate the new runtime shape of objects.
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ctxt-1: If cn1 → cn2, then cn ⊢ cn1 → cn2

wlocal-2: If x ∈ dom(l), then let v = JeK(a,l) in
o(o, a, u, qin, qout) ⊢ t(o, l, x = e; s) → t(o, l[v/x], s)

wfield-2: If x ∈ dom(a), then let v = JeK(a,l) in
o(o, a, u, qin, qout) t(o, l, x = e; s) → o(o, a[v/x], u, qin, qout) t(o, l, s)

skip: t(o, l, skip) → 0

if-true-2: If JeK(a,l) 6= 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s1; s)

if-false-2: If JeK(a,l) = 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s2; s)

while-true-2: If JeK(a,l) 6= 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, while e {s1}; s) → t(o, l, s1; while e {s1}; s)

while-false-2: If JeK(a,l) = 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, while e {s1}; s) → t(o, l, s)

Figure 2.3: µABS type 2 reduction rules, part 1

The result is the set of rules in Figure 2.3. The remaining reduction rules are
presented in Figure 2.4.

t-send and t-rcv are concerned with the exchange of routing tables, which only
takes place between distinct adjacent nodes. msg-send, msg-rcv, and msg-route

are used to manage message passing, i.e., reading a message from a link queue and
transferring it to the appropriate object in-queue, and, dually, reading a message
from an out-queue and transferring it to the attached link queue. Finally, messages
are routed to the next link, if the destination object does not reside at the current
node. In msg-rcv, note that the receiving node is not required to be present.
However, its existence follows from the well-formedness conditions of the network
graph.

msg-delay-1, msg-delay-2, and msg-delay-3 are used to handle the cases where
routing tables have not yet stabilized, or a message is simply unroutable. For in-
stance, it may happen that updates to the routing tables have not yet caught up
with object migration. In this case, a message may enter an out-queue without the
hosting node’s routing table having information about the message’s destination
(msg-delay-2). Another case is when a node receives a message on a link without
knowing where to forward it (msg-delay-1). This situation is particularly problem-
atic, since a blocked message may prevent routing table updates from reaching the
hosting node, thus causing a deadlock. The solution we propose, which is implicit
in the rules, is to use the network self-loop as a buffer for temporarily unroutable
messages. msg-delay-3 allows messages on this link to be shuffled.
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t-send: If u 6= u′, then n(u, t) ⊢ l(u, q, u′) → l(u, enq(table(t), q), u′)

t-rcv: If hd(q) = table(t′), then
l(u′, q, u) n(u, t) → l(u′, deq(q), u) n(u, upd(t, u′, t′))

msg-send: If hd(qout) = msg, dst(msg) = o′, nxt(o′, t) = u′, then
n(u, t) ⊢ o(o, a, u, qin, qout) l(u, q, u′) →
o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u′)

msg-rcv: If hd(q) = msg, dst(msg) = o, then
l(u′, q, u) o(o, a, u, qin, qout) → l(u′, deq(q), u) o(o, a, u, enq(msg, qin), qout)

msg-route: If hd(q) = msg, dst(msg) = o, nxt(o, t) = u′′, u′′ 6= u, then
n(u, t) ⊢ l(u′, q, u) l(u, q′, u′′) → l(u′, deq(q), u) l(u, enq(msg, q′), u′′)

msg-delay-1: If hd(q) = msg, dst(msg) = o, nxt(o, t) ↑, then
n(u, t) ⊢ l(u′, q, u) l(u, q′, u) → l(u′, deq(q), u) l(u, enq(msg, q′), u)

msg-delay-2: If hd(qout) = msg, dst(msg) = o′, nxt(o′, t) ↑, then
n(u, t) ⊢ o(o, a, u, qin, qout) l(u, q, u) →
o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u)

msg-delay-3: If hd(q) = msg, dst(msg) = o, nxt(o, t) ↑, then
n(u, t) ⊢ l(u, q, u) → l(u, enq(msg, deq(q)), u)

call-send-2: Let o′ = Je1K(a,l), v = Je2K(a,l) in
o(o, a, u, qin, qout) t(o, l, e1!m(e2); s) →
o(o, a, u, qin, enq(call(o′, m, v), qout)) t(o, l, s)

call-rcv-2: If hd(qin) = call(o, m, v) then
let l = locals(o, m, v), s = body(o, m) in
o(o, a, u, qin, qout) → o(o, a, u, deq(qin), qout) t(o, l, s)

new-2: Let o′ = newo(u), v = JeK(a,l), a′ = init(C, v, o′) in
o(o, a, u, qin, qout) ⊢ t(o, l, x = new C(e); s) →
t(o, l[o′/x], s) o(o′, a′, u, ε, ε)

obj-reg: o(o, a, u, qin, qout) ⊢ n(u, t) → n(u, reg(o, u, t, 0))

obj-send: If u 6= u′, then let cn′ = clo(cn, o) in
n(u, t) l(u, q, u′) cn → n(u, reg(o, u′, t, 1)) l(u, enq(object(cn′), q), u′) (cn − cn′)

obj-rcv: If hd(q) = object(cn), then
l(u′, q, u) n(u, t) → l(u′, deq(q), u) n(u, reg(oidof(cn), u, t, 0)) place(cn, u)

Figure 2.4: µABS type 2 reduction rules, part 2

call-send-2 and call-rcv-2 produce and consume call messages in an obvious
way, corresponding closely to their type 1 counterparts. new-2 handles object
creation. Note that a new object does not automatically get registered in the
hosting node’s routing table.
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obj-reg registers an object in the routing table at the node on which it is located.
The final two rules concern object migration. Of these, obj-send is a global rule in
that it is not allowed to be used in subsequent applications of the ctxt-1 rule. In
this way, we can guarantee that only complete object closures are migrated. The
rule can still be implemented using local operations, since an object and all its tasks
are implicitly assumed to be co-located on a node. In obj-send, cn −cn′ is multiset
difference.

The reduction rules are formulated with the main goal of making it straightfor-
ward to reason about them. Hence, the rules can be optimized in several ways to
exhibit behavior more suitable for implementation. For instance, object self-calls
will generally be routed through the “network interface”, i.e., the hosting node’s
self-loop. This is not necessary. It would be possible to add a rule to directly spawn
a handling task from a self call without affecting the results of the paper.

As for the reference semantics, some basic sanity properties of the network-aware
semantics can be established.

Proposition 2.5.3. Suppose cn → cn′. Then, the following holds:

1. If n(u, t) � cn, then n(u, t′) � cn′ for some t′.

2. If l(u, q, u′) � cn, then l(u, q′, u′) � cn′ for some q′.

3. If obj = o(o, a, u, qin, qout) � cn, then there is an object container obj ′ =
o(o′, a′, u′, q′

in, q′

out) � cn′ (the derivative of obj in cn′) such that o′ = o and
for all x, if a(x) ↓, then a′(x) ↓.

Initial configurations in the network-aware semantics are now parameterized on
a network graph, but are otherwise similar to their network-oblivious counterparts.

Definition 2.5.4 (Type 2 Initial Configuration). Consider a program CL {x, s}.
Assume a reserved OID omain. A type 2 initial configuration cninit for the program
then has the shape

cngraph o(omain, ⊥, uinit , ε, ε) t(omain, linit , s)

where

• ⊥ and linit are as for type 1 initial configurations,

• cngraph is a configuration consisting only of nodes and links with empty
queues, inducing a well-formed graph,

• cngraph contains a node n(uinit , tinit),

• tinit(omain) = (uinit , 0), and tinit(o) = ⊥ for o 6= omain,

• t(o) = ⊥ for all t 6= tinit and OIDs o.
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The previous well-formedness conditions need to be augmented for the type 2
semantics, due to the addition of new containers.

Definition 2.5.5 (Type 2 Well-formedness). A type 2 configuration cn is type 2
well-formed (WF2) if cn satisfies:

1. OID Uniqueness: If o(o1, a1, u1, qin,1, qout,1) and o(o2, a2, u2, qin,2, qout,2) are
distinct object container occurrences in cn, then o1 6= o2.

2. Task-Object Existence: If we have t(o, l, s) � cn, then o(o, a, u, qin, qout) � cn

for some a, u, qin, qout.

3. Object-Node Existence: If o(o, a, u, qin, qout) � cn, then n(u, t) � cn for some
t.

4. Buffer Cleanliness: If o(o, a, u, qin, qout) � cn and additionally msg � qin or
msg � qout, then msg is object bound. Also, if msg � qin, then dst(msg) = o.

5. Local Routing Consistency: If we have n(u, t) � cn and π1(nxt(o, t)) = u′,
then there is a link l(u, q, u′) � cn.

6. External OID: ext /∈ OID(cn), and if n(u, t) � cn, then ext /∈ dom(t).

For condition 4 in Definition 2.5.5, observe that only object-bound messages
(meant for in-queues, appropriately addressed) enter the object queues. This condi-
tion is needed to prevent the deadlocks that arise when an in- or out-queue contains
messages of the wrong type. Condition 6 in Definition 2.5.5 ensures that messages
to ext are only transported to self-loop links, where they remain. We note that
type 2 well-formedness still holds for initial configurations and is preserved under
reduction.

Proposition 2.5.6 (WF2 Preservation). Let cn be a configuration. Then, the
following holds:

1. If cn is a type 2 initial configuration, then cn is WF2.

2. If cn is WF2 and cn → cn′, then cn′ is WF2.

Example 2.5.7. Figure 2.5 illustrates a fragment of a network-aware execution of
a µABS program, with node self-loop queues omitted. The network consists of four
nodes and two objects. Initially, in Figure 2.5(a), the objects o0 and o1 are located
on u0 and u3, respectively, with routing tables stabilized; o0 has a task with a call
statement for method m in o1 with argument 7. In Figure 2.5(b), a call message
has been dispatched from u0 to node u1, while the object o1, represented as obj1,
is in transit from u3 to u2. Note that routing tables are now in an unstable state.
In Figure 2.5(c), the o1 has arrived at u2, and through the accurate route for o1 at
u3, the call message has been sent in the direction of u2. Finally, in Figure 2.5(d),
all routing tables are stable once again after o1 arrives at u2, routing tables are
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exchanged between neighboring nodes, and the call message has been delivered to
o1, generating a task with statement s. If the objects subsequently remain at their
locations, messages between them will now take the direct route from u0 to u2.

u0

o0

o1!m(7)

o0 7→ (u0, 0)

o1 7→ (u1, 2)

a

u1

o0 7→ (u0, 1)

o1 7→ (u3, 1)

u2

o0 7→ (u0, 1)

o1 7→ (u3, 1)

u3

o1

o0 7→ (u1, 2)

o1 7→ (u3, 0)

u0

o0

o0 7→ (u0, 0)

o1 7→ (u1, 2)

b

u1

o0 7→ (u0, 1)

o1 7→ (u3, 1)

call(o1, m, 7)

u2

o0 7→ (u0, 1)

o1 7→ (u3, 1)

u3

o0 7→ (u1, 2)

o1 7→ (u2, 1)object(obj1)

u0

o0

o0 7→ (u0, 0)

o1 7→ (u1, 2)

c

u1

o0 7→ (u0, 1)

o1 7→ (u3, 1)

u2

o1

o0 7→ (u0, 1)

o1 7→ (u2, 0)

u3

o0 7→ (u1, 2)

o1 7→ (u2, 1)call(o1, m, 7)

u0

o0

o0 7→ (u0, 0)

o1 7→ (u2, 1)

d

u1

o0 7→ (u0, 1)

o1 7→ (u3, 2)

u2

o1

s

o0 7→ (u0, 1)

o1 7→ (u2, 0)

u3

o0 7→ (u1, 2)

o1 7→ (u2, 1)

Figure 2.5: Fragment of a µABS network-aware execution
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We next adapt the notion of contextual equivalence to the type 2 setting. The
only real difficulty is to define the type 2 correlate of the observation predicate.
We take the point of view that an observation obs = ext!m(v) is enabled at a
configuration cn if a corresponding call message call(ext, m, v) is located at the
head of one of the self-loop queues in cn. More precisely, the type 2 observability
predicate is cn ↓ obs, holding just in case cn = cn′ l(u, q, u) for some cn′, u, and q,
and additionally hd(q) is defined and equal to call(ext, m, v).

For context closure, a context is any configuration cn containing only object and
task containers. Thus, contexts do not affect the underlying network graph. This
definition is used, since, firstly, it is objects and tasks that induce computational
behavior, and secondly, allowing contexts to augment the underlying graph by
adding new nodes and links requires a much more complex account of network
composition and well-formedness that we prefer to leave to future work.

With the observation predicate set up, the weak observation predicate is derived
as for type 1 configurations, and, similar to in Definition 2.4.5, we define a type 2
witness relation as a relation that satisfies reduction closure and barb preservation,
with context closure defined as follows: if cn1 R cn2, cn is a context, and cn1 cn

is WF2, then cn2 cn is WF2, and cn1 cn R cn2 cn.

Definition 2.5.8 (Type 2 Contextual Equivalence). Let cn1 ≃2 cn2 whenever
cn1 R cn2 for a type 2 witness relation R.

2.6 Normal Forms

The goal is to prove the type 1 behavior is preserved in the type 2 semantics under
contextual equivalence. The key to the proof is a normal form lemma for the
type 2 semantics saying, roughly, that any well-formed type 2 configuration can be
rewritten, using a subset of the rules as detailed below, into a form where queues
have been emptied of all routable messages, where routing tables have been in
some expected sense normalized, and where all objects have been moved to a single
node. We prove this lemma in two steps. First, we prove a stabilization result:
that non-loop links can be emptied of messages and routing tables normalized to
induce messaging paths with unit stretch. This allows the second normalization
step to empty also object queues and migrate all objects to a single node. Once
this is done, we can prove correctness by exhibiting a map representing each type 1
configuration as a canonical type 2 configuration, using normalization to help prove
reduction closure and context closure in both directions.

In a configuration cn, we call a link l(u, q, u′) � cn proper whenever u 6= u′, and
say that a message msg is routable whenever dst(msg) ∈ OID(cn) and unroutable
otherwise. We first show that each configuration can be rewritten using the tran-
sition rules into a form for which routing is stable and all link queues are empty,
except for object-bound, unroutable messages.
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Definition 2.6.1 (Stable Routing). Let cn be a type 2 configuration. We say
that cn has stable routing, if, for all n(u, t) � cn and o(o, a, u′, qin, qout) � cn, if
nxt(o, t) = u′′, then there is a minimum-length path from u to u′ in graph(cn) that
traverses u′′.

Definition 2.6.2 (External Link Messages). Let cn be a type 2 configuration. We
say that cn has external link messages, if l(u, q, u′) � cn, and msg � q implies
u = u′ and that msg is object bound and unroutable.

The strategy for performing the rewriting is to first empty link queues as far as
possible as we simultaneously exchange routing tables to converge to a configuration
with stable routing. This first stage is accomplished using Algorithm 1, displayed
in Listing 2.2, where we hide uses of ctxt-1 to allow the transition rules to be
applied to arbitrary containers.

Algorithm 1: Stabilize routing and process link messages

Input: A WF2 configuration cn

Output: A configuration in stable form, reachable from cn

repeat

use obj-reg on each object not in transit ;
use t-send on each proper link to broadcast routing tables
from all nodes to their neighboring nodes ;
repeat

use t-rcv to dequeue one message on a link
until t-rcv can no longer be used ;
once for each link, if possible, use msg-rcv, msg-route,
msg-delay-1, or obj-rcv, or otherwise, use msg-delay-3
on self-loop links with external messages at the queue head

until routing has stabilized and there are only external link messages
Listing 2.2: Algorithm 1

Proposition 2.6.3. Algorithm 1 terminates.

Write A1(cn) cn′ if cn′ is a possible result of applying Algorithm 1 to cn. The
resulting configuration is almost unique, but not quite, since routing may stabilize
in different ways. We make the notion of stabilization precise using some auxiliary
functions:

• t(cn) is the multiset of all tasks in cn;

• o1(cn) is the object multiset where, if o(o, a, u, qin, qout) � cn, there is a
corresponding container o(o, a, u′, q′

in, qout), such that the NID u′ has been
adjusted to that of the receiving node if the object was in transit from u to
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u′ in cn, or otherwise u′ = u, and additionally, all messages in link queues in
cn such that dst(msg) = o have been enqueued in some fixed order in qin to
produce q′

in;

• m1(cn) is the multiset of both external messages and routable messages in
cn.

Define the relation ∼=1 (different from ≃1) to hold between multisets of type 2 object
containers when there is a one-to-one mapping where containers only differ in how
in-queue messages are ordered, if at all.

Definition 2.6.4 (Stable Form). The configuration cn is in stable form if it is
WF2, has stable routing, o(cn) ∼=1 o1(cn), and m(cn) = m1(cn).

Proposition 2.6.5. If A1(cn) cn′, then:

1. cn →∗ cn′,

2. cn′ is in stable form,

3. graph(cn′) = graph(cn),

4. t(cn′) = t(cn),

5. o(cn′) ∼=1 o1(cn), and

6. m(cn′) = m1(cn).

We can now define equivalence of configurations up to stabilization, and show
that it is contained in ≃2.

Definition 2.6.6 (≡1). Let cn1 R1 cn2 whenever we have

1. graph(cn1) = graph(cn2),

2. t(cn1) = t(cn2),

3. o(cn1) ∼=1 o(cn2), and

4. m(cn1) = m(cn2).

We say that cn1 ≡1 cn2 if cn1 and cn2 are both WF2, and there are configurations
cn′

1 and cn′

2 such that

A1(cn1) cn′

1 R1 cn′

2  A1(cn2).

Corollary 2.6.7. If A1(cn) cn′, then cn ≡1 cn′.

Lemma 2.6.8. ≡1 is reduction closed.

Lemma 2.6.9. ≡1 is context closed.
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Proposition 2.6.10. ≡1 is a type 2 witness relation.

Corollary 2.6.11. If A1(cn) cn′, then cn ≃2 cn′.

The second procedure, Algorithm 2, shown in Listing 2.3, empties object queues
and migrates object closures to a “central” node. Initially, the node u is chosen,

Algorithm 2: Normalization

Input: A WF2 configuration cn

Output: A configuration in normal form, reachable from cn

fix a NID u for a node in cn ;
run Algorithm 1 ;
repeat

while some object queue is nonempty
use msg-send, msg-delay-2, or call-rcv-2 to
dequeue one message from each nonempty object queue ;

end ;
while an object o exists not located at u

use obj-send to send o towards u
end ;
run Algorithm 1

until all objects are located at u, all object queues are empty, and there are only
external link messages

Listing 2.3: Algorithm 2

towards which all objects will migrate during normalization. Normalization is then
performed in cycles, with a cycle starting and ending in a stable form. In a cycle,
object in- and out-queues are first emptied. Then, objects are migrated one step
towards u. Routing is not needed to perform such steps; it is sufficient to know that
migration towards u is possible, which it is by the well-formedness of the network
graph.

Proposition 2.6.12. Algorithm 2 terminates.

Write A2(cn)  cn′ if cn′ is a possible result of applying Algorithm 2 to cn.
As before, we define some auxiliary functions:

• t2(cn) is the multiset of method containers tsk = t(o, l, s) such that either
tsk � cn, or there is a routable message call(o, m, v) in transit such that
l = locals(o, m, v), and s = body(o, m);

• o2(cn) is the multiset of object containers o(o, a, u, ε, ε) such that there is an
object container o(o, a, u′, qin, qout) � cn;

• m2(cn) is the multiset of external messages in queues in cn.
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Using these functions, we can describe the effects of normalization, i.e., running
Algorithm 2 on a configuration, as made precise in the following definition and
proposition.

Definition 2.6.13 (Normal Form). The configuration cn is in normal form if it is
WF2, has stable routing and external link messages, t(cn) = t2(cn), o(cn) = o2(cn),
and m(cn) = m2(cn).

Proposition 2.6.14. If cn is WF2 and A2(cn) cn′, then:

1. cn →∗ cn′,

2. cn′ is in normal form,

3. graph(cn′) = graph(cn),

4. t(cn′) = t2(cn),

5. o(cn′) = o2(cn), and

6. m(cn′) = m2(cn).

As for stabilization, we define an equivalence up to normalization, contained
in ≃2, but more extensive than ≡1. This equivalence is key to our correctness
argument.

Definition 2.6.15 (≡2). Let cn1 R2 cn2 whenever we have

1. graph(cn1) = graph(cn2),

2. t(cn1) = t(cn2),

3. o(cn1) = o(cn2), and

4. m(cn1) = m(cn2).

We say that cn1 ≡2 cn2 if cn1 and cn2 are both WF2, and there are configurations
cn′

1 and cn′

2 such that

A2(cn1) cn′

1 R2 cn′

2  A2(cn2).

Corollary 2.6.16. ≡1⊆≡2.

Corollary 2.6.17. If A2(cn) cn′, then cn ≡2 cn′.

Lemma 2.6.18. ≡2 is reduction closed.

Lemma 2.6.19. ≡2 is context closed.

Proposition 2.6.20. ≡2 is a type 2 witness relation.

Corollary 2.6.21. If A2(cn) cn′, then cn ≃2 cn′.
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2.7 Correctness

To show soundness and full abstraction for the network-aware semantics, we define
a mapping net taking type 1 configurations to their close-to-normal-form type 2
counterparts. We first fix an underlying well-formed network graph represented
as a type 2 configuration cngraph and a distinguished NID u0 for a node in this
graph. Thus, cngraph consists only of node containers and link containers with
empty queues. The routing tables of nodes are defined later. A first complication
in defining a suitable representation map is that names in the type 1 semantics
(which includes the binder bind) need to be related to names in the type 2 semantics,
which does not include the binder, but on the other hand has the name generation
operation newo. For ext, this is not a problem, but for other names, some form of
name representation map is needed to connect the two types of names. Accordingly,
we fix an injective name representation map rep, taking an object name o in the
type 1 semantics to an object identifier rep(o) in the type 2 semantics. We extend
the name representation map rep to environments and arbitrary values:

• rep(p) = p, if p ∈ PVal

• rep(l)(x) = rep(l(x)) and rep(a)(x) = rep(a(x))

• rep(a)(self) = rep(a(self)) and rep(ext) = ext

Since we have left the nature of expressions unspecified, we need to additionally
assume that rep commutes with the expression semantics, i.e., for all e, a, and l,

rep(JeK(a,l)) = JeK(rep(a),rep(l)).

Now, the only remaining complication in defining the mapping net is that we need
to deliver message-converted type 1 call containers into a message queue. This is
done by the operation send, which puts call messages in the self-loop queue of u0,
where

send(call(o, m, v), l(u0, q, u0) cn) =

l(u0, enq(call(o, m, v), q), u0) cn.

Given a name representation map rep, we can then define the type 2 representation
of a type 1 configuration with a transformer, as follows:

• net(cn1 cn2, rep) = net(cn1, rep) ◦ net(cn2, rep)

• net(0, rep)(cn) = cn

• net(t(o, l, s), rep)(cn) = t(rep(o), rep(l), s) cn

• net(o(o, a), rep)(cn) = o(rep(o), rep(a), u0, ε, ε) cn



2.7. CORRECTNESS 69

• net(c(o, m, v), rep)(cn) =
send(call(rep(o), m, rep(v)), cn)

Hence, we represent WF1 configurations by first assuming some underlying network
graph, and then mapping the containers individually to the type 2 level, resulting
in a WF2 configuration. The initial routing table t0 at u0 is now defined to have
all OIDs in the configuration registered as local, i.e.,

t0 = reg(rep(o1), u0, reg(· · · , reg(rep(on), u0, ⊥)) · · · ).

For nodes n(u, t) where u 6= u0, we let t be determined by some stable routing,
using Algorithm 1.

Definition 2.7.1 (Representation Map net). Let a network configuration cngraph

and a name representation map rep be given for a WF1 configuration bind o.cn

in standard form. Then, the type 2 representation of cn is defined as net(cn) =
net(cn, rep)(cngraph).

The most basic property that we expect to hold about net is that it produces
a type 2 well-formed configuration when given a type 1 well-formed configuration.

Proposition 2.7.2. If bind o.cn is a WF1 configuration in standard form, then
net(cn) is WF2.

We now obtain a key lemma allowing us to relate transitions in the two semantics
under normal form equivalence, and thus contextual equivalence, leading up to the
main result.

Lemma 2.7.3. Let bind o.cn be a type 1 well-formed configuration in standard
form. Then:

1. If bind o.cn → bind o′.cn′, then for some cn′′, net(cn) →∗ cn′′ and cn′′ ≡2

net(cn′).

2. If net(cn) → cn′′, then for some o′ and cn′, bind o.cn →∗ bind o′.cn′ and
cn′′ ≡2 net(cn′).

For both properties in Lemma 2.7.3, the argument is by case analysis on the
possible rules applied in the assumed reduction step, using the aforementioned
commutativity property of rep with the expression semantics where necessary to
produce a desired configuration.

Given our configuration mapping net, with a name representation map rep, we
now conflate our notions of type 1 and type 2 witness relation into a notion that
includes relations between WF1 and WF2 configurations, leading to a generalized
contextual equivalence, ≃. For such a conflated witness relation R, reduction clo-
sure and barb preservation, as in Definition 2.4.5, is straightforward to define. The
main problem lies in defining the notion of context closure, which requires applying
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a context configuration to two different configuration types. Applying a type 1
context cn to a type 2 configuration involves faithfully transforming elements of
cn to the type 2 level, by introducing, e.g., locations to objects, and turning call
containers into messages. Conversely, applying a type 2 context to a type 1 con-
figuration involves removing locations and queues, and turning messages into call
containers.

More formally, suppose bind o.cn1 R cn2, with bind o.cn1 WF1 and in standard
form, and cn2 WF2. Assume that, when we apply the type 1 context configuration
cn to bind o.cn1, we get the configuration bind o′.cn1 cn′ in standard form. We then
apply the context to cn2 by defining the result as net(cn′, rep)(cn2). Consequently,
context closure requires that bind o′.cn1 cn′ R net(cn′, rep)(cn2) in this case.
Conversely, suppose cn2 R−1 bind o.cn1, again with cn2 WF2, and bind o.cn1

WF1 and in standard form. Straightforwardly, the result of applying the type 2
context configuration cn to cn2 is the configuration cn2 cn. Define the configuration
mapping ten, which takes type 2 configurations to their type 1 counterparts by
removing locations and queues from objects, and adding message containers, with
the help of the inverse of the name representation map, rep−1. The result of
applying the context cn to bind o.cn1 can then be defined as the standard-form
configuration bind o′.ten(cn, rep−1)(cn1), where all free names originating from cn

in bind o.ten(cn, rep−1)(cn1) have been bound. Consequently, converse context
closure requires that cn2 cn R−1 bind o′.ten(cn, rep−1)(cn1) in this case.

Using the established equivalence, ≃, we can now finally state the correctness
property.

Theorem 2.7.4 (Correctness of the Type 2 Semantics). For all well-formed type
1 configurations bind o.cn in standard form, bind o.cn ≃ net(cn).

The proof of Theorem 2.7.4 proceeds by showing, with the help of Lemma 2.7.3,
that the relation

R = {(bind o.cn, cn′) | net(cn) ≡2 cn′},

where bind o.cn is WF1 and in standard form, and cn′ is WF2, is a conflated witness
relation. This is sufficient, since the identity relation is included in ≡2.

2.8 Scheduling

Soundness and full abstraction is a useful validation that the network-aware seman-
tics induces the same behavior on µABS programs as the reference semantics, but
the properties rely on the inherent nondeterminism of the semantics. An imple-
mentation of the network-aware semantics must resolve the choices by introducing
a scheduler which removes some transitions. Resolving the choices involves making
crucial tradeoffs between management overhead and performance. For example,
if all nodes exchange routing tables with their neighboring nodes with a high fre-
quency, or quickly following location changes, routes can be assumed to always
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be close to optimal, but at the cost of a large messaging overhead. Similarly, if
objects quickly change location when a node is overloaded, the variance in load
between nodes can be kept low and the load evenly balanced, at the cost of, e.g.,
task execution throughput.

The difficulty with scheduling is preemptive choice. For instance, in the type 2
semantics, a scheduler may force two messages that in the nondeterministic seman-
tics are causally independent to be received in some given order. This phenomenon
makes contextual equivalence and bisimulation-oriented methods in general inap-
plicable. One might hope to be able to devise schedulers that correspond to each
other at both the type 1 and type 2 levels. We argue, however, that this is unde-
sirable: a scheduler at the type 1 level may require global coordination across the
entire network to be enforced at the type 2 level, e.g., to speed up message transmis-
sion across some links and slow them down correspondingly across others—without
these links having any network proximity constraints whatsoever. This is exactly
the kind of global synchronization overhead the type 2 semantics is designed to
avoid. We therefore deliberately restrict attention to scheduling at the type 2 level.
However, even in the presence of a scheduler at this level, we can still draw strong
conclusions on faithfulness to the reference semantics, as we demonstrate below
using a contextual simulation preorder in place of contextual equivalence. The idea
is to view schedulers abstractly as predicates on type 2 configuration transition
histories.

Definition 2.8.1 (Execution, Scheduler). An execution, of either the type 1 or
type 2 semantics, is a sequence of well-formed configurations ρ = cn1 · · · cnn, such
that, for i : 1 ≤ i < n, it holds that cni → cni+1. Let 〈cn〉 be the singleton
execution consisting of only the configuration cn. A scheduler is a predicate S on
type 2 executions, such that

• S(〈cn〉) for all 〈cn〉, i.e., a scheduler kicks in only once an execution is started,
and

• if S(cn1 · · · cnn) and there exists a cnn+1 such that cnn → cnn+1, then we
have S(cn1 · · · cnn cnn+1) for precisely one such cnn+1.

That is, a scheduler is a device that determinizes type 2 executions. We define
transition systems on executions, such that ρ → ρ′ whenever ρ = cn1 · · · cnn and
ρ′ = cn1 · · · cnn cnn+1. The observation predicate ρ ↓ obs, and application of a
context configuration, is defined for executions similarly. A scheduled transition
system is a transition system on type 2 executions, where, if we have ρ → ρ′, S(ρ)
and S(ρ′) holds.

Let R be a relation on type 2 executions, scheduled by the scheduler S, and un-
scheduled type 1 executions. Suppose R satisfies reduction closure, context closure
and barb preservation, but that R−1 does not necessarily satisfy the converse prop-
erties. Assume the (S-scheduled) type 2 execution ρ and the (unscheduled) type 1



72

CHAPTER 2. LOCATION INDEPENDENT ROUTING IN PROCESS NETWORK

OVERLAYS

execution ρ′ are related by such an R. We then say that ρ and ρ′ are in the con-
textual simulation preorder ⊑, written ρ ⊑ ρ′, and we obtain from Theorem 2.7.4
the following corollary.

Corollary 2.8.2. For all well-formed type 1 configurations bind o.cn in standard
form, 〈net(cn)〉 ⊑ 〈bind o.cn〉.

Intuitively, Corollary 2.8.2 says that a scheduled execution in the network-aware
semantics always maps to some specific (valid) execution in the network-oblivious
semantics.

2.9 Related Work

Much work has been done on object/component mobility in the π-calculus tradi-
tion, and on the implementation of high-level object or process-oriented languages
in terms of more efficiently implementable low-level calculi. Sewell et al. [184],
following earlier work on Pict [168], Fournet’s distributed join-calculus [76], and
JoCaml [42], implement and prove correct a compiler for Nomadic Pict, a pro-
totype language similar to the µABS language: principally asynchronous message
passing between named, location-oblivious processes. The correctness argument for
Nomadic Pict with a central forwarding server scheme uses coupled simulation [162]
to handle problems related to preemptive choice that arise due to the use of locks.
In comparison, the use of location independent routing allows us to use contextual
equivalence in place of coupled simulation, and consequently, we obtain a simpler
correctness proof.

In the Klaim project [19], compilers are implemented and proven correct for
several variants of the Klaim language, using the Linda tuple space communica-
tion model and a centralized name server to identify local tuple servers. The Oz
kernel language [189] uses a monotone shared constraint store in the style of con-
current constraint programming. The Oz/K language [121] adds to this a notion
of locality with separate failure and mobility semantics, but no real distribution
or communication semantics is given; long distance communication is reduced to
explicit manipulation of located agents, in the style of the Ambient Calculus [28].

Standard ABS [103] provides a model of concurrent objects, related to the cobox
model [183] and Creol [104], but without any concept of locations or communication
medium. Another difference is that the ABS unit of concurrency is an object group
rather than a task, resulting in a more intuitive programming model without data
races. A model with many concurrent tasks, as described here, is still feasible to use
by programmers, and can allow more efficient execution on multi-core nodes [88].
Substantial work has been done in the HATS project on ABS and its extensions,
e.g., towards software product lines [182]. Johnsen et al. [105] propose an extension
of ABS with deployment components for explicit resource management. In contrast,
the setting is not inherently decentralized as in our case, and the component model
abstracts away from message distribution and routing. Viewing network nodes as
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deployment components, the model is amenable to the location independent routing
approach for message-passing, which may be useful for lower-level software systems
modeling.

We have extended our analysis of the rudimentary µABS language to a setting
with more sophisticated constructs for communication, namely, futures as place-
holders for method call return values [51]. This adds many complications related to
global consistency of future values, but contextual equivalence can still be proved
following the outline given here. Past correctness analyses for object languages with
futures have been carried out, e.g., by Caromel et al. [33], who prove a confluence
result for their language of asynchronous sequential processes, however without an
explicit treatment of distribution, communication, and routing.

We have also enhanced a variant of the more extensive core ABS language, which
includes a type system, to make it network aware, as described in Appendix B. We
refer to the combination of the core ABS syntax and the corresponding network-
aware semantics as ABS-NET, and have used it to investigate decentralized runtime
adaptation to requirements on node load, link load, and message latency through
decentralized object migration for some simple programs [159]. In that work, we
implemented ABS-NET in a simulator in Java using TCP sockets. The ABS-NET
semantics is split into a language interpreter layer and a language-independent
node controller layer, not unlike the actors and meta-actors in the architecture of
Mechitov et al. [139].

On the one hand, our approach reduces complexity by doing away with some
conventional parts of the network stack, i.e., changing the boundaries between
layers. This approach has found success in other domains, such as data storage
systems, where it has been referred to as telescoping a stack of layers [24]. Be-
sides simplicity, rethinking layers can allow for significant performance gains for
applications through reduced overhead, as demonstrated by Marinos et al. [135]
with a custom network stack tailored for use by web servers. On the other hand,
throwing away OSI network layers 3 and above may be an excessive price to pay,
and it may turn out to be infeasible to amend current IP schemes in the direction
proposed here. However, the architecture of the future Internet is currently very
much in flux. It is possible today to build large scale non-IP networks with only
layer 2 connectivity, sufficient to bootstrap a location independent scheme such as
ours. The simplicity of formal reasoning when using our approach in comparison
to the task of formally verifying, e.g., IP and TCP [20], suggests that currently
ongoing work on verification of low-level software, along the lines of seL4 [109], can
be extended to include fully networked operating systems and hypervisors.

In the Cloud Computing paradigm, a pool of network-interconnected computing
resources are shared between different applications. Most proposed solutions to
resource control for such pools, called clouds, are centralized, and can thus be
expected to scale only to systems with in the order of thousands of nodes [102].
Together with a decentralized scheduling strategy that provides resource control
through object migration, similar to those that we have investigated for ABS-NET
[159], our approach provides a building block for a scalable, formalized Platform
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as a Service (PaaS), that can be implemented correctly with few assumptions on
network capabilities. The fully local nature of the reduction rules ensures that
implementation code can correspond closely to the formalization, minimizing the
risk of errors. An implementation of our semantics that realizes a PaaS cloud,
with a deployment spanning several physical locations, can use the hybrid approach
alluded to in Section 2.1. In a more general routing scheme, weights can be attached
to links, instead of simply relying on the number of hops to approximate distance to
an object. Physical links between nodes inside a datacenter, used for communication
without TCP/IP, can then be assigned, e.g., a fixed low weight, while links between
“gateway” nodes in different datacenters, established using TCP over the Internet,
can have higher weights, depending on their conventional routing distance.

The network-aware semantics assumes a fixed, static network throughout ex-
ecution. Real-world networks are dynamic in at least two different ways. First,
nodes can crash, then possibly recover, or deviate arbitrarily from prescribed be-
havior. Second, nodes can be added and shut down in a controlled way. In related
work, described in Chapter 5, we consider the latter kind of dynamicity. We use a
protocol reminiscent of a two-phase commit [187] to ensure objects can always be
safely migrated away, and messages routed away, from nodes shutting down. The
protocol in effect rules out simultaneous shutdown of neighboring nodes that have
outstanding object-related messages between them, whence program-related state
cannot disappear. Extended using suitable local criteria for connectivity, the proto-
col can also ensure networks remain connected after shutdowns, which is necessary
for progress in program execution. To preserve object behavior in the face of node
crash failures, some form of replication must be used for objects, tasks, and mes-
sages; the state checkpointing approach of Field and Varela [69] is one possibility.
Handling of crashes can be formalized using failure detectors [36, 150].

2.10 Applications in Service Oriented Computing

The Service Oriented Computing (SOC) paradigm is reciprocal to Cloud Com-
puting; the former deals with “computing of services”, while the latter provides
“services of computing” [204]. In SOC-based systems, some basic services are de-
pended on by higher-level services, and must therefore have high availability and
responsiveness. If these basic services are implemented using active objects in a lan-
guage similar to ABS, and deployed in a cloud using our approach, they can become
mobile across datacenters, achieve high availability and responsiveness by adaptive
resource allocation, and accommodate growing use by scaling to large networks.

SOC services can be connected by message exchanges, through orchestration at
higher levels of abstraction. In our approach to resource allocation, described in
Chapter 4, all decisions are taken locally at runtime, which enables allocations of
service components based on message exchange patterns. For example, groups of
services deployed separately, that nevertheless interact frequently, can after some
time execute on nodes in close proximity, lowering overall response times.
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Current SOC systems make extensive use of web services [161]. PaaS providers
such as Google and Amazon offer cloud-based deployment of applications realizing
web services, with automatic resource provisioning based on demand. Yet, scaling
down in, e.g., Google’s App Engine, removes server instances without taking ap-
plication state into account, since a shared-nothing architecture is assumed [2]. In
our approach, application state in a node selected for shutdown can automatically
migrate elsewhere. This offers service developers more flexibility in web application
architecture. Pruning among active objects themselves can be done in a safe way
using distributed garbage collection [201].

2.11 Conclusion

We have presented a sound and fully abstract semantics for a rudimentary object
language, in terms of a network-aware execution model. Thanks in part to a novel
explicit mixing of messaging and routing, we are able to present the model at a
level where it can in principle be implemented in a provably correct fashion directly
on top of silicon, or integrated in a hypervisor such as Xen [16], assuming reliable
link layer (OSI layer 2) functionality only. Essentially, our approach is language
independent, and can be applied to languages such as Core Erlang with only minor
local changes, e.g., adding a pattern matching construct for selectively receiving
messages.

In future work, we want to consider richer network models with features such
as power control—allowing executions with adaptive power consumption—and var-
ious forms of node failure. The model can then be used as a platform for language-
based studies of load balancing and resource adaptation. While we have inves-
tigated strategies for decentralized adaptation to requirements such as node load
and link load [159], it remains to address the full spectrum of implementation-level
concerns such as crash failures, Byzantine failures, garbage collection, and buffer
management. In addition, the routing scheme must be reconsidered. Distance vec-
tor routing suffers from fundamental scalability and security problems, and needs
attention in light of recent progress on compact routing [186].
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2.12 Proofs

Proposition 2.4.1. Suppose cn → cn′. Then, the following holds:

1. fn(cn′) ⊆ fn(cn).
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2. If o(o, a) � cn, then o(o, a′) � cn′ for some object environment a′.

Proof. For the first property, note that no structural identity nor any reduction rule
allows an OID to escape its binder. The result follows. For the second property,
inspection reveals that no rule removes an object container from a configuration,
or changes an OID.

Proposition 2.4.4. Let cn be a type 1 configuration. Then, the following holds:

1. If cn is a type 1 initial configuration, then cn is WF1.

2. If cn is WF1 and cn → cn′, then cn′ is WF1.

Proof. By inspection of the definitions and rules.

Proposition 2.5.3. Suppose cn → cn′. Then, the following holds:

1. If n(u, t) � cn, then n(u, t′) � cn′ for some t′.

2. If l(u, q, u′) � cn, then l(u, q′, u′) � cn′ for some q′.

3. If obj = o(o, a, u, qin, qout) � cn, then there is an object container obj ′ =
o(o′, a′, u′, q′

in, q′

out) � cn′ (the derivative of obj in cn′) such that o′ = o and
for all x, if a(x) ↓, then a′(x) ↓.

Proof. By inspection of the definitions and rules.

Proposition 2.5.6. Let cn be a configuration. Then, the following holds:

1. If cn is a type 2 initial configuration, then cn is WF2.

2. If cn is WF2 and cn → cn′, then cn′ is WF2.

Proof. Similar to the proof of Proposition 2.4.4.

Proposition 2.6.3. Algorithm 1 terminates.

Proof. In each iteration of the outermost loop of Algorithm 1, exactly one message
is enqueued on each proper link, and at least one message is dequeued from all
link queues. msg-rcv, msg-delay-1, and obj-rcv cause messages to leave the link
queues, except for external messages, which are moved to the self-loop queues. If
the link queues have only routing table messages, the algorithm terminates in that
iteration. If not, there must be object messages or routable call messages in some
link queue. Since no new object messages are enqueued, there must some number
of iterations n0 after which all object messages have been received via obj-rcv and
the associated object OIDs o registered on some node u so that t(o) = (u, 0).

Let m0 be the size of the largest link queue at the point which there are no
object messages in transit. After n0 + m0 + 1 iterations, each node u has received
at least one table update from each of its neighbors u′, and the last table update
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applied to u has t(o) = 0. As a result, at point n0 + m0 + 1 each node u has
t(o) = (u′, 1) whenever the host of o is u′ and the minimal length path from u to
u′ has length 1. The entry of the routing table of u for o will not change from that
point onwards. We say that those entries are stable. Proceeding, let m1 be the
length of the largest link queue at point n0 + m0 + 1. After n0 + m0 + 1 + m1 + 1
iterations each routing table entry with length 2 (or less) will be stable. In the
limit, each entry will be stable. It follows that Algorithm 1 must terminate, since,
once routing has stabilized, rule msg-route can only be applied a finite number of
times before a routable message will be delivered. There is no chance of routable
messages getting stuck in self-loop queues, since they are continuously shuffled using
msg-delay-3.

The only detail remaining to be checked is that a message can always be read
from a link. Table and object messages can always be delivered, and call messages
can also always be delivered, if nothing else to the self-loop link, in which case the
routing table is not up-to-date or the message is external. This is the only case
where msg-delay-1 is used. This completes the argument.

Proposition 2.6.5. If A1(cn) cn′, then:

1. cn →∗ cn′,

2. cn′ is in stable form,

3. graph(cn′) = graph(cn),

4. t(cn′) = t(cn),

5. o(cn′) ∼=1 o1(cn), and

6. m(cn′) = m1(cn).

Proof. Property 1 and 3 are immediate. Property 2 can be read out of the termi-
nation proof. For the remaining three properties, observe first that t, o1, and m1

are all invariant under the transitions used in Algorithm 1. The equations follow
by noting that only external messages (and so no object closures) are in transit in
cn′.

Corollary 2.6.7. If A1(cn) cn′, then cn ≡1 cn′.

Proof. We have A1(cn) cn′ R cn′  A1(cn′).

Lemma 2.6.8. ≡1 is reduction closed.

Proof. Suppose cn1 ≡1 cn2, where both cn1 and cn2 are WF2. Assume cn1 → cn′

1;
we need to find cn′

2 such that cn2 →∗ cn′

2 and cn′

1 ≡1 cn′

2. We proceed by case
analysis on the transition cn1 → cn′

1, eliding uses of ctxt-1. For the cases t-send,
t-rcv, msg-rcv, msg-route, msg-delay-1, obj-rcv, msg-delay-3, and obj-reg, we
take cn′

2 = cn2, since in those cases the stable form is unaffected, i.e., cn1 ≡1 cn′

1.
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The remaining cases include the rules for sequential control, msg-send, call-send-2,
msg-delay-2, call-rcv-2, new-2, and obj-send. The rules for sequential control are
handled in a structurally similar way; take wfield as an example, with a transition
of the form

cn o(o, a, u, qin, qout) t(o, l, x = e; s) → cn o(o, a[v/x], u, qin, qout) t(o, l, s)

where JeK(a,l) = v and x ∈ dom(a). Consider cn′′

2 such that A1(cn2)  cn′′

2 . By
the definition of ≡1, there is a task container t(o, l, s) and an object container
o(o, a, u, q′

in, qout) in cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a, u, q′

in, qout) t(o, l, x = e; s) → cn′ o(o, a[v/x], u, q′

in, qout) t(o, l, s)

and we have

cn o(o, a[v/x], u, qin, qout) t(o, l, s) ≡1 cn′ o(o, a[v/x], u, q′

in, qout) t(o, l, s),

as needed, setting cn′

2 to the right-hand side.

msg-send: Consider a transition of the form

cn n(u, t) o(o, a, u, qin, qout) l(u, q, u′)

→ cn n(u, t) o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u′)

where hd(qout) = msg, dst(msg) = o′, and nxt(o′, t) = u′. Consider cn′′

2 such that
A1(cn2)  cn′′

2 . By the definition of ≡1, there are containers o(o, a, u, q′

in, qout),
n(u, t′), and l(u, q′, u′′), such that nxt(o′, t′) = u′′. Hence, it is possible to perform
a transition

cn′ n(u, t′) o(o, a, u, q′

in, qout) l(u, q′, u′′)

→ cn′ n(u, t′) o(o, a, u, q′

in, deq(qout)) l(u, enq(msg, q′), u′′)

and we have

cn n(u, t) o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u′)

≡1 cn′ n(u, t′) o(o, a, u, q′

in, deq(qout)) l(u, enq(msg, q′), u′′),

as needed, setting cn′

2 to the right-hand side.

call-send-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, e1!m(e2); s)

→ cn o(o, a, u, qin, enq(call(o′, m, v), qout)) t(o, l, s)

where Je1K(a,l) = o′ and Je2K(a,l) = v. Consider cn′′

2 such that A1(cn2)  cn′′

2 .
By the definition of ≡1, there is a task container t(o, l, e1!m(e2); s) and an object
container o(o, a, u′, q′

in, qout) in cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a, u′, q′

in, qout) t(o, l, e1!m(e2); s)

→ cn′ o(o, a, u′, q′

in, enq(call(o′, m, v), qout)) t(o, l, s)
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and we have

cn o(o, a, u, qin, enq(call(o′, m, v), qout)) t(o, l, s)

≡1 cn′ o(o, a, u′, q′

in, enq(call(o′, m, v), qout)) t(o, l, s),

as needed, setting cn′

2 to the right-hand side.
The other cases are proved similarly.

Lemma 2.6.9. ≡1 is context closed.

Proof. Suppose that cn1 ≡1 cn2. Then, cn1 and cn2 are WF2. Assume cn1 cn is
WF2 for a context configuration cn. We first show that cn2 cn is WF2. For OID
Uniqueness, it suffices to consider the case where we have

o(o1, a1, u1, qin,1, qout,1) � cn2 , o(o2, a2, u2, qin,2, qout,2) � cn.

Then, if o1 = o2, there is a clash between OIDs in cn1 and cn, since there is
an object container with OID o1 in cn1 by property 5 of Proposition 2.6.5. For
Task-Object existence, it suffices to consider the case where t(o, l, s) � cn; then, if
there is no object container with OID o in cn2 cn, there is no such container in cn1

either, violating WF2. For Object-Node Existence, suppose o(o, a, u, qin, qout) � cn,
but that there is no vertex u in graph(cn2 cn); since the graphs for cn1 and cn2

coincide, and there are no nodes in cn, this means that there is no such node in
graph(cn1 cn), violating the WF2 assumption. For Buffer Cleanliness, it suffices
to note that the property distributes over configuration composition. For Local
Routing Consistency, note again that cn introduces no nodes or links, and cn2 is
WF2. For External OID, note that cn cannot have an object container with OID
ext since cn1 cn is WF2, and that cn does not change the nodes or links.

It remains to show that we have cn1 cn ≡1 cn2 cn. The WF2 property is
immediate. Suppose A1(cn1 cn) cn′

1 and A1(cn2 cn) cn′

2. It suffices to show
cn′

1 R1 cn′

2. We prove the conditions in turn.

graph(cn′

1) = graph(cn1 cn) = graph(cn1) =

graph(cn2) = graph(cn2 cn) = graph(cn′

2).

t(cn′

1) = t(cn1 cn) = t(cn1) ∪ t(cn) =

t(cn2) ∪ t(cn) = t(cn2 cn) = t(cn′

2).

o(cn′

1) ∼=1 o1(cn1 cn) = o1(cn1) ∪ o1(cn) =

o1(cn2) ∪ o1(cn) = o1(cn1 cn) ∼=1 o(cn′

2).

m(cn′

1) = m1(cn1 cn) = m1(cn1) ∪ m1(cn) =

m1(cn2) ∪ m1(cn) = m1(cn2 cn) = m(cn′

2).

The proof of converse context closure is symmetric.
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Proposition 2.6.10. ≡1 is a type 2 witness relation.

Proof. We have that ≡1 is reduction closed by Lemma 2.6.8 and context closed
by Lemma 2.6.9. Hence, it suffices to show barb preservation in both directions.
Suppose cn1 ≡1 cn2 and cn1 ↓ obs, where obs = ext!m(v). Then, there is a
message call(ext, m, v) at the head of some self-loop queue in cn1. Consequently,
after running Algorithm 1 on cn2, this message will be found in some self-loop
queue, from which it can be brought to the head by means of repeated application
of msg-delay-3. Thus, cn2 ⇓ obs. The proof of converse barb preservation is
symmetric.

Corollary 2.6.11. If A1(cn) cn′, then cn ≃2 cn′.

Proof. By Proposition 2.6.10 and Corollary 2.6.7.

Proposition 2.6.12. Algorithm 2 terminates.

Proof. Routing is stable after each run of Algorithm 1, and none of the rules applied
in the first inner loop affect routing stability. Also, after the first run of Algorithm 1,
links contain only external calls. Whenever an object out-queue is nonempty, one
of msg-send or msg-delay-2 will be enabled. By Buffer Cleanliness, call-rcv-2 will
be applicable if the object in-queue is nonempty, decreasing in-queue size by one.
Thus, when the first while loop is exited, object queues are empty. The second
while loop terminates when all objects not yet at u have been put on the wire. At
the end of each outer loop, routing is stabilized and link queues emptied (except
for external messages). Once emptied, out-queues remain empty. In-queues may
contain messages at the start of the second iteration, but after that, only external
messages remain in either link or object queues, except for object closures, which
are consumed once they reach u.

Proposition 2.6.14. If cn is WF2 and A2(cn) cn′, then:

1. cn →∗ cn′,

2. cn′ is in normal form,

3. graph(cn′) = graph(cn),

4. t(cn′) = t2(cn),

5. o(cn′) = o2(cn), and

6. m(cn′) = m2(cn).
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Proof. Property 1 and 3 are immediate. We consider the requirements of property
2 in turn. By virtue of Proposition 2.6.5, cn′ has stable routing and external link
messages. By the termination requirements of Algorithm 2, all object queues are
empty, meaning that all call messages have been delivered, and there are no object
containers in transit, yielding t(cn′) = t2(cn′), o(cn′) = o2(cn′), and m(cn′) =
m2(cn′).

For property 4, observe first that the function t2 is invariant under transitions
used in Algorithm 2. On termination of Algorithm 2, only external messages are
in transit, and since no rule causes a task to be modified, the property follows.

For property 5, suppose o(o2, a2, u2, qin,2, qout,2) � o(cn′). We need to show that
o(o2, a2, u2, qin,2, qout,2) � o2(cn). By definition, qin,2 = qout,2 = ε and u2 = u0.
We know that there is an object container o(o, a′, u′, qin, qout) � cn, as there is a
one-to-one correspondence between object containers in pre- and poststate for each
transition used in Algorithm 2. We also know that a′(x) = a2(x) for all x, which
suffices.

For property 6, note again that all object queues are empty, link queues only
have external messages, and finally that no new external messages are generated
by the rules used in Algorithm 2.

Corollary 2.6.16. ≡1⊆≡2.

Proof. If cn1 ≡1 cn2, the two configurations have the same task containers, and
the same object bound messages. In addition, there is a one-to-one mapping be-
tween object containers where identifiers and object environments coincide. The
result follows by noting that any remaining differences between the containers will
disappear after running Algorithm 2.

Corollary 2.6.17. If A2(cn) cn′, then cn ≡2 cn′.

Proof. By Proposition 2.6.14.

Lemma 2.6.18. ≡2 is reduction closed.

Proof. Suppose cn1 ≡2 cn2, where cn1 and cn2 are WF2. Assume cn1 → cn′

1;
we need to find cn′

2 such that cn2 →∗ cn′

2 and cn′

1 ≡2 cn′

2. We proceed by case
analysis on the transition cn1 → cn′

1, eliding uses of ctxt-1. For the cases t-send,
t-rcv, msg-send, msg-rcv, msg-route, msg-delay-1, msg-delay-2, msg-delay-3,
call-rcv-2, obj-reg, obj-send, and obj-rcv, we take cn′

2 = cn2, since in those
cases the normal form is unaffected, i.e., cn1 ≡2 cn′

1. The remaining cases include
the rules for sequential control, call-send-2, and new-2. The rules for sequential
control are handled in a structurally similar way; take wfield as an example, with
a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e; s) → cn o(o, a[v/x], u, qin, qout) t(o, l, s),
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where JeK(a,l) = v and x ∈ dom(a). Consider cn′′

2 such that A2(cn2) cn′′

2 . By the
definition of ≡2, there is a task container t(o, l, x = e; s) and an object container
o(o, a, u′, ε, ε) in cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a, u′, ε, ε) t(o, l, x = e; s) → cn′ o(o, a[v/x], u′, ε, ε) t(o, l, s),

and we have that

cn o(o, a[v/x], u, qin, qout) t(o, l, s) ≡2 cn′ o(o, a[v/x], u′, ε, ε) t(o, l, s),

as needed, setting cn′

2 to the right-hand side.

call-send-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, e1!m(e2); s)

→ cn o(o, a, u, qin, enq(call(o′, m, v), qout)) t(o, l, s)

where Je1K(a,l) = o′ and Je2K(a,l) = v. Consider cn′′

2 such that A2(cn2)  cn′′

2 .
By the definition of ≡2, there is a task container t(o, l, e1!m(e2); s) and an object
container o(o, a, u′, ε, ε) in cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a, u′, ε, ε) t(o, l, e1!m(e2); s)

→ cn′ o(o, a, u′, ε, enq(call(o′, m, v), ε)) t(o, l, s)

and we have

cn o(o, a, u, qin, enq(call(o′, m, v), qout)) t(o, l, s)

≡2 cn′ o(o, a, u′, ε, enq(call(o′, m, v), ε)) t(o, l, s),

as needed, setting cn′

2 to the right-hand side.

new-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, new C(e); s)

→ cn o(o, a, u, qin, qout) t(o, l[o′/x], s) o(o′, a′, u, ε, ε)

where newo(u) = o′, JeK(a,l) = v, and init(C, v, o′) = a′. Consider cn′′

2 such that
A2(cn2) cn′′

2 . By the definition of ≡2, there is a task container t(o, l, new C(e); s)
and an object container o(o, a, u′, ε, ε) in cn′′

2 . Hence, it is possible to perform a
transition

cn′ o(o, a, u′, ε, ε) t(o, l, new C(e); s)

→ cn′ o(o, a, u′, ε, ε) t(o, l[o′/x], s) o(o′, a′, u′, ε, ε)

and we have

cn o(o, a, u, qin, qout) t(o, l[o′/x], s) o(o′, a′, u, ε, ε)

≡2 cn′ o(o, a, u′, ε, ε) t(o, l[o′/x], s) o(o′, a′, u′, ε, ε),

as needed, setting cn′

2 to the right-hand side.
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Lemma 2.6.19. ≡2 is context closed.

Proof. Suppose cn1 ≡2 cn2. Then, cn1 and cn2 are WF2. Assume cn1 cn is
WF2 for a context configuration cn. We first show that cn2 cn is WF2. For OID
Uniqueness, it suffices to consider the case where

o(o1, a1, u1, qin,1, qout,1) � cn2, o(o2, a2, u2, qin,2, qout,2) � cn.

Then, if o1 = o2, there is a clash between OIDs in cn1 and cn, since there is
an object container with OID o1 in cn1 by normal form equivalence, but this is
ruled out by cn1 cn being WF2. For Task-Object existence, it suffices to consider
the case where t(o, l, s) � cn; then, if there is no object container with OID o in
cn2 cn, there is no such container in cn1 either, violating WF2. For Object-Node
Existence, suppose we have o(o, a, u, qin, qout) � cn, but that there is no vertex u in
graph(cn2 cn); since the graphs for cn1 and cn2 coincide, and there are no nodes
in cn, this means that there is no such node in graph(cn1 cn), violating the WF2
assumption. For Buffer Cleanliness, it suffices to note that the property distributes
over configuration composition. For Local Routing Consistency, note again that
cn introduces no nodes or links, and cn2 is WF2. For External OID, note that cn

cannot have an object container with OID ext since cn1 cn is WF2, and that cn

does not change the nodes or links.
It remains to show that cn1 cn ≡2 cn2 cn. The WF2 property is immediate.

Suppose A2(cn1 cn) cn′

1 and A2(cn2 cn) cn′

2. It suffices to show cn′

1 R2 cn′

2.
We prove the conditions in turn. Note that since t2(cn1) = t2(cn2), we have
t2(cn1 cn) = t2(cn2 cn).

graph(cn′

1) = graph(cn1 cn) = graph(cn1) =

graph(cn2) = graph(cn2 cn) = graph(cn′

2).

t(cn′

1) = t2(cn1 cn) = t2(cn2 cn) = t(cn′

2).

o(cn′

1) = o2(cn1 cn) = o2(cn1) ∪ o2(cn) =

o2(cn2) ∪ o2(cn) = o2(cn2 cn) = o(cn′

2).

m(cn′

1) = m2(cn1 cn) = m2(cn1) ∪ m2(cn) =

m2(cn2) ∪ m2(cn) = m2(cn2 cn) = m(cn′

2).

The proof of converse context closure is symmetric.

Proposition 2.6.20. ≡2 is a type 2 witness relation.

Proof. We have that ≡2 is reduction closed by Lemma 2.6.18 and context closed
by Lemma 2.6.19. Hence, it suffices to show barb preservation in both directions.
Suppose cn1 ≡2 cn2 and cn1 ↓ obs. Then, there is a message with destination ext at
the head of some self-loop queue in cn1. Consequently, after running Algorithm 2
on cn2, this message will be found in some self-loop queue, from where it can
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be brought to the head by means of repeated application of msg-delay-3. Thus,
cn2 ⇓ obs. The proof of converse barb preservation is symmetric.

Corollary 2.6.21. If A2(cn) cn′, then cn ≃2 cn′.

Proof. None of the rules used in Algorithm 2 affects the shape of the normal form.
Thus, if A2(cn) cn′, then cn ≡2 cn′. But then, cn ≃ cn′, by Proposition 2.6.20.

Proposition 2.7.2. If bind o.cn is a WF1 configuration in standard form, then
net(cn) is WF2.

Proof. We consider the WF2 conditions in turn. OID Uniqueness and Task-Object
Existence follows from the respective WF1 conditions and from how the name
representation map is defined. Object-Node Existence holds since all objects are
placed on the node u0, which exists by the definition of cngraph. Buffer Cleanliness
holds since all object containers in net(cn) have empty queues. Local Routing
Consistency follows from how routing tables in cngraph are defined. External OID
follows from the corresponding WF1 condition and from how routing tables are
defined.

Lemma 2.7.3. Let bind o.cn be a type 1 well-formed configuration in standard
form. Then:

1. If bind o.cn → bind o′.cn′, then for some cn′′, net(cn) →∗ cn′′ and cn′′ ≡2

net(cn′).

2. If net(cn) → cn′′, then for some o′ and cn′, bind o.cn →∗ bind o′.cn′ and
cn′′ ≡2 net(cn′).

Proof. 1. The proof is by case analysis on the possible transitions such that
bind o.cn → bind o′.cn′, eliding uses of ctxt-1 and ctxt-2. The remaining se-
quential control rules in Figure 2.1 are straightforward; consider, for instance, the
rule wfield, which yields a transition of the form

bind o.cn o(o, a) t(o, l, x = e; s) → bind o.cn o(o, a[v/x]) t(o, l, s),
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where x ∈ dom(a) and v = JeK(a,l). We calculate:

net(cn o(o, a) t(o, l, x = e; s))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦ net(t(o, l, x = e; s), rep))(cngraph)

= net(cn, rep)(net(o(o, a), rep)(net(t(o, l, x = e; s), rep)(cngraph)))

= net(cn, rep)(net(o(o, a), rep)(t(rep(o), rep(l), x = e; s) cngraph))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), x = e; s) cngraph)

→ net(cn, rep)(o(rep(o), rep(a)[rep(v)/x], u0, ε, ε)

t(rep(o), rep(l), s) cngraph)

= net(cn, rep)(o(rep(o), rep(a[v/x]), u0, ε, ε) t(rep(o), rep(l), s) cngraph)

= net(cn o(o, a[v/x]) t(o, l, s))

using the rule wfield-2 to derive the transition.
We proceed to the rules concerning messages and object creation.
call-send: Consider the following type 1 transition:

bind o.cn o(o, a) t(o, l, e1!m(e2); s) → bind o.cn o(o, a) t(o, l, s) c(o′, m, v),

where o′ = Je1K(a,l) and v = Je2K(a,l). We calculate:

net(cn o(o, a) t(o, l, e1!m(e2); s))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦ net(t(o, l, e1!m(e2); s), rep))(cngraph)

= net(cn, rep)(net(o(o, a), rep)(net(t(o, l, e1!m(e2); s), rep)(cngraph)))

= net(cn, rep)(net(o(o, a), rep)(t(rep(o), rep(l), e1!m(e2); s) cngraph))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), e1!m(e2); s) cngraph)

→ net(cn, rep′)(o(rep(o), rep(a), u0, ε, enq(call(rep(o′), m, rep(v)), ε))

t(rep(o), rep(l), s) cngraph)

≡2 net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), s)

send(call(rep(o′), m, rep(v)), cngraph))

= net(cn o(o, a) t(o, l, s) c(o′, m, v))

using call-send-2.
call-rcv: Consider the following type 1 transition:

bind o.cn o(o, a) c(o, m, v) → bind o.cn o(o, a) t(o, l, s),

where l = locals(o, m, v) and s = body(o, m). We calculate:

net(cn o(o, a) c(o, m, v))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦ net(c(o, m, v), rep))(cngraph)

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) send(call(rep(o), m, rep(v)), cngraph))

≡2 net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), s) cngraph)

= net(cn o(o, a) t(o, l, s))
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new: Consider the following type 1 transition:

bind o.cn o(o, a) t(o, l, x = new C(e); s) → bind o′ o.cn o(o, a) t(o, l[o′/x], s) o(o′, a′)

where v = JeK(a,l) and a′ = init(C, v, o′). We calculate:

net(cn o(o, a) t(o, l, x = new C(e); s))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε)

t(rep(o), rep(l), x = new C(e); s) cngraph)

→ net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l)[o′′/x], s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)

= net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l[o′′/x]), s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)

= net(cn o(o, a) t(o, l[o′/x], s) o(o′, a′))

where rep′ = rep[o′′/o′] and o′′ = newo(u0). This completes the proof of property 1.
2. We proceed by cases on the type 2 rule applied to derive net(cn) → cn′′,
eliding uses of ctxt-1. The rules for sequential control are immediate, since it is
straightforward to find cn′ such that net(cn′) = cn′′. For t-send, t-rcv, msg-

send, msg-rcv, msg-route, msg-delay-1, msg-delay-2, msg-delay-3, call-rcv-2,
obj-reg, obj-send, and obj-rcv, we can set o′ = o and cn′ = cn, since they have
no effect on the normal form. We handle the two remaining cases as per below.
call-send-2: Consider a transition of the form

net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), e1!m(e2); s) cngraph)

→ net(cn, rep)(o(rep(o), rep(a), u0, ε, enq(call(rep(o′), m, rep(v), ε)))

t(rep(o), rep(l), s) cngraph)

where o′ = Je1K(a,l) and v = Je2K(a,l). We have:

bind o.cn o(o, a) t(o, l, e1!m(e2); s) → bind o.cn o(o, a) t(o, l, s) c(o′, m, v)

and we calculate:

net(cn o(o, a) t(o, l, s) c(o′, m, v)

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), s)

send(call(rep(o′), m, rep(v)), cngraph))

≡2 net(cn, rep)(o(rep(o), rep(a), u0, ε, enq(call(rep(o′), m, rep(v), ε)))

t(rep(o), rep(l), s) cngraph)

new-2: Consider a transition of the form

net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), x = new C(e); s)

→ net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l)[o′′/x], s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)
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where we have v = JeK(a,l), a′ = init(C, v, o′), rep′ = rep[o′′/o′], and o′′ =
newo(u0). Then:

bind o.cn o(o, a) t(o, l, x = new C(e); s)

→ bind o′ o.cn o(o, a) t(o, l[o′/x], s) o(o′, a′)

and we calculate:

net(cn o(o, a) t(o, l[o′/x], s) o(o′, a′))

= net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l)[o′′/x], s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)

This completes the proof of property 2.

Theorem 2.7.4. For all well-formed type 1 configurations bind o.cn in standard
form, bind o.cn ≃ net(cn).

Proof. We exhibit a conflated witness relation R, defined as

R = {(bind o.cn, cn′) | net(cn) ≡2 cn′},

where bind o.cn is a WF1 configuration in standard form, and cn′ is a WF2 config-
uration. Note that (bind o.cn, net(cn)) ∈ R, since the identity relation is included
in ≡2. We show that R is a conflated type 1 and type 2 witness relation.

Suppose bind o.cn1 R cn2 (or the converse for R−1); then bind o.cn1 is WF1
and in standard form, cn2 is WF2, and net(cn1) ≡2 cn2.

For reduction closure, assume bind o.cn1 → bind o′.cn′

1, where bind o′.cn′

1 is
in standard form. Then, by property 1 of Lemma 2.7.3, net(cn1) →∗ cn′′

1 ≡2

net(cn′

1). This means that, for some cn′

2, cn2 →∗ cn′

2 ≡2 cn′′

1 . Hence, by the
transitivity of ≡2, bind o.cn′

1 R cn′

2. For converse reduction closure, assume cn2 →
cn′

2. Then, net(cn1) →∗ cn′′

2 and cn′

2 ≡2 cn′′

2 . By property 2 of Lemma 2.7.3,
this means that bind o.cn1 → bind o′.cn′

1 and cn′′

2 ≡2 net(cn′

1). Hence, by the
transitivity of ≡2, cn′

2 R−1 bind o′.cn′

1.
For barb preservation, assume bind o.cn1 ↓ obs. Then, net(cn1) ⇓ obs, which

by normal form equivalence implies that cn2 ⇓ obs, as needed. For converse barb
preservation, assume cn2 ↓ obs. Then, by normal form equivalence, net(cn1) ⇓ obs,
and consequently cn1 ↓ obs, whereby cn1 ⇓ obs.

For context closure, assume bind o′.cn1 cn is in standard form and WF1, and
consider the configuration net(cn, rep)(cn2), which in effect applies cn to cn2.
We first need to show that this resulting configuration is WF2. Object-Node Ex-
istence holds, since by the definition of net, all objects in cn become attached
to a node in cn2. Buffer Cleanliness also holds by the definition of net. For OID
Uniqueness, it suffices to consider the case where o(o1, a1, u1, qin,1, qout,1) � cn2 and
o(o2, a2, u2, qin,2, qout,2) � net(cn, rep)(cn2) but o(o2, a2, u2, qin,2, qout,2) 6� cn2;
then, if o1 = o2, there is a corresponding clash in bind o′.cn1 cn, violating WF1. For
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Task-Object Existence, assume t(o, l, s) � net(cn, rep)(cn2) and t(o, l, s) 6� cn2;
then, if there is no object container o(o, a, u, qin, qout) � net(cn, rep)(cn2), there
is no corresponding object container in bind o′.cn1 cn, violating WF1 for the tasks
corresponding to t(o, l, s) in bind o′.cn1 cn. Local Routing Consistency holds since
the composition does not add nodes or links and does not change routing tables.
The first condition of External OID holds since ext is not allowed to be bound or
defined in cn, and the second condition again holds since the context does not add
network components.

It remains to show that bind o′.cn1 cn R net(cn, rep)(cn2). The network graphs
of net(cn1 cn) and net(cn, rep)(cn2) coincide, since applying cn does not intro-
duce any nodes or links. Clearly, if and only if a task or non-external message is in
cn, a corresponding task or message is introduced by cn in net(cn, rep)(cn2). We
already have that the remaining tasks and tasks spawned from messages in cn1 cor-
respond to those in cn2. As for external messages, they are either newly introduced
via the context, and are then in both composed configurations, or come from the
original configuration, which we already know have coinciding external messages af-
ter applying the representation map. With respect to objects, none of the rules used
in normalization change object environments, and there is a one-to-one mapping
of objects between cn1 cn and net(cn, rep)(cn2), so after running Algorithm 2, all
object containers will coincide. Hence, net(cn1 cn) ≡2 net(cn, rep)(cn2).

For converse context closure, assume cn2 cn is WF2, and apply cn to produce
bind o′.ten(cn, rep−1)(cn1) in standard form. We first need to show that this result-
ing configuration is WF1. Let cn′ be the multiset difference of ten(cn, rep−1)(cn1)
and cn1. For OID Uniqueness, it suffices to consider the case where o(o1, a1) � cn1

and o(o2, a2) � cn′; then, if o1 = o2, there is a corresponding clash in in cn2 cn,
violating WF2. For Task-Object Existence, assume t(o, l, s) � cn′; then, if there is
no object container o(o, a) � cn1 cn′, this violates WF2 for the task corresponding
to t(o, l, s) in cn2 cn.

It remains to show that cn2 cn R−1 bind o′.ten(cn, rep−1)(cn1). Again, let
cn′ be the multiset difference of ten(cn, rep−1)(cn1) and cn1. The network graphs
of net(cn1 cn′) and cn2 cn coincide since cn does not contain any nodes or links.
Clearly, if and only if a task or non-external message is in cn, a corresponding
task or message is in cn′. We already have that the remaining tasks and tasks
spawned from messages in cn1 correspond to those in cn2. As for external messages,
they are either newly introduced via the context, and are then in both composed
configurations, or come from the original configuration, which we already know have
coinciding external messages after applying the representation map. With respect
to objects, none of the rules used in normalization change object environments,
and there is a one-to-one mapping of objects between cn2 cn and cn1 cn′, so after
running Algorithm 2, objects will coincide. Hence, net(cn1 cn′) ≡2 cn2 cn.

Corollary 2.8.2. For all well-formed type 1 configurations bind o.cn in standard
form, 〈net(cn)〉 ⊑ 〈bind o.cn〉.
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Proof. Suppose ρ1 → ρ′

1 for ρ1 = cn1 · · · cnn and ρ′

1 = cn1 · · · cnncnn+1. We then
have cnn → cnn+1, and ρ1 ↓ obs whenever cnn ↓ obs. Let ρ2 = cn′

1 · · · cn′

m. When
cnn = net(cn) and cn′

m = bind o.cn, as in the present case, cnn and cn′

m are by
Theorem 2.7.4 related by some conflated witness relation R. We use this relation
when constructing the required relation on executions to qualify for inclusion in ⊑,
by straightforwardly transferring configuration properties from R to executions.
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Abstract

In distributed object systems, it is desirable to enable migration of ob-
jects between locations, e.g., in order to support efficient resource allocation.
Existing approaches build complex routing infrastructures to handle object-
to-object communication, typically on top of IP, using, e.g., message forward-
ing chains or centralized object location servers. These solutions are costly
and problematic in terms of efficiency, overhead, and correctness. We show
how location independent routing can be used to implement object overlays
with complex messaging behavior in a sound, fully abstract, and efficient way,
on top of an abstract network of processing nodes connected point-to-point
by asynchronous channels. We consider a distributed object language with
futures, essentially lazy return values. Futures are challenging in this con-
text due to the strong global consistency requirements they impose. The key
conclusion is that execution in a decentralized, asynchronous network can pre-
serve the standard, network-oblivious behavior of objects with futures, in the
sense of contextual equivalence. To the best of our knowledge, this is the first
such result in the literature. We also believe the proposed execution model
may be of interest in its own right in the context of large-scale distributed
computing.
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3.1 Introduction

The ability to transparently and efficiently relocate objects between processing
nodes is a basic prerequisite for many tasks in large-scale distributed systems,
including load balancing, resource allocation, and management. By freeing ap-
plications from the burden of resource management, they can be made simpler,
more resilient, and easier to manage, resulting in lower costs for development and
operation.

A central problem is how to efficiently handle object and task mobility. Since
object locations change dynamically in a mobile setting, some form of application-
level routing is needed for inter-object messages to reach their destinations. Various
approaches have been considered in the literature; Sewell et al. [184] provide a com-
prehensive survey. One common implementation strategy is to use a centralized,
replicated, or decentralized object location register, either for forwarding or for
address lookup [63, 184, 19, 87]. This type of solution requires some form of syn-
chronization to keep registers consistent with physical locations, or else it needs
to resort to message relaying, or forwarding. Forwarding by itself is another main
implementation strategy used in, e.g., the Emerald system [107], or in more recent
systems like JoCaml [42]. Other solutions exist, such as broadcast or multicast
search, that are useful for recovery or for service discovery [11], but hardly efficient
as general purpose routing devices in large systems.

In general, we consider a mechanism for object mobility with the following
properties desirable:

Low stretch In stable state, the ratio between actual and optimal route lengths
(costs) should be small.

Compactness The space required at each node for storing route information
should be small (sublinear in the number of destinations).

Self-stabilization Even when started in a transient state, computations should
proceed correctly, and converge to a stable state. Observe that this precludes
the use of locks.

Decentralization To enable scaling to large networks, routes and next-hop des-
tinations should be computed in a decentralized fashion, at the individual
nodes, and not rely on a centralized facility.

Existing solutions are quite far from meeting these requirements: location registers
(centralized or decentralized) and pointer forwarding regimes both preclude low
stretch, and the use of locks precludes self-stabilization.

We suggest that the root of the difficulties lies in a fundamental mismatch be-
tween the information used for search and identification (typically, object identifiers,
OIDs), and the information used for routing, namely, host identifiers (typically, IP
addresses). If we were to route messages not to the destination location, but in-
stead to the destination object, it should be possible to build object network overlays
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which much better fit the desiderata laid out above. In earlier work, described in
Chapter 2, we show that this indeed appears to be true. The key idea is to use
a form of location independent (also known as flat, or name independent) routing
[93, 27, 100] that allows messages to be routed directly to the destination object,
independently of the physical node on which that object is currently executing. In
this way, a lot of the overhead and performance constraints associated with object
mobility can be eliminated, including latency and bandwidth overhead due to look-
ing up, querying, updating, and locking object location databases, and overhead
due to increased traffic for, e.g., message forwarding.

We explore this idea in the context of a simple object-based language, mABS,
with asynchronous message passing and futures [32, 72, 124, 207, 153, 56]. In our
context, futures can be viewed as lazy return values for method calls. The mABS
language is closely related to the asynchronous fragment of the ABS (Abstract
Behavioral Specification) language core [103], developed in the EU FP7 HATS
project. The question we raise is how program behavior is affected by execution in
a network-aware model that makes location, naming, routing and message-passing
explicit, as compared to execution according to a more standard, network-oblivious
“reference” semantics given in the style of rewriting logic [40]. To this end, we give
a maximally nondeterministic network-aware semantics of mABS.

We allow futures to be transmitted as arguments in method calls to remote
objects, which introduces complications in a distributed setting. If an object re-
ceives a placeholder, there must be some way for the object to also receive the
associated value, e.g., through the caller forwarding it or through querying some
lookup server. Thus, it would seem likely that location independent routing could
be useful for propagation of values for futures, and as we show in this paper, indeed
this is so. In order for the network-aware implementation to be correct (sound and
fully abstract), we must be able to show that future assignments are unique and
can propagate correctly to all objects needing the assignment. Many strategies for
future propagation exist in the literature [90, 174]. In this work, we use an eager
forward based strategy [90, 31], where values are sent along the flow of futures as
soon as they are computed.

The scheme we propose assumes only a network graph with OSI layer 2 connec-
tivity, i.e., the possibility of non-lossy, ordered communication between neighboring
nodes. Such a graph can be realized in many ways—for instance, as a physical non-
IP network, or as a TCP-based virtual network overlay with some desired topology.

Our main result is that the reference semantics and the network-aware semantics
with eager forwarding of futures correspond in the sense of contextual equivalence
[169]. To the best of our knowledge, this is the first such result in the literature,
interesting in itself, as it shows that the network-aware semantics captures the
abstract behavior very accurately, allowing many high-level conclusions about a
program to transfer to a networked realization.

The proof of the main result relies on a normal form construction which uses
two procedures. The first procedure rewrites a well-formed runtime configuration
into an equivalent form where routes are optimal and messages in transit in the net-
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work have been forwarded as far as possible. The second procedure uses the first to
rewrite to a form where, in addition, all object-bound messages have been received
and processed and where all objects have been migrated to a single node. The
correctness of the normalization process gives a Church-Rosser like property—that
transitions in the network-aware semantics commute with normalization. Normal-
ization brings configurations in the network-aware semantics close to the form of
configurations in the reference semantics, allowing the argument to be completed.

The paper is organized as follows. In Section 3.3, we first introduce the mABS
language syntax, and the network-oblivious reference (type 1) semantics of mABS
is given in Section 3.4. In Section 3.5, we present type 1 contextual equivalence,
i.e., the notion of contextual equivalence adapted to the reference semantics. Then,
in Section 3.6, we turn to the network-aware (type 2) semantics and present the
runtime syntax and the reduction rules, and, in Section 3.7, we adapt the contex-
tual equivalence to this semantics. We then present the normal-form construction
in Section 3.8, and complete the correctness proof in Section 3.9. We describe
scheduling in Section 3.10, discuss our approach in comparison to related work in
Section 3.11, and finally, in Section 3.12, we conclude. Long proofs are deferred to
Section 3.13.

3.2 Notation

We sometimes use a vectorized notation to abbreviate sequences, for compactness.
Thus, x abbreviates a sequence x1, . . . , xn, possibly empty, and x0, x abbreviates
x0, . . . , xn. Let g : A → B be a finite map. The update operation for g is g[b/a](x) =
g(x) if x 6= a and g[b/a](a) = b. We use ⊥ for bottom elements, and A⊥ for the
lifted set with partial order ⊑ such that a ⊑ b if and only if either a = b ∈ A or
else a = ⊥. Also, if x is a variable ranging over A, we often use x⊥ as a variable
ranging over A⊥. For g a function g : A → B⊥, we write g(a) ↓ if g(a) ∈ B, and
g(a) ↑ if g(a) = ⊥. The product of sets (flat CPOs) A and B is A × B with pairing
(a, b) and projections π1 and π2.

3.3 The mABS Language

We define mABS, short for milli-ABS, a small, distributed, object-based language
with asynchronous method calls and futures. Its syntax is given in Table 3.1.
The mABS language extends the µABS (micro-ABS) language of message-passing
processes from Chapter 2 with futures.

A program is a sequence of class definitions, appended with the variables x and a
“main” statement s. The class hierarchy is flat and fixed. Classes have parameters
x, local variable declarations y, and methods M . Methods have parameters x, local
variable declarations y and a statement body s. We assume that variables have
unique declarations. The syntax of an expression e is left open, but includes the
constant self for referring to the current object. Expressions are required to be side-
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x, y ∈ Var Variable
e ∈ Exp Expression
C, m ∈ SID Static identifier
P ::= CL {x, s} Program
CL ::= class C(x) {y, M} Class definition
M ::= m(x) {y, s} Method definition
s ::= s1; s2 | x = rhs | skip | while e {s} Statement

| if e {s1} else {s2} | return e
rhs ::= e | new C(e) | e!m(e) | e.get Right-hand side

Table 3.1: mABS abstract syntax

effect free when evaluated. Statements include constructs for sequential control, as
well as for asynchronous method invocation, object creation, and retrieval of values
associated with futures (get statements).

Example 3.3.1. Suppose that combine(hi(v),lo(v)) = process(v) for integers
v. In the class Server in the program in Listing 3.1, the method serve returns
immediately with the result if its argument is small. Otherwise, two new servers are
spawned, and the upper and lower tranches delegated to those respective servers,
with the current server blocking, in turn, on the two get assignment statements
until both results are available to combine and return. In the main block, a call to
serve on a server object results in a future identifier, stored in the variable fut,
which is then used to retrieve the actual result, assigned to the variable res. The
original call spawns more server objects, which, in a network-aware implementation,
can move to other nodes to balance load.

class Server() { ,

serve(x) { srv1, srv2, fut1, fut2, res1, res2,

if small(x) {

return process(x)

} else {

srv1 = new Server(); srv2 = new Server();

fut1 = srv1!serve(hi(x)); fut2 = srv2!serve(lo(x));

res1 = fut1.get; res2 = fut2.get;

return combine(res1, res2)

}

}

}

{ srv, fut, res,

srv = new Server(); fut = srv!serve(1537); res = fut.get

}

Listing 3.1: mABS server program
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3.4 Reference Semantics

We first present an abstract reference semantics for mABS in the style of rewriting
logic. The semantics uses a reduction relation cn → cn′ where cn and cn′ are
configurations, as determined by the runtime syntax in Table 3.2. Later on, we
introduce different configurations and transition relations, and so refer to configu-
rations of “type 1” for this first semantics when we need to disambiguate. With

x, y ∈ Var Variable
o ∈ OID Object identifier
p ∈ PVal Primitive value
f ∈ FID Future identifier
v ∈ Val = PVal ∪ OID ∪ FID Value
z ∈ Name = OID ∪ FID Name
l ∈ TEnv = Var ∪ {ret} → Val⊥ Task environment
a ∈ OEnv = Var ∪ {self} → Val⊥ Object environment
tsk ∈ Tsk ::= t(o, l, s) Task
obj ∈ Obj ::= o(o, a) Object
fut ∈ Fut ::= f(f, v⊥) Future
call ∈ Call ::= c(o, f, m, v) Call
ct ∈ Ct ::= tsk | obj | call | fut Container
cn ∈ Cn ::= 0 | ct | cn cn′ | bind z.cn Configuration

Table 3.2: mABS type 1 runtime syntax

respect to the runtime syntax, � is the subterm relation, and we use disjoint, denu-
merable sets of object identifiers o ∈ OID, future identifiers f ∈ FID, and primitive
values p ∈ PVal. Values v are either primitive values, OIDs, or FIDs. Lifted values
are ranged over by v⊥ ∈ Val⊥, and we use ⊑ for the associated standard partial
ordering. OIDs and FIDs are subject to binding similar to that in the π-calculus
[144]. Later, in the type 2 semantics, this type of explicit binding is dropped. Ac-
cordingly, names are either OIDs or FIDs; we use z as a generic name variable, and
names are bound using the π-like binder bind. We assume throughout that names
are uniquely bound. The free names of a configuration cn is the set fn(cn), and
OID(cn) is the set of OIDs of objects occurring in cn. Standard alpha congruence
applies to name binding.

Configurations are multisets of containers. Configuration juxtaposition is as-
sumed to be commutative and associative with unit 0. In addition, we use two stan-
dard structural identities: bind z.0 = 0, and, when z /∈ fn(cn2), bind z.(cn1 cn2) =
(bind z.cn1) cn2. We use a vectorized notation bind z.cn, letting bind ε.cn = cn

where ε is the empty sequence. The structural identities allow us to rewrite each
configuration into a standard form bind z.cn such that each name in z occurs free
in cn, and cn has no occurrences of the binding operator bind.
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Task containers are used for method body elaboration, and future containers are
used as centralized stores for assignments to futures. Task and object environments
l and a, respectively, map task and object variables to values. Task environments
are aware of a special variable ret that a task can use in order to identify its
return future. Upon method invocation, a task environment is initialized using the
operation locals(o, f, m, v), which maps the formal parameters of method m in the
class of o to the corresponding arguments in v, initializes the method local variables
to suitable null values, and maps ret to the return future f of the task being created.
Object environments are initialized using the operation init(C, v, o), which maps
the parameters of the class C to v, self to o, and initializes variables as above. We
use the operation body(o, m) to retrieve the statement s in the definition of m in
the class of o, and JeK(a,l) ∈ Val is used for evaluating the expression e in object
environment a and task environment l.

We present the reduction rules in Figure 3.1, where we assume sequential
statement composition is associative with unit skip. The rules use the notation
cn ⊢ cn′ → cn′′ as shorthand for cn cn′ → cn cn′′.

ctxt-1: If cn1 → cn2, then cn ⊢ cn1 → cn2

ctxt-2: If cn1 → cn2, then bind z.cn1 → bind z.cn2

wlocal: If x ∈ dom(l), then let v = JeK(a,l) in
o(o, a) ⊢ t(o, l, x = e; s) → t(o, l[v/x], s)

wfield: If x ∈ dom(a), then let v = JeK(a,l) in
o(o, a) t(o, l, x = e; s) → o(o, a[v/x]) t(o, l, s)

skip: t(o, l, skip; s) → t(o, l, s)

if-true: If JeK(a,l) 6= 0, then o(o, a) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s1; s)

if-false: If JeK(a,l) = 0, then o(o, a) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s2; s)

while-true: If JeK(a,l) 6= 0, then
o(o, a) ⊢ t(o, l, while e {s1}; s) → t(o, l, s1; while e {s1}; s)

while-false: If JeK(a,l) = 0, then o(o, a) ⊢ t(o, l, while e {s1}; s) → t(o, l, s)

call-send: Let o′ = Je′K(a,l), v = JeK(a,l) in
o(o, a) ⊢ t(o, l, x = e′!m(e); s) → bind f.t(o, l[f/x], s) f(f, ⊥) c(o′, f, m, v)

call-rcv: Let l = locals(o, f, m, v), s = body(o, m) in
o(o, a) ⊢ c(o, f, m, v) → t(o, l, s)

ret: Let f = l(ret), v = JeK(a,l) in o(o, a) ⊢ t(o, l, return e; s) f(f, ⊥) → f(f, v)

get: Let f = JeK(a,l) in o(o, a) f(f, v) ⊢ t(o, l, x = e.get; s) → t(o, l[v/x], s)

new: Let v = JeK(a,l), a′ = init(C, v, o′) in
o(o, a) ⊢ t(o, l, x = new C(e); s) → bind o′.t(o, l[o′/x], s) o(o′, a′)

Figure 3.1: mABS type 1 reduction rules
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A method call causes a new future identifier to be created, along with its fu-
ture container with lifted value initialized to ⊥. Future instantiation is done when
return statements are evaluated, and get assignment statements cause the evalu-
ating task to hang until the value associated with the future is defined, and then
store that value. Object creation (new) statements cause new objects to be created
along with their OIDs.

We note some basic properties of the reduction semantics.

Proposition 3.4.1. Suppose cn → cn′. Then, the following holds:

1. fn(cn′) ⊆ fn(cn).

2. If o(o, a) � cn, then o(o, a′) � cn′ for some object environment a′.

3. If f(f, v⊥) � cn, then f(f, v′

⊥
) � cn′ for some v′

⊥
such that v⊥ ⊑ v′

⊥
.

Proof. No structural identity, nor any reduction rule, allows an OID or FID to
escape its binder. No rules allow object or future containers to be removed. Also,
no rules allow futures to be re-instantiated to ⊥. The results follow.

Executions of programs in the semantics are sequences of configurations derived
by the rules, starting from an initial configuration, as defined below.

Definition 3.4.2 (Type 1 Initial Configuration). Consider a program CL {x, s}.
Assume a reserved OID omain, and a reserved FID finit . A type 1 initial configura-
tion for the program is a configuration cninit of the shape

bind omain, finit .o(omain, ⊥) t(omain, linit , s) f(finit , ⊥)

where linit is the initial task environment assigning suitable default values to the
variables in x, and linit(ret) = finit .

We next define a set of conditions for determining whether a configuration is
“reasonable”, and thus will not behave in an unexpected way under the rules, after
first making precise when a future f is active for some object. Intuitively, f is
active for o when f can at some point be used in a get statement one of o’s tasks.
For this to be the case, f must either be stored in some environment related to o,
occur in a call container addressed to o, or be the value of some other future that
is active for o.

Definition 3.4.3 (Type 1 Active Future). Let cn be a type 1 configuration. In-
ductively, the future identifier f is active for the object with identifier o in cn if
one of the following holds:

1. There is an object container o(o, a) � cn such that a(x) = f for some x.

2. There is a task container t(o, l, s) � cn such that l(x) = f for some x.
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3. There is a call container c(o, f ′, m, v) � cn, and f ′ = f or f occurs in v.

4. There is a future identifier f ′ that is active for o in cn, and f(f ′, f) � cn.

Definition 3.4.4 (Type 1 Well-Formedness). A configuration cn is type 1 well-
formed (WF1) if cn satisfies:

1. OID Uniqueness: If o(o1, a1) and o(o2, a2) are distinct object container oc-
currences in cn, then o1 6= o2.

2. Task-Object Existence: If t(o, l, s) � cn, then o(o, a) � cn for some object
environment a.

3. Call Uniqueness: If c(o1, f1, m1, v1) and c(o2, f2, m2, v2) are distinct call con-
tainer occurrences in cn, then f1 6= f2.

4. Future Uniqueness: If f(f1, v⊥,1) and f(f2, v⊥,2) are distinct future container
occurrences in cn, then f1 6= f2.

5. Single Writer : If t(o1, l1, s1) and t(o2, l2, s2) are distinct task container oc-
currences in cn such that l1(ret) = f1 and l2(ret) = f2, then f1 6= f2,
f(f1, ⊥) � cn, and f(f2, ⊥) � cn, and additionally, if c(o, f, m, v) � cn for
some o, f , m, and v, then f 6= f1 and f 6= f2.

6. Future Existence: If f is active for o in cn or f(f ′, f) � cn, then f(f, v⊥) � cn;
if f(f, ⊥) � cn, then there is either a call container c(o′, f, m, v) � cn with
o′ ∈ OID(cn), or a task container t(o′, l, s) � cn with l(ret) = f .

Well-formedness is important, as it ensures that objects, calls, and futures are
defined uniquely (OID Uniqueness, Future Uniqueness, Call Uniqueness), and that
tasks are defined only along with their accompanying object (Task-Object Exis-
tence). The Single Writer property ensures that only the task that was spawned
along with some given future is able to assign to that future, and hence, if the task
has not yet returned, the future remains uninstantiated. Future Existence ensures
that whenever an object has access to an FID, there exists a corresponding future
container which either already contains a value or has the potential to contain one
further on in an execution.

Proposition 3.4.5 (WF1 Preservation). Let cn be a configuration. Then, the
following holds:

1. If cn is a type 1 initial configuration, then cn is WF1.

2. If cn is WF1 and cn → cn′, then cn′ is WF1.

Proof. By inspection of the definitions and the rules.
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3.5 Type 1 Contextual Equivalence

Our approach to implementation correctness uses contextual equivalence [169],
which requires of a pair of equivalent configurations, firstly, that the internal tran-
sition relation → is preserved in both directions, and secondly, that the relation is
preserved when adding a context configuration, all while preserving a set of exter-
nal observations. A number of works [101, 180] have established strong relations
between contextual equivalence for reduction oriented semantics and bisimulation/-
logical relation based equivalences for sequential and higher-order computational
models.

Assume an OID ext representing the “outside world”, not allowed to be bound
or defined in any well-formed configuration. An observation, or barb, is a call to
ext with evaluated arguments, of the form ext!m(v), ranged over by obs. The
observation predicate cn ↓ obs is defined to hold just in case we have cn =
bind z.cn′ c(ext, f, m, v) for some z, cn′, and f . The derived predicate cn ⇓ obs

holds just in case cn →∗ cn′′ ↓ obs for some cn′′.

Definition 3.5.1 (Type 1 Witness Relation, Type 1 Contextual Equivalence). Let
R range over binary relations on WF1 configurations. The relation R is a type 1
witness relation, if cn1 R cn2 implies

1. Reduction Closure: If cn1 → cn′

1, then cn2 →∗ cn′

2 for some cn′

2 such that
cn′

1 R cn′

2.

2. Context Closure: If cn1 cn is WF1, then cn2 cn is WF1 and cn1 cn R cn2 cn.

3. Barb Preservation: If cn1 ↓ obs, then cn2 ⇓ obs.

Additionally, the converse properties must hold with R−1 for R above. We define
type 1 contextual equivalence, ≃1, as the union of all type 1 witness relations. Ad-
ditionally, we say that the WF1 configurations cn1 and cn2 are type 1 contextually
equivalent whenever cn1 ≃1 cn2, i.e., whenever cn1 R cn2 for some type 1 witness
relation R.

We establish some well-known, elementary properties of contextual equivalence
for later reference.

Proposition 3.5.2. The identity relation is a type 1 witness relation. ≃1 is a type
1 witness relation. If R, R1, and R2 are type 1 witness relations then so are

1. R−1,

2. R∗, and

3. R1 ◦ R2 ◦ R1.

Proof. See Section 3.13.
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Proposition 3.5.3. ≃1 is an equivalence relation.

Proof. The result follows from Proposition 3.5.2; for transitivity, in particular, we
use property 3.

3.6 Network-Aware Semantics

We now address the problem of efficiently executing mABS programs on an ab-
stract network graph using the location independent routing scheme alluded to in
Section 3.1. In addition to the naming, routing, and object migration issues already
addressed previously in Chapter 2, the additional challenge is to ensure that futures
are correctly assigned and propagated at the network level.

In the network-aware semantics, we assume an explicitly given network of nodes
and directional links with which message buffers are associated, modeling a concrete
network structure with asynchronous point-to-point message passing. Object exe-
cution is localized to each node. As routing information is propagated, inter-node
object-to-object message delivery becomes possible. Objects can migrate between
neighboring nodes. The propagation of routing information will automatically lead
to routing tables becoming up-to-date. Method calls to an object can be issued if a
task can access the OID of the object, and the associated messages can be delivered
once a route to the callee becomes known.

We use an eager forward based strategy for handling future propagation. The
central idea of the strategy is that, whenever an object shares a future identifier, the
object assumes an obligation to send the associated value to the object with which
the future identifier is shared. The value of the shared future may be unavailable,
requiring the use of forwarding lists for futures, stored in the object state. Our
objective is to prove that this approach is sound and fully abstract for our network-
aware semantics, even though routing may be in an unstable state.

Example 3.6.1. A fragment of an execution of a program in the network-aware
semantics, which illustrates future propagation and its interaction with routing, is
shown in Figure 3.2. In the configuration in Figure 3.2(a), a call to method m with
argument f , a future identifier, is about to be sent from object o0 residing on node
u0 to object o1 on node u2. The following changes then take place as the system
evolves into the configuration Figure 3.2(b):

• A new future f ′ is created at object o0, as a placeholder for the return value
of the call to method m.

• The forwarding list for f at o0 is augmented to include o1; a dashed arrow
indicates this in the figure.

• The call is routed to o1, where a new task computing the statement body(o1, m)
is spawned, associated with f ′.
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u0

o0

x=o1!m(f)

f

a

o0 7→ (u0, 0)

o1 7→ (u2, 1)

u1

o0 7→ (u0, 1)

o1 7→ (u2, 1)

u2

o1

o0 7→ (u0, 1)

o1 7→ (u2, 0)

u0

o0

x=f ′

f f ′

b

o0 7→ (u0, 0)

o1 7→ (u2, 1)

u1

o0 7→ (u0, 1)

o1 7→ (u2, 1)

u2

o1

body(o1, m)

f f ′

o0 7→ (u0, 1)

o1 7→ (u2, 0)

u0

o0

y =x.get

f f ′

c

o0 7→ (u0, 0)

o1 7→ (u2, 1)

u1

o1

returnf

f f ′

o0 7→ (u0, 1)

o1 7→ (u1, 0)

u2

o0 7→ (u0, 1)

o1 7→ (u1, 1)

u0

o0

y =f

f f ′

d

o0 7→ (u0, 0)

o1 7→ (u1, 1)

u1

o1

f f ′

o0 7→ (u0, 1)

o1 7→ (u1, 0)

u2

o0 7→ (u0, 1)

o1 7→ (u1, 1)

Figure 3.2: Execution fragment with future forwarding in the type 2 semantics

• o1 is augmented with f and f ′ as placeholders, and the forwarding list for f ′

at o1 is augmented to include o0.

The scheduler now decides to migrate o1 from u2 to u1. No action is required
other than regular routing table exchanges, as the forwarding lists keep referencing
the same objects. Finally, the future identifier f is returned by the task at o1, as
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shown in the configuration in Figure 3.2(c). Note that routing information has not
stabilized at this point; the next hop to o1 at u0 is still u2 and not u1. In the
configuration in Figure 3.2(d), the value of the future f ′, namely, f , has been sent
to o0, where it becomes assigned to the variable y. Routing tables are now stable.
A dark grey box for a future in an object indicates that the future is resolved at that
object. The obligation of o0 to forward the value of f to o1 has become redundant
and could be removed without affecting object behavior, but for simplicity we do
not include such garbage collection in the semantics. The price for this omission is
additional messaging, but the latency remains the same, since o0 is able to use an
assignment to f when it is first received there.

3.6.1 Runtime Syntax

In Table 3.3, we present the network-aware mABS runtime syntax, i.e., the shape
of the runtime state. We adopt the same syntactical conventions as in Section 3.4
and use indices to disambiguate. For instance, Obj1 is the set Obj of the type 1
semantics in Table 3.2, and Obj2 is the corresponding set in Table 3.3. Tasks are
unchanged, and we write t(cn) for the multiset of tasks in cn, i.e., the multiset
{tsk | tsk � cn}, and o(cn) for the multiset of objects in cn, similarly defined. We
also write m(cn) for the multiset {msg | msg � cn}.

u ∈ NID Node identifier
t ∈ RTable = OID → (NID × ω)⊥ Routing table
q ∈ Q = Msg∗ Queue
a ∈ OEnv2 = (Var ∪ {self} → Val⊥) × Object environment

(FID → (Val⊥ × (OID list))⊥)
obj ∈ Obj2 ::= o(o, a, u, qin, qout) Object
nd ∈ Nd ::= n(u, t) Node
lnk ∈ Lnk ::= l(u, q, u′) Link
ct ∈ Ct2 ::= tsk | obj | nd | lnk Container
cn ∈ Cn2 ::= ct1 . . . ctn Configuration
msg ∈ Msg ::= call(o, o′, f, m, v) | table(t) Message

| object(cn) | future(o, f, v)

Table 3.3: mABS type 2 runtime syntax

Network and Routing The nodes and links in a configuration cn induce a
network graph graph(cn), which contains a vertex u for each node container n(u, t)
and an edge (u, u′) for each link l(u, q, u′). The reduction semantics given later does
not allow identifiers in nodes or links to be changed, so in the context of any given
transition (or, execution), the network graph remains constant. Note that there is
no a priori guarantee that the network graph is a well-formed, which could lead
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to unexpected behavior in an execution. Subsequently, we therefore impose some
constraints on the well-formedness of the network graph of a configuration.

Definition 3.6.2 (Network Graph Well-formedness). A configuration cn has a
well-formed network graph if it satisfies:

1. Vertex Existence: n(u, t) � cn for some u and t.

2. Edge Endpoint Existence: If we have l(u1, q, u2) � cn, then n(u1, t1) � cn

and n(u2, t2) � cn.

3. Unique Vertices: If n(u1, t1) and n(u2, t2) are distinct occurrences in cn, then
u1 6= u2.

4. Unique Edges: If l(u1, q1, u′

1) and l(u2, q2, u′

2) are distinct occurrences in cn,
then u1 6= u2, or u′

1 6= u′

2, or both.

5. Reflexivity: If n(u, t) � cn, then l(u, q, u) � cn.

6. Symmetry: If we have n(u1, t1) � cn, n(u2, t2) � cn, and l(u1, q, u2) � cn,
then l(u2, q′, u1) � cn.

7. Connectedness: If n(u1, t1) � cn and n(u2, t2) � cn, then there is a path from
u1 to u2 in graph(cn).

Vertex Existence rules out uninteresting networks where no node is available
to execute tasks. Edge Endpoint Existence ensures messages on links have the
possibility of being received by a node on the other side. Unique Vertices and
Unique Edges avoids duplicate network entities, which could irrevocably confuse the
routing system and prevent progress. Reflexivity ensures the existence of a default
route for otherwise unroutable messages. Symmetry makes mutual exchanges of
routing tables possible between nodes. Connectedness rules out lack of progress
due to the location of an object being unreachable from the location of a message
addressed to that object.

For routing, we adopt a rudimentary Bellman-Ford distance vector discipline
[193]; better and more complex routing schemes can be used without affecting the
results. For a routing table t, t(o) = (u, n) indicates that, as far as t is concerned,
there is a path from the current node (the node to which t is attached) to the object
o with distance n, that first visits the node u. For simplicity, we only count hops
to compute distance. Next hop lookup is performed by the operation nxt, where
nxt(o, t) = π1(t(o)). There is also an operation upd for updating a routing table t
by a routing table t′ received from a neighboring node u, defined by

upd(t, u, t′)(o) =























⊥ if o 6∈ dom(t) ∪ dom(t′)
t(o) else, if o 6∈ dom(t′)
(u, π2(t′(o)) + 1) else, if o 6∈ dom(t) or π1(t′(o)) = u
(u, π2(t′(o)) + 1) else, if π2(t′(o)) + 1 < π2(t(o))
t(o) otherwise.
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Finally, there is an operation reg(o, u, t, n) that returns the routing table t′, ob-
tained by registering the object identifier o at t’s current node u with distance n,
i.e., such that

reg(o, u, t, n)(o′) =

{

(u, n) if o = o′

t(o′) otherwise.

Message Queues and Messages FIFO message queue operations are standard:
hd(q) returns the head of q, while enq(msg, q) enqueues a message msg onto the
tail of q, and deq(q) returns q with hd(q) removed. If q is empty, then hd(q) =
deq(q) = ⊥. Messages in queues have the following forms:

• call(o, o′, f, m, v) corresponds to a call container in the type 1 semantics, with
o the identifier of the callee and o′ the identifier of the caller, respectively.
The identifier o′ is needed to enable forwarding the resolved value of f to the
caller.

• future(o, f, v) informs the object o that the future f has been instantiated to
the value v.

• object(cn) is used for migrating objects and their tasks across nodes. The
configuration cn is the closure of a specific object, as explained below.

• table(t) carries the routing table t from one node to another.

Call and future messages are said to be object bound, while table messages and
object closure messages are node bound. We define dst(msg), the destination of
msg, to be o for a call message or a future message as defined above, and ⊥ in the
remaining two cases.

Objects and Object Environments Object containers o(o, a, u, qin, qout) are
attached to a node u and equipped with an ingoing (qin) and an outgoing (qout)
FIFO message queue, and object environments a are augmented with a mapping
of futures f to pairs (v⊥, o), where v⊥ is the lifted value currently associated
with f at the current object, and o is a forwarding list, containing the identi-
fiers of the objects subscribing to instantiations of f at the object. For instance, if
π2(a)(f) = (⊥, o1 o2), the future f is as yet uninstantiated (at the object to which
a belongs), and, if f eventually does become instantiated, the instantiation must
be forwarded in a future message to o1 and o2. Forwarding does not necessarily
happen in the given order, since we consider forwarding lists modulo associativity
and commutativity with the empty list ε as unit. We use the following notation
and auxiliary operations related to object environments:

• a(x) abbreviates π1(a)(x) and a(f) abbreviates π2(a)(f).

• a[v/x] is a with π1(a) replaced by the expected update.
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• a[v/f ] updates π2(a) by mapping f to (v, π2(a(f))), i.e., the assigned value
is updated and the forwarding list is unchanged; if f 6∈ dom(π2(a)), then
a[v/f ](f) = (v, ε).

• a[(v, o)/f ] performs the expected update where both the value and the for-
warding list are changed.

• fw(v, o, a) updates π2(a) by, for each future f occurring in v, adding o to
the forwarding list of a(f), i.e., by mapping f to either (⊥, o) if a(f) ↑, or
(π1(a(f)), o π2(a(f))) otherwise.

• init(C, v, o) returns an initial object environment, by mapping the formal
parameters of C to v, and self to o, as in the type 1 semantics.

• init(v, a) augments a by mapping each FID f in v which is uninitialized in
a (i.e., a(f) ↑) to (⊥, ε).

As a consequence of these changes, futures are eliminated as containers in the
type 2 runtime syntax. In many other respects, the syntax is unchanged: syntactical
conventions that are not modified from the type 1 runtime syntax above remain the
same. In particular, we continue to assume the commutativity and associativity
properties of configuration juxtaposition, now with the empty container list as unit.

Object Closures For an object message object(cn) to be valid, the configuration
cn needs to be an object closure which wraps an object container with all its tasks.
For example, if the object o has precisely n tasks, its closure has the form

o(o, a, u, qin, qout) t(o, l1, s1) . . . t(o, ln, sn).

Note that containers inside object closures are included in the subterm relation �
for configurations where the object message resides. We use the following auxiliary
operations to handle closures:

• clo(cn, o) is the closure of object o with respect to the configuration cn,
namely, the multiset of all type 2 containers of the form o(o′, a′, u′, q′

in, q′

out)
or t(o′, l′, s′) in cn, such that o′ = o.

• oidof(cn) returns the OID o, if all the type 2 containers in cn are objects
and tasks with OID o.

• place(cn, u) places all object containers in the configuration cn at the node
u, i.e., cn and place(cn, u) are identical, except that object containers have
their NID replaced with u.
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3.6.2 Reduction Semantics

An important distinction between the reference semantics and the network-aware
semantics is the absence of binding. For the standard semantics, name binding
allows us to avoid clashes between locally generated names. However, since all
name generation in the mABS type 2 semantics takes place in the context of a given
NID u, we can simply assume the existence of two operations newf(u) and newo(u),
which return a new future identifier and a new object identifier, respectively, that
is globally fresh for the “current context”, with newo(u) distinct from ext.

We now present the mABS type 2 reduction rules. The first part, shown in
Figure 3.3, is carried over from the type 1 semantics in Figure 3.1, with some minor
modifications. First, ctxt-2 is dropped, since name binding is dropped from the
type 2 runtime syntax. Second, wlocal, wfield, if-true, if-false, while-true, and
while-false are straightforwardly modified to account for the new runtime shape
of objects. The remaining reduction rules are given in Figure 3.4 and Figure 3.5;
these rules can be divided into groups as per below.

ctxt-1: If cn1 → cn2, then cn ⊢ cn1 → cn2

wlocal-2: If x ∈ dom(l), then let v = JeK(a,l) in
o(o, a, u, qin, qout) ⊢ t(o, l, x = e; s) → t(o, l[v/x], s)

wfield-2: If x ∈ dom(a), then let v = JeK(a,l) in
o(o, a, u, qin, qout) t(o, l, x = e; s) → o(o, a[v/x], u, qin, qout) t(o, l, s)

skip: t(o, l, skip; s) → t(o, l, s)

if-true-2: If JeK(a,l) 6= 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s1; s)

if-false-2: If JeK(a,l) = 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, if e {s1} else {s2}; s) → t(o, l, s2; s)

while-true-2: If JeK(a,l) 6= 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, while e {s1}; s) → t(o, l, s1; while e {s1}; s)

while-false-2: If JeK(a,l) = 0, then
o(o, a, u, qin, qout) ⊢ t(o, l, while e {s1}; s) → t(o, l, s)

Figure 3.3: mABS type 2 reduction rules, part 1

Message Passing t-send and t-rcv are concerned with the exchange of routing
tables, which only takes place between distinct adjacent nodes. msg-send, msg-

rcv, and msg-route are used to manage message passing, i.e., reading a message
from a link queue and transferring it to the appropriate object in-queue, and dually,
reading a message from an out-queue and transferring it to the attached link queue.
If the destination object does not reside at the current node, the message is routed
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t-send: If u 6= u′, then n(u, t) ⊢ l(u, q, u′) → l(u, enq(table(t), q), u′)

t-rcv: If hd(q) = table(t′), then
l(u′, q, u) n(u, t) → l(u′, deq(q), u) n(u, upd(t, u′, t′))

msg-send: If hd(qout) = msg, dst(msg) = o′, and nxt(o′, t) = u′, then
n(u, t) ⊢ o(o, a, u, qin, qout) l(u, q, u′) →
o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u′)

msg-rcv: If hd(q) = msg and dst(msg) = o, then
l(u′, q, u) o(o, a, u, qin, qout) → l(u′, deq(q), u) o(o, a, u, enq(msg, qin), qout)

msg-route: If hd(q) = msg, dst(msg) = o, nxt(o, t) = u′′, and u′′ 6= u, then
n(u, t) ⊢ l(u′, q, u) l(u, q′, u′′) → l(u′, deq(q), u) l(u, enq(msg, q′), u′′)

msg-delay-1: If hd(q) = msg, dst(msg) = o, and nxt(o, t) ↑, then
n(u, t) ⊢ l(u′, q, u) l(u, q′, u) → l(u′, deq(q), u) l(u, enq(msg, q′), u)

msg-delay-2: If hd(qout) = msg, dst(msg) = o′, and nxt(o′, t) ↑, then
n(u, t) ⊢ o(o, a, u, qin, qout) l(u, q, u) →
o(o, a, u, qin, deq(qout)) l(u, enq(msg, q), u)

msg-delay-3: If hd(q) = msg, dst(msg) = o, and nxt(o, t) ↑, then
n(u, t) ⊢ l(u, q, u) → l(u, enq(msg, deq(q)), u)

Figure 3.4: mABS type 2 reduction rules, part 2

to the next link. In msg-rcv, note that the receiving node is not required to be
present. However, its existence is enforced by the well-formedness condition for the
network graph.

Unstable Routing msg-delay-1, msg-delay-2, and msg-delay-3 are used to han-
dle the cases where routing tables have not yet stabilized, or a message is unroutable.
For instance, it may happen that updates to the routing tables have not yet caught
up with object migration. In this case, a message may enter an object out-queue
without the hosting node’s routing table having information about the message’s
destination (msg-delay-2). Another case is when a node receives a message on a
link without knowing where to forward it (msg-delay-1). This situation is par-
ticularly problematic, as a blocked message may prevent routing table updates to
reach the hosting node, thus causing a deadlock. The solution we propose, which is
implicit in the rules, is to use the network self-loop links, included in all well-formed
networks, as buffers for unroutable messages that may or may not become routable.
msg-delay-3 allows messages on this link to be shuffled.

Inter-Object Messaging call-send-2, call-rcv-2, fut-send, and fut-rcv pro-
duce and consume method call and future instantiation messages, respectively. A
method call causes a local future identifier to be created and passed along with the
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call-send-2: Let o′ = Je′K(a,l), v = JeK(a,l), f = newf(u),
a′ = fw(v, o′, init(f, a)) in o(o, a, u, qin, qout) t(o, l, x = e′!m(e); s) →
o(o, a′, u, qin, enq(call(o′, o, f, m, v), qout)) t(o, l[f/x], s)

call-rcv-2: If hd(qin) = call(o, o′, f, m, v), then
let a′ = fw(f, o′, init(v, a)), l = locals(o, f, m, v), s = body(o, m) in
o(o, a, u, qin, qout) → o(o, a′, u, deq(qin), qout) t(o, l, s)

fut-send: If a(f) = (v, o1 o2), then let a′ = fw(v, o1, a[(v, o2)/f ]) in
o(o, a, u, qin, qout) → o(o, a′, u, qin, enq(future(o1, f, v)), qout)

fut-rcv: If hd(qin) = future(o, f, v), then
o(o, a, u, qin, qout) → o(o, a[v/f ], u, deq(qin), qout)

ret-2: Let v = JeK(a,l), f = l(ret) in
o(o, a, u, qin, qout) t(o, l, return e; s) → o(o, a[v/f ], u, qin, qout)

get-2: If JeK(a,l) = f and π1(a(f)) = v, then
o(o, a, u, qin, qout) ⊢ t(o, l, x = e.get; s) → t(o, l[v/x], s)

new-2: Let o′ = newo(u), v = JeK(a,l), a′ = fw(v, o′, a),
a′′ = init(v, init(C, v, o′)) in o(o, a, u, qin, qout) t(o, l, x = new C(e); s) →
o(o, a′, u, qin, qout) t(o, l[o′/x], s) o(o′, a′′, u, ε, ε)

obj-reg: o(o, a, u, qin, qout) ⊢ n(u, t) → n(u, reg(o, u, t, 0))

obj-send: If u 6= u′, then let t′ = reg(o, u′, t, 1), cn′ = clo(cn, o) in
n(u, t) l(u, q, u′) cn → n(u, t′) l(u, enq(object(cn′), q), u′) (cn − cn′)

obj-rcv: If hd(q) = object(cn), then
l(u′, q, u) n(u, t) → l(u′, deq(q), u) n(u, reg(oidof(cn), u, t, 0)) place(cn, u)

Figure 3.5: mABS type 2 reduction rules, part 3

call message. Upon receiving the call, the callee first initializes the received futures
it does not already know about, and then augments the resulting local object envi-
ronment to enact forwarding for the received return future to the caller, when this
becomes possible. The eventual return value becomes associated with the return
future by the mapping to the constant ret during initialization of the task’s local
environment. fut-send lets future instantiations be forwarded to objects in the
forwarding list whenever the future is instantiated to a value locally, and fut-rcv

causes the receiving object to update its local environment accordingly. A future
may itself be instantiated to a future, making it necessary to update the local
forwarding list whenever fut-send is used.

Language Constructs ret-2, get-2, and new-2 handle the corresponding lan-
guage constructs. Return statements cause the corresponding future to be instanti-
ated, as explained above. As expected, get statements read the value of the future,
provided it has received a value, and new statements cause a new object to be
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created, initialized, and registered at the local node. The arguments provided to
the new object may contain future identifiers, whose values must be duly forwarded
to the new object by augmenting the preexisting object’s forwarding lists.

Object Registration and Migration obj-reg registers a new object on the
node on which it has been placed. The final rules concern object migration. Of
these, the rule obj-send is global in that it is not allowed to be used in subsequent
applications of the ctxt-1 rule. In this way, we can guarantee that only complete
object closures are migrated. To remove an object closure cn′ from a configuration
cn for migration, we take the multiset difference cn − cn′.

All of the above rules are strictly local and appeal only to mechanisms directly
implementable at the link level, i.e., they correspond to tests and simple datatype
manipulations taking place at a single node, or accesses to a single node’s link layer
interface. The “global” property appealed to above for migration is merely a formal
device to enable a convenient treatment of object closures—an object and all its
tasks will always be co-located.

The reduction rules can be optimized in several ways. For instance, object self-
calls are always routed through the “network interface”, i.e., the hosting node’s
self-loop link. This is not necessary. It would be possible to add a rule to directly
spawn a handling task from a self-call without affecting the results of the paper.

We note some basic properties of the network-aware semantics.

Proposition 3.6.3. Suppose that cn → cn′. Then, the following holds:

1. If n(u, t) � cn, then n(u, t′) � cn′ for some t′.

2. If l(u, q, u′) � cn, then l(u, q′, u′) � cn′ for some q′.

3. If o(o, a, u, qin, qout) � cn, then there is an object o(o, a′, u′, q′

in, q′

out) � cn′

(the derivative of the object in cn′), such that for all variables x, if a(x) ↓,
then a′(x) ↓, and for all future identifiers f , if a′(f) ↓, then a′(f) ↓, and if
π1(a(f)) ↓, then π1(a′(f)) ↓.

4. If t(o, l, s) � cn and l(ret) = f , then either there is a task t(o, l′, s′) � cn′

(the derivative of the task in cn′), such that dom(l) ⊆ dom(l′), and l′(ret) = f ,
or there is an object o(o, a, u, qin, qout) � cn′ such that π1(a(f)) ↓.

Proof. By straightforward induction on the reduction relation.

Initial configurations in the network-aware semantics are parameterized on a
network graph configuration, but are otherwise similar to their network-oblivious
counterparts.
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Definition 3.6.4 (Type 2 Initial Configuration). Consider a program CL {x, s}.
Assume a reserved OID omain, and a reserved FID finit . A type 2 initial configura-
tion for the program is a configuration cninit of the shape

o(omain, ainit,2, uinit , ε, ε) t(omain, linit , s) cngraph

where

• ainit,2 = ⊥[(⊥, ε)/finit ],

• linit is unchanged from Definition 3.4.2,

• cngraph is a configuration consisting only of nodes and links, inducing a well-
formed network graph,

• cngraph contains a node n(uinit , tinit),

• tinit(omain) = (uinit , 0), and tinit(o) = ⊥ for all OIDs o distinct from omain,

• t(o) = ⊥ for all routing tables t 6= tinit in cngraph and for all OIDs o, and

• l(u, q, u′) � cngraph implies q = ε, for all u and u′.

3.6.3 Type 2 Well-Formedness

Well-formedness in the case of the network-aware semantics must make sure that,
e.g., multiple objects are never given identical names, and that futures are never
assigned inconsistent values, as detailed below. A particularly delicate matter con-
cerns the way future instantiations are propagated. It must be the case that either
all objects that may at some time need the value of a future can also eventually
receive it, or else no object is able to do so (due to task nontermination). This is
the “future liveness” property in Definition 3.6.10 below.

Definition 3.6.5 (Future Assignment). We say that a configuration cn assigns the
value v to f if there is an object container o(o, a, u, qin, qout) � cn, such that either
π1(a(f)) = v or there is a message future(o, f, v) � cn. If there is no such value, we
say that f is unassigned in cn.

Future Assignment, which is a property over all object environments, is the
decentralized correlate of whether there exists a future container for f with a value
v (assigned) or ⊥ (unassigned) in the type 1 semantics.

Definition 3.6.6 (Type 2 Active Future). Let cn be a type 2 configuration. In-
ductively, the future identifier f is active for the object with identifier o in cn if
one of the following holds:

1. There is an object container o(o, a, u, qin, qout) � cn such that a(x) = f for
some variable x.
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2. There is a task container t(o, l, s) � cn such that l(x) = f for some x.

3. There is a call message call(o, o′, f ′, m, v) in transit in cn, and f ′ = f or f
occurs in v.

4. There is a future identifier f ′ that is active for o, and cn assigns f to f ′.

The changes in the notion of active future from Definition 3.4.3 are straightfor-
ward, amounting to little more than substituting runtime syntax, once we replace
future container existence with Future Assignment.

Definition 3.6.7 (Notification Path). Fix a type 2 configuration cn, an object
container o(o, a, u, qin, qout) � cn and an OID o′ ∈ OID(cn). Let n be a nonnegative
integer. Inductively, o is on the notification path of f by o′ in n steps, if n is the
least number such that one of the following conditions hold:

1. n = 0, o′ = o, and π1(a(f)) = v.

2. n = 1, o′ = o, and future(o, f, v) � cn.

3. n = 1, o′ = o, and t(o, l, s) � cn with l(ret) = f .

4. n = 2, o′ = o, and call(o, o′′, f, m, v) � cn.

5. n = 4, and call(o′, o, f, m, v) � cn.

6. n = n′ + 2, and o(o′′, a′, u′, q′

in, q′

out) � cn such that o ∈ π2(a′(f)), and o′′ is
on the notification path of f by o′ in n′ steps.

7. n = 2n′ + n′′, with n′ and n′′ nonnegative integers, if o is on the notification
path of f ′ by o′′ in n′ steps, cn assigns f to f ′, and o′′ is on the notification
path of f by o′ in n′′ steps.

Say that o is on the notification path of f , if o is on the notification path of f by
some o′ in some number of steps.

Intuitively, the number of steps in a notification path is an upper bound on the
number of events that need to take place before a future becomes assigned at the
object, considering task evaluation a single event. Condition 1 in Definition 3.6.7 is
the base case when f has already been instantiated. Condition 2 holds if a future
has been resolved and a future message is in transit to o. Condition 3 holds if o is
due to receive the return value of f from one of its pending tasks. Condition 4 holds
if a call to o has been sent off from some object o′′ with return future f . Condition
5 holds if a call to o′ has been sent off from o with return future f ; o is then on
the notification path of f since the call message is guaranteed to be received at the
callee’s site (if at all) and the forwarding list there updated to include o. Condition
6 holds if o has been inserted into a forwarding list for f at a closer distance to a
“source” of f . Condition 7, finally, holds if f is assigned to another future f ′, o′′ is
a “source” of f ′ for o, and o′′ is due to receive the return value for f , which can then
reach o through forwarding list additions in transitions using the rule fut-send.
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Example 3.6.8. Let cn be a configuration with two nodes and three objects, that,
for some cn′, can be written as

n(u, t) n(u′, t′) l(u′, q, u) o(o0, a0, u, qin,0, qout,0)

o(o1, a1, u, qin,1, qout,1) o(o2, a2, u′, qin,2, qout,2) cn′.

Suppose there are two futures f and f ′ such that cn assigns f ′ to f , and v to f ′.
Both futures are active for all three objects, and are unresolved at o0 and o1, but
resolved at o2. Specifically, let hd(q) = future(o0, f, f ′) and

a0(f) = (⊥, o1), a1(f) = (⊥, ε), a2(f) = (f ′, ε),

a0(f ′) = (⊥, ε), a1(f ′) = (⊥, ε), a2(f ′) = (v, o0).

We then have that:

1. o2 is on the notification path of f by o2 in 0 steps (by Definition 3.6.7.1)

2. o0 is on the notification path of f by o0 in 1 step (by Definition 3.6.7.2)

3. o1 is on the notification path of f by o0 in 3 steps (by 2 and Definition 3.6.7.6)

4. o2 is on the notification path of f ′ by o2 in 0 steps (by Definition 3.6.7.1)

5. o0 is on the notification path of f ′ by o2 in 2 steps (by 4 and Definition 3.6.7.6)

6. o1 is on the notification path of f ′ by o2 in 8 steps (by 3, 5, and Defini-
tion 3.6.7.7)

Intuitively, the events that need to occur for o1 to resolve f ′ to v are that:

1. o0 receives the message future(o0, f, f ′)

2. o0 sends the message future(o1, f, f ′) and adds o1 to its forwarding list for f ′

3. o2 sends the message future(o0, f ′, v)

4. o0 receives the message future(o0, f ′, v)

5. o0 sends the message future(o1, f ′, v)

6. o1 receives the message future(o1, f ′, v)

Note that this is two events fewer than in the upper bound derived through Defi-
nition 3.6.7.7 above by doubling the upper bound for resolving f at o1 and adding
to that the upper bound for resolving f ′ at o0.

We now prove that if o is on the notification path of f , then in the next config-
uration o remains on the notification path of f , without increasing the number of
steps.
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Lemma 3.6.9. Fix a configuration cn and an object o(o, a, u, qin, qout) � cn. If o
is on the notification path of f by o′ in n steps in the configuration cn and cn → cn′,
then o is on the notification path of f by o′ in at most n steps in cn′.

Proof. See Section 3.13.

We can now finally state the conditions of type 2 well-formedness.

Definition 3.6.10 (Type 2 Well-Formedness). A type 2 configuration cn is type 2
well-formed (WF2) if cn satisfies:

1. OID Uniqueness: If o(o1, a1, u1, qin,1, qout,1) and o(o2, a2, u2, qin,2, qout,2) are
distinct object container occurrences in cn, then o1 6= o2.

2. Task-Object Existence: If t(o, l, s) � cn, then o(o, a, u, qin, qout) � cn for some
a, u, qin, and qout.

3. Object-Node Existence: If o(o, a, u, qin, qout) � cn, then n(u, t) � cn for some
t.

4. Buffer Cleanliness: If o(o, a, u, qin, qout) � cn and msg � qin or msg � qout,
then msg is object bound. Additionally, if msg � qin, then dst(msg) = o.

5. Local Routing Consistency: If n(u, t) � cn and nxt(o, t) = u′, then there is a
link l(u, q, u′) � cn.

6. Call Uniqueness: If call(o1, o′

1, f1, m1, v1) and call(o2, o′

2, f2, m2, v2) are dis-
tinct call message occurrences in queues in cn, then f1 6= f2.

7. Future Uniqueness: If cn assigns both v1 and v2 to f , then v1 = v2.

8. Single Writer : If t(o1, l1, s1) and t(o2, l2, s2) are distinct task container occur-
rences in cn such that l1(ret) = f1 and l2(ret) = f2, then f1 6= f2 and both
f1 and f2 are unassigned in cn, and if call(o, o′, f, m, v) � cn, then f 6= f1

and f 6= f2.

9. External OID: ext /∈ OID(cn), and if n(u, t) � cn, then ext /∈ dom(t).

10. Future Liveness: If o(o, a, u, qin, qout) � cn, and either f is active for o in cn,
a(f) ↓, or cn assigns f to f ′ and o is on the notification path of f ′, then o is
on the notification path of f .

Type 2 well-formedness is more complicated than its type 1 counterpart, mainly
to account for the distributed way of handling futures (in particular, when apply-
ing a context). Buffer Cleanliness is needed to prevent the formation of contexts
that are deadlocked because an in-queue or out-queue contains messages of the
wrong type. Local Routing Consistency prevents the occurrence of routes through
nonexistent links that could leave otherwise routable messages stuck. The rationale
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behind Single Writer is that mABS enforces a single-writer discipline on instanti-
ated values of futures. Once a future has been instantiated through the evaluation
of a return statement, the task is “garbage collected” in the rule ret-2. External
OID ensures that messages to ext are only transported to reflexive links, where they
remain. The last condition is the future propagation property discussed above. We
use the designation Future Liveness not to indicate a guarantee that f will eventu-
ally be instantiated at an object, but to indicate that, if eventually f is instantiated
somewhere, a notification path to the object exists along which the instantiation
can be propagated.

Lemma 3.6.11 (WF2 Preservation). Let cn be a configuration. Then, the follow-
ing holds:

1. If cn is a type 2 initial configuration, then cn is WF2.

2. If cn is WF2 and cn → cn′, then cn′ is WF2.

Proof. See Section 3.13.

An easy but important consequence of type 2 well-formedness is that assign-
ments to futures cannot be updated with new values.

Proposition 3.6.12. Suppose that cn is WF2 and cn → cn′. If cn assigns v to f
and cn′ assigns v′ to f , then v = v′.

Proof. Since cn is WF2, if cn assigns v to f , there cannot be a task t(o, l, s) � cn

such that l(ret) = f . But the only way of assigning v′ 6= v to f is through ret-2.
Hence, the result follows.

3.7 Type 2 Contextual Equivalence

We adapt the notion of contextual equivalence to the type 2 setting. The ini-
tial problem is to define the type 2 correlate of the observation predicate. Say a
configuration cn has the observation, or barb, obs = ext!m(v), if a corresponding
call message call(ext, o, f, m, v), for some o and f , is located at the head of one of
the self-loop link queues in cn. More precisely, the type 2 observability predicate
cn ↓ obs holds just in case we have cn = cn′ l(u, q, u) for some cn′, and hd(q) is
defined and equal to call(ext, o, f, m, v). Note that in the network-aware semantics,
external call messages can always be shuffled on a reflexive link using msg-delay-3,
allowing specific calls to reach the head of the queue, to match observations in the
reference semantics.

For type 2 context closure, a context is any configuration cn containing only
object and task containers. Hence, contexts do not affect the underlying network
graph. This definition is used, since, firstly, it is objects and tasks that induce
computational behavior, and secondly, allowing contexts to augment the underlying
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graph by adding new nodes and links requires a much more complex account of
network composition and well-formedness, left to future work.

With the observation predicate set up, the weak observation predicate is derived
as in Section 3.5, and, as there, we define a type 2 witness relation as a relation
that satisfies reduction closure, and barb preservation, with context closure defined
as follows: if cn1 R cn2, cn is a context, and cn1 cn is WF2, then cn2 cn is WF2,
and cn1 cn R cn2 cn. Thus:

Definition 3.7.1 (Type 2 Contextual Equivalence). Let cn1 ≃2 cn2 whenever
cn1 R cn2 for a type 2 witness relation R.

3.8 Normal Forms

We want to show that the type 1 behavior of an mABS program is preserved in
the type 2 semantics. The key to the proof is a normal form lemma for mABS
saying, roughly, that any well-formed type 2 configuration can be rewritten into a
form where queues have been emptied of all routable messages, where routing tables
have been in some expected sense stabilized, where all futures that are assigned a
value somewhere are assigned a value everywhere the value might be needed, and
where all objects have been moved to a single node. We perform this rewriting using
two procedures. The first procedure stabilizes routing and empties link queues of
everything except for external messages. The second procedure, which uses the
first, empties object queues, propagates futures, and moves all objects to a single
node.

3.8.1 Stabilization

In the scope of a configuration cn, we call a link l(u, q, u′) � cn proper whenever
u 6= u′, and say that a message msg is routable whenever dst(msg) ∈ OID(cn), and
unroutable otherwise.

Definition 3.8.1 (Stable Routing). Let cn be a type 2 configuration. Say that cn

has stable routing, if for all containers n(u, t), o(o, a, u′, qin, qout) � cn, if nxt(o, t) =
u′′, then there is a minimum length path from u to u′ in graph(cn) which visits u′′.

Definition 3.8.2 (External Link Messages). Let cn be a type 2 configuration. We
say that cn has external link messages, if l(u, q, u′) � cn and msg � q implies msg

is object bound and unroutable.

To converge to a configuration with stable routing, the idea is to empty link
queues as far as possible, and let nodes simultaneously exchange routing tables.
This is accomplished using Algorithm 1 in Listing 3.2, where we hide uses of
ctxt-1 to allow the transition rules to be applied to arbitrary containers. Write
A1(cn)  cn′ if cn′ is a possible result of applying Algorithm 1 to cn. The re-
sulting configuration is almost unique, but not quite, since routing may stabilize in
different ways.
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Algorithm 1: Stabilize routing and deliver link messages

Input: A WF2 configuration cn

Output: A configuration with stable routing and external link messages, reachable
from cn

repeat

use obj-reg on each object not in transit ;
use t-send on each proper link to broadcast routing tables
from all nodes to their neighboring nodes ;
repeat

use t-rcv to dequeue one message on a link
until t-rcv can no longer be used ;
once for each link, if possible, use msg-rcv, msg-route,
msg-delay-1, or obj-rcv, or otherwise, use msg-delay-3
on self-loop links with external messages at the queue head

until routing has stabilized and there are only external link messages
Listing 3.2: Algorithm 1

Proposition 3.8.3. Algorithm 1 terminates.

Proof. See Section 3.13.

We make the notion of stabilization precise using some auxiliary functions:

• t(cn) is the multiset of all tasks in cn.

• o1(cn) is the object multiset where, if o(o, a, u, qin, qout) � cn, there is a cor-
responding object o(o, a, u′, q′

in, qout), such that the NID u′ has been adjusted
to that of the receiving node if the object was in transit from u to u′ in cn,
or u′ = u otherwise, and additionally, all messages in link queues in cn such
that dst(msg) = o have been enqueued in some fixed order in qin to produce
q′

in.

• m1(cn) is the multiset of both external and routable messages in cn.

Define the relation ∼=1 (different from ≃1) to hold between multisets of object
containers when there is a one-to-one mapping where containers only possibly differ
in how in-queue messages are ordered.

Definition 3.8.4 (Stable Form). A WF2 configuration cn is in stable form, if

1. cn has stable routing,

2. o(cn) ∼=1 o1(cn), and

3. m(cn) = m1(cn).
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Proposition 3.8.5. If A1(cn) cn′, then

1. cn →∗ cn′,

2. cn′ is in stable form,

3. graph(cn) = graph(cn′),

4. t(cn) = t(cn′),

5. o1(cn) ∼=1 o(cn′), and

6. m1(cn) = m(cn′).

Proof. Properties 1 and 3 are immediate. Property 2 can be read out of the ter-
mination proof. For the remaining three properties, observe first that t, o1, and
m1 are all invariant under the transitions used in Algorithm 1. The equations then
follow by noting that only externally-addressed messages (and so no object closures
or routing tables) are in transit in links in cn′.

Proposition 3.8.5 makes precise the “almost unique” property alluded to above.
The properties used in this proposition inspire a notion of equivalence “up to sta-
bilization”, defined below.

Definition 3.8.6 (≡1). Define a binary relation R1 on type 2 configurations such
that cn1 R1 cn2 whenever we have

1. graph(cn1) = graph(cn2),

2. t(cn1) = t(cn2),

3. o(cn1) ∼=1 o(cn2), and

4. m(cn1) = m(cn2).

We say that cn1 ≡1 cn2 if cn1 and cn2 are WF2, and there exists configurations
cn′

1 and cn′

2 such that

A1(cn1) cn′

1 R1 cn′

2  A1(cn2).

Corollary 3.8.7. If A1(cn) cn′ then cn ≡1 cn′.

Proof. We have A1(cn) cn′ R1 cn′  A1(cn′).

Lemma 3.8.8. ≡1 is reduction closed.

Proof. See Section 3.13.

Lemma 3.8.9. ≡1 is context closed.

Proof. See Section 3.13.



3.8. NORMAL FORMS 119

Proposition 3.8.10. ≡1 is a type 2 witness relation.

Proof. See Section 3.13.

Corollary 3.8.11. If A1(cn) cn′, then cn ≃2 cn′.

Proof. By Corollary 3.8.7 and Proposition 3.8.10.

Example 3.8.12. Figure 3.6 illustrates how stabilization works when run on a
configuration with three objects on a network of four nodes with unstable routing.
Figure 3.6(a) shows the initial configuration cn, and Figure 3.6(b) shows the con-
figuration cn′ that results after running Algorithm 1. In cn, an object container
with identifier o1, obj1, is in transit from u1 to u0, and only the routing table at u1

takes the new location of o1 into account.
In cn′, routing tables have stabilized due to repeated exchange of routing tables

messages and link queues are empty, since there are no external messages. The
future f ′ is still unresolved at o0, since the future message has only been delivered
to the in-queue of o0 and not yet processed. Similarly, the call message to o1 has
been delivered to the object’s in-queue, but the corresponding task has yet to be
spawned. Consequently, there is no indication that the future f is either resolved
or unresolved at o1. Assuming no external messages in cn, self-loop link queues are
empty and cn′ is in stable form, since it has stable routing, o(cn′) = o1(cn′), and
m(cn′) = m1(cn′) by the fact that no routable messages are in transit. Because no
tasks have been added or removed, t(cn) = t(cn′). With all object-bound messages
delivered to in-queues, o1(cn) ∼=1 o(cn′). Finally, since there are no external or
node-bound messages, m1(cn) = m(cn) = m(cn′).

3.8.2 Normalization

We turn to the second procedure, which empties object queues, propagates futures,
and migrates all objects and their tasks to a single node. The procedure, Algo-
rithm 2, is shown in Listing 3.3. Write A2(cn)  cn′ if cn′ is a possible result of
applying Algorithm 2 to cn. Initially, a node u is chosen towards which all objects
will migrate during normalization. Normalization is then performed in cycles, with
each cycle starting and ending in a configuration in stable form. In each cycle,
one message is read from an object in- and out-queue. By well-formedness, object
queues contain only call and future messages. Receptions of future messages may
cause object environments to instantiate futures. This may cause new future in-
stantiation messages to be enabled. Accordingly, those messages are generated and
delivered to an object out-queue. Once this is done, objects not yet at u will be
migrated towards u. Note that such migration does not require information from
routing tables, and that network graph well-formedness guarantees that there is a
migration path leading to u.

Proposition 3.8.13. Algorithm 2 terminates.
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Figure 3.6: Configurations before and after running Algorithm 1

Proof. See Section 3.13.

As for stabilization, we define some auxiliary functions:

• t2(cn) is the multiset of task containers tsk = t(o, l, s) such that we either
have tsk � cn, or there is a routable message call(o, o′, f, m, v) in transit in
cn, such that l = locals(o, f, m, v) and s = body(o, m).

• m2(cn) is the multiset of external messages in cn.

• o2(cn) is the multiset of object containers o(o, a, u′, ε, ε) such that u′ = u, for
which all of the following holds:

– There is an object container o(o, a′, u′′, qin, qout) � cn such that a(self) =
a′(self) and for all variables x, a(x) = a′(x).

– a(f) = (v, ε), if cn assigns v to f and o is on the notification path of f
in cn.

– a(f) ↑, if f is unassigned in cn, a′(f) ↑, and there is no f ′ such that cn

assigns f to f ′ with o on the notification path of f ′.

– a(f) = (⊥, o), if f is unassigned in cn, and either a′(f) ↓ or there is an f ′

such that cn assigns f to f ′ and, additionally, o is on the notification path
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Algorithm 2: Normalization

Input: A WF2 configuration cn

Output: A configuration in normal form, reachable from cn

fix a NID u for a node in cn ;
run Algorithm 1 ;
repeat

while some object queue is nonempty
use msg-send, msg-delay-2, call-rcv-2, or fut-rcv
to dequeue one message from each nonempty object queue ;
repeat

use fut-send to send future instantiation messages
until fut-send can no longer be used

end ;
while an object o exists not located at u

use obj-send to send o towards u
end ;
run Algorithm 1

until all objects are located at u, all object queues are empty and there are only
external link messages

Listing 3.3: Algorithm 2

of f ′, with o defined as follows. Let f1, . . . , fn be all future assignments
such that, for all fi, o is on the notification path of fi, and either cn

assigns fi to f , or there is a sequence of assignments of futures starting
from fi leading to f in cn. Let oi be the forwarding list such that
oi = π2(a′(fi)) if a′(fi) ↓, and oi = ε if a′(fi) ↓. Let o′ be the forwarding
list such that o′ = π2(a′(f)) if a′(f) ↓, and o′ = ε if a′(f) ↑. Then, if
call(o, o′, f, m, v) � cn for some o′, m, and v, set o = o′ o1 . . . on o′; set
o = o1 . . . on o′ otherwise.

The somewhat involved definition when f is unassigned in o2(cn) is due to the
possibility of a chain of assignments f1 7→ . . . 7→ fn 7→ f in cn. Then, in the
semantics, if the rule fut-send is applied repeatedly as in Algorithm 2, all OIDs
that are in the forwarding list for either of f1, . . . , fn at o will be added to the
forwarding list for f at o.

We use these functions to describe the effects of running Algorithm 2 on a
configuration to normalize it, as is made precise in the following definition and
proposition.

Definition 3.8.14 (Normal Form). A WF2 configuration cn is in normal form, if

1. cn has stable routing,
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2. t(cn) = t2(cn),

3. o(cn) = o2(cn), and

4. m(cn) = m2(cn).

Proposition 3.8.15. If A2(cn) cn′, then

1. cn →∗ cn′,

2. cn′ is in normal form,

3. graph(cn) = graph(cn′),

4. t2(cn) = t(cn′),

5. o2(cn) = o(cn′), and

6. m2(cn) = m(cn′).

Proof. See Section 3.13.

We now give a notion of configuration equivalence up to normalization, which
is key to our correctness argument.

Definition 3.8.16 (≡2). Define a binary relation R2 on type 2 configurations such
that cn1 R2 cn2 whenever

1. graph(cn1) = graph(cn2),

2. t(cn1) = t(cn2),

3. o(cn1) = o(cn2), and

4. m(cn1) = m(cn2).

Let cn1 ≡2 cn2 if cn1 and cn2 are WF2 and there exists configurations cn′

1 and cn′

2

such that
A2(cn1) cn′

1 R2 cn′

2  A2(cn2).

Clearly, ≡2 relates more extended configurations than ≡1.

Corollary 3.8.17. ≡1⊆≡2.

Proof. If cn1 ≡1 cn2, the two configurations have the same task containers, and
the same object bound messages. In addition, there is a one-to-one mapping be-
tween object containers where identifiers and object environments coincide. The
result follows by noting that any remaining differences between the containers will
disappear after running Algorithm 2.

We also obtain that normalization respects normal form equivalence.
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Corollary 3.8.18. If A2(cn) cn′, then cn ≡2 cn′.

Proof. We have A2(cn) cn′ R2 cn′  A2(cn′).

Lemma 3.8.19. ≡2 is reduction closed.

Proof. See Section 3.13.

Lemma 3.8.20. ≡2 is context closed.

Proof. See Section 3.13.

Proposition 3.8.21. ≡2 is a type 2 witness relation.

Proof. Similar to the proof of Proposition 3.8.10.

Corollary 3.8.22. If A2(cn) cn′, then cn ≃2 cn′.

Proof. By Corollary 3.8.18 and Proposition 3.8.21.

Example 3.8.23. Figure 3.7 illustrates the effect of one cycle of normalization on
a configuration. Figure 3.7(a) shows the initial configuration cn (the same as in
Example 3.8.12), and Figure 3.7(b) shows the configuration cn′ that results after
running one cycle of Algorithm 2, assuming all object queues are empty in cn.
Nodes migrate towards the node u0, and s′ is the statement for the task associated
with the call to m for o1, i.e., s′ = body(o1, m).

Note that for cn′, in contrast to the corresponding configuration for stabilization
where no unresolved futures become resolved and no tasks from call messages are
spawned, f ′ is now resolved in both o0 and o1, and o1 has a task with statement s′

for the call message. The only change enacted on cn′ in the next, final cycle of the
algorithm is that o2 is migrated to u0 and the routing tables adjusted accordingly.

3.9 Correctness

In this section, we prove the correctness of the network-aware semantics by mapping
a well-formed type 1 configuration bind z.cn in standard form to a well-formed type
2 configuration net(cn) with an arbitrary, but well-formed, underlying network
graph. We then prove that the two configurations are contextually equivalent.

3.9.1 The Representation Map

We first fix a well-formed graph represented as a configuration cngraph, containing
a node with distinguished NID u0. Thus, cngraph consists of nodes and links only,
with each node u in cngraph having the form n(u, t), and each link having the form
l(u, ε, u′). The routing tables t are defined later.
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Figure 3.7: Configurations before and after running one cycle of Algorithm 2

Representing Names and Values We assume that names in the type 1 se-
mantics are really symbolic, connected to concrete identifiers used in the type 2
semantics by means of an injective name representation map rep, taking internal
names f , o in the type 1 semantics to names rep(f), rep(o) in the type 2 seman-
tics. We extend the name representation map rep to arbitrary values and task
environments in the obvious way:

• rep(ext) = ext

• rep(p) = p for p ∈ PVal

• rep(l)(x) = rep(l(x))

• rep(l)(ret) = rep(l(ret))

Representing Object Environments One problem in extending rep to object
environments is that such environments in the type 2 semantics must be defined
partially in terms of the type 1 environments (for object variables), and partially in
terms of the future containers available in the “root configuration”, since the type
1 semantics uses future containers in place of forwarding lists. To this end, we first
define an auxiliary operation oenvmap(cn, ℘, rep) : FID → Val⊥ on triples of type
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1 configurations cn, pools ℘ of OID/FID constants, and name representation maps
rep, as a function which gathers together assignments to futures as determined by
the future containers in cn, as follows:

• oenvmap(0, ℘, rep)(f) = ⊥

• oenvmap(tsk, ℘, rep)(f) = ⊥

• oenvmap(obj, ℘, rep)(f) = ⊥

• oenvmap(call, ℘, rep)(f) = ⊥

• oenvmap(f(f, v⊥), ℘, rep)(f ′) = if rep(f) = f ′ then rep(v⊥) else ⊥

• oenvmap(bind z.cn, ℘ ∪ {z′}, rep)(f) = oenvmap(cn, ℘, rep[z′/z])(f)

• oenvmap(cn1 cn2, ℘, rep)(f) =
oenvmap(cn1, ℘, rep)(f) ⊔ oenvmap(cn2, ℘, rep)(f)

Fix now a root type 1 configuration cn0 and a large enough pool ℘0 of names
(proportional to the size of cn0, and computed to conform to our naming pol-
icy). Assume that cn0 = bind z0.cn′

0 where cn′

0 does not have binders. Fix
g = oenvmap(cn0, ℘0, ⊥) and cngraph as above. We can now extend rep to ob-
ject environments as follows:

• π1(rep(a))(self) = rep(π1(a)(self))

• π1(rep(a))(x) = rep(π1(a)(x))

• π2(rep(a))(f) =

{

(v, ε) if g(f) = v
(⊥, OID(cn0)) otherwise.

With expressions unspecified, we additionally need to assume that the representa-
tion map commutes with the expression semantics, i.e., that for all e, a, and l, it
holds that

rep(JeK(a,l)) = JeK(rep(a),rep(l)). (3.1)

Proposition 3.9.1. Let cn0 be a type 1 well-formed root configuration in standard
form, and ℘0 be a pool as above. Then, rep(a)(f) = (v, ε) if and only if f(f, v) �
cn0.

Proof. See Section 3.13.
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Representing Call Containers Another complication is that we need to rep-
resent type 1 call containers as messages in the type 2 semantics. Compared to
type 1 call containers, type 2 call messages additionally contain the OID of the
caller, which is added to the future forwarding list when the message is received.
Since future forwarding lists are already extended maximally, it is possible to use
the callee’s OID as the caller OID when mapping containers to messages without
affecting behavior. In addition, these message-converted containers must delivered
to a message queue. This is done by the operation send, which puts call messages
in the self-loop queue of u0, where

send(call(o, o′, f, m, v), l(u0, q, u0) cn) = l(u0, enq(call(o, o′, f, m, v)), q), u0) cn.

Given a name representation map rep, we now define the representation of a
type 1 configuration as a transformer on type 2 configurations with the mapping
net, as follows:

• net(cn1 cn2, rep) = net(cn1, rep) ◦ net(cn2, rep)

• net(0, rep)(cn) = net(f(f, v⊥), rep)(cn) = cn

• net(t(o, l, s), rep)(cn) = t(rep(o), rep(l), s) cn

• net(o(o, a), rep)(cn) = o(rep(o), rep(a), u0, ε, ε) cn

• net(c(o, f, m, v), rep)(cn) = send(call(rep(o), rep(o), rep(f), m, rep(v)), cn)

Defining Routing Tables The only detail remaining to be addressed from above
concerns the routing tables. For the node with NID u0, the initial routing table,
t0, needs to have all object identifiers in OID(cn0) registered, i.e.,

t0 = reg(rep(o1), u0, reg(· · · , reg(rep(on), u0, ⊥) · · · )).

For nodes n(u, t) where u 6= u0, we let t be determined by some stable routing, via
Algorithm 1.

Defining the Map We can now finally define the representation map.

Definition 3.9.2 (Representation Map net). Let a network configuration cngraph

and a name representation map rep be given for a WF1 configuration bind z.cn

in standard form. Then, the type 2 representation of bind z.cn is net(cn) =
net(cn, rep)(cngraph).

The most basic property that we expect to hold about the representation map
is that it produces type 2 well-formed configuration given well-formed type 1 con-
figurations.

Proposition 3.9.3. If bind z.cn is a WF1 configuration in standard form, then
net(cn) is WF2.

Proof. See Section 3.13.
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3.9.2 Contextual Equivalence under Extension

Note that in the representation map, future-value mappings and forwarding lists are
overapproximated when compared to the type 2 semantics, where future instantia-
tions are only forwarded to and instantiated at objects that are on the notification
path of the associated futures. Although not strictly necessary for proving correct-
ness, we need to ensure that observable behavior does not change for well-formed
configurations when future maps are extended in this way. To do this, we make
precise the notion of extension for objects, and ultimately prove that configurations
are contextually equivalent to their extended counterparts. Thus, a configuration
produced by the mapping net captures the behavior of a corresponding minimally
extended type 2 configuration produced from an initial configuration.

The crux of retaining behavior when extending the future map of an object
o is to either preserve or resolve obligations to forward the value of a future f
to some other object o′. In the simple case when the value of f is not another
future, the obligation is considered resolved if o′ has assigned f to the value. For
the more complicated case when the value of f is another future f ′, we must
additionally make sure that o′ is due to receive the value of f ′ (and so on, in a
chain of assignments). In addition, extended future maps must not introduce new
forwardings for OIDs that are unroutable, which requires lifting the definition to
the configuration level.

Definition 3.9.4 (Forwarding Resolved). We say that o′ is forwarding resolved for
the future f in the configuration cn at the object o, if there is an object container
o(o, a, u, qin, qout) � cn, such that either o′ ∈ π2(a(f)), or one of the following
holds:

1. cn assigns f to v ∈ PVal ∪OID and there is a container o(o′, a′, u′, qin, qout) �
cn such that π1(a′(f)) = v.

2. cn assigns f to f ′ ∈ FID and there is a container o(o′, a′, u′, qin, qout) � cn

such that π1(a′(f)) = f ′ and, additionally, o′ is forwarding resolved for f ′ in
cn at o.

Definition 3.9.5 (Extended Object Container). Let cn and cn′ be configura-
tions. An object container o(o, a, u, qin, qout) � cn extends an object container
o(o′, a′, u′, q′

in, q′

out) � cn′ if o = o′, u = u′, qin = q′

in, qout = q′

out , and

1. a(self) = a′(self), and for all variables x, a(x) = a′(x),

2. if π1(a′(f)) = v, then π1(a(f)) = v,

3. if o′′ ∈ π2(a′(f)), then o′′ is forwarding resolved for f in cn at o,

4. if π1(a(f)) = v, then cn′ assigns v to f , and if additionally v ∈ FID, then o
is on the notification path of v in cn, and
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5. if o′′ ∈ π2(a(f)), then either o′′ ∈ π2(a′(f)) or both o′′ ∈ OID(cn′) and o is
on the notification path of f in cn.

Definition 3.9.6 (Extended Configuration). A configuration cn extends another
configuration cn′, written cn > cn′, if there is a one-to-one mapping of object
containers obj � cn to object containers obj ′ � cn′, such that obj extends obj ′, and
additionally, graph(cn) = graph(cn′), t(cn) = t(cn′), and m(cn) = m(cn′).

Definition 3.9.7 (Notification Path Traversal). Let cn be a configuration such
that o is on the notification path of f by o′ in n steps. Then, this notification path
traverses opath if

1. n = 0, o′ = o, and opath = o.

2. n = 1, o′ = o, there is a future message future(o, f, v) � cn, and opath = o.

3. n = 1, o′ = o, there is a task t(o, l, s) � cn, and opath = o.

4. n = 2, o′ = o, there is a call message call(o, o′′, f, m, v) � cn, and opath = o.

5. n = 4, and there is a call message call(o′, o, f, m, v) � cn, and opath = o or
opath = o′.

6. n = n′ + 2, and there is an object o(o′′, a′, u′, qin, qout) � cn such that o ∈
π2(a′(f)), and o′′ is on the notification path of f by o′ in n′ steps, and either
opath = o′′, or the notification path from o′′ to o′ traverses opath.

7. n = 2n′ + n′′, and o is on the notification path of f ′ by o′′ in n′ steps, cn

assigns f to f ′, and o′′ is on the notification path of f by o′ in n′′ steps, and
opath either traverses the path of f ′ from o to o′′, or the path of f from o′′ to
o′.

Proposition 3.9.8. Let cn1 and cn2 be WF2 configurations such that cn1 > cn2.
Then, if o is on the notification path of f by o2 in n steps in cn2, o is on the
notification path of f by some o1 in at most n steps in cn1, such that the notification
path from o to o2 in cn2 traverses o1.

Proof. See Section 3.13.

Proposition 3.9.9. If cn1 and cn2 are WF2 configurations such that cn1 > cn2

and there are cn′

1 and cn′

2 such that A2(cn1)  cn′

1, and A2(cn2)  cn′

2, then
cn′

1 > cn′

2.

Proof. See Section 3.13.

We define a binary relation, ∼=2, that is a slight weakening of ≡2, and therefore
includes ≡2, which relates WF2 configurations that, after running Algorithm 2,
yield a pair of configurations such that one extends the other.
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Definition 3.9.10 (∼=2). Let cn1
∼=2 cn2 if cn1 and cn2 are WF2 configurations

and there are cn′

1 and cn′

2 such that it is either the case that A2(cn1)  cn′

1 >
cn′

2  A2(cn2), or A2(cn2) cn′

2 > cn′

1  A2(cn1).

Lemma 3.9.11. ∼=2 is reduction closed.

Proof. See Section 3.13.

Lemma 3.9.12. ∼=2 is context closed.

Proof. See Section 3.13.

Proposition 3.9.13. ∼=2 is a type 2 witness relation.

Proof. See Section 3.13.

Lemma 3.9.14. Suppose that cn′ is WF2, and cn > cn′. Then, cn is WF2 as
well, and cn ≃2 cn′.

Proof. See Section 3.13.

3.9.3 Correctness Result

We now obtain a key lemma which relates transitions in the network-oblivious and
the network-aware semantics under the relation ∼=2.

Lemma 3.9.15. Let bind z.cn be a WF1 configuration in standard form. Then:

1. If bind z.cn → bind z′.cn′, then for some cn′′, we have net(cn) →∗ cn′′ and
cn′′ ∼=2 net(cn′).

2. If net(cn) → cn′′, then for some z′ and cn′, we have bind z.cn →∗ bind z′.cn′

and net(cn′) ∼=2 cn′′.

Proof. See Section 3.13.

For both properties in Lemma 3.9.15, the argument is by case analysis on the
possible rules applied in the assumed reduction step, using the aforementioned
commutativity of the expression semantics with rep where necessary to produce a
desired configuration.

Given our configuration mapping net, with a name representation map rep, we
now conflate our notions of type 1 and type 2 witness relation into a notion that
includes relations between WF1 and WF2 configurations, leading to a generalized
contextual equivalence, ≃. For such a conflated witness relation R, reduction clo-
sure and barb preservation, as in Definition 3.5.1, is straightforward to define. The
main problem lies in defining the notion of context closure, which requires applying
a context configuration to two different configuration types. Applying a type 1 con-
text cn to a type 2 configuration involves faithfully transforming elements of cn to
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the type 2 level, by introducing, e.g., locations to objects, and turning call contain-
ers into messages. Conversely, applying a type 2 context to a type 1 configuration
involves removing locations and queues, turning messages into call containers, and
introducing future containers.

More formally, suppose bind z.cn1 R cn2, with bind z.cn1 WF1 and in standard
form, and cn2 WF2. Assume that, when we apply the type 1 context configuration
cn to bind z.cn1, we get the configuration bind z′.cn1 cn′ in standard form. We then
apply the context to cn2 by defining the result as net(cn′, rep)(cn2). Consequently,
context closure requires that bind z′.cn1 cn′ R net(cn′, rep)(cn2) in this case.
Conversely, suppose cn2 R−1 bind z.cn1, again with cn2 WF2, and bind z.cn1

WF1 and in standard form. Straightforwardly, the result of applying the type 2
context configuration cn to cn2 is the configuration cn2 cn. Define the configuration
mapping ten, which takes type 2 configurations to their type 1 counterparts by
removing locations, queues, and future maps from objects, and adding message
and future containers, with the help of the inverse of the name representation map,
rep−1. The result of applying the context cn to bind z.cn1 can then be defined as
the standard-form configuration bind z′.ten(cn, rep−1)(cn1), where all free names
originating from cn in bind z.ten(cn, rep−1)(cn1) have been bound. Consequently,
converse context closure requires that cn2 cn R−1 bind z′.ten(cn, rep−1)(cn1) in
this case.

Using the established equivalence, ≃, we can now finally state the correctness
property.

Theorem 3.9.16 (Correctness of the Type 2 Semantics). For all well-formed type
1 configurations bind z.cn in standard form, bind z.cn ≃ net(cn).

Proof. See Section 3.13.

The proof of Theorem 3.9.16 proceeds by showing, with the help of Lemma 3.9.15,
that the relation

R = {(bind z.cn, cn′) | net(cn) ∼=2 cn′} ,

where bind z.cn is WF1 and in standard form and cn′ is WF2, is a conflated witness
relation. This is sufficient, since the identity relation is included in ∼=2.

3.10 Scheduling

The type 2 semantics is highly nondeterministic. The semantics says nothing about
how frequently routing tables are to be exchanged, when messages should be passed
between the different queues, when future messages are to be sent, or when, and
to where, objects are to be transmitted. Resolving these choices involves making
crucial tradeoffs between management overhead and performance. For instance,
if routing tables are exchanged at a high frequency, routing can be assumed to be
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close to, or in, stable state. This ensures short end-to-end message routes for object-
addressed messages, but at the expense of a large management and messaging
overhead. Similarly, if objects quickly change location when a node is overloaded,
the variance in load between nodes can be kept low and the load evenly balanced,
at the cost of, e.g., task execution throughput. This raises the question of how to
determine these parameters, something which we address in more detail in related
work, described in Chapter 4.

Regardless of how, a real implementation needs to resolve these choices. This
is tantamount to eliminating nondeterminism from the type 2 semantics, by intro-
ducing a scheduler that removes some transitions. The difficulty with scheduling
is preemptive choice. For instance, in the type 2 semantics, a scheduler may force
two messages that in the nondeterministic semantics are causally independent to
be received in some given order. This phenomenon makes contextual equivalence
and bisimulation-oriented methods in general inapplicable. One might hope to be
able to devise schedulers that correspond to each other at both the type 1 and type
2 levels. We argue, however, that this is undesirable: a scheduler at the type 1
level may require global coordination across the entire network to be enforced at
the type 2 level, e.g., to speed up message transmission across some links and slow
them down correspondingly across others—without these links having any network
proximity constraints whatsoever. This is exactly the kind of global synchroniza-
tion overhead the type 2 semantics is designed to avoid. We therefore deliberately
restrict attention to scheduling at the type 2 level. However, even in the presence of
a scheduler at this level, we can still draw strong conclusions on faithfulness to the
reference semantics, as we demonstrate below using a contextual simulation pre-
order in place of contextual equivalence. The idea is to view schedulers abstractly
as predicates on type 2 configuration transition histories.

Definition 3.10.1 (Execution, Scheduler). An execution, of either the type 1 or
type 2 semantics, is a sequence of well-formed configurations ρ = cn1 · · · cnn, such
that, for i : 1 ≤ i < n, it holds that cni → cni+1. Let 〈cn〉 be the singleton
execution consisting of only the configuration cn. A scheduler is a predicate S on
type 2 executions, such that

• S(〈cn〉) for all 〈cn〉, i.e., a scheduler kicks in only once an execution is started,
and

• if S(cn1 · · · cnn) and there exists a cnn+1 such that cnn → cnn+1, then we
have S(cn1 · · · cnn cnn+1) for precisely one such cnn+1.

That is, a scheduler is a device that determinizes type 2 executions. We define
transition systems on executions, such that ρ → ρ′ whenever ρ = cn1 · · · cnn and
ρ′ = cn1 · · · cnn cnn+1. The observation predicate ρ ↓ obs, and application of a
context configuration, is defined for executions similarly. A scheduled transition
system is a transition system on type 2 executions, where, if we have ρ → ρ′, S(ρ)
and S(ρ′) holds.
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Let R be a relation on type 2 executions, scheduled by the scheduler S, and un-
scheduled type 1 executions. Suppose R satisfies reduction closure, context closure
and barb preservation, but that R−1 does not necessarily satisfy the converse prop-
erties. Assume the (S-scheduled) type 2 execution ρ and the (unscheduled) type 1
execution ρ′ are related by such an R. We then say that ρ and ρ′ are in the con-
textual simulation preorder ., written ρ . ρ′, and we obtain from Theorem 3.9.16
the following corollary.

Corollary 3.10.2. For all well-formed type 1 configurations bind z.cn in standard
form, 〈net(cn)〉 . 〈bind z.cn〉.

Proof. Suppose ρ1 → ρ′

1 for ρ1 = cn1 · · · cnn and ρ′

1 = cn1 · · · cnncnn+1. We then
have cnn → cnn+1, and ρ1 ↓ obs whenever cnn ↓ obs. Let ρ2 = cn′

1 · · · cn′

m. When
cnn = net(cn) and cn′

m = bind z.cn, as in the present case, cnn and cn′

m are by
Theorem 3.9.16 related by some conflated witness relation R. We use this relation
when constructing the required relation on executions to qualify for inclusion in .,
by straightforwardly transferring configuration properties from R to executions.

Intuitively, Corollary 3.10.2 says that a scheduled execution in the network-
aware semantics always maps to some specific (valid) execution in the network-
oblivious semantics.

3.11 Discussion

A closely related precursor is Nomadic Pict [184], which follows earlier work on
Pict [168], Fournet’s distributed join-calculus [76], and JoCaml [42]. Besides the
additional presence of futures in our language, we obtain, in comparison, a simpler
and in our opinion more elegant correctness treatment, chiefly because our solution
obviates the need for locking and consequently preemption, which has well-known
detrimental consequences in a bisimulation-oriented setting.

Past correctness analyses for languages with futures have been carried out, e.g.,
by Caromel et al. [31] and Henrio et al. [89], but without an explicit treatment of
distribution, communication, and routing. Henrio et al. prove correctness of future
updates for an eager home strategy, where components (here, objects) must register
themselves as recipients of future values. We consider the eager forward based
strategy more appropriate to our setting than such a publish-subscribe strategy,
since the former disperses the messaging load better among objects [90], and thus,
in balanced allocations of objects to nodes, among nodes as well.

Standard ABS [103] and its extensions provide a comprehensive model of con-
current objects, related to the cobox model [183] and Creol [104], but without any
concept of nodes, locations, or communication medium. Another difference is that
the ABS unit of concurrency is an object group rather than a task, resulting in
a more intuitive programming model without data races. A model with concur-
rent tasks as described here is still feasible to use by programmers, and can allow
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more efficient execution on multicore nodes [88]. Johnsen et al. [105] propose an
extension of ABS with deployment components for explicit resource management.
In contrast, their setting is not inherently decentralized, and the component model
abstracts away from message distribution and routing, with the component topol-
ogy being in effect a complete graph. However, if network nodes as described here
are viewed as deployment components, the model becomes amenable to the loca-
tion indpendent routing approach for message distribution, which may be useful
for lower-level software systems modeling.

In the Klaim project [19], compilers are implemented and proven correct for
several variants of the Klaim language, using the Linda tuple space communica-
tion model and a centralized name server to identify local tuple servers. The Oz
kernel language [189] uses a monotone shared constraint store in the style of con-
current constraint programming. The Oz/K language [121] adds to this a notion
of locality with separate failure and mobility semantics, but no real distribution
or communication semantics is given; long distance communication is reduced to
explicit manipulation of located agents, in the style of the Ambient Calculus [28].
The TKlaim (Topological Klaim) language [151] extends Klaim with network in-
terconnections and primitives for manipulating them. Connections between nodes
can be dynamically activated and deactivated, allowing a programmer to directly
exploit the topology of the network.

Francalanza and Hennessy [78] introduce a distributed π-calculus variant, Dπ,
with explicit nodes and links that can fail, requiring management of knowledge
about inaccessible parts of the network (unreachable names). Dπ is particularly
suited for reasoning about software systems which discover and maintain informa-
tion about the network topology. In comparison, mABS programs are oblivious
to the network, but the semantics paves the way for a (separate) runtime sys-
tem that can make decisions based on observed network conditions. Montanari and
Sammartino [145] define a proper extension of π-calculus, called NCPi, which intro-
duces nodes and links through two different types of names: sites and connectors.
This allows creation and passing of connections between processes. In addition,
processes in NCPi do not have a node location as do mABS tasks; instead they
access the network through one or more nodes.

In Chapter 4, we study the use of the model presented here modified in detail
for the ABS language core [103] to investigate decentralized runtime adaptability
for objects, with promising results. The resulting language, defined in Appendix A
and Appendix B, is more practical than mABS in that expressions and expression
evaluation are fully defined, and it includes a type system which guarantees that
well-typed programs have safety properties that go beyond mABS configuration
well-formedness. Our adaptability-oriented network-aware semantics differs from
the type 2 semantics in that network and object configurations are separate, but
synchronize on complementary labeled transitions to transfer data between a node
and an object. This leads to a clearer distinction between the network-layer and the
object-layer than in the present work, similar to the distinction between meta-actors
and actors in the architecture of Mechitov et al. [139].
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On the one hand, our approach reduces complexity by doing away with some
conventional parts of the network stack, i.e., changing the boundaries between
layers. This approach has found success in other domains, such as data storage
systems, where it has been referred to as telescoping a stack of layers [24]. Besides
simplicity, rethinking layers can allow for significant performance gains for appli-
cations through reduced overhead, as demonstrated by Marinos et al. [135] with a
custom network stack tailored for use by web servers. On the other hand, throwing
out OSI network layers 3 and above may be an excessive price to pay, and it may
turn out to be infeasible to amend current IP schemes in the direction proposed
here. However, the architecture of the future Internet is currently very much in
flux. It is possible today to build large scale non-IP networks with only layer 2 con-
nectivity, sufficient to bootstrap a location independent scheme such as ours. The
simplicity of formal reasoning when using our approach in comparison to the task
of formally verifying, e.g., IP and TCP [20], suggests that currently ongoing work
on verification of low-level software, along the lines of seL4 [109], can be extended
to include fully networked operating systems and hypervisors.

In the Cloud Computing paradigm, a pool of network-interconnected comput-
ing resources are shared between different applications. Most proposed solutions
to resource control for such pools, called clouds, are centralized, and can thus be
expected to scale only to systems with in the order of thousands of nodes [102]. Our
approach provides a building block for a scalable, formalized Platform as a Service
(PaaS), that can be implemented correctly with few assumptions on network capa-
bilities. The fully local nature of the reduction rules ensures that implementation
code can correspond closely to the formalization, minimizing the risk of errors. An
implementation of our semantics that realizes a PaaS cloud, with a deployment
spanning several physical locations, can use a hybrid approach where some nodes
communicate using direct physical links and others use TCP/IP. In a more gen-
eral routing scheme, weights can be attached to links, instead of simply relying on
the number of hops to approximate distance to an object. Physical links between
nodes inside a datacenter can then be assigned, e.g., a fixed low weight, while links
between “gateway” nodes in different datacenters, established using TCP over the
Internet, can have higher weights, depending on their conventional routing distance.

The network-aware semantics assumes a fixed, static network throughout ex-
ecution. Real-world networks are dynamic in at least two different ways. First,
nodes can crash, then possibly recover, or deviate arbitrarily from prescribed be-
havior. Second, nodes can be added and shut down in a controlled way. In related
work, described in Chapter 5, we consider the latter kind of dynamicity. We use a
protocol reminiscent of a two-phase commit [187] to ensure objects can always be
safely migrated away, and messages routed away, from nodes shutting down. The
protocol in effect rules out simultaneous shutdown of neighboring nodes that have
outstanding object-related messages between them, whence program-related state
cannot disappear. Extended using suitable local criteria for connectivity, the proto-
col can also ensure networks remain connected after shutdowns, which is necessary
for progress in program execution. To preserve object behavior in the face of node
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crash failures, some form of replication must be used for objects, tasks, and mes-
sages; the state checkpointing approach of Field and Varela [69] is one possibility.
Handling of crashes can be formalized using failure detectors [36, 150].

3.12 Conclusion

The contribution of the paper has been to show that, using location independent
routing, it is possible to devise novel and elegant network-based execution models
for distributed object languages with fairly sophisticated features such as futures,
and with attractive properties regarding correctness, performance, and scalability.
Here, we focus on correctness, following the approach of earlier work on a simpler
language without futures, as described in Chapter 2. As there, the main result
relies critically on the inherent nondeterminism of the network-aware semantics.

Scalability is not fully resolved in the present work. We use a rather naïve
distance vector routing scheme which has unit stretch but is not compact: routing
tables may need to contain on the order of one entry per object identifier in the
system. For large networks with many objects, other routing schemes are needed.
Besides more scalable and robust routing, the first direction for future work is to
examine richer language semantics, specifically with respect to more dynamicity.
In ongoing work, we are studying power control: adding an explicit knob to the
network-aware semantics for turning nodes on and off. Further down the line, it
is of interest to handle both crash failures and Byzantine failures. The second,
parallel, avenue is to study performance adaptation in more realistic settings. In
our work on adaptability [159], our only management knob is object migration,
and the management objective is to obtain good load balancing combined with
good clustering properties. However, a real implementation will have many more
management knobs such as buffer size, processor load, and power control.
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3.13 Proofs

Proposition 3.5.2. The identity relation is a type 1 witness relation. ≃1 is a type
1 witness relation. If R, R1, and R2 are type 1 witness relations then so are

1. R−1,

2. R∗, and

3. R1 ◦ R2 ◦ R1.
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Proof. The identity relation is trivially reduction closed, context closed, and barb
preserving, and is its own converse. To prove ≃1 is a type 1 witness relation, suppose
cn1 ≃1 cn2. Then, cn1Rcn2 for some type 1 witness relation. If cn1 → cn′

1, we
have cn′

2 such that cn2 →∗ cn′

2 and cn′

1Rcn′

2. But then cn′

1 ≃ cn′

2, and we
have shown reduction closure. For context closure, assume cn1 cn is WF1; then
cn1 cn R cn2cn and consequently cn1 cn ≃1 cn2 cn. For barb preservation, if
cn1 ↓ obs, then cn2 ⇓ obs, since R is barb preserving. The converse arguments are
completely symmetric.

For property 1, it suffices to note that (R−1)−1 = R. Reflexive, transitive
closure in property 2 follows by a straightforward inductive argument. For property
3, if cn1R1 ◦ R2 ◦ R1cn2 then cn1R1cn1,2R2cn2,1R1cn2 for some cn1,2, cn2,1. For
reduction closure, assume cn1 → cn′

1. Then, cn1,2 →∗ cn′

1,2 and cn′

1R1cn′

1,2. But
then, cn2,1 →∗ cn′

2,1 and cn′

1,2R2cn′

2,1. Consequently, cn2 →∗ cn′

2 and cn′

2,1R1cn′

2,
whereby cn′

1R1 ◦ R2 ◦ R1cn′

2. For context closure, assume cn1cn is WF1. Then,
cn1,2cn is WF1 and cn1cn R cn1,2cn, and so on, yielding that cn2cn is WF1 and
cn1 cn R1 ◦ R2 ◦ R1 cn2 cn. For barb preservation, assume cn1 ↓ obs. Then,
cn1,2 →∗ cn′

1,2 ↓ obs, allowing us to find cn′

2,2 such that cn′

1,2R1cn′

2,2, whereby
cn′ →∗ cn′′

2,2 ↓ obs, and so on, yielding that cn2 ⇓ obs, as needed. Again, the
converse arguments are symmetric.

Lemma 3.6.9. Fix a configuration cn and an object o(o, a, u, qin, qout) � cn. If o is
on the notification path of f by o′ in n steps in the configuration cn and cn → cn′,
then o is on the notification path of f by o′ in at most n steps in cn′.

Proof. The proof is by induction on n. We follow the case analysis in Defini-
tion 3.6.7.

Case 1: We obtain that π1(a(f)) ↓, and then, by Proposition 3.6.3.3, we find
o(o, a′, u′, q′

in, q′

out) � cn′ such that π1(a′(f)) ↓.

Case 2: Either future(o, f, v) � cn′ or we find o(o, a′, u′, q′

in, q′

out) � cn′ such that
π1(a′(f)) ↓.

Case 3: There are two options by Proposition 3.6.3.4: either we find a task
t(o, l′, s′) � cn′ with l′(ret) = f , or else we find o(o, a′, u′, q′

in, q′

out) such that
π1(a′(l(ret))) ↓.

Case 4: Either call(o, o′′, f, m, v) � cn′ or we find t(o, l, s) � cn′ with l(ret) = f .

Case 5: Either call(o′, o, f, m, v) � cn′, or we find o(o′, a′, u′, q′

in, q′

out) � cn′ such
that t(o′, l′, s′) � cn′ with l′(ret) = f , and o ∈ π2(a′(f)).

Case 6: We find an object obj ′′ = o(o′′, a′′, u′′, q′′

in, q′′

out) � cn such that o′′ is
on the notification path of f by o′ in n − 2 steps in cn. By Proposition 3.6.3.3,
we find the derivative obj ′′′ = o(o′′, a′′′, u′′, q′′′

in, q′′′

out) � cn′ of obj ′′, and by the
induction hypothesis o′′ is also on the notification path of f by o′ in cn′, now in
some n′′ ≤ n − 2 steps. By inspection of the rules we see that either π2(a′′′(f))
is a suffix of π2(a′′(f)), or else there is a message future(o, f, π1(a′′(f))) � cn′. In
either case we can conclude.



3.13. PROOFS 137

Case 7: We find an object obj1 = o(o1, a1, u1, qin,1, qout,1) � cn such that o1

is on the notification path of f ′ by o′′ in n′ steps in cn, and an object obj ′′ =
o(o′′, a′′, u′′, q′′

in, q′′

out) � cn such that o′′ is on the notification path of f by o′ in n′′

steps, with n = 2n′ + n′′, where f ′ is assigned to f in cn. In the next step, by the
induction hypothesis, o′′ can be on the notification path of of f by o′ in the same
or fewer steps, and the length of the notification path of f ′ for o1 does not increase
as in the previous case. In either case we can conclude.

Lemma 3.6.11. Let cn be a configuration. Then, the following holds:

1. If cn is a type 2 initial configuration, then cn is WF2.

2. If cn is WF2 and cn → cn′, then cn′ is WF2.

Proof. Property 1 follows straightforwardly from Definition 3.6.4 and Definition 3.6.10.
For property 2, we consider each transition rule in turn.

OID Uniqueness: In all rules except new-2 there is a one-to-one correspondence
between object container occurrences in cn and object container occurrences in
cn′. This is sufficient to conclude. For new-2, it is sufficient to note that o′ is a
freshly generated OID.

Task-Object Existence, Object-Node Existence: The properties follow since neither
nodes nor objects are ever removed. In the first instance, objects can only be
created when the node is present, and in the second instance tasks can only be
created when the object is present.

Buffer Cleanliness: We check that only object-bound messages enter in- and out-
queues. This concerns the rules msg-rcv, call-send-2, fut-send, msg-delay-1, and
msg-delay-2 only. The check is routine.

Local Routing Consistency: Easily proved by case analysis on rules.

Call Uniqueness: In all rules except call-send-2, call messages are the same in cn

and cn′, or present in cn and removed in cn′. This is sufficient to conclude. For
call-send-2, it is sufficient to note that f is a freshly generated FID.

Future Uniqueness: We only need to consider rules which assign a non-⊥ value
to futures. This happens in rules fut-send, fut-rcv and ret-2. The former two
rules are immediate, and for ret-2 we use the assumption that cn satisfies Defini-
tion 3.6.10.5.

Single Writer: Again, we only need to consider the rules fut-send, fut-rcv and
ret-2. Since for the former two rules, cn assigns v to f if and only if cn′ does so,
only ret-2 remains, which is immediate.

External OID: Assuming fresh identifiers for objects are never equal to ext, the
check is routine.

Future Liveness: Let o(o, a′, u′, q′

in, q′

out) be the derivative of o(o, a, u, qin, qout) in
cn, and assume that f is active for o for the configuration cn′. Either a′(f) ↓, or else
a call message call(o′, o, f ′, m, v) is in transit in cn′ and f occurs in v. We proceed
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by cases on the transition rule leading to cn′. Any rule that does not directly affect
any of the conditions in Definition 3.6.6 or Definition 3.6.7 immediately allows
to conclude that f is active for o also in cn. By the induction hypothesis, we
can conclude that o is on the notification path of f in cn, and then o is on the
notification path of f also in cn′, since the only exception in Lemma 3.6.9 is when
the environment of o is updated. For the remaining rules, there are the following
cases to consider:

call-send-2: Assume first that o is the sending object. Either f is the newly
introduced future in which case o is on the notification path of f according to
Definition 3.6.7.5, since a call message is in transit from o to o′ with return future
f . If f is another future which is active for o in cn′ then f is also active for o in cn.
By the induction hypothesis, o is on the notification path of f in cn. Then o is also
on the notification path of f in cn′ by Lemma 3.6.9. On the other hand if o is not
the sending object the case is immediately closed by the induction hypothesis, as
the “pending” relation transfers from cn′ to cn. We then apply the IH to conclude
that o is on the notification path of f in cn, and then we use Lemma 3.6.9 to
conclude that this also applies to cn′.

call-rcv-2: Assume first that o is the object receiving the call, and that f is the
future of the call. Then o is on the notification path of f by Definition 3.6.7.4. An-
other option is that f is a future in v (referring to the transition rule in Figure 3.4).
Then f is active for o in cn as well, by Definition 3.6.6. If f is some other future
the case is completed by the IH as above.

fut-send: Follows from the induction hypothesis and Lemma 3.6.9, as in the case
for call-send-2.

fut-rcv: If f is active for o for the configuration cn′ then f is active for o also for
cn, and f is not the received future. But then, the result follows by the IH and
Lemma 3.6.9.

ret-2: If f is active for o for cn′, then either f is not the return future, or f is the
return future but has been received from some other object o′ and is thus due to
receive the value of f from o′. In both cases, we again complete by the induction
hypothesis.

Proposition 3.8.3. Algorithm 1 terminates.

Proof. In each iteration of the outermost loop of Algorithm 1, exactly one message
is enqueued on each proper link, and at least one message is dequeued from all
link queues. msg-rcv, msg-delay-1, and obj-rcv cause messages to leave the link
queues, except for external messages, which are moved to the self-loop queues. If the
link queues contain only routing table messages, the algorithm terminates in that
iteration. If not, there must be object messages or routable call messages in some
link queue. Since no new object messages are enqueued, there must some number
of iterations n0 after which all object messages have been received via obj-rcv and
the associated object OIDs o registered on some node u so that t(o) = (u, 0).
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Let m0 be the size of the largest link queue at the point which there are no object
messages in transit. After n0 + m0 + 1 iterations, each node u has received at least
one table update from each of its neighbors u′, and the last table update applied
to u has t(o) = 0. As a result, at point n0 + m0 + 1, each node u has t(o) = (u′, 1)
whenever the u′ is the host of o and the minimal length path from u to u′ has
length 1. The entry of the routing table of u for o will not change from that point
onwards. We say that those entries are stable. Proceeding, let m1 be the size of the
largest link queue at point n0 + m0 + 1. After n0 + m0 + 1 + m1 + 1 iterations, each
routing table entry with length 2 (or less) will be stable. In the limit, each entry
will be stable. It follows that Algorithm 1 must terminate, since, once routing has
stabilized, rule msg-route can only be applied a finite number of times before a
routable message will be delivered. There is no chance of routable messages getting
stuck in self-loop queues, since they are continuously shuffled using msg-delay-3.

The only detail remaining to be checked is that a message can always be read
from a link. Table and object messages can always be delivered, and call messages
can also always be delivered, if nothing else to the self-loop link, in which case the
routing table is not up-to-date or the message is external. This is the only case
where msg-delay-1 is used. This completes the argument.

Lemma 3.8.8. ≡1 is reduction closed.

Proof. Suppose cn1 ≡1 cn2, where cn1 and cn2 are WF2. Assume cn1 → cn′

1;
we need to find cn′

2 such that cn2 →∗ cn′

2 and cn′

1 ≡1 cn′

2. We proceed by case
analysis on the transition cn1 → cn′

1, eliding uses of ctxt-1.
For the cases t-send, t-rcv, msg-rcv, msg-route, msg-delay-1, obj-rcv, msg-

delay-3, and obj-reg, we take cn′

2 = cn2, since then, the stable form is unaffected,
i.e., cn1 ≡1 cn′

1, by Proposition 3.8.5.
The remaining cases include the rules for sequential control, msg-send, msg-

delay-2, call-send-2, call-rcv-2, fut-send, fut-rcv, ret-2, get-2, new-2, and
obj-send. The rules for sequential control are handled in a structurally similar
way; take wfield-2 as an example, with a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e; s) → cn o(o, a[v/x], u, qin, qout) t(o, l, s)

where JeK(a,l) = v and x ∈ dom(a). Consider cn′′

2 such that A1(cn2)  cn′′

2 . By
Proposition 3.8.5, there is a task t(o, l, x = e; s) and an object o(o, a, u, q′

in, qout) in
cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a, u, q′

in, qout) t(o, l, x = e; s) → cn′ o(o, a[v/x], u, q′

in, qout) t(o, l, s)

and we have

cn o(o, a[v/x], u, qin, qout) t(o, l, s) ≡1 cn′ o(o, a[v/x], u, q′

in, qout) t(o, l, s)

as needed, setting cn′

2 to the right-hand side.
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call-send-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e1!m(e2); s)

→ cn o(o, a′, u, qin, enq(msg, qout)) t(o, l[f/x], s)

where v = Je2K(a,l), f = newf(u), msg = call(o′, o, f, m, v), o′ = Je1K(a,l), and a′ =
fw(v, o′, init(f, a)). Consider cn′′

2 such that A1(cn2) cn′′

2 . By Proposition 3.8.5,
there is a task t(o, l, x = e1!m(e2); s) and an object o(o, a, u, q′

in, qout) in cn′′

2 . Hence,
it is possible to perform a transition

cn′ o(o, a, u, q′

in, qout) t(o, l, x = e1!m(e2); s)

→ cn′ o(o, a′, u, q′

in, enq(msg, qout)) t(o, l[f/x], s)

and we have

cn o(o, a′, u, qin, enq(msg, qout)) t(o, l[f/x], s)

≡1 cn′ o(o, a′, u, q′

in, enq(msg, qout)) t(o, l[f/x], s)

setting cn′

2 to the right-hand side. The remaining cases are proved in a similar
straightforward way, by mimicking the transition after applying Algorithm 1.

Lemma 3.8.9. ≡1 is context closed.

Proof. Assume cn1 ≡1 cn2 and cn1 cn is WF2. We first show that cn2 cn is WF2
as well.

OID Uniqueness: If obj1, obj2 � cn2 cn either obj1, obj2 � cn2, obj1, obj2 � cn, or
(wlog) obj1 � cn2 and obj2 � cn. In either case, since OID(cn1) = OID(cn2) by
the definition of ≡1, the result follows.

Task-Object Existence: If tsk � cn2 cn either tsk � cn2 or tsk � cn. In the
former case, if tsk = Tsk(o, l, s) then, since cn1 ≡1 cn2 and so cn2 is WF2, we
find obj � cn2 with OID(obj) = {o}. Otherwise, since cn1 cn ≡1 cn2 cn we find
o(o, a, u, qin, qout) � cn1 cn and hence by definition of ≡1, o(o, a, u, qin, qout) �
cn2 cn as well.

Object-Node Existence: If o(o, a, u, qin, qout) � cn2 cn, then either the container is
in cn2, which is WF2 and thus has a node u, or it is in cn, which means node u is
in cn1, which has the same network as cn2.

Buffer Cleanliness: If obj � cn2 cn either obj � cn2 or obj � cn. In the former
case we are done since cn2 is WF2. In the latter case, we get obj � cn1 cn and
cn1 cn is WF2, which is sufficient.

Local Routing Consistency: This is immediate since cn contains only object and
task containers.

Call Uniqueness: If call � cn2 and call ′ � cn, and there is a future clash, there
must be a clash between call ′ and some message in cn1. But this is ruled out since
cn1 cn is WF2.
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Future Uniqueness: Assume cn2 assigns v1 to f and cn assigns v2 to f and v1 6= v2.
Then, since cn1 ≡2 cn2, cn1 assigns v1 to f as well, violating WF2.

Single Writer: Assume tsk1, tsk2 � cn2 cn, with associated future identifiers f1 and
f2. Clearly, f1 6= f2, and both are unassigned, or else WF2 would be violated for
cn2 or cn1 cn. Assume call � cn2 cn with f ; then f is distinct from f1 and f2, or
there would have been a clash in cn2 or cn1 cn, ruled out by WF2.

External OID: cn2 is WF2, so ext /∈ OID(cn2). Also, cn1 cn is WF2, so ext /∈
OID(cn). Hence ext /∈ OID(cn2 cn). Also, if t is a routing table in cn2 cn it is a
routing table in cn2 and cn2 is WF2. Then ext /∈ dom(t), as required.

Future Liveness: Assume f is active for o in cn2 cn; then f is active for o in cn1 cn,
and thus on the notification path of f there. Hence, it is also on the notification
path of o in cn2 cn.

We next need to show that cn1 cn ≡1 cn2 cn. The WF2 property is immediate.
Suppose A1(cn1 cn) cn′

1 and A1(cn2 cn) cn′

2. It suffices to prove cn′

1 R1 cn′

2.
We check the requirements:

graph(cn′

1) = graph(cn1 cn) = graph(cn1) = graph(cn2) = graph(cn2 cn) =
graph(cn′

2).

t(cn′

1) = t(cn1 cn) = t(cn1) ∪ t(cn) = t(cn2) ∪ t(cn) = t(cn2 cn) = t(cn′

2).

o(cn′

1) ∼=1 o1(cn1 cn) = o1(cn1) ∪ o1(cn) ∼=1 o1(cn2) ∪ o1(cn) = o1(cn1 cn) ∼=1

o(cn′

2).

m(cn′

1) = m1(cn1 cn) = m1(cn1) ∪ m1(cn) = m1(cn2) ∪ m1(cn) = m1(cn2 cn) =
m(cn′

2).

Proposition 3.8.10. ≡1 is a type 2 witness relation.

Proof. Reduction closure and its converse follows from Lemma 3.8.8, and context
closure and its converse follows from Lemma 3.8.9. Hence, it suffices to show barb
preservation in both directions. Suppose cn1 ≡1 cn2 and cn1 ↓ obs. Then, there is
a call message msg with destination ext at the head of some self-loop queue in cn1.
After running Algorithm 1 on cn2, we will have external link messages, with msg

in some link queue. Using msg-delay-1 and msg-delay-3, msg can then be brought
to the head of some self-loop queue. Hence, cn2 ⇓ obs. The proof of converse barb
preservation is symmetric.

Proposition 3.8.13. Algorithm 2 terminates.

Proof. Routing is stable after each run of Algorithm 1, and none of the rules applied
in the outermost loop in the first outermost loop affect routing. Thus, one of msg-

send or msg-delay-2 will be enabled whenever the output outqueue is nonempty,
causing output queue size to decrease by one. By Buffer Cleanliness, one of call-

rcv-2 or fut-rcv will be applicable if the object in-queue is nonempty, decreasing
in-queue size by one. Thus, when the inner while loop is reached, each nonempty
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in-queue has decreased in size by one, and each out-queue may have increased in
size by one if the in-queue head position contains a delayed message.

Sending future messages may cause out-queues to increase in size. Each appli-
cation of fut-send causes a forwarding list to decrease in length by one. Thus,
termination of the inner while loop is clear. We need to argue that the outer loop
also terminates.

We first show that, eventually, no forwarding list is incremented. Only two rules
can cause forwarding lists to increase in size, namely call-send-2 and call-rcv-2.
Of these, call-send-2 is never used in either Algorithm 1 or Algorithm 2. Each
application of call-rcv-2 consumes one call message, and none of the rules cause
new call messages to be created. Thus, eventually, call-rcv-2 is never applied, and
from that point onward forwarding lists are either emptied completely by the in-
ner loop, or they remain untouched, since their corresponding future is undefined.
Futures can become instantiated by fut-rcv, but again, this can only happen a
bounded number of times. Moreover, the only rule causing futures to be created
is msg-send, so the supply of futures to consider is fixed. Consequently, eventu-
ally, each future either remains uninstantiated forever, or else the corresponding
forwarding list is empty. From that point onward, no fut-send is enabled, and the
innermost loop terminates trivially in all future iterations. In this situation, since
msg-send, call-rcv-2, and fut-rcv all consume messages from a bounded resource
(the set of messages in transit), if the outermost loop fails to terminate the only
option is that, from some point onwards, only msg-delay-2 is applied. From this
point onward, since routing is stable, all messages will eventually be delivered.

Termination of the final loop is trivial. Observe that Algorithm 2 does not
rely on routing to move the object towards u. For the algorithm, it is sufficient to
establish that some good direction exists, and this is clearly the case as the network
is stable and connected.

Proposition 3.8.15. If A2(cn) cn′, then

1. cn →∗ cn′,

2. cn′ is in normal form,

3. graph(cn) = graph(cn′),

4. t2(cn) = t(cn′),

5. o2(cn) = o(cn′), and

6. m2(cn) = m(cn′).

Proof. Property 1 is immediate. Property 3 follows from property 3 of Proposi-
tion 3.8.5.

For property 4, observe first that the function t2 is invariant under transitions used
in Algorithm 2. On termination of Algorithm 2, only external messages are in
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transit, and since no rule used in the algorithm modifies an existing task, property
4 follows.

For property 5, let o(o2, a2, u2, qin,2, qout,2) � o(cn′). We show that it is then
the case that o(o2, a2, u2, qin,2, qout,2) � o2(cn). From the definition of Algo-
rithm 2, qin,2 = qout,2 = ε. Also, u2 = u. We know that there is an object
container o(o, a′, u′′, qin, qout) � cn, since there is a one-to-one correspondence
between object containers in pre- and poststate for each transition used in Al-
gorithm 2. We also know that a′(x) = a2(x) for all x. Suppose finally that an
object container obj = o(o1, a1, u1, qin,1, qout,1) exists in cn with a1(f) = (v, o). Let
o(o1, a′

1, u′

1, q′

in,1, q′

out,1) be the derivative of obj in cn′. Then π1(a′

1(f)) = v as well,
by Proposition 3.6.12. We know by Future Uniqueness that a2(f) = (v′, o′) implies
v′ = v. It remains to show that π1(a2(f)) 6= ⊥. Assume not. We have that o2 is on
the notification path of f in n steps for some nonnegative integer n. We proceed
by induction on the notification path relation:

Case 1: n = 0, and π1(a2(f)) = v 6= ⊥. This yields a contradiction.

Case 2: n = 1, and there is future message future(o2, f, v′) � cn. This yields a
contradiction, since the only queued messages in cn′ are external.

Case 3: n = 1, and there is a task t(o2, l2, s2) � cn′ with l2(ret) = f . Then,
π1(a′

1(f)) = ⊥ by well-formedness, which is a contradiction.

Case 4: n = 2, and there is a call message call(o2, o′′, f, m, v) � cn′. This again
contradicts the assumption of having only external messages.

Case 5: n = 4, and there is a call message call(o′, o2, f, m, v) � cn′ such that
o′ ∈ OID(cn′). This again contradicts the assumption of having only external
messages.

Case 6: n = n′ + 2 and there is an object container o(o, a, u, qin, qout) � cn′ such
that o2 ∈ π2(a(f)), and o is on the notification path of f in n′ steps. Then, if we
have π1(a(f)) = v 6= ⊥, cn′ is not in normal form, a contradiction; alternatively,
we conclude by the IH.

Case 7: n = 2n′ + n′′ and there is an object container o(o′′, a, u, qin, qout) � cn′

such that o is on the notification path of f ′ by o′′ in n′ steps, f ′ is assigned to f ,
and there is an object container o(o′, a′, u′, qin, qout) � cn′ such that o′ is on the
notification path of f in n′′ steps. By the IH, we have π2(a′(f)) = v 6= ⊥ and
thus π2(a(f)) = v. Since f will have been forwarded down to o2, v will have been
forwarded down the same chain.

We can thus conclude that o(o2, a2, u2, qin,2, qout,2) � o2(cn). Conversely, as-
sume that o(o2, a2, u2, qin,2, qout,2) � o2(cn). Object o2 has exactly one derivative
in cn′, by well-formedness. That object has empty queues, the same NID as in cn,
preserves assignments to variables, and has π1(a2(f)) assigned to a non-⊥ value if
and only if some object in cn′ has so, by the above argument.

For 3.8.15.6, the property holds as it does so already for Algorithm 1.
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We finally need to prove property 2. Property 3.8.14.1 is trivial, as each run of
Algorithm 2 ends with a run of Algorithm 1, and Algorithm 1 ensures that cn′ has
stable routing. Property 3.8.14.2 holds since Algorithm 1 ensures almost empty
link queues, and since on termination, Algorithm 2 ensures empty object queues.
For 3.8.14.3, if obj = o(o, a, u′, ε, ε) satisfies the properties defining o2 above then,
referring to those conditions, u′ = u′′ = u, a′ = a, qin = ε = qout, and obj � cn′, as
needed to be shown. For 3.8.14.4, the result follows since only external messages
are in transit in cn′.

Lemma 3.8.19. ≡2 is reduction closed.

Proof. Suppose cn1 ≡2 cn2, where cn1 and cn2 are WF2. Assume cn1 → cn′

1;
we need to find cn′

2 such that cn2 →∗ cn′

2 and cn′

1 ≡2 cn′

2. We proceed by case
analysis on the transition cn1 → cn′

1, eliding uses of ctxt-1.
For the cases t-send, t-rcv, msg-send, msg-rcv, msg-route, msg-delay-1, msg-

delay-2, msg-delay-3, call-rcv-2, fut-send, fut-rcv, obj-reg, obj-send, and obj-

rcv, we take cn′

2 = cn2, since then, the normal form is unaffected, i.e., cn1 ≡2 cn′

1,
by Proposition 3.8.15.

The remaining cases include the rules for sequential control, call-send-2, ret-2,
get-2, and new-2. The rules for sequential control are handled in a structurally
similar way; take wfield-2 as an example, with a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e; s) → cn o(o, a[v/x], u, qin, qout) t(o, l, s)

where JeK(a,l) = v and x ∈ dom(a). Consider cn′′

2 such that A2(cn2)  cn′′

2 . By
Proposition 3.8.15, there is a task t(o, l, x = e; s) and an object o(o, a′, u′, ε, ε) in
cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a′, u′, ε, ε) t(o, l, x = e; s) → cn′ o(o, a′[v/x], u′, ε, ε) t(o, l, s)

and we have

cn o(o, a[v/x], u, qin, qout) t(o, l, s) ≡2 cn′ o(o, a′[v/x], u′, ε, ε) t(o, l, s)

as needed, setting cn′

2 to the right-hand side.

call-send-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e1!m(e2); s)

→ cn o(o, fw(v, o′, init(f, a)), u, qin, enq(msg, qout)) t(o, l[f/x], s)

where v = Je2K(a,l), f = newf(u), msg = call(o′, o, f, m, v), and o′ = Je1K(a,l).
Consider cn′′

2 such that A2(cn2)  cn′′

2 . By Proposition 3.8.15, there is a task
t(o, l, x = e1!m(e2); s) and an object o(o, a′, u′, ε, ε) in cn′′

2 with Je2K(a′,l) = v and
Je1K(a′,l) = o′. Hence, it is possible to perform a transition

cn′ o(o, a′, u′, ε, ε) t(o, l, x = e1!m(e2); s)

→ cn′ o(o, fw(v, o′, init(f, a′)), u′, ε, enq(msg, ε)) t(o, l[f/x], s)



3.13. PROOFS 145

and we have

cn o(o, fw(v, o′, init(f, a)), u, qin, enq(msg, qout)) t(o, l[f/x], s)

≡2 cn′ o(o, fw(v, o′, init(f, a′)), u′, ε, enq(msg, ε)) t(o, l[f/x], s)

as needed, setting cn′

2 to the right-hand side.

ret-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, return e; s) → cn o(o, a[v/f ], u, qin, qout)

where v = JeK(a,l) and f = l(ret). Consider cn′′

2 such that A2(cn2)  cn′′

2 . By
Proposition 3.8.15, there is a task t(o, l, return e; s) and an object o(o, a′, u′, ε, ε)
in cn′′

2 where JeK(a′,l) = v. Hence, it is possible to perform a transition

cn′ o(o, a′, u′, ε, ε) t(o, l, return e; s) → cn′ o(o, a′[v/f ], u′, ε, ε)

and we have

cn o(o, a[v/f ], u, qin, qout) ≡2 cn′ o(o, a′[v/f ], u′, ε, ε)

as needed, setting cn′

2 to the right-hand side.

get-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = e.get; s) → cn o(o, a, u, qin, qout) t(o, l[v/x], s)

where JeK(a,l) = f and π1(a(f)) = v. Consider cn′′

2 such that A2(cn2)  cn′′

2 . By
Proposition 3.8.15, there is a task t(o, l, x = e.get; s) and an object o(o, a′, u′, ε, ε)
in cn′′

2 where JeK(a′,l) = f and π1(a′(f)) = v. Hence, it is possible to perform a
transition

cn′ o(o, a′, u′, ε, ε) t(o, l, x = e.get; s) → cn′ o(o, a′, u′, ε, ε) t(o, l[v/x], s)

and we have

cn o(o, a, u, qin, qout) t(o, l[v/x], s) ≡2 cn′ o(o, a′, u′, ε, ε) t(o, l[v/x], s)

as needed, setting cn′

2 to the right-hand side.

new-2: Consider a transition of the form

cn o(o, a, u, qin, qout) t(o, l, x = new C(e); s)

→ cn o(o, a′, u, qin, qout) t(o, l[o′/x], s) o(o′, a′′, u, ε, ε)

where o′ = newo(u), v = JeK(a,l), a′ = fw(v, o′, a), and a′′ = init(v, init(C, v, o′)).
Consider cn′′

2 such that A2(cn2)  cn′′

2 . By Proposition 3.8.15, there is a task
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t(o, l, x = new C(e); s) and an object o(o, a1, u′, ε, ε) in cn′′

2 where JeK(a1,l) = v and
π1(a1(f)) = v. Hence, it is possible to perform a transition

cn′ o(o, a1, u′, ε, ε) t(o, l, x = new C(e); s)

→ cn′ o(o, a′

1, u′, ε, ε) t(o, l[o′/x], s) o(o′, a′′, u′, ε, ε)

and we have

cn o(o, a′, u, qin, qout) t(o, l[o′/x], s) o(o′, a′′, u, ε, ε)

≡2 cn′ o(o, a′

1, u′, ε, ε) t(o, l[o′/x], s) o(o′, a′′, u′, ε, ε)

as needed, setting cn′

2 to the right-hand side.

Lemma 3.8.20. ≡2 is context closed.

Proof. The proof follows the proof of Lemma 3.8.9. Assume cn1 ≡2 cn2 and cn1 cn

is WF2. We first show that cn2 cn is WF2 as well.

OID Uniqueness: If obj1, obj2 � cn2 cn either obj1, obj2 � cn2, obj1, obj2 � cn, or
(wlog) obj1 � cn2 and obj2 � cn. In either case, since OID(cn1) = OID(cn2) by
the definition of ≡2, the result follows.

Task-Object Existence: If tsk � cn2 cn either tsk � cn2 or tsk � cn. In the former
case, if tsk = t(o, l, s) then, since cn1 ≡2 cn2 and so cn2 is WF2, we find obj � cn2

with OID o. Otherwise, since cn1 cn ≡2 cn2 cn we find o(o, a, u, qin, qout) � cn1 cn

and hence by definition of ≡2, o(o, a′, u′, q′

in, q′

out) � cn2 cn as well.

Object-Node Existence: If o(o, a, u, qin, qout) � cn2 cn, then either the container is
in cn2, which is WF2 and thus has a node u, or it is in cn, which means node u is
in cn1, which has the same network as cn2.

Buffer Cleanliness: If obj � cn2 cn either obj � cn2 or obj � cn. In the former
case we are done since cn2 is WF2. In the latter case, we get obj � cn1 cn and
cn1 cn is WF2, which is sufficient.

Local Routing Consistency: This is immediate since cn contains only object and
task containers.

Call Uniqueness: If call � cn2 and call ′ � cn, and there is a future clash, there
must be a clash between call ′ and some message in cn1 or a task in cn1. But this
is ruled out since cn1 cn is WF2.

Future Uniqueness: Assume cn2 assigns v1 to f and cn assigns v2 to f and v1 6= v2.
Then, since cn1 ≡2 cn2, cn1 assigns v1 to f as well, violating WF2.

Single Writer: Assume tsk1, tsk2 � cn2 cn, with associated future identifiers f1 and
f2. Clearly, f1 6= f2, and both are unassigned, or else WF2 would be violated for
cn2 or cn1 cn. Assume call � cn2 cn with f ; then f is distinct from f1 and f2, or
there would have been a clash in cn2 or cn1 cn, ruled out by WF2.
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External OID: If ext ∈ OID(cn2 cn), then ext ∈ OID(cn), which is ruled out by
WF2; the second requirement is immediate since cn2 is WF2 and cn contains no
nodes.

Future Liveness: Assume f is active for o in cn2 cn; then f is active for o in cn1 cn,
and thus on the notification path of f there. Hence, it is also on the notification
path of o in cn2 cn.

We next need to show that cn1 cn ≡2 cn2 cn. The WF2 property is immediate.
Suppose A2(cn1 cn) cn′

1 and A2(cn2 cn) cn′

2. It suffices to prove cn′

1 R2 cn′

2.
We check the requirements:

graph(cn′

1) = graph(cn1 cn) = graph(cn1) = graph(cn2) = graph(cn2 cn) =
graph(cn′

2).

Since t2(cn1) = t2(cn2), we have t2(cn1 cn) = t2(cn2 cn). Hence, t(cn′

1) =
t2(cn1 cn) = t2(cn2 cn) = t(cn′

2).

Since o2(cn1) = o2(cn2), we have o2(cn1 cn) = o2(cn2 cn). Hence, o(cn′

1) =
o2(cn1 cn) = o2(cn2 cn) = o(cn′

2).

m(cn′

1) = m2(cn1 cn) = m2(cn1) ∪ m2(cn) = m2(cn2) ∪ m2(cn) = m2(cn2 cn) =
m(cn′

2).

Proposition 3.9.1. Let cn0 be a type 1 well-formed root configuration in standard
form, and ℘0 be a pool as above. Then, rep(a)(f) = (v, ε) if and only if f(f, v) �
cn0.

Proof. By well-formedness, the future container, if it exists, is unique. Pick a name
representation map rep. Then, oenvmap(cn0, ℘0, rep)(f) is defined and equal to v
if and only if f(f, v) � cn0. This is easily seen by induction on the structure of
cn0.

Proposition 3.9.3. If bind z.cn is a WF1 configuration in standard form, then
net(cn) is WF2.

Proof. We consider the WF2 conditions in turn. OID Uniqueness and Task-Object
Existence follows from the respective WF1 conditions and from how the name rep-
resentation map is defined. Object-Node Existence holds since all objects are placed
on the node u0, which exists by the definition of cngraph. Buffer Cleanliness holds
since all object containers in net(cn) have empty queues. Local Routing Consis-
tency follows from how routing tables in cngraph are defined. Call Uniqueness fol-
lows from the corresponding WF1 condition and from how the name representation
map is defined. Future Uniqueness follows the definition of oenvmap, how object
environments are represented, and from Proposition 3.9.1. Single Writer follows
the corresponding WF1 condition and from how the name mapping representation
map is defined. External OID follows from the corresponding WF1 condition and
from how routing tables are defined.

Consider finally Future Liveness. Assume o(o, a, u, qin, qout) � net(cn). Note
that by the way we define future mappings in object environments, we have that,
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whenever f is active for o in net(cn), a(f) ↓ holds. Suppose therefore that a(f) ↓.
Then, there must be some future container for the FID corresponding to f in
bind z.cn with lifted value v⊥. If v⊥ 6= ⊥, then a(f) = (v, ε) for some value v,
which means that o is trivially on the notification path of f in net(cn). If v⊥ = ⊥,
there is, by Future Existence, some task or some call message associated with f for
some object o′ in net(cn), and, additionally, o′ will have o in its forwarding list for
f ; hence o is on the notification path of f in this case also.

Suppose finally that net(cn) assigns f to f ′, and o is on the notification path of
f ′. There must then be a corresponding assignment in bind z.cn, which by Future
Existence yields that there is future container for the future corresponding to f
with lifted value v⊥. If v⊥ 6= ⊥, then a(f) = (v, ε) for some value v, which means
that o is trivially on the notification path of f . If v⊥ = ⊥, there is again, by Future
Existence, some task or some call message associated with f for some object o′ in
net(cn), and, additionally, o′ will have o in its forwarding list for f ; hence o is on
the notification path of f in this case also.

Proposition 3.9.8. Let cn1 and cn2 be WF2 configurations such that cn1 > cn2.
Then, if o is on the notification path of f by o2 in n steps in cn2, o is on the
notification path of f by some o1 in at most n steps in cn1, such that the notification
path from o to o2 in cn2 traverses o1.

Proof. Suppose o(o, a1, u, qin, qout) � cn1 and o(o, a2, u, qin, qout) � cn2. The proof
is by induction on the notification path relation.

Case 1: n = 0, o2 = o, and π1(a2(f)) = v. Then, we have π1(a1(f)) = v, and we
set n = 0 and o1 = o.

Case 2: n = 1, o2 = o, and there is a message future(o, f, v) � cn2. Since messages
are unaffected by extension, the same message is in cn1, and we set n = 1 and
o1 = o.

Case 3: n = 1, o2 = o, and there is a task t(o, l, s) � cn2, such that l(ret) = f .
Since task containers are unaffected by extension, the same container is in cn1, and
we set n = 1 and o1 = o.

Case 4: n = 2, o2 = o, and there is a call message call(o, o′′, f, m, v) � cn2. Then,
the same message is in cn1, and we set n = 2 and o1 = o.
Case 5: n = 4 and there is a message call(o2, o, f, m, v) � cn2. Then, the same
message is in cn1, and we set n = 3 and o1 = o2.

Case 6: n = n′

2 + 2, and there is an object o(o′, a′

2, u′, q′

in, q′

out) � cn2 such that
o ∈ π2(a′

2(f)), and o′ is on the notification path of f by o2 in n′

2 steps in cn2. As
induction hypothesis, we have that o′ is on the notification path of f by some o′

1 in
some number n′

1 steps (n′

1 ≤ n′

2) in cn1. Consider the object o(o′, a′

1, u′, q′

in, q′

out) �
cn1; by the definition of extended object container, we have that o is forwarding
resolved for f in cn1 at o′. This means that either o ∈ π2(a′

1(f)) or π1(a1(f)) = v,
where cn1 assigns v to f . In the first case, we set n = n′

1 + 2 and o1 = o′

1. In the
second case, we set n = 0 and o1 = o.
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Case 7: n = 2n′

2 + n′′

2 , and o is on the notification path of f ′ by o′

2 in n′

2 steps in
cn2, cn2 assigns f to f ′, and o′

2 is on the notification path of f by o2 in n′′

2 steps in
cn2. Since no configuration future assignments are changed by extension, we have
that cn1 assigns f to f ′. As induction hypotheses, we have first that o is on the
notification path of f ′ by some o′

1 in some n′

1 steps (n′

1 ≤ n′

2) in cn1, such that the
notification path from o to o′

2 in cn2 traverses o′

1. Second, we have that o′

2 is on
the notification path of f by some o′′

1 in some n′′

1 steps (n′′

1 ≤ n′′

2) in cn1. Since
the path from o to o′

2 in cn2 traverses o′

1, and because of forward resolution in cn1,
o′

1 is on the notification path of f by o′′

1 in at most n = 2n′

2 + n′′

1 steps, setting
o1 = o′′

1 .

Proposition 3.9.9. If cn1 and cn2 are WF2 configurations such that cn1 > cn2

and there are cn′

1 and cn′

2 such that A2(cn1)  cn′

1, and A2(cn2)  cn′

2, then
cn′

1 > cn′

2.

Proof. Let obj = o(o, a′

1, u, ε, ε) be an object container in cn′

1 and let obj ′ =
o(o, a′

2, u, ε, ε) be the corresponding container in cn′

2. There must then be a con-
tainer o(o, a1, u′, qin, qin) � cn1 and a container o(o, a2, u′, qin, qin) � cn2.

Case 1: We have a2(x) = a1(x) for all x, and a2(self) = a1(self). Since normal-
ization does not affect object-environment variable-value mappings, we get that
a′

2(x) = a′

1(x), for all x, and a′

2(self) = a′

1(self).

Case 2: Suppose π1(a′

2(f)) = v. Then, cn2 must assign v to f , and o must be on
the notification path of f in cn2. Consequently, by Proposition 3.9.8, o is then on
the notification path of f in cn1, while also assigning v to f . Hence, it is the case
that π1(a′

1(f)) = v.

Case 3: Suppose o′′ ∈ π2(a′

2(f)). Then, f is unresolved at o in cn′

2, i.e. π1(a′

2(f)) =
⊥, and thus f is unassigned in cn′

2. Consequently, f is unassigned at o in cn2,
and hence also in cn1. We now have two cases. Assume first o′′ ∈ π2(a2(f));
then, o′′ ∈ π2(a1(f)) and consequently o′′ ∈ π2(a′

1(f)), as needed. Assume next
there is some sequence of futures f1, f2, . . . , fn such that cn2 assigns fi+1 to fi for
1 ≤ i < n, cn2 assigns f to fn, and o′′ ∈ π2(a2(f1)). By well-formedness, o is on
the notification path of f1, f2, . . . , fn in cn2, and hence also in cn1. By assumption,
we have that o′′ is forwarding resolved for f1 in cn1 at o, which means that either
o′′ ∈ π2(a1(f1)) or that o′′ is forwarding resolved for f2 in cn1 at o, etc. Hence, it
will be the case that o′′ ∈ π2(a′

1(f)), as needed.

Case 4: Suppose π1(a′

1(f)) = v. Then, cn′

1 assigns v to f , and consequently, so
does cn′

2, and hence, since normalization does not affect future assignments, so does
cn1 and cn2. If v ∈ PVal, we can then conclude. Assume instead v = f ′ ∈ FID.
Assume π1(a1(f)) = f ′; this means that o is on the notification path of f ′ in cn1

and thus in cn′

1. Otherwise, o must be on the notification path of f in cn1 (in some
number of steps greater than 0), which means that o is also on the notification path
of f in cn′

1, as needed.
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Case 5: Suppose o′′ ∈ π2(a′

1(f)). Then, f is unresolved at o in cn′

1, i.e. π1(a′

1(f)) =
⊥, and thus f is unassigned in cn′

1. Consequently, f is unassigned at o in cn1, and
hence also in cn2. Suppose o′′ ∈ π2(a1(f)). Then either o′′ ∈ π2(a2(f)) or both
o′′ ∈ OID(cn2) and o is on the notification of f in cn1. Assume the former; we then
have o′′ ∈ π2(a′

2(f)) as required. Assume the latter; then we have o′′ ∈ OID(cn′

2)
and o is still on the notification path of f in cn′

1, as needed.

Lemma 3.9.11. ∼=2 is reduction closed.

Proof. Suppose that cn1
∼=2 cn2 and that A2(cn1) cn′′

1 > cn′′

2  A2(cn2). Then
cn1 and cn2 are WF2. We proceed by case analysis on the transition cn1 → cn′

1,
eliding uses of ctxt-1. For the cases t-send, t-rcv, msg-send, msg-rcv, msg-route,
msg-delay-1, msg-delay-2, msg-delay-3, call-rcv-2, fut-send, fut-rcv, obj-reg,
obj-send, and obj-rcv, the configuration cn′

1 is fundamentally unchanged, so we
set cn′

2 = cn2 and have A2(cn′

1) cn′′

1 > cn′′

2  A2(cn′

2).
The remaining cases include the rules for assignment and sequential control in

Figure 3.3, call-send-2, ret-2, get-2, and new-2. The rules for sequential control
are handled in a structurally similar way; take wfield-2 as an example, with a
transition from cn1 to cn′

1 of the form

cn o(o, a, u, qin, qout) t(o, l, x = e; s) → cn o(o, a[v/x], u, qin, qout) t(o, l, s)

where x ∈ dom(a) and v = JeK(a,l). By the definition of >, there is a task con-
tainer t(o, l, x = e; s) and an object container o(o, a′, u′, ε, ε), where a′ has the same
variable-value mappings as a, in cn′′

2 . Hence, it is possible to perform a transition

cn′ o(o, a′, u′, ε, ε) t(o, l, x = e; s) → cn′ o(o, a′[v/x], u′, ε, ε) t(o, l, s)

and we have that

cn o(o, a[v/x], u, qin, qout) t(o, l, s) ∼=2 cn′ o(o, a′[v/x], u′, ε, ε) t(o, l, s) ,

setting cn′

2 to the right-hand side. This is the case since the transition does not
change future-value mappings in any object container.

call-send-2: Consider a transition of the form

cn o(o, a1, u1, qin, qout) t(o, l, x = e1!m(e2); s))

→ cn o(o, a′

1, u1, qin, enq(call(o′, o, f, m, v), qout)) t(o, l[f/x], s)

where o′ = Je1K(a1,l), v = Je2K(a1,l), f = newf(u1), and a′

1 = fw(v, o′, init(f, a1)).
By the definition of extension, we have that t(o, l, x = e1!m(e2); s) � cn′′

2 and
that there is some container o(o, a2, u, ε, ε) � cn′′

2 , with the same variable-value
mappings as o in cn1. Hence, we can perform a transition

cn′ o(o, a2, u, ε, ε) t(o, l, x = e1!m(e2); s)

→ cn′ o(o, a′

2, u, ε, enq(call(o′, o, f, m, v), ε)) t(o, l[f/x], s)
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where a′

2 = fw(v, o′, init(f, a2)). It now suffices to show that

cn o(o, a′

1, u1, qin, enq(call(o′, o, f, m, v), qout)) t(o, l[f/x], s)
∼=2 cn′ o(o, a′

2, u, ε, enq(call(o′, o, f, m, v), ε)) t(o, l[f/x], s)

referring to the left-hand side as cn′

1 and the right-hand side as cn′

2. Compared to
the corresponding configurations before the transition, the only changes are that a
task has progressed, a call message has been generated, and forwardings added to
o′ for the futures in v. Since the configurations are WF2, o is on the notification
path of the futures in v. Hence, the changes effected by the transitions are the same
for both configurations. Consequently, the equivalence holds.

ret-2: Consider a transition of the form

cn o(o, a1, u1, qin, qout) t(o, l, return e; s) → cn o(o, a1[v/f ], u1, qin, qout)

where v = JeK(a1,l) and f = l(ret). By the definition of extension, we have that
t(o, l, return e; s) � cn′′

2 , and that there is some container o(o, a2, u, ε, ε) � cn′′

2

such that v = JeK(a2,l). Hence, we can perform a transition

cn′ o(o, a2, u, ε, ε) t(o, l, return e; s) → cn′ o(o, a2[v/f ], u, ε, ε)

and we wish to prove that

cn o(o, a1[v/f ], u1, qin, qout) ∼=2 cn′ o(o, a2[v/f ], u, ε, ε)

referring to the left-hand side as cn′

1 and the right-hand side as cn′

2. Note that
f must be unresolved in cn1 and cn2, and hence cn′′

2 , by well-formedness. After
running Algorithm 2, v will be resolved at all objects that are on the notification
path of f in either configuration. Additionally, if v ∈ FID, the assigned value of
that future, if available, will also have been distributed, and so on. The external
messages resulting from both cn′

1 and cn′

2 will be the same, since the definition of
extension does not permit the addition of forwardings to external OIDs.

get-2: Consider a transition of the form

cn o(o, a1, u1, qin, qout) t(o, l, x = e.get; s) → cn o(o, a1, u1, qin, qout) t(o, l[v/x], s)

where JeK(a1,l) = f and π1(a1(f)) = v. By the definition of extension and well-
formedness, we have that t(o, l, x = e.get; s) � cn′′

2 and that there exists some
o(o, a2, u, ε, ε) � cn′′

2 such that JeK(a2,l) = f and π(a2(f)) = v. Hence, we can
perform a transition

cn′ o(o, a2, u, ε, ε) t(o, l, x = e.get; s) → cn′ o(o, a2, u, ε, ε) t(o, l[v/x], s)

and we have that

cn o(o, a1, u1, qin, qout) t(o, l[v/x], s) ∼=2 cn′ o(o, a2, u, ε, ε) t(o, l[v/x], s)
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setting cn′

2 to the right-hand side. In the same way as for wfield-2, this is the
case since the transition does not change the future-value mappings in any object
container.

new-2: Consider a transition of the form

cn o(o, a1, u1, qin, qout) t(o, l, x = new C(e); s)

→ cn o(o, a′

1, u1, qin, qout) t(o, l[o′/x], s) o(o′, a′, u1, ε, ε)

where it is the case that o′ = newo(u1), v = JeK(a1,l), a′ = init(v, init(C, v, o′)),
and a′

1 = fw(v, o′, a1). By the definition of extension, we have that t(o, l, x =
new C(e); s) � cn′′

2 and that there is some o(o, a2, u, ε, ε) � cn′′

2 such that JeK(a2,l) =
v. We can then perform a transition

cn′ o(o, a2, u, ε, ε) t(o, l, x = new C(e); s)

→ cn′ o(o, a′

2, u, ε, ε) t(o, l[o′/x], s) o(o′, a′, u, ε, ε)

where a′

2 = fw(v, o′, a2). We wish to prove that

cn o(o, a′

1, u1, qin, qout) t(o, l[o′/x], s) o(o′, a′, u1, ε, ε)
∼=2 cn′ o(o, a′

2, u, ε, ε) t(o, l[o′/x], s) o(o′, a′, u, ε, ε)

referring to the left-hand side as cn′

1 and the right-hand side as cn′

2. Note that
the only added forwardings through the transition are from o to o′, and that they
will be for the same futures in both cn′

1 and cn′

2, by well-formedness. Hence, af-
ter running Algorithm 2, there will be an object container o(o′, a′′, u, ε, ε) in both
resulting configurations, where all futures that are assigned in the original config-
urations are resolved. In addition both resulting configurations will contain the
task t(o, l[o′/x], s). It remains to argue that the object container with OID o in
the configuration resulting from cn′

1 extends the corresponding object container
resulting from cn′

2. The only difference between the containers compared to their
counterparts in cn′′

1 and cn′′

2 is the possible addition of o′ in some forwarding lists;
however, these additions will be the same for both containers, so extension still
holds.

The same arguments are valid with minor changes for the case when cn′′

2 > cn′′

1 .

Lemma 3.9.12. ∼=2 is context closed.

Proof. Suppose cn1
∼=2 cn2, and let cn be a context configuration. We then have

that cn1 and cn2 are WF2.
Assume cn1 > cn2 and that cn1 cn is WF2. We first show that cn2 cn

is WF2. For OID Uniqueness, note that OID(cn1) = OID(cn2) by the defini-
tion of extension; hence, any OID clash violates the well-formedness of cn1 cn.
For Task-Object Existence, it suffices to consider the case t(o, l, s) � cn and
o(o, a, u, qin, qout) � cn1); by the definition of ∼=2, there is then also an object con-
tainer with OID o. Object-Node Existence follows from graph(cn1) = graph(cn2),
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which holds by the definition of ∼=2. Buffer Cleanliness distributes over composition
and thus holds for cn1, cn and cn2 separately. Local Routing Consistency only con-
cerns nodes, which are unaffected by adding the context cn. Call Uniqueness holds
since messages in cn2 cn are either from cn, correspond to some message or task
(which is a single writer) in cn1; Single Writer holds for similar reasons. External
OID follows again by noting that nodes are unchanged when applying cn.

For Future Liveness, assume that o(o, a, u, qin, qout) � cn2 cn, and either f is
active for o in cn2 cn, a(f) ↓, or cn2 cn assigns f to f ′ and o is on the notification
path of f ′. Assume without loss of generalization that o(o, a, u, qin, qout) � cn,
since the property already holds in cn2 separately. We consider the cases in turn.
Suppose f is active for o in cn2 cn; then f is also active for o in cn1 cn, so o is on
the notification path of f in cn1 cn. If the path in cn1 cn from which o can receive
f traverses some o′ ∈ OID(cn1), there must be an equivalent path in cn2 cn, since
extension does not change forwardings to configuration-external OIDs. The case
where the path does not go outside of cn is even simples. The other cases hold for
similar reasons.

The converse of this well-formedness argument, that cn1 cn is WF2 whenever
cn2 cn is WF2, holds with only minor changes to the above reasoning.

Assume that A2(cn1)  cn′

1 > cn′

2  A2(cn2). Let A2(cn1 cn)  cn′′

1 and
A2(cn2 cn)  cn′′

2 . Well-formedness holds from the above reasoning. We wish to
prove that cn′′

1 > cn′′

2 . We consider the conditions in turn.

graph(cn′′

1) = graph(cn1 cn) = graph(cn1) = graph(cn2) = graph(cn2 cn) =
graph(cn′′

2).

m(cn′′

1) = m2(cn1 cn) = m2(cn1) ∪ m2(cn) = m2(cn2) ∪ m2(cn) = m2(cn2 cn) =
m(cn′′

2).

Since t2(cn1) = t2(cn2), we have t2(cn1 cn) = t2(cn2 cn). Hence, t(cn′′

1) =
t2(cn1 cn) = t2(cn2 cn) = t(cn′′

2).

Consider obj = o(o, a1, u, ε, ε) � cn′′

1 and obj ′ = o(o, a2, u, ε, ε) � cn′′

2 . We want
to argue that obj extends obj ′. Suppose the containers are derived from an object
container o(o, a, u, qin, qout) � cn.

Case 1: Since Algorithm 2 does not affect self or stored values, we have a2(self) =
a1(self) and a2(x) = a1(x) for all x.

Case 2: Assume π1(a2(f)) = v. Then, if π1(a(f)) = v, we also have π1(a1(f)) =
v. Suppose π1(a(f)) = ⊥; then, o is on the notification path of f in cn2 cn,
and cn2 cn assigns v to f . If the notification path traverses o′ ∈ OID(cn), a
corresponding notification path will traverse o′ in cn1 cn, since the forwardings and
external future messages of cn1 and cn2 to external objects coincide after running
Algorithm 2. Consequently, o is also on the notification path of f in cn1 cn, and
we have π(a1(f)) = v by well-formedness and the definition of Algorithm 2.

Case 3: Assume o′′ ∈ π2(a2(f)). Then, f is unresolved in cn1 cn and cn2 cn.
We need to argue that o′′ is forwarding resolved for o in cn′′

1 . Suppose that o′′ ∈
π2(a(f)); then clearly o′′ ∈ π2(a1(f)). Suppose o′′ /∈ π2(a(f)); then there must
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some sequence of futures f1, . . . , fn, such that cn1 cn and cn2 cn assign fi to
fi+1 for 1 ≤ i < n, assign f to fn, and additionally o′′ ∈ π2(a(f1)) and o is
on the notification path of f1. After running Algorithm 2, we will clearly have
o′′ ∈ π2(a1(f)).

Case 4: Assume π1(a1(f)) = v. Then, either cn1 or cn assigns v to f , which implies
that either cn2 or cn assigns v to f . Suppose v = f ′ ∈ FID. If π1(a(f)) = f ′, o is
on the notification path of f ′ in cn′′

1 by well-formedness.

Case 5: Assume o′′ ∈ π2(a1(f)). Then f is unassigned and on the notification path
of o in cn1 cn and consequently also in cn2 cn. Since external forwardings and
messages are the same in cn1 and cn2, the forwarding for o′′ was added either by
some internal message in cn or by a message or forwarding present in both cn1 and
cn2. Consequently, o′′ ∈ π2(a2(f)).

Proposition 3.9.13. ∼=2 is a type 2 witness relation.

Proof. By Lemma 3.9.11 and Lemma 3.9.12, it suffices to prove barb preservation
in both directions. Assume without loss of generalization that A(cn1)  cn′

1 >
cn′

2  A(cn2). Suppose cn1 ↓ obs, where obs = ext!m(v); then msg � cn1 with
msg = call(ext, o, f, m, v), whence msg � cn′

1. By the definition of extension, we
then have msg � cn′

2, such that msg is in some link queue. It is then possible to
repeatedly use the rule msg-delay-3 to reach a configuration cn′′

2 where msg is at
the top of that link queue. We thus have cn2 →∗ cn′

2 →∗ cn′′

2 ↓ obs, and conclude
that cn2 ⇓ obs. The proof of the converse property is symmetric.

Lemma 3.9.14. Suppose that cn′ is WF2, and cn > cn′. Then, cn is WF2 as
well, and cn ≃2 cn′.

Proof. It suffices to prove that cn is WF2, since we then have that cn ∼=2 cn′ by
Proposition 3.9.9, which by Proposition 3.9.13 implies that cn ≃2 cn′. Note that
every WF2 clause except Single Writer and Future Liveness holds straightforwardly
in cn from the assumption that cn′ is WF2, since only future maps in object con-
tainers are different. For Single Writer, note that cn does not introduce mappings
for unused futures, and does not introduce new messages. For Future Liveness,
assume some f is active for o in cn; then f is active for o in cn′, and therefore, o is
on the notification path of f in cn′. Then, since cn does not remove any OIDs from
forwarding lists or any instantiations of futures, o must still be on the notification
path of in cn (possibly with fewer steps).

Lemma 3.9.15. Let bind z.cn be a WF1 configuration in standard form.

1. If bind z.cn → bind z′.cn′, then for some cn′′, net(cn) →∗ cn′′ ∼=2 net(cn′).

2. If net(cn) → cn′′, then for some z′ and cn′, bind z.cn →∗ bind z′.cn′ and
cn′′ ∼=2 net(cn′).
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Proof. 1. We proceed by cases on the nature of the given type 1 transition. Let

bind z.cn → bind z′.cn′.

Fix cngraph and a name representation map rep. As above we elide uses of ctxt-1

in both semantics by applying the rules to arbitrary configuration subsets, and we
elide uses of ctxt-2 in the type 1 semantics, by considering transitions in arbitrary
binding contexts. Each of the remaining transitions in Figure 3.1 immediately trans-
lates into a corresponding transition at type 2 level, and moreover, the resulting
type 2 configuration is in normal form.

Consider for instance rule wfield. We obtain a type 1 transition of the form

bind z.cn o(o, a) t(o, l, x = e; s) → bind z.cn o(o, a[v/x]) t(o, l, s)

where x ∈ dom(a) and v = JeK(a,l). Let v′ = JeK(rep(a),rep(l)); then rep(v) = v′ by
Equation 3.1. We obtain:

net(cn o(o, a) t(o, l, x = e; s))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦ net(t(o, l, x = e; s), rep))(cngraph)

= net(cn, rep)(net(o(o, a), rep)(net(t(o, l, x = e; s), rep)(cngraph)))

= net(cn, rep)(net(o(o, a), rep)(t(rep(o), rep(l), x = e; s) cngraph))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), x = e; s) cngraph)

→ net(cn, rep)(o(rep(o), rep(a)[v′/x], u0, ε, ε) t(rep(o), rep(l), s) cngraph)

= net(cn, rep)(o(rep(o), rep(a[v/x]), u0, ε, ε) t(rep(o), rep(l), s) cngraph)

= net(cn o(o, a[v/x]) t(o, l, s))

using the rule wfield-2 to derive the transition.

Similar rules are proved in the same way. We turn to the remaining rules.

call-send: Consider the following type 1 transition:

bind z.cn o(o, a) t(o, l, x = e1!m(e2); s)

→ bind f z.cn o(o, a) t(o, l[f/x], s) f(f, ⊥) c(o′, f, m, v)
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where o′ = Je1K(a,l) and v = Je2K(a,l). We calculate:

net(cn o(o, a) t(o, l, x = e1!m(e2); s))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦

net(t(o, l, x = e1!m(e2); s), rep))(cngraph)

= net(cn, rep)(net(o(o, a), rep)

(net(t(o, l, x = e1!m(e2); s), rep)(cngraph)))

= net(cn, rep)(net(o(o, a), rep)

(t(rep(o), rep(l), x = e1!m(e2); s) cngraph))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε)

t(rep(o), rep(l), x = e1!m(e2); s) cngraph)

→ ◦ ∼=2 net(cn, rep′)(o(rep′(o), fw(rep′(v), rep′(o′), init(f ′, rep′(a))),

u0, ε, enq(call(rep′(o′), rep′(o), f ′, m, rep′(v)), ε))

t(rep′(o), rep′(l)[f ′/x], s) cngraph)

≡2 net(cn, rep′)(send(call(rep′(o′), rep′(o′), f ′, m, rep′(v)),

o(rep′(o), fw(rep′(v), rep′(o′), init(f ′, rep′(a))), u0, ε, ε)

t(rep′(o), rep′(l)[f ′/x], s) cngraph))

= net(cn, rep′)(send(call(rep′(o′), rep′(o′), f ′, m, rep′(v)),

o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l)[f ′/x], s) cngraph))

= net(cn o(o, a) t(o, l[f/x], s) f(f, ⊥) c(o′, f, m, v))

using call-send-2, and where f ′ = newf(u0) and rep′ = rep[f ′/f ].

call-rcv: Consider the following type 1 transition:

bind z.cn o(o, a) c(o, f, m, v) → bind z.cn o(o, a) t(o, l, s)

where l = locals(o, f, m, v) and s = body(o, m). We calculate:

net(cn o(o, a) c(o, f, m, v))

= (net(cn, rep) ◦ net(o(o, a), rep) ◦ net(c(o, f, m, v), rep))(cngraph)

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε)

send(call(rep(o), rep(o), rep(f), m, rep(v)), cngraph))

≡2 net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), s) cngraph)

= net(cn o(o, a) t(o, l, s))

ret: Consider the following type 1 transition:

bind z.cn o(o, a) t(o, l, return e; s) f(f, ⊥) → bind z.cn o(o, a) f(f, v)
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where l(ret) = f and v = JeK(a,l). We calculate:

net(cn o(o, a) t(o, l, return e; s) f(f, ⊥))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε)

t(rep(o), rep(l), return e; s) cngraph)

→ ◦ ∼=2 net(cn, rep)(o(rep(o), rep(a)[rep(v)/rep(f)], u0, ε, ε) cngraph)

= net(cn o(o, a) f(f, v))

using ret-2.

get: Consider the following type 1 transition:

bind z.cn o(o, a) f(f, v) t(o, l, x = e.get; s) → bind z.cn o(o, a) f(f, v) t(o, l[v/x], s)

where f = JeK(a,l). We calculate:

net(cn o(o, a) f(f, v) t(o, l, x = e.get; s))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l), x = e.get; s) cngraph)

→ net(cn, rep)(o(rep(o), rep(a), u0, ε, ε) t(rep(o), rep(l)[rep(v)/x], s) cngraph)

= net(cn o(o, a) f(f, v) t(o, l[v/x], s))

using get-2.

new: Consider the following type 1 transition:

bind z.cn o(o, a) t(o, l, x = new C(e); s) → bind o′ z.cn o(o, a) t(o, l[o′/x], s) o(o′, a′)

where v = JeK(a,l) and a′ = init(C, v, o′). We calculate:

net(cn o(o, a) t(o, l, x = new C(e); s))

= net(cn, rep)(o(rep(o), rep(a), u0, ε, ε)

t(rep(o), rep(l), x = new C(e); s) cngraph)

→ ◦ ∼=2 net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l)[o′′/x], s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)

= net(cn, rep′)(o(rep′(o), rep′(a), u0, ε, ε) t(rep′(o), rep′(l[o′′/x]), s)

o(o′′, rep′(a′), u0, ε, ε) cngraph)

= net(cn o(o, a) t(o, l[o′/x], s) o(o′, a′))

where rep′ = rep[o′′/o′] and we use Equation 3.1 as usual. This completes the
proof of property 1.

2. We proceed now by cases on the type 2 transition. Suppose net(cn) → cn′′,
and we find z′, cn′ to complete the diagram as stated in the lemma. As above, we
apply the rules to configuration subsets, to elide uses of ctxt-1. Rules in Figure 3.3
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are straightforward and omitted. For the rules in Figure 3.4 excepting call-send-

2, ret-2, get-2, and new-2, we can choose z′ = z and cn′ = cn, since then by
Corollary 3.8.18, net(cn) ≡2 cn′′.

For the four remaining cases, each case is obtained by reversing the arguments,
i.e., proving that if the type 2 transition holds, depending on the rule application
and shape of configurations, then also the corresponding type 1 transition holds,
and the resulting pair of configurations are in ∼=2. This completes the argument.

Theorem 3.9.16. For all well-formed type 1 configurations bind z.cn in standard
form, bind z.cn ≃ net(cn).

Proof. We exhibit a conflated witness relation R defined as

R = {(bind z.cn, cn′) | net(cn) ∼=2 cn′} ,

where bind z.cn is a WF1 configuration in standard form, and cn′ is a WF2 configu-
ration. Since the identity relation is included in ∼=2, we have (bind z.cn, net(cn)) ∈
R. We show that R is a conflated type 1 and type 2 witness relation. Via
Lemma 3.9.11, ∼=2 is reduction closed.

Suppose bind z.cn1 R cn2 (or the converse for R−1); then bind z.cn1 is WF1
and in standard form, cn2 is WF2, and net(cn1) ∼=2 cn2.

For reduction closure, assume bind z.cn1 → bind z′.cn′

1, where bind z′.cn′

1 is
in standard form. Then, by property 1 of Lemma 3.9.15, net(cn1) →∗ cn′′

1
∼=2

net(cn′

1). This means that, for some cn′

2, cn2 →∗ cn′

2 and cn′

2
∼=2 cn′′

1 . Hence, by
transitivity of ∼=2, bind z′.cn′

1 R cn′

2. For converse reduction closure, assume cn2 →
cn′

2. Then, net(cn1) →∗ cn′′

2 and cn′

2
∼=2 cn′′

2 . By property 2 of Lemma 3.9.15,
this means that bind z.cn →∗ bind z′.cn′

1 and cn′′

2
∼=2 net(cn′

1). Hence, by the
transitivity of ∼=2, cn′

2 R−1 bind z′.cn′

1.
For context closure, assume bind z′.cn1 cn is WF1 and in standard form,

and consider the configuration net(cn, rep)(cn2), which in effect applies cn to
cn2. We first need to show that this configuration is WF2. Object-Node Exis-
tence holds, since by the definition of net, all objects in cn become attached to
a node in cn2. Buffer Cleanliness and Local Routing Consistency also hold by
the definition of net. For OID Uniqueness, it suffices to consider the case when
o(o1, a1, u1, qin,1, qout,1) � cn2 and o(o2, a2, u2, qin,2, qout,2) � net(cn, rep)(cn2)
where o(o1, a1, u1, qin,1, qout,1) 6� net(cn, rep)(cn2); then, if o1 = o2, there is a
corresponding clash in bind z′.cn1 cn, violating WF1. For Task-Object Existence,
assume t(o, l, s) � net(cn, rep)(cn2) and t(o, l, s) 6� cn2; then if there is no object
container o(o, a, u, qin, qout) � net(cn, rep)(cn2), there is no corresponding object
container in bind z′.cn1 cn, violating WF1. For Call Uniqueness, it suffices to
consider the case when call(o1, o′

1, f1, m1, v1) � cn2 and call(o2, o′

2, f2, m2, v2) �
net(cn, rep)(cn2) where call(o1, o′

1, f1, m1, v1) 6� cn2; then, if f1 = f2, there is a
corresponding clash between messages in bind z′.cn1 cn, which goes against the
WF1 assumption. If Future Uniqueness does not hold, this means that there are
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duplicate future containers in bind z′.cn1 cn, or that cn2 assigns some future differ-
ent values, both of which are ruled out. For Single Writer, a clash of identifiers in
return futures for tasks and calls can again be traced back to a clash in bind cn1 cn,
contradicting WF1. External OID holds since ext cannot be defined in WF1 config-
urations, and routing tables are intact from cn2. For Future Liveness, if f is active
for o in net(cn, rep)(cn2), a corresponding future is active in bind z′.cn1 cn, which
either has a future container with a value, or a task that is producing it. Since cn2

is WF2, and net adds forwarding for futures, o will be on the notification of f . The
same argument holds when o is on the notification path of the future f ′ which is
assigned f .

It remains to show that bind z.cn1 cn R net(cn, rep)(cn2). The network graphs
of net(cn1 cn) and net(cn, rep)(cn2) coincide, since applying cn does not intro-
duce any nodes or links. Clearly, if and only if a task or a message is in cn, a
corresponding task or message is introduced in net(cn, rep)(cn2). We already have
that the remaining tasks and tasks spawned from messages in cn1 correspond to
those in cn2. As for external messages, they are either newly introduced via the
context, and are thus in both composed configurations, or they come from the
original configuration. With respect to objects, the future maps of objects in the
normal form of net(cn1 cn) are possibly extended when compared to future maps
for objects in the normal form of net(cn, rep)(cn2), but in all other ways, objects
in the normal forms are equal. Hence, net(cn1 cn) ∼=2 net(cn, rep)(cn2).

For converse context closure, assume cn2 cn is WF2, and apply cn to produce
bind z.ten(cn, rep−1)(cn1) in standard form. We first need to show that this con-
figuration is WF1. Let cn′ be the multiset difference of ten(cn, rep−1)(cn1) and
cn1. For OID Uniqueness, it suffices to consider the case where o(o1, a1) � cn1

and o(o2, a2) � cn′; then, if o1 = o2, there is a corresponding clash in cn2 cn,
violating WF2. For Task-Object Existence, assume t(o, l, s) � cn′; then, if there is
no object container o(o, a) � cn1cn′, this violates WF2 for the task corresponding
to t(o, l, s) in cn2 cn. For Call Uniqueness, it suffices to consider the case where
c(o1, f1, m1, v1) � cn1 and c(o2, f2, m2, v2) � cn′; note that if f1 = f2, there would
have been a WF2 Call Uniqueness violation in cn2 cn. For Single Writer, clashes in
future identifiers can be traced back similarly to clashes in cn2 cn, violating WF2.
For Future Existence, if f is active for o in cn1 cn′, a corresponding future is active
in cn2 cn, meaning that by the WF2 property, there is a notification path to an
assignment, task or message, which translates to there being a future container,
and a call container or task container when appropriate in cn1 cn′.

It remains to show that cn2 cn R−1 bind z′.ten(cn, rep−1)(cn1). Again, let cn′

be the multiset difference of ten(cn, rep−1)(cn1) and cn1. The network graphs of
net(cn1 cn′) and cn2 cn coincide, since cn does not introduce any new nodes or
links. Clearly, if and only if a task or non-external message is in cn, a correspond-
ing task or message is in cn′. We already have that the remaining tasks and tasks
corresponding to messages in cn1 and cn2 coincide. As for external messages, either
they are newly introduced via the context, and are thus in both composed config-
urations, or they come from the original configuration, and thus coincide. With



160

CHAPTER 3. EFFICIENT AND FULLY ABSTRACT ROUTING OF FUTURES IN

OBJECT NETWORK OVERLAYS

respect to objects, the future maps of objects in the normal form of net(cn1 cn′)
are possibly extended when compared to future maps for objects in the normal
form of cn2 cn, but in all other ways, objects in the normal forms are equal. Hence,
net(cn1 cn′) ∼=2 cn2 cn.

For barb preservation, assume bind z.cn1 ↓ obs. Then net(cn1) ⇓ obs, which
by normal form equivalance yields cn2 ⇓ obs, as needed. For converse barb preser-
vation, assume cn2 ↓ obs. Then, by normal form equivalence, net(cn1) ⇓ obs, and
consequently cn1 ↓ obs, whereby cn1 ⇓ obs.
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Abstract

We present a formalized, fully decentralized runtime semantics for a core
subset of ABS, a language and framework for modeling distributed object-
oriented systems. The semantics incorporates an abstract graph representa-
tion of a network infrastructure, with network endpoints represented as graph
nodes, and links as arcs with buffers, corresponding to OSI layer 2 intercon-
nects. The key problem we wish to address is how to allocate computational
tasks to nodes so that certain performance objectives are met. To this end,
we use the semantics as a foundation for performing network-adaptive task
execution via object migration between nodes. Adaptability is analyzed in
terms of three Quality of Service objectives: node load, arc load and message
latency. We have implemented the key parts of our semantics in a simulator
and evaluated how well objectives are achieved for some application-relevant
choices of network topology, migration procedure and ABS program. The
evaluation suggests that it is feasible in a decentralized setting to continually
meet both the objective of a node-balanced task allocation and make headway
towards minimizing communication, and thus arc load and message latency.
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FOR DISTRIBUTED OBJECTS

4.1 Introduction

An important problem, made more relevant by recent interest in cloud computing,
is how to decouple computational processes from the underlying physical infra-
structure on which they execute. One motivation for such decoupling is to free
applications from handling resource allocation issues, which can instead be taken
care of in a provably correct and transparent fashion using generic, application-
independent mechanisms. Potentially, tasks can then be performed at the physical
machine most suited at the moment, continually meeting global system require-
ments such as utilization and power consumption, or task-local requirements such
as a response time.

We consider the problem of runtime adaptation of tasks in the context of a core
subset of ABS [103], a language for modeling distributed object-oriented systems
developed in the EU FP7 HATS project. In ongoing work, described in Chapter 2
and Chapter 3, we are developing network-aware semantics for different fragments
of ABS with some novel features. Specifically, we let objects execute on network
nodes connected point-to-point using asynchronous message passing links, and show
how location independent routing in such a setting can be used to support efficient,
transparent, and robust (lock-free) object migration. Here, we examine how adap-
tation can be performed in such a model by a controller process running on each
node.

To enable precise reasoning and experiments on adaptability, we define three
central Quality of Services (QoS) objectives against which a solution for runtime
adaptation in our context can be assessed: node load, arc load and message latency.
We abstract from many practical, implementation-level concerns when interpreting
these objectives in our setting. The load for a node is the number of active tasks
running on it. The load for an arc is the number of messages traversing the arc.
The latency for a message is the number of hops needed to reach its destination.
We then restrict our consideration of adaptability to the problem of how and when
to migrate objects to achieve the objectives as well as possible, given a specific net-
work topology, ABS program, and node-local procedure for managing migrations.
Using a simulator which implements the key parts of our semantics, we have inves-
tigated how well objectives are met for some application-relevant choices of network
topologies, programs and migration procedures.

Section 4.2 and 4.3 describe the ABS language and our novel ABS-NET seman-
tics for execution of ABS programs in a network. Section 4.4 describes our approach
to runtime adaptation via object migration. Section 4.5 describes the simulator,
our benchmark scenarios, and simulation results; Section 4.6 concludes.

4.2 ABS Background

ABS [77] is a language and framework for modeling distributed object-oriented sys-
tems, developed in the EU FP7 HATS project. Core ABS [103] is a language which
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contains the main features of ABS: a functional level for expressing data structures
and side-effect free internal computations of objects, and an object level for ex-
pressing concurrent objects, and communication among such objects via method
invocation. The object level defines syntax—reminiscent of Java’s—for interfaces,
classes, methods, object creation and method calls. The object level is accompa-
nied by a type system and an operational semantics which preserves well-typing.
One consequence of well-typing is that many runtime errors are ruled out for type-
checked programs; when an object makes a call to a method m using an object
identifier o, there always exists an object associated with o, which is an instance of
a class which implements m. ABS uses placeholders in the form of futures for the
result of method calls, allowing a caller to avoid blocking until the result value is
actually required. In the variant of Core ABS we consider, a single object is the
unit of concurrency, as in the variant of Albert et al. [7]. This means that objects
at runtime can be viewed as actors, communicating between themselves only via
asynchronous message passing.

An example of an ABS interface with implementing classes is given below. The
CastNode interface defines a method aggregate, which, when called on an ob-
ject, performs a convergecast operation in the object-reference binary tree rooted
at that object. Specifically, this means that if an object implementing CastNode

is a leaf in the tree (an instance of LeafNode), it simply returns a locally known
integer, but if the object has child nodes in the tree (an instance of BranchNode),
aggregate is called on both of those objects and the results are added to the local
integer and returned. In this way, the aggregate method for the object o always
returns the aggregate (sum) of all local values in the binary tree of objects rooted
at o. The variables fLeft and fRight in the implementation of aggregate hold
the placeholders (futures) for integers that result from the asynchronous method
calls. The values are then retrieved through the .get operator, which can cause
blocking until the method call has finished.

interface CastNode {

Int aggregate();

}

class LeafCastNode(Int val) implements CastNode {

Int aggregate() { return val; }

}

class BranchCastNode(Int val, CastNode left, CastNode right)

implements CastNode {

Int aggregate() {

Fut<Int> fLeft = left!aggregate();

Fut<Int> fRight = right!aggregate();

Int aggregateLeft = fLeft.get;

Int aggregateRight = fRight.get;

return val + aggregateLeft + aggregateRight;

}

}
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4.3 Network Model and Semantics

To reason about object adaptability with respect to environmental conditions, we
bring selected parts of the infrastructure of a distributed system into our model,
namely, network endpoints and links. Endpoints and links are modelled as graph
nodes and arcs with FIFO-ordered message queues, respectively. Conceptually, a
node consists of an interpreter layer, where local objects reside, and a node con-
troller, which acts as a mediator between the environment and node-local objects,
as illustrated in Figure 4.1. The dashed arrow in the figure signifies that the iden-
tifier of object o2 is known by object o1, allowing o1 to send method invocations to
o2. The structure is similar to that used in other programming-language oriented
distributed system models, e.g., a proposed semantics for future Erlang [192]. Here,
the node controller also contains logic for decision-making on adaptability. Seen
abstractly, adaptability in this context becomes the problem of deciding when and
where to migrate objects to achieve the QoS objectives—with the added constraint
that all reallocations must be decided locally at each node.

node u0

node controller

routing table

o1o0

interpreter

node u1

node controller

routing table

o2

interpreter

Figure 4.1: Nodes, node controllers, and interpreter layers

To achieve location transparency, the basic problem is to route messages cor-
rectly between objects that have no prior, mutual knowledge of where they are
located. Many solutions have been examined in the literature, including central-
ized or decentralized location servers, pointer chaining, and broadcast or multicast
search. Sewell et al. [184] discuss many of these solutions, and their relative merits.

We are developing a novel approach to location transparency based on location-
independent (also called name-independent) routing, as first outlined in Chapter 2,
where the idea is to defer the maintenance of message routes to an explicit routing
process executing independently of application-level messaging. Adapted to the
approach suggested here, a node controller executing on each network node is re-
sponsible for maintaining routing information by exchanging routing tables with
adjacent nodes in the network. This allows object migration to be supported in a
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transparent fashion with only modest extension to the runtime state.
We have defined a new operational semantics of Core ABS programs, in the

same rewriting logic style [40] as the standard semantics, that characterizes task
execution of objects located on, and moving between, network nodes. Adaptabil-
ity features such as routing table exchange and object migration are modelled as
nondeterministic events, with the node controller consisting of nothing more than
a globally unique identifier and a routing table. We refer to the combination of
the Core ABS functional layer, Core ABS object syntax, and our novel operational
semantics as ABS-NET. We intend for the semantics to both guide implementa-
tion, by defining a baseline for retaining program runtime behavior similar to Core
ABS in a networked, decentralized setting, and provide opportunities for further
theoretical analysis of specific adaptability strategies by refinement.

A complete description of the syntax and formal semantics of Core ABS and
ABS-NET is available in Appendix A and Appendix B, respectively, with semantic
equivalence explored in Chapter 2 and Chapter 3. Below, we give an overview of the
ABS-NET network model and semantics, with details on node controller behavior,
which is to an extent agnostic towards the underlying actor environment.

4.3.1 Runtime Configurations

The node controller’s relationship with the interpreter layer residing on the node is
symbiotic. On one hand, the node controller provides message delivery services and
callback functions to obtain new globally unique object identifiers for objects resid-
ing in the interpreter layer. On the other hand, the node controller triggers object
movement by using callback functions that the interpreter layer makes available.
We assume a node controller is aware of the asynchronous links through which it can
communicate via message passing with other node controllers. In essence, the aim
is that node controllers should be realizable on top of a network with only OSI layer
2 interconnects, meaning that the required primitives for computation and commu-
nication can be implemented directly in hardware with high performance. If this
is the case, running controllers on top of overlays using higher-layer interconnects
such as sockets is also feasible, which is what we do in our simulator.

The global state in ABS-NET is formally a pair {net} {cn}. The network part
{net} is a set of nodes and arcs. In a node nd (u, τ), u is a node identifier (assumed
globally unique) and τ is a routing table, used to route object-related messages
in the proper direction. In an arc ar (u, Q, u′), representing a unidirectional link
from u to u′, Q is a FIFO-ordered queue of messages. The other part of the
global state, {cn}, is a set of objects, with each object implicitly attached to a
node in the network, and able to send and receive messages with the assistance
of its host. A message msg can be (1) a table message Table (τ), used to pass
a routing table τ from one node to another to update local routes, (2) an object
message Object (object) containing a complete runtime object object to facilitate
mobility, or (3) an application-level message transmitted from one object to another,
which for ABS is either a method invocation (Call message) or the resolved value
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of a future (Future message). Given an application-level message, the function
dest(msg) returns the identifier of the intended recipient object, while the function
id returns the identifier of a given runtime object.

The nature of a FIFO queue Q of messages is specified through three functions:
enqueue, dequeue and first. enqueue(Q, msg) returns the queue that results
when the message msg is added to the back of Q. If Q is non-empty, first(Q)
returns the message at the front of Q, and dequeue(Q) returns the queue that
results when the front message is removed. For brevity, enqueue(Q, msg) = Q′ is

defined as a relation Q
enqueue (msg)

−−−−−−−−−→ Q′, while the conjunction that first(Q) = msg

and dequeue(Q) = Q′ is defined as Q
dequeue (msg)

−−−−−−−−−→ Q′.

The nature of a routing table is specified through the functions update, next,
register and replace, and an infix operator ∈. The function update takes three
arguments: the routing table τ of the current node, the node identifier u′ of the
adjacent node, and the routing table τ ′ of the adjacent node. The function returns
a routing table τ ′′, which incorporates the routes from τ ′ into τ if appropriate,
with the constraint that all such routes must go through the node u′. For brevity,

update(τ, u′, τ ′) = τ ′′ is defined as a relation τ
update (τ ′,u′)

−−−−−−−−−→ τ ′′. The function next

takes three arguments: the routing table τ of the current node, the object identifier
o′ of the node we want the next hop for, and the default hop u, which is the
identifier of the current node. The function returns the node identifier u′ which
is the next hop of o′ according to the table. The function register takes four
arguments: the routing table τ of the current node, the object identifier o′ of the
object we want to add a route for, the node identifier u of a neighbor node (usually
self) which is the next hop, and a non-negative integer k for the distance to the
object (in all instances in the rules, it is 0). The function returns a routing table τ ′

which incorporates the new route. For brevity, register(τ, o′, u, k) = τ ′ is defined

as a relation τ
register (o′,u,k)

−−−−−−−−−−−→ τ ′. The function replace takes four arguments (of
the same type as register): the routing table τ of the current node, the object
identifier o′ of the object we want to replace the route for, the node identifier u of
a neighbor node which is the next hop, and a natural number k for the distance to
the object. The function returns a routing table τ ′ which has removed any existing
routes for o′ and added the route given. For brevity, replace(τ, o′, u, k) = τ ′ is

defined as a relation τ
replace (o,u,k)

−−−−−−−−−−→ τ ′. The claim o ∈ τ , with a node identifier u

given by the context, means that, according to τ , the object with identifier o is
located on the node u.

The two parts of the global state can evolve jointly by performing synchronized
labeled transitions, but also separately without exchanging information. The rules
for such synchronization and separate evolution are shown in Figure 4.2. A label α is
either mv(object) (moving an object), rg(o, o′) (registering a new object identifier),
or tr(o, msg) (transporting a message). Intuitively, a label with an overline means
that information is outgoing or being sent, while a label without overline means
information is incoming or being received. An ABS-NET execution of an ABS
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program is a possibly infinite sequence of global states, such that the transition
between a previous state and the next is valid. The program is not explicitly
represented in a state, since it assumed to always be available unaltered at all
nodes. The network topology is static during an execution, and we do not consider
failures such as message losses.

(Net-Red)
{net} → {net′}

{net} {cn} → {net′} {cn}

(Cn-Red)
{cn} → {cn′}

{net} {cn} → {net} {cn′}

(Cn-Out-Net-In-Red)

{net}
α
→ {net′} {cn}

α
→ {cn′}

{net} {cn} → {net′} {cn′}

(Net-Out-Cn-In-Red)

{net}
α
→ {net′} {cn}

α
→ {cn′}

{net} {cn} → {net′} {cn′}

Figure 4.2: ABS-NET reduction rules connecting objects and networks

Intuitively, transitions by the rule Net-Red are driven by node-related events,
e.g., timeouts triggering routing table exchanges, or application-level messages be-
ing received and routed further. Transitions by Cn-Red are triggered when objects
execute ABS program statements that only change internal state. Cn-Out-Net-In-Red

is used when program execution requires interaction with the environment to pro-
ceed (e.g., method calls) and for object migration. Net-Out-Cn-In-Red is used when
a node transmits objects or application-level messages received through links to the
local interpreter layer.

4.3.2 Node Controller Behavior

The reduction relation for networks, alluded to Figure 4.2, is defined by the rules
in Figure 4.3. The rules apply to subsets of nodes and arcs, such that the ele-
ments can be rearranged to match the left-hand side. The labeled transition rules
Net-Msg-Recv-Out, Net-Msg-Send-In, Net-Object-Send-In, and Net-New-Object-In, in
which a node exchanges information with an object, all use the premise o ∈ τ to
restrict actions to pertain to node-local objects. This is how object location is
reflected in ABS-NET. fresh(o) means that the identifier o is globally unique.

For proper progress in execution, we assume networks are such that (1) there
are no dangling arcs referencing non-existent nodes, (2) for every arc between nodes
there is an arc in the opposite direction, and (3) every node comes with a self-loop
arc, i.e., an arc going from and to the node. Self-loop arcs are important for two
reasons. First, it allows us to use the same rules for message passing in both the
case where the sender object is at a different node from the receiver object, and
where the sender is at the same node as the receiver. Once a message has been
put in the self-loop queue, it appears as if it came from some other node, and the
rule Net-Msg-Recv-Out can be applied. Second, it is not always the case that there
is a route to the recipient of a message, because of the possibility of stale routing
tables. However, messages must be dealt with somehow, in particular if they are
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(Net-Table-Send)
u′ 6= u

Q
enqueue (Table (τ))

−−−−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
→ nd (u, τ) ar (u, Q′, u′)

(Net-Table-Recv)

Q
dequeue (Table (τ ′))

−−−−−−−−−−−−−→ Q′

τ
update (τ ′,u′)

−−−−−−−−−→ τ ′′

ar (u′, Q, u) nd (u, τ)
→ ar (u′, Q′, u) nd (u, τ ′′)

(Net-Msg-Recv-Out)

Q
dequeue (msg)

−−−−−−−−−→ Q′

dest (msg) = o o ∈ τ

ar (u′, Q, u) nd (u, τ)

tr (o,msg)
→ ar (u′, Q′, u) nd (u, τ)

(Net-Msg-Send-In)
o ∈ τ dest (msg) = o′

next (τ, o′, u) = u′

Q
enqueue (msg)

−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
tr (o,msg)

→ nd (u, τ) ar (u, Q′, u′)

(Net-Route-Further)

Q1
dequeue (msg)

−−−−−−−−−→ Q′

1 dest (msg) = o o /∈ τ

next (τ, o, u) = u′′ Q2
enqueue (msg)

−−−−−−−−−→ Q′

2

ar (u′, Q1, u) nd (u, τ) ar (u, Q2, u′′)
→ ar (u′, Q′

1, u) nd (u, τ) ar (u, Q′

2, u′′)

(Net-Object-Send-In)
o ∈ τ u′ 6= u

τ
replace (o,u′,1)

−−−−−−−−−−→ τ ′

Q
enqueue (Object (object))

−−−−−−−−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
mv (object)

→ nd (u, τ ′) ar (u, Q′, u′)

(Net-Object-Recv-Out)
id (object) = o

Q
dequeue (Object (object))

−−−−−−−−−−−−−−−−→ Q′

τ
replace (o,u,0)

−−−−−−−−−−→ τ ′

ar (u′, Q, u) nd (u, τ)

mv (object)
→ ar (u′, Q′, u) nd (u, τ ′)

(Net-New-Object-In)

fresh (o′) o ∈ τ τ
register (o′,u,0)

−−−−−−−−−−−→ τ ′

nd (u, τ)
rg (o,o′)

→ nd (u, τ ′)

Figure 4.3: Node controller reduction rules

coming from some other node, from which there could be other important messages
pending. Hence, they are put in the self-loop queue, i.e., the default next hop of
an application-level message is the node itself.

The ABS-NET reduction rules for objects at runtime are deferred to Appendix B.
Compared to Core ABS, the state of an object has been extended with an input
and an output queues for asynchronous transfer of application-level messages, and
a structure to keep track of resolved future values. In contrast, the standard Core
ABS semantics handles resolution and querying of futures in a centralized way.
In fact, all rule premises from the standard semantics that pertain to more than
object-local state are absent in ABS-NET—its decentralized nature is syntactically
apparent.

4.4 Adaptation

We consider three QoS objectives against which runtime adaptation solutions can
be assessed: node load, arc load and message latency. In our setting, the definition
of node load is simple but coarse grained: the load on a node u is the number
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of objects located on u with active tasks. One advantage of this measure is that
it is an intrinsic property of runtime configurations. We need a model-intrinsic
measure of load to enable reasoning at an abstract level about convergence to
balanced allocation and that loads stay within a certain range. One disadvantage
of the approach is that it fails to take into account the varying use of memory and
processing power among tasks. However, in an implementation, a more fine-grained
measure of load can be adopted, as long as it is linear in the number of active tasks.

We define the load of a particular arc as the number of messages traversing it
per simulated unit of time. Hence, global minimization of arc load means that a
minimal number of inter-node messages are sent overall, with respect to the current
state of routing tables at nodes. Unless all routing tables are optimal (minimum
stretch), however, there is no guarantee that the number of hops, i.e., latency, of a
particular object-addressed message is minimal.

In our evaluation of runtime adaptation, we use ABS programs that are nonter-
minating and cyclical. The motivation is that for adaptations to current conditions
to have a chance of conveying benefits, similar conditions must hold in the future.
There is no obvious payoff in attempting to adapt when future states are random
independently of the current state.

Although we wish to simultaneously meet all of our QoS objectives fully, we
consider node load balancing our primary concern. Load balancing solutions are
also relatively well-studied in the literature, making it easier to find a good starting
point. Azar et al. [15] consider the problem of achieving balanced allocations in the
framework of stochastic processes, where it is viewed as stepwise allocations of balls
into bins. They highlight the use of greedy schemes for quickly converging to a ball-
to-bin assignment where the maximum number of balls in any bin is minimized.
The main drawback of this approach in a distributed setting is the reliance on
atomic, single assignments of a ball to a bin at each algorithm step. Even-Dar and
Mansour [68] study load balancing in a distributed setting where allocations are
not necessarily done one-at-a-time. They give a distributed algorithm for selfish
rerouting that quickly converges to a Nash equilibrium, which corresponds to a
balanced resource allocation. However, at each round, locally computing a new
allocation requires having exact knowledge of all loads in the system, which is
complicated and costly to acquire in the current setting. Berenbrink et al. [17]
describe and analyze fully distributed algorithms which require only local knowledge
of the total number of resources and the load of one other resource to perform a
single task migration step. The algorithms, some of which have attractive expected
time for convergence, can be straightforwardly translated to a synchronous, round-
based distributed setting and further to a message-passing setting, assuming some
inherent synchrony. One important assumption made in the algorithm analysis is
that a task can migrate to any other resource in a single concurrent round. For
this property to hold, the underlying network graph must be complete, which we
do not generally assume.

A factor in the convergence time is whether neutral moves are allowed, i.e.,
whether a migration can happen even when, as far as can be told locally, the move
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does not result in a more balanced allocation but merely an equally good one. For
allocations in a sparse network graph where load differences between neighbors are
one, there can nevertheless be maximal load differences in the order of the graph
diameter, which can be significant. With neutral moves, such allocations can be
improved on.

The problem of oscillating behavior during task balancing can be mitigated by
the use of coin flips before finalizing decisions to migrate tasks, as in the algorithms
of Berenbrink et al. Oscillation can be worsened by reliance on stale informa-
tion, but if the information is not too stale, oscillation periods can sometimes be
bounded [71].

The literature on load balancing related to scientific computing contains work
on simultaneously optimizing task allocations and communication overhead. For
example, Cosenza et al. [48] give a distributed load balancing scheme for simula-
tions involving agents moving in space from worker to worker. The scheme, which is
validated experimentally, optimizes both worker load and communication overhead
between workers, but assumes only a small area of interest for each agent, with
agents unable to communicate with other agents outside this area. In the current
work, two objects can communicate whenever the identifier of one of them is known
to the other, making it harder to minimize communication overhead. Catalyurek
et al. [34] describe how to use hypergraph partitioning to minimize both commu-
nication volume and migration time of tasks for parallel scientific computations.
However, the repartitioning is performed in batch and requires complete knowledge
of the data and computations on each node.

At this initial stage of the work, we do not consider the cost of migration itself
in terms of messaging and other resources. Hence, we only measure communication
in terms of messages exchanged between objects, ignoring overhead in terms of
routing and load-related messages.

4.5 Simulator

We have evaluated our runtime adaptation approach by developing a simulator for
running ABS programs in a network of nodes according to the ABS-NET semantics.
We have run the simulator with a variety of network node topologies and object
migration procedures on a number of proposed synthetic scenarios defined by ABS
programs.

Our simulator’s main purposes are to serve as a proof-of-concept for ABS-NET
and to allow us to run adaptability case studies with particular programs and
topologies. Specifically, we are interested in studying convergence properties of
object migration procedures in practice, and in showing that our approach to dis-
tributed execution scales to networks with many nodes.

The simulator is implemented in Java. Each node controller is implemented as
a Java thread, which communicates with other controllers through TCP sockets,
using the KryoNet network library [112]. One reason for the choice of sockets is to
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enable to scale simulations over several physical machines and a large number of
simulated network nodes. All node controllers in the network have a representation
of the abstract syntax tree of the ABS program being executed, which is generated
from ABS program code by the lexing and parsing frontend shared by most ABS
backends.

As in the conceptual model and the formal semantics, a node controller can have
zero or more objects, each having at most one active task. An active task has a
reference to the statement currently being executed in the abstract syntax tree. We
call an object active if it has an active task. Scheduling of active tasks is done at
the node controller level in a round-robin fashion for active objects. More precisely,
the scheduler deterministically steps all active tasks, checks for active objects, and
then repeats the process on the new set of active tasks.

We implement statement execution by interpretation. The main reason for this
choice is to enable easy serialization of objects between executing statements; to get
immediate results from load balancing, we must be able to migrate active objects.
One drawback of using interpretation is that local execution is slow and resource-
demanding compared to execution in the standard ABS backends.

A node controller is associated with a unique TCP port on the host system.
Besides a list of neighbor handles, which abstract over underlying sockets, and a
list of local objects, the node controller maintains a routing table. The routing
table is broadcasted to neighbors after entries have been changed or added as a
result of statement execution or incorporation of routes from neighbor messages.
Hence, except when many locations have been updated in a short interval, we expect
routing tables to be up-to-date or nearly so, taking into account the network size
restrictions of the simulator.

Network topology setup and program loading is handled by scripting on top of a
custom simple command-line interface (CLI). When starting up, a node controller
is assigned a migration procedure through the CLI, which is the same for all node
controllers in the network. One desirable feature that is not implemented is CLI
control of link characteristics, such as delays.

By default, the simulator starts the initial task on a single startup node. The
initial task is defined by the statements in the mandatory starting block of the ABS
program. In all our programs, this task creates all the objects used for the duration
of the program. Migration and logging does not commence until a method with the
name setupFinished is called on some object. There are several reasons for this
kind of initialization: it is easier to predict load balancing behavior with a fixed set
of objects, and it is problematic to create new objects on the fly without garbage
collection, which we have not implemented.

4.5.1 Scenarios

A network configuration determines the size and topology of the network; large
and dense networks give more overhead in the form of routing and load messaging,
making simulations slower. Currently, highly connected topologies with in the order
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of 25 network nodes can be simulated in reasonable time. On this note, we limit
the evaluation to networks with three distinct underlying network topologies from
sparsely to fully connected: grids, hypergraphs and full meshes. Our base initial
setup for each topology has 32 nodes. Since the simulator scales to at least in the
order of 100 nodes for sparsely connected topologies, we also investigate grids larger
than 32 nodes to compare results.

For defining object behavior, we have developed a number of ABS programs
specifically to run in our simulator. All programs have a setup phase, where a
fixed number of objects are initialized, and a phase where the generated objects
perform some computation, possibly involving communication; there are no short-
lived dynamically created objects. For all programs but one, which implements
the Chord distributed hash table (DHT) algorithm [190], communication patterns
among generated objects follow straightforwardly from the code. This makes it
easier to follow what happens during a simulation and to reason about how far an
allocation of objects to nodes is from the optimum, factors which we considered
particularly important in scenario development. After running initial simulations,
we have adjusted parameters in our programs, and in some cases added functionally
redundant instructions to get constant and consistent load and messaging, since
our migration procedures consider mainly objects with active tasks. With spurious
activity among nodes, messaging and load varies greatly, and progress becomes
hard to discern. The programs below are available online [158]:

IndependentTasks.abs The starting task generates objects, and each gener-
ated object is called upon to perform a long-running task. There is no com-
munication among workers—only briefly at startup between the coordinator
object, which initializes and assigns tasks, and the generated objects. Since
there is no communication, an optimal allocation is an even distribution of
objects among nodes, regardless of the network topology.

Star.abs An object star configuration consists of one center object and one or
more fringe objects. The fringe objects in the star continually communicate
with the center object, but not among themselves. The program builds a
number of independent object star configurations.

Ring.abs The starting task generates objects which know the identifiers of the
next object in the ring. The last object generated gets the identifier of the
first object. The first object, when called, calls its next object, and so on,
until the object which has the first object as next object is reached. In the
computation phase, many such calls traverse the ring simultaneously.

ChordDHT.abs An implementation of the Chord DHT algorithm. Key-value map-
pings are distributed between a number of objects, which all support a put/get
interface to clients. Objects are arranged in a ring, but aside from references
to their neighbors, each object has log(n) “fingers”, references to non-adjacent
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objects, where n is the size of the keyspace. The addition, or join, of an ob-
ject to the ring places the new object at a particular position based on its
identifier and can trigger global reconfiguration of the ring. During setup,
128 objects are joined to the chord, and each object becomes associated with
either a producer object, which continually puts values into the DHT, or a
consumer object, which continually attempts to retrieve values from the DHT
using pseudorandom keys.

We consider only migration procedures that as a first priority balance out load
evenly among nodes in the network. As a consequence, a simulated node controller
continually informs neighbor nodes of its load when appropriate, and receives load
messages from neighbors in turn, regardless of the migration procedure used. In
the simulator, each migration procedure defines a callback method which takes
the affected node controller as a parameter. The callback method is invoked, and
can result in the migration of several objects to neighbor nodes. The migration
procedures used are described below.

Berenbrink et al. An adapted version of the distributed load balancing algorithm
by Berenbrink et al. [17], which does not allow neutral moves. One notable
difference in the simulator implementation from the abstract description given
in Algorithm 1 is that only a fixed small number of objects (20) have the
possibility to migrate in each cycle, because of limits on the sizes of message
buffers.

Berenbrink et al. with neutral moves An adapted version of the distributed
load balancing algorithm by Berenbrink et al., which does allow neutral moves,
and therefore converges more slowly. The only difference from Algorithm 1
is that the if-condition is l > l′ instead of l > l′ + 1. As determined ex-
perimentally, only migrating one or two objects per node per cycle leads to
significantly less oscillation of objects, compared to when migrating three or
more.

Berenbrink et al. with communication intensity A variant of the preceding
procedure, where objects are selected for migration based on their affinity to
the (randomly) chosen neighbor node, as determined by their communication
history with objects in the neighbor node’s direction. The communication
history is a list of other objects that a given object has communicated with
recently, as given by abstract object-local time, defined by the number of tasks
finished since initialization. The affinity of an object to the neighbor node is
then quantified as the number of objects in the communication history that
are located in the direction of the node, according to the routing table.

Weighted neighbor load difference Once every cycle, an object and an adja-
cent node are chosen uniformly at random and independently. Then, a prob-
ability of migration is calculated and enacted based on the difference in load
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between the current node and the chosen node, with probability 1 for a dif-
ference of 10 or more, and probability 0 for a negative difference. If the
load difference is d, the migration probability becomes d

10 , adjusted to closest
number in the interval [0, 1].

Weighted neighbor load difference with communication intensity Given a
randomly chosen object and adjacent node as in the previous procedure, we
define the probability of migration according to communication intensity as
the number of entries in the object’s communication history found in the di-
rection of the node, divided by the total number of entries in the history. This
probability is then combined via weighted averaging with the neighbor load
difference probability to define the weighted neighbor load with communica-
tion procedure. We have used the weight 0.2 for the communication intensity
probability and 0.8 for the neighbor’s load probability.

Algorithm 1 Berenbrink et al. load balancing cycle

for each active object o do

let u′ be a neighbor chosen uniformly at random
let l be the current load, let l′ be the last known load of u′

if l > l′ + 1 then send o to u′ with probability 1 − l′/l

4.5.2 Scenario Objectives

Since our primary objective is to balance node load evenly, we record the load
of all individual nodes over time, and then compute the maximum load and load
standard deviation. For scenarios with little to no object communication, these are
the only measures that are relevant with respect to our objectives. For scenarios
with significant messaging, we also consider the number of object-related messages
sent (i.e., Call and Future messages) by each node between sampling intervals—
with the average number of messages and standard deviation shown. We do not
count messages sent by a node to itself via the self-loop arc, since such messages
need not go through a physical link in an implementation.

We sample the required quantities from simulations at a fixed global rate, cor-
responding roughly to a certain number of transitions (1000) in the semantics with
imposed fairness via round-robin scheduling.

4.5.3 Results

In this section, we describe simulation results for the scenarios given above.
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Simulations of IndependentTasks.abs

The program creates 201 objects in total: one starting object which becomes in-
active after initialization and 200 objects that each have a task that runs for the
course of the program.

As expected, the algorithm by Berenbrink et al. without neutral moves con-
verges very quickly and stays unchanged with no migrations after reaching a state
where neighbor load differences are at most one, which on a full mesh is always
balanced. For most of the runs on a 32-node hypergraph network topology, the
stable state coincided with a completely balanced allocation, or very closely so. For
the grid case, the stable allocation in almost all cases deviated significantly from a
fully balanced one.

The algorithm variant with neutral moves and two migrations per cycle con-
verges to an almost-stable state quite quickly on a hypergraph, but continues to
have minor oscillation of objects. With the same algorithm and five object migra-
tions allowed per cycle, there is considerably more oscillation going on after coming
close to a balanced allocation. On a grid topology, where a stable allocation can be
further away from a balanced allocation, allowing neutral moves gives better results
than disallowing them, as expected. For a grid, the gain from using neutral moves
is most distinct in a lower standard deviation compared to the algorithm without
neutral moves.

Simulations of Star.abs

In the star program, stars are constructed so that each node can hold a whole
star, and there is precisely one star per network node. In an optimal allocation,
therefore, there are no node-to-node message exchanges at all; all messages are sent
locally.

We expected the pure load balancing procedures to have markedly worse results
than the procedures taking inter-object communication intensity into account. The
average number of sent messages and the standard deviation of sent messages over
time for the star program on a grid is shown in Figure 4.4, with measurements
smoothed out via averaging over five samples to reduce noise. As can be seen, there
is a distinct improvement with respect to messages sent when using the algorithm by
Berenbrink et al. augmented with message intensity comparisons when compared
to the other procedures, although it is quite far from the optimum. The algorithm
using probabilistic weighting of load and messaging seems to improve the most over
time, although it performs similarly to the messaging-augmented load balancing
algorithm by Berenbrink et al.

With all the tested migration strategies for a grid, load became evenly balanced
relatively quickly, as seen in the upper part of Figure 4.5. Hence, there was no
significant avoidance of messaging by communicating objects clustering at a few
specific nodes.
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Figure 4.4: Star.abs on a 32-node grid, messages sent

Because of the simplicity of the object communication graph and the fact that
it is possible to reach an allocation where no inter-node communication takes place,
it is worthwhile to illustrate how near specific algorithms can get after many (1000)
cycles, for comparison. In a given allocation, each object has a total distance in
hops to the other object it communicates with. For fringe objects, the total distance
is the number of hops to its center object, but center objects have total distance
equal to the sum of all distances to its fringes. In an optimal allocation, all centers
(and all fringes) have total distance zero. In the lower part of Figure 4.5, gray bars
show the distribution of total distance among the 32 center objects on a grid for the
load balancing algorithm by Berenbrink et al. The black bars show the distribution
of total distances of the objects for the algorithm by Berenbrink et al. augmented
with message intensity comparisons. The distributions intersect, but the former
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Figure 4.5: Star.abs on a 32-node grid, load std. dev. and object distances

algorithm fares worse.

Results for Star.abs on a hypergraph topology give a less pronounced advan-
tage to the two migration procedures which take message intensity into account.
Of those procedures, the Berenbrink et al. variant produces the least messaging,
but trends are largely the same as for the grid case; hence, we omit plots. For the
case of a complete topology, the amount of messaging was virtually the same for all
procedures. An intuition for why this is the case is that it becomes much harder to
improve upon an allocation in a situation where migrations are helpful only when
communicating objects end up on the same node, and there is additionally no cor-
responding loss of proximity to another object. Grids of 64 and 128 nodes have the
same messaging trends as the 32-node case.
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Simulations of Ring.abs

When running a ring of 128 objects on a 32-node grid, there are balanced allocations
with all nodes having 4 objects, where all objects that communicate are either on
the same node or adjacent nodes. The idea is that two of the objects on a node
are part of a segment of the ring, while the other two are part of another segment
coming back the other way. In such allocations, at most one inter-node message
per object is needed for a method invocation that involves the whole ring.

Figure 4.6 shows the average number of messages sent of a 128-object ring on a
grid topology, while the upper right half shows the standard deviation of the number
of sent messages; smoothing by averaging samples has been applied in both cases.
The pattern from the star program remains, with procedures taking messaging
into account performing better, but the differences are smaller. The progressively
decreasing number of inter-node messages sent are not due to clustering of many
objects on a few nodes, as shown by the eventually low standard deviation of load
in the lower left part of the figure.

In the lower part of Figure 4.7, gray bars show the distribution of total distance
among all ring objects on a grid to the objects they communicate with, after 1000
migration cycles using the algorithm by Berenbrink et al. Black bars show the
distribution for the algorithm by Berenbrink et al. with neutral moves augmented
with message intensity comparisons. There is overlap, but the latter algorithm
results in many more objects with total distance between 1 and 5. However, both
distributions are quite far from being optimal.

As in the case of Star.abs, the performance trend in messaging over time
is largely the same on a grid and hypergraph topology for Ring.abs. The main
difference on a hypergraph is that procedures which take message intensity into
account result in less pronounced improvements over the pure load balancing pro-
cedure. For a complete topology, differences are once again small, but with an edge
towards the message intensity procedures. Once more, grids of 64 and 128 nodes
preserve the trend from the 32-node case.

Simulations of ChordDHT.abs

In the Chord DHT program, the weighted neighbor’s load and message intensity
strategy exhibited a tendency to quickly cause message buffer overflows, while the
procedures based on the algorithms of Berenbrink et al. worked largely as expected.

The upper part of Figure 4.8 shows the average number of messages sent for
nodes when running the program on a grid, and the lower part shows the standard
deviation of the number of messages. Again, smoothing by averaging samples five
at a time has been applied. The results suggest that there is a reasonable payoff
from taking messaging into account in a migration strategy, even when running a
program with relatively complex communication patterns.

Simulations of ChordDHT.abs on a hypergraph show very similar trends in
performance to the grid case, but give a less pronounced advantage to procedures
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Figure 4.6: Ring.abs on 32-node grid, sent messages

which take message intensity into account, as for previous programs. In a fully con-
nected topology, the procedures result in effectively the same amount of messaging,
as before.

4.6 Conclusions and Future Work

The simulation results suggest that it is feasible in a decentralized setting to meet
the objective of balanced resource allocation, and also make headway towards the
objective of minimizing communication of distributed objects. The results also val-
idate the applicability of the ABS-NET model with location-independent routing
to decentralized runtime adaptation. The main concern for relevance to real-world
networks is the use in the model of unbounded message queues, and the lack of
rate limitation and latency controls in our simulator. In future work, we plan to
continue the theoretical and simulation-based studies to deepen our understanding
of multi-dimensional resource management, improve the performance and accuracy
of the simulator, and investigate adaptation in dynamic networks, initially only
with benign churn, i.e., with controlled startup and shutdown of nodes.
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Figure 4.7: Ring.abs on 32-node grid, load std. dev. and object distances
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Abstract

Mobility and location transparency of distributed objects enable efficient
resource allocation in networks, and can be effectively realized at the language
level using location independent routing. However, the benefits of mobility
are restricted by the available resources, e.g., in the form of processing nodes,
which may be too few or too many to suit an application. To continually meet
an application developer’s requirements on computational task throughput,
and an infrastructure provider’s requirements on energy usage, the network
itself must be able to adapt. In this paper, we consider fault-free networks
of nodes connected point-to-point by asynchronous message passing channels,
and propose a protocol for shutdown of nodes that preserves the integrity of
distributed objects. This protocol enables decentralized power control, where
nodes are turned on and off in response to computational requirements. We
analyze the protocol both by verifying a restricted version in the model checker
Spin, and by formulating a transition system model and proving properties
by induction in that model for networks of arbitrary size. We define a proto-
col extension that, while using only a node’s neighborhood-local information,
is sufficient to ensure networks remain connected after node shutdown, and
outline more complex, general local criteria. Finally, we discuss heuristics for
node-local decision making on initiating a shutdown process, to meet adapt-
ability requirements.
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5.1 Introduction

For distributed object programs executing in large networks, location transparency
is an important property, ensuring that inter-object messages are delivered to their
destinations—regardless of the location of the sender och receiver. To enable ef-
ficient resource allocation, objects must also be mobile across nodes, which turns
location transparency into an even greater challenge.

In previous work, described in Chapter 2 and Chapter 3, we use location in-
dependent routing to achieve location transparency of mobile distributed objects
executing on nodes connected point-to-point through asynchronous message pass-
ing channels. However, we there rely on an assumption that the abstract network
of processing nodes is static over the course of a program execution. In contrast,
real networks are dynamic in at least two different ways. First, nodes can crash,
recover, and deviate from arbitrarily from expected behavior. Second, nodes can
be added to a network or be shut down in a controlled way, according to require-
ments on, e.g., throughput, computational load, or energy consumption. In this
paper, we concentrate on the second case of network dynamicity, by investigating
decentralized node shutdown in asynchronous networks that preserves the integrity
of objects and inter-object messages located on nodes or passing through links.

We propose a maximally nondeterministic protocol for node shutdown, reminis-
cent of a two-phase commit protocol [187], and provide evidence of its correctness
with respect to the integrity of an executing distributed program. Part of the ev-
idence is in the form of a verified abstract model of the protocol in the language
Promela of the model checker Spin [95]. Since this bounded model does not ac-
count for behavior in networks of arbitrary size, we formulate a transition system
model in an inductive framework, and use rule induction to prove safety properties
of valid network configurations. However, this analysis falls short of full protocol
verification, which also includes liveness in the form of eventual node shutdown. We
also describe how to maintain a connected network, to prevent scenarios where pro-
gram execution is unable to progress due to objects becoming unreachable. Finally,
we discuss strategies, enabled by the node shutdown protocol, for decentralized
right-sizing of process networks according to requirements on load and energy con-
sumption.

The paper is organized as follows. In Section 5.2, we describe the behavior
of distributed objects, and in Section 5.3, we provide a formal definition of the
network model, parameterized on object behavior. Section 5.4 introduces the node
shutdown protocol, both by example and by semi-formal definition. Section 5.5
describes verification of the protocol through model checking a bounded model
in Spin [95] and by induction on the rules of a transition system, using the Coq
proof assistant [43]. In Section 5.6 and Section 5.7, we discuss how to maintain a
connected network graph and possible strategies for decentralized power control,
respectively. We survey related work in Section 5.8 and conclude in Section 5.9.
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5.2 Active Object Behavior

We consider collections of distributed objects that execute computational tasks.
Each object has its own identity, thread of control, and local data store. Ob-
jects can perform local computation and change their state based on the results of
computation, and can communicate with each other using asynchronous message
passing; no specific processing order of messages is assumed for recipients. Most
closely, this view of objects matches the properties of active objects [30] or actors
in the Actor model [3]. However, at a coarser level of granularity, objects can also
be virtual machines [16].

More formally, an object consists of an identifier o and state a, and is written
o (o, a). An inter-object message consists of the recipient’s identifier, o, and a
payload p, and is written m (o, p). From the view of a developer, or programmer,
which defines the behavior of objects by writing programs, object task execution
abstractly takes place in an evolving configuration of objects and messages. How

objects and messages evolve is given by a reduction relation ob
−→ on configurations.

For example, this reduction relation can correspond to the relation for the network-
oblivious semantics of Core ABS in Appendix A.

5.3 Network Model

The network consists of a set of nodes with links in the form of OSI layer 2 inter-
connects. A node is therefore aware of its neighboring nodes and can communicate
with them using asynchronous message passing. Objects are located on nodes and
execute tasks locally. Objects can migrate between nodes through transmission
of object and task state in messages. While executing object tasks, the network
does not necessarily remain static; new nodes can be added, and existing nodes can
begin an ordered shutdown process, where all objects are migrated away and all
object-related messages routed to neighbors. The only way a message can be lost
is if it is in transit from or to a node that shuts down.

The model is intended to capture a scenario where a fixed, or slowly evolving,
network infrastructure is used to execute distributed programs, with power control
enabling right-sizing [102] of the network of active (turned-on) nodes, e.g., to mini-
mize energy consumption. At the same, object migration can be used to achieve load
balancing of computational tasks, as described in Chapter 4. We assume that each
node maintains a routing table and uses location independent routing, as defined
in Chapter 2, to forward inter-object messages to their destinations, and therefore
periodically exchanges routing information with its neighbors. Consequently, nodes
exchange at least three types of messages: routing table messages, object messages,
and inter-object (object-addressed) messages.
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5.3.1 Node Behavior

Abstractly, a network net can be described, through the syntax in Table 5.1, as a
configuration of unique nodes and arcs. Objects executing at nodes are equipped
with input and output queues for messages, as in previous chapters. Note that
collections of objects os are considered modulo associativity and commutativity.

Figure 5.1 shows the reduction rules, applied to partial configurations in the
rewriting logic style [40], that describe object execution, as permitted by the given

reduction relation ob
−→ for a network-oblivious semantics. We use the standard

FIFO queue operations first, dequeue, and enqueue, with emp the empty queue.
register is used to store information on object location and distance in routing
tables. In rule Obj-New, an object o creates a new object o′ with some initial
state a′′ and empty input and output queues, which becomes registered on the
node. In rule Obj-Compute, the object o performs some internal computation to
reach a new state. Rule Obj-Send captures the process of the object o sending an
object-addressed message, which is enqueued in its output queue. Dually, in rule
Obj-Receive, the object o evolves after processing a message in its input queue.

Figure 5.2 shows the reduction rules for object mobility and passing object-
related messages between nodes. The rules Net-Send-Object and Net-Receive-Object

capture mobility of objects between nodes as messages, with accompanying regis-
tration in routing tables. The rules Net-Send-Message, Net-Receive-Message, and
Net-Route-Message allow distribution of object-related messages, and use the oper-
ation next to get the identifier of the next hop neighbor to reach a certain object.
We omit rules for the cases when routing tables are incomplete, and for exchange
of routing table messages between nodes.

o object identifier os ::= ε | os os′ | obj

p object message payload obj ::= o (o, a, qin, qout)
a object state net ::= ǫ | net net ′ | node | arc

u node identifier arc ::= ar (u, q, u′)
q queue of msg node ::= nd (u, t, {os})
t routing table msg ::= Table(t) | Object(obj)

| Message(o, p)

Table 5.1: Network and object configuration syntax

We define a network-aware execution as a sequence of network configurations,
where each adjacent pair makes a valid transition according to the rules. As shown
in Chapter 2 and Chapter 3, it is possible to prove, for a fixed network-oblivious
language, that network-aware executions in static networks correspond, through
the notion of contextual equivalence, to network-oblivious executions. The problem
of benignly dynamic processing networks is to preserve objects and object-related
messages when nodes shut down, by suitably restricting the possible execution
space.
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(Obj-New)

o (o, a)
ob

−→ o (o, a′) o (o′, a′′)
register (o′, u, t) = t′

nd (u, t, {o (o, a, qin , qout) os}) →
nd (u, t′, {o (o, a′, qin , qout) o (o′, a′′, emp, emp) os})

(Obj-Compute)

o (o, a)
ob

−→ o (o, a′)

nd (u, t, {o (o, a, qin , qout) os}) →
nd (u, t, {o (o, a′, qin , qout) os})

(Obj-Send)

o (o, a)
ob

−→ o (o, a′) m (o′, p)
enqueue (Message(o′, p), qout) = q′

out

nd (u, t, {o (o, a, qin , qout) os}) →
nd (u, t, {o (o, a′, qin , q′

out) os})

(Obj-Receive)

o (o, a) m (o, p)
ob

−→ o (o, a′)
first (qin) = Message(o, p)
dequeue (qin) = q′

in

nd (u, t, {o (o, a, qin , qout) os}) →
nd (u, t, {o (o, a′, q′

in , qout) os})

Figure 5.1: Rules for object execution on nodes

(Net-Send-Object)
u 6= u′ enqueue (Object(obj), q) = q′

register (id (obj), u′, t, 1) = t′

nd (u, t, {obj os}) ar (u, q, u′) →
nd (u, t′, {os}) ar (u, q′, u′)

(Net-Receive-Object)
first (q) = Object(obj) dequeue (q) = q′

register (id (obj), u, t, 0) = t′

ar (u′, q, u) nd (u, t, {os}) →
ar (u′, q′, u) nd (u, t′, {obj os})

(Net-Send-Message)
first (qout) = Message(o′, p) dequeue (qout) = q′

out

next (o′, t) = u′ enqueue (Message(o′, p), q) = q′

nd (u, t, {o (o, a, qin , qout) os}) ar (u, q, u′) →
nd (u, t′, {o (o, a, qin , q′

out) os}) ar (u, q′, u′)

(Net-Receive-Message)
first (q) = Message(o, p) dequeue (q) = q′

enqueue (Message(o, p), qin) = q′

in

ar (u′, q, u) nd (u, t, {o (o, a, qin , qout) os}) →
ar (u′, q′, u) nd (u, t′, {o (o, a, q′

in , qout) os})

(Net-Route-Message)
first (q1 ) = Message(o, p) dequeue (q1 ) = q′

1

next (o, t) = u′′ u 6= u′′ enqueue (Message(o, p), q2) = q′

2

ar (u′, q1 , u) nd (u, t, {os}) ar (u, q2 , u′′) →
ar (u′, q′

1 , u) nd (u, t, {os}) ar (u, q′

2 , u′′)

Figure 5.2: Rules for object mobility and message passing between nodes

5.4 Shutdown Protocol

The goal is to formulate a protocol for node shutdown, parameterized on a semantics
of object behavior, that can be proven correct and be implemented with minimal
changes. Informally, the protocol aims to preserve objects and object-related mes-
sages when nodes shut down, and ensure progress; formal correctness is deferred
to Section 5.5. From the point of view of an implementation, the main omission is
node-local scheduling and timing of events.
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5.4.1 Node State Machine

Besides having a unique identity, a routing table, and a collection objects, nodes
running the shutdown protocol maintain a (high-level) state value, which is either
IDLE, TRANSACT, CLEAR, or SHUTDOWN. All nodes that are added to the network
have initial state IDLE, which is maintained until the node starts an attempt to shut
down by entering the TRANSACT state. While in TRANSACT, the node informs its
neighbors that it wants to shut down. If the node receives some negative reply,
it enters ABORT, and sends cancellations to all nodes which have been previously
notified of the shutdown attempt. If the node receives positive replies from its
neighbors, it enters the CLEAR state and starts to transfer away its objects. When
all objects are gone, the node enters SHUTDOWN and requests a final confirmation
from its neighbors. After all replies have been received, the node finally shuts
down and disappears from the network. Figure 5.3 shows the resulting node state
machine.

IDLEstart

TRANSACT

ABORT

CLEAR SHUTDOWN

Figure 5.3: Shutdown protocol state machine

5.4.2 Messages

In addition to the messages defined in Table 5.1, the shutdown protocol introduces
a number of new message types, as given below.

• Notify is a message sent either to a previously unknown neighbor node, or
to a neighbor from which such a message was received. The purpose of this
exchange is to prevent transmission of object-addressed and object messages
from newly started nodes to nodes that are in the final stages of shutting
down.

• Prepare is message sent from a node to its confirmed neighbors when it has
started the process of shutting down by entering the state TRANSACT.

• Ready is a message sent in reply to a Prepare message, if the receiver is in
state IDLE or is attempting to shut down but loses the tie breaker, as explained
below. Whenever Ready is sent to a neighbor, that node becomes blocked.
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• Abort is a message sent to unblocked neighbors to which the sender has pre-
viously received Ready from. Its main function is to let those nodes unblock
the neighbor which failed progress in its shutdown process.

• Shutdown is a message sent from a node that is in the last stage of shutting
down. The message is sent to all known neighbors after all local objects
have been sent away and the node has entered the SHUTDOWN state. The
message’s function is as an indicator to neighbors that no more messages are
forthcoming.

• Ack is a message sent by a node in response to a Shutdown message. Its func-
tion is to signal to the node shutting down that the neighbor has received its
previously sent Shutdown message, and therefore all messages sent previously.

5.4.3 Additional Node State

From the perspective of a particular node, say u, a neighboring node u′ can be in
one of three states: unknown, blocked, or unblocked. If the neighbor is blocked, u′ is
in the set blocked maintained by u; if it is unblocked, u′ is in the set unblocked. A
neighbor whose identifier is in neither of these sets is unknown. With an unknown
neighbor, the only possible message that can be exchanged is Notify. Objects and
object-related messages cannot be sent to blocked neighbors, but can be received
from them.

When a node enters TRANSACT, it uses a set of node identifiers sent_prepare to
keep track of the neighbors which have been sent a Prepare message. To keep track
of which of these neighbors have replied in the form of Ready messages, it uses a
set recd_ready. When a node enters ABORT, it starts to send out Abort messages
to unblocked neighbors to which it has previously sent Prepare. To keep track
of where it has sent Abort messages, the node uses the set sent_abort. Finally,
when a node enters SHUTDOWN, it uses the sets sent_shutdown and recd_ack for
bookkeeping on which neighbors have been sent Shutdown messages and from whom
Ack has been received as a response.

5.4.4 Dynamics

In its early phases, the protocol largely follows the two-phase commit structure.
Figure 5.4 shows fragments of an idealized, round-oriented execution of the protocol.
Due to the inherent asynchrony in the network model, the protocol cannot be
assumed to always execute in this way, but it highlights some key ideas.

Figure 5.4(a) shows a network of four nodes, where one node, u0, has initiated
the shutdown process by entering the state TRANSACT and sending Prepare messages
to all its (known) neighbors u1, u2, and u3. In Figure 5.4(b), all the neighbors
have replied with Ready messages, since they were all in state IDLE. When u0 has
received all these messages, it enters state CLEAR and sends away all objects and
object-addressed messages, as illustrated in Figure 5.4(c). When all objects have
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Figure 5.4: Idealized rounds of the shutdown protocol

been migrated and all object-related messages sent away, u0 enters SHUTDOWN and
sends Shutdown messages to all its neighbors, as in Figure 5.4(d). Neighbors confirm
receiving this message by sending back an Ack message, shown in Figure 5.4(e).
Finally, after u0 has received all such messages, it shuts down, with the resulting
network shown in Figure 5.4(f).

The main complexity of the protocol stems from dealing with possible interleav-
ings of nodes in the process of shutting down. When a Prepare message arrives,
the receiver can itself be in state TRANSACT, even if unblocked by the sender at
the time the message was sent. Unless this tie between processes who are shutting
down is resolved, with one node postponing shutdown until the other finishes, nodes
may be unable to send their objects away—the only available neighbor may be the
competitor. As a tie breaker, we rely on a relation, <, between node identifiers.
At any time a node u is added, we assume that, for all existing nodes u′ in the
network, we have u′ < u. Then, when there is a tie between two nodes, the node
which is “less than” the other, according to the relation, wins. In this way, no
node can be permanently unable to shut down by repeatedly losing tie breakers. In
an implementation, it may be sufficient to have probabilistic guarantees that new
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nodes will lose tie breakers against existing nodes to get satisfactory results.
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Figure 5.5: Idealized rounds of the shutdown protocol, with tie breaking

Figure 5.5 illustrates how tie breaking works. In Figure 5.5(a), the node u0 has
started the process of shutting down and sent Prepare to all its known neighbors,
which are unblocked as far as can be told locally. In Figure 5.5(b), it has turned
out that the node u4 is also in state TRANSACT, and has won the tie breaker with
u0, i.e., u4 < u0. Consequently, in Figure 5.5(c), u4 has sent a Prepare message of
its own to u0, while all other nodes are idle and have sent Ready. After u0 receives
the Prepare message, it enters state ABORT and sends Abort messages to all who
previously replied Ready, as shown in Figure 5.5(d).

5.4.5 Definition of Node Behavior

We define how a node running the shutdown protocol behaves semi-formally by
specifying how it mutates its state and transmits messages based on state predi-
cates and incoming messages. This gives a definition that is close to implementable
code, but which depends on assumptions about the network environment that are
not fully enunciated. Hence, this view of the protocol is complementary to the
formal models presented in Section 5.5. Besides the variables of sets of identifiers
of neighbors mentioned above, nodes maintain a routing table table, a state indi-
cator state, and use a special variable self to access their own (globally unique)
identifiers.

The general syntax, in BNF format, of a predicated node action is shown in
Listing 5.1. A statement is either an assignment of a value to a variable, the
sending of a message to a neighbor, the if control construct, or the primitive
operation shutdown. Except for if blocks, statements are ended by semicolons.
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upon <predicate> [/\ <predicate>]*
do { <statement>* }

Listing 5.1: Format of node actions

Listing 5.2 shows a fragment of the protocol definition; the complete definition is
listed in Appendix C. The functions in() and union(), correspond to the standard
set operations of membership and union. We write singleton(u) for the singleton
set containing only the element u. The symbol ~ is used for predicate negation.
Note that all statements inside a do block are assumed to be executed atomically.

upon state = IDLE /\ receive Notify from u

/\ ~ in(u, union(unblocked, blocked))

do {

unblocked := union(unblocked, singleton(u));

send Notify to u;

}

upon state = TRANSACT /\ receive Prepare from u

/\ ~ u < self

do {

if ~ in(u, sent_prepare) {

sent_prepare := union(sent_prepare, singleton(u));

send Prepare to u;

}

}

Listing 5.2: Fragment of the shutdown protocol definition

5.5 Shutdown Protocol Analysis

The general idea of the correctness of the protocol in terms of safety, is that objects
and object-related messages are always preserved on active nodes when a node
shuts down. Intuitively, at each distributed network execution step, the projection
of object-related state, including messages, is valid according to the underlying

semantics of object behavior as described by the relation ob
−→. Hence, assuming

steps that do not affect objects or object-related messages are disregarded from,
the projected evolving object state corresponds to an abstract, network-oblivious
program execution.

For correctness in terms of liveness, there are two separate notions of progress,
namely, progress in execution of object tasks, and progress in nodes shutting down.
The former depends on maintaining a connected network graph so that object-
addressed messages can be delivered, and is discussed in Section 5.6, while the
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latter depends on the absence of hindrances to the shutdown process, which we
concentrate on here.

In summary, at a reasonably rigorous level, correctness of the protocol may be
specified as follows:

Safety For all nodes u in all valid network configurations, if u is in state SHUTDOWN

and all nodes known to u are in recd_ack, then, u has no local objects,
and for all nodes u′ adjacent to u, there are no Object or Message messages
outstanding from u to u′ or from u′ to u.

Liveness In all valid configurations in strongly fair executions, for all nodes u, if
u is in state TRANSACT, then u will eventually shut down. In addition, in all
such configurations, for all nodes u, if u′ is blocked at u, then u′ eventually
either becomes unblocked at u, or becomes unknown, i.e., neither blocked nor
unblocked at u.

5.5.1 Promela Model

We model the protocol in the language Promela of concurrent processes, to enable
verification in the on-the-fly model checker Spin [95]. The model is restricted to
capturing the behavior of the protocol in a three-node fully connected network, to
enable effective state space exploration.

Each of the three network nodes is a Promela process, which communicates
with its neighbors through separate buffered channels. Three constants are defined
to represent the three states in which a neighbor can be from the view of a spe-
cific node: ADJACENT_UNKNOWN, ADJACENT_BLOCKED, and ADJACENT_UNBLOCKED.
A node maintains a byte array to keep track of these neighbor states. In addi-
tion, a node uses bool arrays in place of (mutable) sets of node identifiers. The
abstract node states, e.g., IDLE, are represented as labels in the code. We abstract
from objects and routing tables to minimize the state space, and thus only use the
shutdown-related messages, i.e., we define

mtype = {notify,prepare,ready,abort,shutdown,ack};

Correctness in the model is specified by way of assert statements in the code.
Verification then ensures that in all possible executions, these assertions hold. For
example, if a process is in state TRANSACT, and receives a Prepare message from
its first neighbor with identifier fst, we assert that this neighbor is unblocked, as
in Listing 5.3. This ensures that Prepare messages can never arrive without the
receiver being aware of the sender. This code fragment corresponds to the last node
action definition in Listing 5.2.

One deviation from the protocol definition in Appendix C is in the use of process
identifiers for tie breaking. In the definition, a newly added node must assume an
identifier that is greater than all existing identifiers, to prevent scenarios where some
node is never able to shut down. In the Promela model, when a node has shut down,
it returns with the same identifier as before, albeit with other state reset. This
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TRANSACT:

if

/* ... */

:: recv[id].vector[fst]?prepare;

assert(adjacent[fst] == ADJACENT_UNBLOCKED);

if

:: fst < id;

/* ... */

:: else;

if

:: sent_prepare[fst] == false;

recv[fst].vector[id]!prepare;

sent_prepare[fst] = true;

goto TRANSACT;

:: else;

goto TRANSACT;

fi;

fi;

/* ... */

fi;

Listing 5.3: Fragment of the Promela model of the shutdown protocol

limits the applicability of the Promela model to verification of safety properties.
Combined, the described abstractions in the model mean that verification in Spin
only provides partial evidence of correctness.

The Promela model of the protocol has been checked with Spin version 6.3.2,
and is available electronically [157].

5.5.2 Transition System Model

Model checking of bounded state spaces is insufficient to completely verify pro-
tocols that involve networks with arbitrary upper limits on the number of nodes;
in principle, the network model used here allows continuous addition of neighbors
to existing nodes nondeterministically. Therefore, we model the key parts of the
shutdown protocol as a transition system by specifying formally network runtime
configurations and a reduction relation. A runtime configuration is a collection net

of nodes and arcs, with nodes defined as tuples without routing tables or objects,
as follows:

nd (u, Uunblk , Ublk , SHUTDOWN, Urdy, Uprep, Uabrt , Ushtdn, Uack)

Sets of identifiers U correspond to the values of the variables for tracking neigh-
bors and messaging, in the obvious way. For brevity, we from sometimes write
U n for the node-related sets Uunblk , Ublk , and U m for the message-related sets
Urdy, Uprep, Uabrt , Ushtdn, Uack , or sublists of them, as determined by context. We
also sometimes disregard from the exact order of sets inside node tuples.
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A valid configuration is either the empty configuration ǫ or a configuration that
can be reached by applying the reduction rules, modulo associativity and commu-
tativity of configuration composition. The intention is to capture the protocol in an
inductive framework, to enable accurate representation of higher-order datatypes
such as finite maps and sets, and proofs of properties of valid configurations using
induction.

The syntax and rules are specified in the language of the Ott tool [185], and
then exported to the Gallina specification language of the Coq proof assistant [43].
Through the use of practical higher-order data structures, notably finite sets, the
reduction rules implicitly define state transition functions for nodes, similar to the
semi-formal definition in Appendix C. If defined inside the proof assistant, these
functions can be extracted into, e.g., the OCaml programming language [119], and
executed separately. However, this requires the use of possibly unverified external
libraries for message passing.

Figure 5.6 shows the reduction rules that correspond to the node actions defined
in Listing 5.2. Note that the if construct prompts the formulation of two separate
rules.

(Recv-notify-unknown)
first (q) = Notify dequeue (q) = q′′ u′ /∈ Uunblk ∪ Ublk

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk ∪ {u′}, Ublk , IDLE, Um) ar (u, enqueue (q′, Notify), u′)

(Transact-recv-prepare-nlt-in-prep)
first (q) = Prepare ¬ u′ < u

u′ ∈ Uprep dequeue (q) = q′

ar (u′, q, u) nd (u, Un , TRANSACT, Uprep, Um) →

ar (u′, q′, u) nd (u, Un , TRANSACT, Uprep, Um)

(Transact-recv-prepare-nlt-notin-prep)
first (q) = Prepare dequeue (q) = q′′ ¬ u′ < u u′ /∈ Uprep

ar (u′, q, u) nd (u, Un , TRANSACT, Uprep, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Un , TRANSACT, Uprep ∪ {u′}, Um) ar (u, enqueue (q′, Prepare), u′)

Figure 5.6: Fragment of the shutdown protocol transition system definition

Consider a node u′ that is in state SHUTDOWN. In the Promela model, once a
process u receives an Shutdown message from u′ and replies by sending Ack, blocking
of u′ at u ceases, and u′ becomes unknown there. This means that, subsequently,
u may send a Notify message to u′, and thus block u′ again, before u′ has received
the Ack message and shuts down. In a real execution, this normally means that u′

is blocked forever for u, and, consequently, that u is itself never able to shut down.
In the Promela model, this problem does not become apparent, since a node that
shuts down can reappear after re-initializing its state, and then receive the Notify

message. Note that the problem is not solved by introducing yet another message
from u′ to u, since there is no way for u′ to know when u has received this message
and finally shut down, except by receiving another reply from u.
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In the transition system model, we solve this problem by introducing a transition
that simultaneously removes a node and purges its identifier from all neighbors,
thus exhibiting behavior similar to a reliable broadcast [26]. In effect, this means
we introduce some synchrony into the model that must be accounted for at lower
layers in an implementation.

In an accompanying Coq metatheory to the transition system definition, we
establish a number of properties of the transition system that are necessary for
protocol correctness by using induction on the type of the reduction rules. Notably,
we establish that, in valid configurations, two distinct nodes which are unknown
to one another never have outstanding messages in either direction, and character-
ize precisely the possible outstanding messages when nodes are in the process of
exchanging Notify messages. However, this development falls short of full verifica-
tion of safety, which we leave to future work. In addition, formulating and verifying
liveness properties in Coq, by considering inductive predicates on infinite sequences
via coinductive types [58], is a desirable extension of the metatheory.

Appendix D lists the complete runtime syntax and reduction rules. The com-
plete definition in Ott, and the Coq proof scripts for the metatheory, which requires
Coq version 8.4 and ssreflect version 1.5RC1 [137], is available electronically [157].

5.6 Maintaining a Connected Network Graph

The semi-formal protocol definition and the formal transition system model are
maximally deterministic; they do not prescribe when, and in which situations, a
certain node should shut down. Hence, the protocol allows executions where the
network becomes partitioned into separate components. As a result, object tasks
may become unable to progress, if they require messages from some object no
longer located in the same network component. To always ensure the possibility of
progress, node shutdown nondeterminism must be restricted to maintain network
connectedness.

In general, whether the removal of a particular node will result in a partitioning
of the network cannot be decided using only local neighborhood information. Con-
sider the extreme case of a ring network; without prior knowledge, the only way a
specific node in the network can get to know that both its neighbors are, in fact,
still connected after the node has disappeared, is through a message passing chain
that involves every node in the network.

5.6.1 A Simple Sufficient Condition of Connectivity

In a network with relatively high connectivity, e.g., hypergraphs, neighborhood con-
nectivity information can be sufficient to ensure connectedness. More specifically,
if a node in the process of shutting down knows the links of all of its neighbors, a
sufficient condition of connectedness of the network without the node is that the
neighbors by themselves form a connected subgraph. Figure 5.7 contrasts graphs
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with and without this condition for the node u0. In the graph fragment in Fig-
ure 5.7(a), the subgraph of neighbors of u0 only has only one (undirected) edge,
between u1 and u3, leaving those nodes disconnected from u2. In Figure 5.7(b),
the subgraph of neighbors of u0 is a linear, and thus connected, graph consisting of
the nodes u1, u2, u3, and u4; its edges are emphasized by their thickness, as in the
previous fragment.

u0u1 u2

u3

· · ·

a

u0u1 u2

u3 u4

· · ·

b

Figure 5.7: Graph fragments with and without high local connectivity

This suggests a modification to the protocol that is sufficient to ensure connect-
edness, but, on the other hand, sometimes unnecessarily constrains the shutdown
process. Suppose Ready messages are changed to include a payload with the identi-
fiers of all known (active) neighbors of the sender. Then, once the node attempting
to shut down has received all such Ready messages, and it determines that the neigh-
bor subgraph is connected, it can proceed by entering the CLEAR state. Otherwise,
the node enters ABORT.

Assume the node u is shutting down, and has received Ready from its neighbor
u′. Then, by the way the protocol works, u′ cannot itself start to shut down until
either u has finished the shutdown process, or u′ has received Abort from u. Hence,
when all Ready messages have been received by u, the subgraph of its neighbors will
not change unless u takes some action. Accordingly, if the subgraph is connected,
it will remain so at least until u has shut down.

5.6.2 General Local Tests of Connectivity

A graph is k-connected when any set of k−1 nodes can be removed without discon-
necting the graph. The above proposed check for the simple sufficient condition of
connectivity is in fact a special case of a natural local test of graph k-connectivity
described by Cornejo and Lynch [45]. The idea is to construct, through round-
based communication, the subgraph of all nodes at a certain distance from the
node under consideration. If this subgraph is k-connected, then the whole graph is
also k-connected.

The problem with this test in the present setting is the reliance on synchronous
rounds, and the fact that only immediate neighbors are prevented from shutting
down themselves if a node successfully reaches state CLEAR. The former problem can
be solved by instead relying on asynchronous echo, or wave-propagation, algorithms
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[123], limited to specific depths. The latter problem calls for extending the protocol
with transactions spanning all nodes at distances longer than one hop. We leave
detailed descriptions of these extensions as future work.

5.7 Strategies for Decentralized Power Control

The shutdown protocol definition, as given in Section 5.4 and Section 5.5, is max-
imally nondeterministic, both with respect to object mobility and node shutdown
decisions. This nondeterminism leaves room for using decentralized strategies to
perform adaptation in both how objects distributed between nodes, but also in
whether nodes are turned on and off in response to requirements on throughput
and energy consumption.

5.7.1 Adaptability Objectives

As in Chapter 4, we define the load of a particular node as the number of objects
that are executing on it. We want to achieve balanced allocations of objects to nodes,
i.e., allocations where the objects are distributed as evenly as possible among all
nodes.

Define lavg as the average load of nodes in a network configuration determined
by context. Suppose two constants lmin and lmax are given, such that 0 < lmin ≤
lmax . A possible objective of node and object adaptability is then to achieve (1)
balanced allocations of objects to nodes, where (2) lmin ≤ lavg ≤ lmax . Note that
this precludes networks with “too many” nodes, i.e., networks where a balanced
allocations would result in fewer objects than lmin per node, and also networks
with “too few” nodes, where balanced allocations would result in more objects
than lmax per node. The values of these constants would be determined based on
desired overheads and their costs in terms of, e.g., energy.

5.7.2 A Node Coin-Flip Heuristic for Power Control

Building on the approach in Chapter 4, we can define a heuristic for decentralized
addition and shutdown of nodes. At startup, a node sets up a distributed aggrega-
tion process [54] to continually receive the global load average, lavg. Due to churn
among objects and asynchrony, this will at best be a reasonable estimate of the
quantity.

Consider first the case of networks having too many nodes. Suppose we have
a node u in state IDLE with load lu, lu < lmin, which has become aware that
lavg < lmin. Then, this node flips a coin and starts to shut down with probability
1 − lu/lmin. Consequently, if u has much lower load than lmin, the probability of
shutdown is close to 1, while a load close to lmin gives a low probability. To avoid
an overwhelming number of shutdowns due to an uneven distribution of load, e.g.,
due to objects being created at a single node faster than they are migrated away,
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nodes can set up an aggregation process for the load variance or standard deviation;
when this measure is above a certain threshold, no shutdown coin-flips are made.

Assume an active node u can, by using some atomic operation, start up an
inactive neighboring node u′. Suppose again u is in IDLE, but with load lu such
that lu > lmax . Whenever u finds out that lmax < lavg, it flips a coin and starts up
u′ with probability 1 − lmax/lu. As above, to avoid starting up inordinately many
nodes in a short interval due to uneven load distribution, a measure of variance can
be used as a threshold.

5.8 Related Work

Two-phase commit protocols were first discussed in the context of database systems
[82, 117, 187]. The shutdown protocol differs in several important ways from these
protocols, not least in its network model. In two-phase commit protocols, there is
a specific leader that initiates a distributed transaction; in the shutdown protocol,
all nodes are potential initiators of a shutdown process. The leader in a two-phase
commit expects a yes/no answer to a transaction request, while in the shutdown
protocol, only “yes” answers are explicit. Negative, “no” answers are given in the
form of a competing transaction initiation request. Instead of resilience against site
failures, i.e., crashes, the shutdown protocol enables resilience against simultaneous
shutdown of neighboring nodes, and the subsequent potential loss of objects and
object-related messages.

Field and Varela [69] propose a programming model based on actors, called
Transactors, that is tolerant to crash failures through checkpointing of state. The
model assumes failing nodes either stop completely or revert to a previous check-
point, saved to reliable storage. In contrast to the present work, which is more
implementation-oriented, node behavior and state is only considered indirectly,
through the semantics of transactors. As in the Actor model generally [3], the
message passing medium is also implicit. Crash tolerance and controlled shutdown
are largely complementary; the latter can lead to lower overheads than, e.g., recov-
ery, and is thus to be preferred, when possible.

De Nicola et al. [152] extend the Klaim language [19] to account for locations
and network topologies. The resulting language, TKlaim, is enriched with failures
of both nodes and links. By allowing modifiable connections, TKlaim can capture
process execution in dynamic networks. A distinct difference from our network
model is the use of a tuple spaces for messages and shared data.

Cornejo et al. [44] describe a distributed algorithm for ensuring connectivity of
mobile agents while they perform some task. The algorithm relies on 1-hop broad-
cast among agents for communication, and therefore does not require a routing
infrastructure. In contrast to the present network model, the algorithm assumes
that the physical distance of agents affects communication, which is performed in
synchronous rounds. Cornejo and Lynch [46] prove that there exists no local graph
trait which perfectly captures graph k-connectivity.
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5.9 Conclusion

We have presented a decentralized protocol for orderly shutdown, and addition,
of nodes connected point-to-point using asynchronous message passing channels,
which host communicating, mobile distributed objects whose integrity must be
preserved. The protocol is part of ongoing work on implementation correctness and
efficient resource allocation for active objects in networks, as described in Chapter 2,
Chapter 3, and Chapter 4.

As future work, we plan to complete the verification of protocol correctness in
the transition system model which allows networks to grow and shrink arbitrarily,
both in the form of safety and liveness. We also plan to implement the protocol
inside our existing simulator, described in Chapter 4, for networked execution of
ABS programs, and evaluate and refine the proposed strategies for decentralized
power control in conjunction with load balancing of objects. Additionally, the
proposed protocol extensions that ensure network connectivity must also be proven
formally correct and evaluated in practice.

We aim to extend our correctness analysis to dynamic networks with crash fail-
ures, using replication [69] and failure detectors [36, 150]. By adopting techniques
similar to those used for security of “passive” objects in content-centric networking
[188], along with inlined monitors and proof-carrying code [132], the model can
become resistant to Byzantine failures. Finally, other implementation-level con-
cerns, such as buffer management, garbage collection, and compactness of location
independent routing tables [186], remain to be addressed.
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Abstract

Concurrent programs often ensure the consistency of their data structures
through synchronization. Because control-centric synchronization primitives,
such as locks, are disconnected from the consistency invariants of the data
structures, a compiler cannot check and and enforce these invariants—making
it hard to detect bugs caused by incorrect synchronization. Moreover, a con-
sistency bug may be the result of some unlikely schedule and therefore not
show up in program testing. In contrast, data-centric synchronization adds
annotations to data structures, defining sets of fields that must be accessed
atomically. A compiler can check such annotations for consistency, detect
deadlock, and automatically add primitives to prevent data races. However,
annotating existing code is time consuming and error prone because it re-
quires understanding the concurrency semantics implemented in the code.
We propose a novel algorithm, called Bait, for deriving such annotations au-
tomatically from observed program executions using Bayesian probabilistic
inference. The algorithm produces atomic set, unit of work, and alias anno-
tations for atomic-set based synchronization. Using our implementation of
the algorithm, we have derived annotations for large code bases, for exam-
ple the Java collections framework, in a matter of seconds. A comparison of
the inferred annotations against manually converted programs, and two case
studies on large, widely-used programs, show that our implementation derives
detailed annotations of high quality.

201
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6.1 Introduction

A program that synchronizes every single field access for each concurrently used
object can still exhibit high-level data races [12, 25]: fields are often connected
through invariants and must be updated together to maintain the object’s consis-
tency [200, 127]. For example, the value of the size field of a list object must equal
the number of elements in the array that stores the list entries. Interleaved access
to such fields from concurrent threads can expose or produce an inconsistent state
in the object containing those fields.

High-level data races may be prevented with control-centric synchronization
mechanisms such as locks. However, to protect a group of data fields, the program-
mer must recognize all execution paths that result in problematic interleavings,
and use locks to prune them. This requires complicated non-local reasoning over
all possible execution paths.

An alternative is to use data-centric synchronization [200, 62], which localizes
the reasoning by asking the programmer for annotations that specify which fields of
an object are connected by a semantic invariant. A compiler can use these annota-
tions to add primitives that prevent interleaved access to fields in the same semantic
unit. This reduces the potential for high-level data races on execution paths that
the programmer may not have conceived of. Furthermore, the annotations can be
statically checked for consistency [62] and deadlock-freedom [134].

Experience with converting a set of concurrent Java programs to data-centric
synchronization shows that such annotations are sufficiently expressive to represent
the desired semantic properties, and that the approach may achieve good perfor-
mance [62]. However, while the end-results are encouraging, the conversion process
itself is time-consuming: it can take several hours even for a relatively small and
simple program. The difficulty in doing such a conversion lies in the need to un-
derstand the program’s concurrency semantics, which can be complicated even for
small code sizes. For large legacy programs, understanding the concurrency seman-
tics is likely a daunting challenge.

There are two kinds of problems that can result in problematic annotation:
first, unrelated fields may be connected by annotations; second, connections may
be omitted. The first type of error reduces the available concurrency, the second
type can result in incorrect execution, for example due to high-level data races.
On careful examination, we found both problems in the six programs that had
been manually converted in prior work [62]. In two cases, the annotations acciden-
tally introduce a global lock, and in two other cases, annotations for shared object
synchronization are omitted.

In previous work [60], we proposed and implemented a dynamic inference al-
gorithm for the automatic conversion of shared memory multi-threaded programs
from control-centric to data-centric synchronization. The algorithm infers anno-
tations for data-centric synchronization that is based on atomic sets [200, 62]. It
uses simple set membership criteria for classification. While this algorithm pro-
duces results that are apparently comparable or better than manual annotation,
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the algorithm is brittle (affected by small perturbations in execution traces) and
not scalable to long executions. Based on our experience with evaluating this algo-
rithm, we concluded that an effective algorithm for dynamic annotation inference
should:

• take into account the distance between two related observations in terms of
basic operations to distinguish between unrelated computation phases;

• produce the same annotations for similar input traces, regardless of minor
fluctuations like occurrences of rare data races;

• support long executions by bounding the observation data by a size deter-
mined by the code base, rather than the duration of the execution;

• improve the accuracy of estimates as more data becomes available.

The contribution of this paper is a novel probabilistic reasoning algorithm us-
ing Bayesian inference which exhibits the above properties. The algorithm, called
Bayesian Annotation Inference Technique (Bait), can continually adjust to new
evidence from traces, and handle large programs and long executions. We describe
the algorithm and demonstrate its effectiveness firstly by comparing inferred anno-
tations to manual annotations added in prior work for six programs, and secondly
in two case studies on large, widely-used programs. The inferred concurrency se-
mantics enables safe program execution because it automatically prevents schedule-
dependent Heisenbugs. Such bugs are (by definition) unlikely to manifest during
testing.

6.2 Background: Atomic Sets

Our implementation of Bait infers annotations for data-centric synchronization
based on atomic sets [200, 62]. An atomic set is a group of data fields inside an
object that are connected by a consistency invariant. Objects can contain multiple
disjoint atomic sets. Recall the list example in Section 6.1: the value of the list’s
size field must equal the number of elements in the elements array used to store
the list entries. Thus, the fields size and elements form an atomic set. Listing 6.1
shows the respective code and annotations in AJ [62], a Java dialect that supports
atomic sets in addition to control-centric constructs like synchronized blocks. The
atomicset statement in line 2 declares an atomic set L; the atomic(L) annotations
of the field declarations add the fields size and elements to L.

Instead of requiring an explicit expression of a consistency invariant, for exam-
ple size == elements.length, an atomic set is complemented by one or more units
of work. A unit of work is a method that preserves the consistency of its asso-
ciated atomic sets when executed sequentially. Thus, atomic sets can ensure the
application’s consistency by inserting synchronization operations that guarantee
the sequential execution of all units of work. By default, all non-private methods
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1 class List {

2 atomicset L;

3 atomic(L) int size;

4 atomic(L) Object[] elements;

5 public int size() {

6 return size;

7 }

8 public Object get(int index) {

9 if (0 <= index && index < this.size)

10 return this.elements[index];

11 else

12 return null;

13 }

14 public void addAll(unitfor(L) List other) {

15 this.size = this.size + other.size;

16 /*...*/

17 }

18 /*...*/

19 }
20
21 class DownloadManager {

22 atomicset U;

23 atomic(U) List urls|L=this.U|;

24 public URL getNextURL() {

25 if (this.urls.size() == 0) return null;

26 URL url = (URL) this.urls.get(0);

27 this.urls.remove(0);

28 announceStartInGUI(url);

29 return url;

30 }

31 /*...*/

32 }

Listing 6.1: Sample classes in the AJ dialect of Java, which adds data-centric
synchronization via the annotations atomicset, atomic, unitfor, and |A=this.B|.

of a class are units of work for all atomic sets declared in the class or any of its sub-
classes. Like field declarations, atomic sets use classes as scopes, but are instance
specific at runtime.

Consider the method get(int) in Listing 6.1. The method is a unit of work
for the atomic set L of its containing List object. The atomic sets of two List

objects are distinct. Other methods can be declared units of work with the unitfor

annotation. In line 14 of Listing 6.1, the method addAll(List) is not only a unit
of work for the atomic set L of its own List object, but also for the atomic set L

of its argument. Hence, two threads, t1 and t2, that concurrently invoke get(int)

and addAll(List) on a List l cannot interleave when accessing l’s field: either
t1 executes get(int) first, or t2 executes addAll(List) first. The interleaved case
where t2 has updated l.size but not l.elements, which causes t1 to violate the
array bounds cannot occur.
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Aliases extend atomic sets beyond object boundaries. An alias merges the
atomic set containing a field with an atomic set in the object that is the field’s value.
For example, consider the DownloadManager class in Listing 6.1. The alias annotation
|L=this.U| of the urls field declaration combines the atomic set L with the atomic
set U. Hence, the getNextURL() method is a unit of work for this combined atomic
set; its access to the urls list cannot be interleaved. This guarantees that no other
thread can empty the list between the invocations of get(int) and remove(int).

Coarse-grained atomic structures like trees can be implemented with aliases.
AJ supports aliasing of elements in an array, and even aliasing of atomic sets in the
elements of arrays. Additionally, AJ allows for more advanced annotations such as
partial unitfor declarations, fastread, and internal. These simplify the specifica-
tion of units of work and help an AJ compiler generate more efficient concurrency-
control code. The more advanced annotations are secondary; we do not consider
their inference in this paper.

6.3 Algorithm Ideas by Example

We now explain the key concepts in Bait using the example program shown in List-
ing 6.2. The program downloads files in parallel, managing its network connections
via threads. It is a version of the program in Listing 6.1 that uses control-centric
synchronization; our goal is to infer the AJ annotations shown there.

Bait monitors the execution of the program. It observes event sequences, such
as the one partially displayed in Figure 6.1, and infers data-centric synchronization
annotations based on the following intuitions: (1) the fields of an object that a
thread accesses together, without interleaving, should belong to the same atomic
set; and, (2) groups of objects that a thread accesses together should be connected
by aliases.

In the partial execution shown in Figure 6.1, one of the downloading threads
invokes getNextURL() to request a new URL to download from the shared manager.
After ensuring that the list of pending URLs contains an entry (line 23), the man-
ager picks and removes the first one. The manager then announces the start of the
download in the program’s user interface (line 26) and finally returns the value to
the thread.

6.3.1 Inference of Atomic Sets

Bait assumes that the methods of a program perform semantically meaningful
operations and that the trace during an execution (mostly) represents the intended
behavior of the program—for example, such a trace may be generated by running
an existing test suite.

Given these assumptions, the fields of an object accessed atomically by a method
in close succession are likely connected by some invariant. The set of fields that
a method accesses atomically is consequently a candidate atomic set; the method
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1 class List {

2 int size; // Connecting invariant: elements[i] is valid if i < size

3 Object[] elements;

4 public int size() {

5 return size;

6 }

7 public Object get(int index) {

8 if (0 <= index && index < this.size)

9 return this.elements[index];

10 else

11 return null;

12 }

13 /*...*/

14 }
15
16 class DownloadManager {

17 List urls;

18 public boolean hasNextURL() {

19 return this.urls.size() > 0;

20 }

21 public URL getNextURL() {

22 // Synchronization in run() makes call sequence atomic

23 if (this.urls.size() == 0) return null;

24 URL url = (URL) this.urls.get(0);

25 this.urls.remove(0);

26 announceStartInGUI(url);

27 return url;

28 }

29 /*...*/

30 }
31
32 class DownloadThread extends Thread {

33 DownloadManager manager;

34 public void run() {

35 while (true) {

36 URL url;

37 synchronized(this.manager) {

38 if (!this.manager.hasNextURL()) break;

39 url = this.manager.getNextURL();

40 }

41 download(url); // Blocks while waiting for data

42 }

43 }

44 /*...*/

45 }

Listing 6.2: Example downloading program that uses threads to manage multiple
network connections. Threads share a single manager that maintains the list of
URLs to download. The program uses control-centric synchronization (line 37);
the goal is to infer the AJ annotations shown in Listing 6.1.



6.3. ALGORITHM IDEAS BY EXAMPLE 207

Figure 6.1: Sample execution of the program in Listing 6.2 (starting from line 39)
that demonstrates the basic ideas of the algorithm.
Accessing fields close together and without interleaving from another thread, ex-
emplified by accesses 3 and 4, suggests that an invariant connects the fields. Hence
the fields size and elements likely belong to an atomic set; the method get(int), in
which the accesses occur, is a unit of work for this atomic set. In contrast, accesses
far apart (1 and 5) or interleaved accesses (not shown) discourage an atomic set.
Close field accesses can occur in different methods, such as accesses 2 and 3. In
this case, the event context is the lowest common ancestor of the methods in the
call tree (here: getNextURL()). Observing close accesses to fields within a field,
for example the two accesses to urls.size in getNextURL(), is evidence that there
should be an alias from the atomic set that contains urls to the one that contains
size.

itself is a candidate unit of work for this atomic set. For example, the get(int)

method in Listing 6.2 reads the fields size and elements in the same list object.
In the sample execution of Figure 6.1, the reads (accesses 3 and 4) happen close
together and without interleaving. Thus, we have evidence that the class List

should contain an atomic set with these two fields. Method get(int), the context
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of the field accesses, is a unit of work for this potential atomic set.
However, field accesses within a method may be far apart. For example, the two

accesses to the thread object’s manager field in the run() method of DownloadThread
(1 and 5) are separated by a method call with many operations. Observing a large
distance like a between two field accesses diminishes the likeliness of an invariant
between the fields. Such an observation hence counts as evidence against an atomic
set containing the fields. The same is true for interleaved access to fields by multiple
threads.

The central idea of the algorithm is to use this evidence for and against atomic
sets in Bayesian inference. Collecting evidence, Bait updates its belief that fields
should be included in the same atomic set. If the belief is high enough at the end
of the execution—intuitively, there was stronger evidence for an atomic set than
against it—Bait outputs corresponding atomic annotations.

6.3.2 Inference of Aliases

Since high-level semantic operations often employ low-level operations, field accesses
may belong to different contexts. In Figure 6.1, access 2 happens within the size()

method; access 3 happens within the get(int) method of List. Increasing the
distance between the accesses (b > c) suffices to adjust the atomic set evidence in
this case. However, the context that contains both accesses is no longer obvious.

The algorithm uses the lowest common ancestor in the call tree as context for
field accesses belonging to different methods. For accesses 2 and 3, this is the
getNextURL() method. Intuitively, we observe a pair of close atomic accesses to
urls.size within that context. Besides being evidence for an atomic set containing
field size, this suggests that getNextURL() is a unit of work for this atomic set.
Because the method accesses size via the field urls, there should be an alias from
the atomic set containing urls to the one containing size.

However, aliases can remove all concurrency from the program when they in-
clude objects shared between threads. In Figure 6.2, two download threads share
a manager. Each thread’s run() method is context for two close atomic accesses to
the field urls in the manager object (accesses 6, 7 and 8, 9). Performing inference
as above, this suggests an alias that merges the atomic set in class DownloadThread

containing the manager field with the one in DownloadManager containing the urls

field. The alias makes the run() method a unit of work for the manager’s atomic set
that contains the urls field. As a consequence, the execution of the run() methods
must be sequentialized, which means that only one of the two threads can be active
at all, reducing performance.

Bait mitigates the sequentialization problem by tracking which objects threads
access together and weakening the belief in aliases across the boundaries of such
object clusters. In our example, both threads access themselves, the manager, and
the list object. Thus, the heuristic detects three clusters of objects: two that are
accessed by a single thread (the thread objects themselves), and one that is accessed
by both threads (the manager and the list object). Maintaining the boundaries
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Figure 6.2: Sample execution of the program in Listing 6.2 that highlights a chal-
lenge in alias inference.
Both threads observe close atomic accesses (6, 7 and 8, 9) to manager.urls, which
suggests an alias from the atomic set in class DownloadThread containing the manager

field to the one in DownloadManager containing urls, compare Figure 6.1. Unfortu-
nately, such an alias makes both run() methods into units of work that operate on
the shared manager object, which prevents them from executing concurrently.
Bait mitigates the problem by tracking which objects threads access together and
weakening the belief in aliases across the boundaries of such object clusters. In
the sample execution, the heuristic detects three clusters of objects: two con-
sisting of the individual thread objects, and one consisting of the manager and
list object. It therefore discourages the problematic alias from DownloadThread to
DownloadManager, but does not interfere with the alias from DownloadManager to
List.

between these clusters, the heuristic prevents aliases from manager to manager.urls

to preserve concurrency, but allows an alias from urls to urls.size.
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6.4 Algorithm

This section describes Bait in detail, building upon the ideas explained in Sec-
tion 6.3.

6.4.1 Field Access Observations

During the execution of a workload, the algorithm records observations of get and
put operations on the fields of each object. These observations are captured in the
scope of a method call for a thread. From two consecutive observations for the
same object, Bait generates a field access event e, which is a tuple

(f, g, d, a) ∈ Fd × Fd × N × At.

Here, Fd denotes the set of all fields in the program; f is the first field accessed, g
is the second field. The distance d between the two accesses is the number of basic
operations executed by the thread, such as Java byte code instructions. The entry
a ∈ At = {atomic, interleaved} signals whether access to both f and g was atomic
or access to g was interleaved with some other thread. To detect such interleaved
accesses, Bait relies on a separate race detection algorithm such as FastTrack [74],
which is used in the implementation described in Section 6.5.

6.4.2 Bayesian Detection of Semantic Invariants

Using the generated field access events, the algorithm aims to determine whether
there are invariants that hold between pairs of fields. Consider two fields f and g
accessed in method m of a thread when executing a program on some workload.
Suppose the workload generates the events e1, . . . , en, all related to f and g. Write
H for the hypothesis that there exists a semantic invariant connecting f and g in
the method, and ¬H for the negated hypothesis that there is no such invariant.

Our goal is to find out to what degree the evidence, in the form of e1, . . . , en,
supports the conclusion that H holds. In the Bayesian probabilistic reasoning
framework [163], this degree of support is formalized as the conditional probability
of H given e1, . . . , en, which through Bayes’s formula can be written as

P (H|e1, . . . , en) =
P (e1, . . . , en|H) · P (H)

P (e1, . . . , en)
. (6.1)

Unfortunately, the right-hand side is difficult to estimate because it would require
guessing the absolute probability that the events e1, . . . , en occur in a program. For
estimation, it is more convenient to use relative values such as the so-called odds
and likelihood ratios. Intuitively, the likelihood ratio expresses how many times
more likely an event is when the hypothesis is true versus when the hypothesis is
false. Thus, we divide the left-hand side of Equation 6.1 with its complementary
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form, yielding

P (H|e1, . . . , en)

P (¬H|e1, . . . , en)
=

P (e1, . . . , en|H)

P (e1, . . . , en|¬H)
·

P (H)

P (¬H)
.

What the equation says is that our revised belief in H, when presented with
e1, . . . , en, is equal to the ratio of the chances of observing e1, . . . , en under H
and ¬H, times our initial belief in H. We call the revised belief posterior odds,
the ratio of the chances of making observations the likelihood ratio, and our initial
belief the prior odds. More compactly, then, we write the equation as

O(H|e1, . . . , en) = L(e1, . . . , en|H) · O(H). (6.2)

These quantities are easier to estimate than probabilities, yet must be recomputed
from scratch every time new evidence is added. However, if e1, . . . , en are condi-
tionally independent given H, an assumption discussed in Section 6.4.3, we have

P (e1, . . . , en|H) =

n
∏

k=1

P (ek|H),

and similarly for ¬H, which together with Equation 6.2 gives

O(H|e1, . . . , en) = O(H) ·
n

∏

k=1

L(ek|H).

This equation suggests that recursive, on-the-fly computation of odds is possible,
as becomes clear when adding one more piece of evidence en+1, yielding

O(H|e1, . . . , en, en+1) = L(en+1|H) · O(H|e1, . . . , en).

We set O(H) = 1, that is, we assume that H and ¬H are initially equally likely.
We have thus reduced the problem of obtaining the degree of support for H to
computing L(e|H), given the data from e.

6.4.3 Conditional Independence of Events

Conditional independence means that knowledge of H, or ¬H, makes evidence
up to that point irrelevant with respect to future evidence. Equivalently, under
conditional independence, the hypothesis influences the evidence directly, without
systematic interference from external factors. However, in a run of the algorithm,
the evidence produced can clearly be skewed through systematic influence from the
chosen workload and the scheduler.

One way to address this problem is to refine the (coarse-grained) hypothesis
space that either H or ¬H holds into multi-valued variables [163]. This leads to a
considerably more complicated mapping of evidence to likelihoods ratios. Instead of
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taking this route, we argue that the influence of external factors can be minimized
by running Bait on workloads with sufficient code coverage for long enough to
exhibit all critical interleavings, if necessary using tools to instrument scheduling
and execution paths.

Although Bait can falsely conclude that two fields are related by an invariant
(and thus include them in an atomic set or add an alias) when they are not, the
resulting behavior is still safe. However, performance may suffer because of such an
error, due to increased overhead from synchronization and reduction of concurrency.

6.4.4 Estimation of Likelihood Ratios

Suppose the field access event e reports we have a distance d between atomic ac-
cesses of f and g. Intuitively, the likelihood ratio L(e|H) we assign based on e
should have the following properties:

1. As d decreases, L(e|H) must increase, but only up to some point, after which
it becomes a flat maximum value; even if atomic accesses of f and g happen
in close proximity, it is not conclusive that H holds.

2. As d increases, L(e|H) must decrease, but only to some minimum value
greater than zero; one observation should not make it impossible to conclude
that H holds.

Bait therefore uses a logistic function ℓ(d), as shown in Figure 6.3, to map field
access events to likelihood ratios. For example, accesses 2, 3, and 4 in Figure 6.1
occur in close succession. We interpret this as evidence that it is more likely than
not that an invariant connects the fields size and elements. Hence, we assign the
distances b and c, with b > c, likelihood ratios ℓ(c) > ℓ(b) > 1. In contrast, the
large distance a diminishes our belief that an invariant connects the two accesses
to the manager field. Thus, we set 1 > ℓ(a) > 0. We leave the exact parameters of
the logistic curve—its steepness and minimum and maximum likelihood ratios—to
be determined during an implementation of the algorithm.

However, distance is not the only criterion for estimating the likelihood ratio.
Suppose that e reports interleaved access. We then disregard the distance and set
L(e|H) to a real number p (“penalty”) close to zero. This reflects that, intuitively,
our belief in an invariant goes down significantly after witnessing interleaving, while
not making it impossible to infer the invariant’s existence later on, through over-
whelming atomic access. Bait is thus robust against sporadic errors like very rare
data races. We again leave the precise value of p to an implementation.

In summary, given a field access event e = (f, g, d, a), we define the estimated
likelihood ratio for e as

ℓ(d, a) =

{

ℓ(d) if a = atomic;

p if a = interleaved.



6.4. ALGORITHM 213

distance d

lik
el

ih
oo

d
ra

ti
o

ℓ(
d
)

0

1

Figure 6.3: Logistic curve for mapping atomic-access distances to likelihood ratios

6.4.5 Belief Configurations

We can now define how Bait stores odds of invariants and uses likelihood ratios to
update these odds in the course of workload execution.

Odds are stored in affinity matrices. An affinity matrix A is a symmetric map
from pairs of fields (f, g) to real numbers. Symmetric means that the value assigned
to (f, g) equals the one assigned to (g, f). Setting x as the value of (f, g), written
A[(f, g) 7→ x], maintains the symmetry: after the update, it is A(g, f) = x.

Belief configurations describe the algorithm’s state. A belief configuration B
contains an affinity matrix Am for every method m. Recall that an access event for
a thread t in method m is a tuple consisting of two fields f, g ∈ Fd, a distance d ∈ N,
and an atomicity indicator a ∈ At. The transition function for belief configurations

δt,m : Config × Fd × Fd × N × At → Config

is now defined as δt,m

(

B, (f, g, d, a)
)

= B[m 7→ A′

m] with

A′

m = Am

[

(f, g) 7→ ℓ(d, a) · Am(f, g)
]

. (6.3)

For all methods m, define an initial affinity matrix Ainit
m such that Ainit

m (f, g) = 1
for all (f, g) ∈ Fd×Fd and an initial belief configuration Binit with Binit(m) = Ainit

m .
Then, if the events e1, . . . , en are generated in t for m1, . . . , mn, the algorithm
computes the final belief configuration

δt,mn
(· · · δt,m1

(Binit, e1) · · · , en),

which is ultimately used for deriving atomic sets for the program.

6.4.6 Inference of Aliases and Units of Work

Inference of aliases and units of work is done at the same time as inference of atomic
sets, and in a similar way, but with several important differences.



214 CHAPTER 6. DYNAMIC PROBABILISTIC INFERENCE OF ATOMIC SETS

Suppose we observe an atomic access of the field g after an access of f in
the method m. Within m, the object that contains f and g may be known by
a source code identifier, that is, by a field or parameter name n. For example, in
Figure 6.1, the field access event generated for the accesses 2 and 3 occurs in method
getNextURL(). Within that method, the list object that contains the accessed size

field is known by the field name url. Hence the method observes the accesses in the
context of this name, as urls.size; and more generally, m observes the accesses of
f and g as n.f and n.g.

Such an observation indicates that m performs multiple operations on another
object (the list in our example). As before, if the distance d between the accesses
n.f and n.g is small, then these operations likely maintain an invariant. Therefore,
they should be atomic, which means that an atomic set containing n should be
extended—by an alias—to also contain n.f and n.g. Translated to our example, the
close accesses to urls.size count as evidence for an alias that merges the manager
object’s atomic set containing urls with the list object’s atomic set containing size.

In summary, to infer aliases and units of work, we associate with each identi-
fier n an affinity matrix An, and update this matrix with the likelihood ratio ℓ(d),
penalizing interleaved accesses as for atomic sets above. Then, most straightfor-
wardly, if An(f, g) > 1 for An in the final configuration, this suggests an alias from
the inferred atomic set of n—should n be a field name—to the inferred atomic set
of f and g. Should n be a parameter of m, then this suggests declaring m a unit
of work for the atomic set of f and g in n.

Preventing Global Locks. Without further adjustments, inferring aliases this
way can lead to undesirable global locks, as shown in Figure 6.2: if an alias merges
an atomic set in a thread object with an atomic set S in an object shared between
threads, then the thread’s methods become units of work for S. Consequently,
only one thread object can execute at a time, making (this part of) the program
sequential.

We apply the following heuristic to detect this situation and lower the respective
alias beliefs. Whenever a thread t accesses a field in object o, we record t as the
owner of o. Using this data, we maintain an alias factor α for objects. Consider
the situation in Figure 6.2, just after the left thread tl’s call to getNextURL() has
returned. At this point, tl owns itself, the manager object, and the list object.
When the right thread tr accesses its local manager field just after that, Bait
detects that tr owns the object that contains the accessed manager field (itself),
but another thread owns the object that is the field’s value (tl owns the manager
object). Therefore, the thread object tr and the manager object appear to belong
to two different clusters in the object graph upon which different threads operate
concurrently. Merging these clusters with an alias would remove the concurrency.
Therefore, we set a fixed alias factor α in the range (0, 1) for the manager object
(the field’s value). Otherwise, if tr was the owner of itself and the manager object,
we set α based on the recorded (same-thread) distance between the accesses, which



6.5. IMPLEMENTATION 215

can result both in lowering or raising belief in an alias.
Given an atomic field access event, we use the computed alias factor α for the

field-containing object as weight when updating an alias affinity matrix. Adapting
Equation 6.3, the updated affinity matrix A′

n for the name n of o is thus computed
as

A′

n = An

[

(f, g) 7→ α · ℓ(d, a) · An(f, g)
]

.

In the example shown in Figure 6.2, the alias factor α < 1 for the manager object
prevents the small distance between the observed accesses of manager.urls (6, 7
and 8, 9) in the run() methods from increasing the odds of the problematic alias
from DownloadThread.manager to DownloadManager.urls.

A slight modification of the heuristic is necessary to account for clusters consist-
ing of more than two objects. In its current form, the heuristic detects a different
owner thread for the first accessed object o of a cluster, and the same owner for the
second object v, say, accessed via field f in o. However, the access of f establishes
the current thread as the owner of o. Thus, when accessing a third object w via
the field g in o, the heuristic would detect different owners again, discouraging an
alias even though the previous thread operated on o, v, and w. Bait solves this
problem by not only recording the current owning thread to for each object, but
also the previous (distinct) owning thread t′

o. Different clusters are detected only
if to 6= tv and t′

o 6= tv. Thus, for the access of w we have t′

o = tw and correctly
associate w with o and v.

6.4.7 Atomic Set, Alias and Unit of Work Formation

After the workload has finished executing, all atomic set field affinity matrices
are merged into a single matrix. From this combined matrix, the atomic sets are
extracted by using the matrix values as edge-weights on the fully-connected graph
of all fields (node set Fd), removing the edges with weight less than a threshold
(we use 1), and grouping the fields in the remaining connected components by
their declaring class (accounting for inheritance). The atomic sets are added as
annotations to the class hierarchy, which forms the basis for computing aliases
using the alias affinity matrices. Finally, units of work are inferred using the class
hierarchy and the alias affinity matrices.

6.5 Implementation

We have implemented Bait in a tool chain for Java programs1. The tool chain
consists of a Java byte code instrumenter and an inference tool. The instrumenter
uses WALA’s2 Shrike library to insert calls to the field access tracing library into
the input byte code. After instrumentation, the target program must be executed
to generate field access traces, and simultaneously infer affinity matrices.

1To be released at http://osl.cs.illinois.edu/software/
2T. J. Watson Libraries for Analysis. http://wala.sf.net
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For reasons of simplicity and performance, our implementation uses piecewise
linear approximations of the logistic functions for mapping distances to likelihood
ratios for atomic sets and aliases. To allow the tool to process realistic programs,
we have extended it with the ability to handle arrays, synchronized blocks, and
wait–notify synchronization, as explained in earlier work [61]. In addition, we have
included heuristics that add special handling of monitor variables and constructors,
and removal of non-aliased final fields from atomic sets. While the algorithm
requires tracking all names that a field-owning object can have, the implementation
only tracks the last known name at runtime. We believe this gives a reasonable
tradeoff between overhead and correctness.

The tool ignores the limitations of the current AJ implementation. Conse-
quently, it does not suggest required refactorings such as making nested classes
into top-level classes, adding getter and setter methods, and using only one atomic
set per class.

The implementation has several parameters that can dramatically affect the
inferred annotations, most prominently the parameters that define the piecewise
approximations of the logistic functions for atomic set and alias likelihoods. We
have calibrated the parameters using mainly small test cases where the desired
results are easy to determine. A method for automatically tuning parameters for
specific codebases, e.g., based on the differences in output between several runs of
the same workload, should be possible to develop, but we leave this as future work.

6.6 Evaluation

We measure the performance of Bait by the quality of the inferred annotations.
The highlights of our results are presented in this section.

6.6.1 Approach

We evaluate Bait by running our implementation on all but one of the Java pro-
grams for which an AJ version is publicly available, and comparing the inferred
annotations to the manually added annotations. We follow this subjective qualita-
tive approach for two reasons. First, the goal of the algorithm is to infer annotations
that not only enforce, but also document the intended concurrency semantics of the
program. Evaluating how well the inferred annotations meet this goal requires man-
ual inspection of the code. Simple quantification of the differences between manual
and inferred annotations alone—for example their number or size—does not convey
meaningful information because most AJ versions have been refactored and struc-
turally differ from the Java versions; furthermore, some of the manual annotations
are incomplete and sometimes even incorrect. Second, using other quantitative
measures like execution speed is infeasible because the prototype AJ compiler is
currently defunct.
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6.6.2 Program Corpus

Table 6.1 lists the programs used to evaluate the algorithm. The list includes all
Java programs for which an AJ version is publicly available, except cewolf. The
cewolf library was excluded because it contained too few AJ annotations to justify
the effort of creating a fuzzing tool for it. For every program except collections,
the corpus also includes the compiled AJ version. Both versions are used in the
evaluation. These Java programs were manually converted to AJ by Dolby et
al. [62]. Archives containing the source code of the conversions are available on the
Data-Centric Concurrency Control project website3. The AJ variant of the Java
collections framework was kindly provided by Frank Tip.

6.6.3 Method

Each program in the corpus is first instrumented and then run three times using
the same workload. For elevator and tsp2, the workload consists of example input
files distributed with the programs; weblech is used to aggregate files from a local
web server; the collections and jcurzez libraries are used for random operations
by custom fuzzing programs. Creating the fuzzing programs took about half a
day per library. However, this effort could be automated, or unit tests could be
used instead where available. All workloads were set large enough to trigger the
use of multiple operating system threads by the JVM in order to obtain observa-
tions of fine-grained interleavings. Comparing the annotations inferred for three
separate runs gives us insight into the effects of (random) thread scheduling and
allows us to verify that the annotations likely reflect consistent program behavior.
Consequently, before analyzing the results, we remove spurious annotations and
consolidate the remaining annotations from all runs. We use the same calibrated
parameters for all programs except collections, where we adjust the approximated
logistic function for distance-to-likelihood mapping to increase the odds of inferring
aliases. This is necessary to accommodate deficiencies in the collections fuzzer.

Next, we compare these inferred annotations against the ones Dolby et al. man-
ually inserted when converting the programs to AJ. For every difference, we in-
vestigate whether it results in disparate program behavior by analyzing the source
code of both variants. Furthermore, we discuss the root cause that led to inferring
a differing annotation.

Several refactorings were applied during the development of the AJ variants
to meet the requirements of AJ, to work around limitations of the used imple-
mentation, and to simplify the conversion. Refactorings to meet requirements in-
clude introducing getter and setter methods for fields. Workaround refactorings
include flattening nested classes and splitting classes to achieve concurrent execu-
tion. Simplifications include dropping specialized iterator classes in the collections
framework.

3http://sss.cs.purdue.edu/projects/aj/
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Table 6.1: Programs used to evaluate the algorithm. The kLoC column lists the
number of thousand lines of source code in the Java version of the program, exclud-
ing comments and empty lines. The Classes column shows the number of classes
in the program. In parentheses follows the number of classes that contain at least
one manually added AJ annotation (atomicset, atomic, or unitfor).

Program Description kLoC Classes

collections OpenJDK 1.6 collections 11.1 171 (43)
elevator Elevator simulation 0.3 6 (2)
jcurzez1 UI library (low concur.) 2.7 78 (9)
jcurzez2 UI library (high concur.) 2.8 79 (6)
tsp2 Traveling salesman 0.5 6 (2)
weblech Web site mirror tool 1.3 12 (2)

We do not report the processing times because in a source code conversion
workflow, it suffices to execute the tool once. We simply note that for each program,
instrumentation finished within seconds; collecting the observations and inferring
the annotations generally took a few seconds, and never more than one minute, on
an Intel Core i5 processor with 2 GB of RAM.

6.6.4 Results

The inferred annotations can differ from the manual annotations in both missed
and added atomic set, alias, and unit of work definitions. The consequences vary:

• The most critical kind of difference is a missing or incomplete atomic set,
implying that some fields that were intended to be protected from interleaved
accesses remain unprotected, which may result in a race condition. Additional
atomic sets can lead to deadlock, but this is not a severe problem because
deadlock caused by atomic sets can be statically recognized [134].

• Missing aliases result in synchronization overhead and can lead to high-level
races. Additional aliases reduce the potential for concurrency in the pro-
gram. However, extraneous aliases cannot lead to errors like race conditions
or deadlocks.

• Missing unit of work declarations can lead to race conditions. Additional dec-
larations may reduce the concurrency in the program and lead to (statically
recognizable) deadlock.

In the comparisons, we ignore secondary causes of differences that either reflect
refactorings, or can be fixed through a better tool implementation or workload.
Overall, then, the inferred annotations mostly agree with the manual annotations.
We discuss the compared programs in turn.
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collections Most atomic sets inferred by Bait are complete, but some sets are
lacking some manually added fields. In one case, this omission is clearly
motivated, since the inclusion introduces a global lock, highlighting a mistake
in the manual annotations. Several abstract classes are missing units of work,
which in most cases are instead inferred for their implementing classes. In
some other cases, the omission of units of work are attributable to the fuzzer,
which is clearly incomplete. For example, the fuzzer does not access iterators
from different threads.

elevator Bait does not infer the manually annotated units of work, but as these
manual declarations are formulated, they are incompatible with the AJ speci-
fication. The tool infers several additional atomic sets that serve as documen-
tation of existing behavior. The tool omits one alias due to workload issues,
and adds two aliases from arrays to their elements that document existing
behavior.

jcurzez1 Bait correctly infers all manually added atomic sets for all but one class,
where one set is missing a field due to a conservative choice of alias inference
parameters. One new atomic set is introduced that prevents races that can
occur in the workload, while several others are added that document existing
behavior. Some manual units of work annotations are not inferred due to
incomplete workloads or tool deficiencies that are straightforward to fix. One
inferred unit of work prevents inadvertent races and therefore highlights a
bug in the manual annotations. One correct additional alias is inferred and
one manual alias is omitted. This omission is due to interleaved access, and
shows that the original synchronization in the program is incomplete.

jcurzez2 Bait again correctly infers all manually added atomic sets for all but
one class, where a set is again missing a field due to alias inference param-
eters, and adds more sets that document behavior. Alias inference follows
the pattern from jcurzez1. Some manually added unit of work annotations
are not inferred, but this is either due to insufficient workload or minor tool
deficiencies. Two cases of inferred added units of work indicate omissions in
the manual annotations that can lead to races.

tsp2 Bait infers all manual annotations, while correctly adding several atomic
sets and aliases that document existing behavior.

weblech Bait infers all manual annotations, while adding several sets and aliases.

Inferring annotations for the manually ported AJ variants of the programs yields
results similar to the those of the original variants. This indicates that the manual
annotations capture most of the original program’s behavior. It also shows that
the manual refactorings do not influence the inference to any significant extent.

The effects of the inferred annotations on the behavior of collections, the jcurzez
variants, and tsp2 match the effects of the manual annotations.
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In elevator, the threads synchronize using the elements of a globally shared array
floors as monitors. The developers of AJ use a generalized unitfor annotation
to circumvent global locking. However, while having the right effects in the AJ
implementation, this annotation violates the atomic set typing rules because it
contains non-final segments in its atomic set designator. Our algorithm does not
include the array floor in any atomic set, and hence races on the array are not
prevented.

The annotations inferred for weblech impose a global lock: the download threads
in weblech execute a single shared Runnable object; adding an atomic set to this ob-
ject effectively prevents any concurrent execution, that is, downloading. A solution
to this problem is to split the Runnable object. The manually ported AJ variant of
weblech follows this approach, but the refactoring leaves the crucial blocking net-
work access inside a unit of work for the atomic set of Runnable, and thereby fails
to enable concurrent downloading. Thus, the annotations for weblech underline for
argument for tool support for suggesting program refactorings.

Bait’s inferred annotations for jcurzez1 reveal race conditions in the classes
Cell, Cursor, and Pen. In its AJ variant, the racing fields of Cursor and Pen are
protected by an atomic set. Since both the library’s control- and data-centric
synchronization was added by the AJ developers, this documents that the race is
unintended, which underlines the difficulty of defining control-centric synchroniza-
tion. The malign race in class Cell and the lack of a manual atomic set definition for
this class are proof that understanding the concurrency structure of other people’s
programs is hard, which supports our case for automating the necessary reasoning.
The mistakenly added atomic set in collections adds further support.

6.7 Case Studies

We investigate the extent to which Bait can deal with rare races—likely the re-
sult of programming errors—and still infer correct annotations, by running a test
program with intermittent unsynchronized field access with different parameters.
For the program, an atomic set is consistently inferred as long as unsynchronized
accesses are about one tenth as many as the atomic accesses, or less. In addition,
we explore the feasibility of our approach on large-scale software by conducting an-
notation inference case studies on the widely-used programs Lucene4 and Xalan5,
with workloads from the DaCapo benchmark suite [22], release 9.12-bach. The
program details are listed in Table 6.2. These two case studies show that the tool
can be used on large programs to derive annotations that clarify control-centric
synchronization behavior and prevent the occurrence of rare races in future devel-
opment. Annotations also identify and document clusters of classes related through
aliases between their atomic sets.

4http://lucene.apache.org
5http://xml.apache.org/xalan-j/
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Table 6.2: Programs used in case studies of the inference algorithm. The kLoC
column lists the number of thousand lines of source code in the Java version of
the program, excluding comments and empty lines. The Classes column shows the
number of classes in the program.

Program Version Description kLoC Classes

Lucene 2.4.1 Text search 68.3 559
Xalan 2.7.1 XSLT processor 172.3 1514

6.7.1 Inference Robustness Study

To test Bait’s robustness, we devised a program where two threads repeatedly
set the firstName and lastName fields of a shared object which is an instance of a
class Person. Threads either set the two fields atomically using the synchronized

method setNames(String,String), but sometimes use the unsynchronized method
setLastName(String) to only set the last name. Threads do this by repeatedly call-
ing a method doWork(int), shown in Listing 6.3, while incrementing the argument
iteration. When unsynchronized access only occurs every tenth iteration, as in
the figure, an atomic set with firstName and lastName for Person is correctly in-
ferred across runs. However, when unsynchronized access occurs every fifth call, the
atomic set is sometimes inferred and sometimes not inferred; the outcome is likely
determined by the scheduler. With every third call unsynchronized, the atomic set
is not inferred at all.

protected void doWork(int iteration) {

long tId = Thread.currentThread().getId();

if (iteration % 10 == 0) { // Non-atomic access

sharedPerson.setLastName("Last" + tId);

sharedPerson.setLastName("Last" + tId);

} else { // Atomic access

sharedPerson.setNames("First" + tId, "Last" + tId);

}

}

Listing 6.3: Snippet from program with intermittently interleaved field accesses

This program is an extreme case in terms of intermittent access—for actual
programs, access distance is more likely to be the determining factor of atomic set
inference. The results nevertheless demonstrate that a degree of robustness against
intermittent incorrect program behavior is inherent in Bait.
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6.7.2 Lucene

We use the lusearch DaCapo benchmark as workload for Lucene. This benchmark
does text search of keywords, using several threads, over a corpus of data comprising
the works of Shakespeare and the King James Bible. Hence, Bait produces many
annotations for the parts of Lucene that deal with text search using this workload,
but few for the parts that deal with mutating search indexes.

Notably, the algorithm infers an atomic set containing most fields of the class
SegmentReader in the package org.apache.lucene.index. The atomic set includes
the field deletedDocs, which is accessed in the methods shown in Listing 6.4. The
method isDeleted() is synchronized, which suggests that deletedDocs is accessed
by concurrent threads. However, neither the method doDelete(int), which writes
deletedDocs, nor the method numDocs(), which reads it, are synchronized. Clearly,
there is at present a potential for races involving deletedDocs when using these
methods; for example, when a thread executing doDelete(int) sets deletedDocs to
a non-null value while other threads simultaneously run isDeleted() or numDocs().
Adding the field to the atomic set rules out such races.

protected void doDelete(int docNum) {

if (deletedDocs == null)

deletedDocs = new BitVector(maxDoc());

deletedDocsDirty = true;

undeleteAll = false;

if (!deletedDocs.getAndSet(docNum))

pendingDeleteCount++;

}

/*...*/

public synchronized boolean isDeleted(int n) {

return (deletedDocs != null && deletedDocs.get(n));

}

/*...*/

public int numDocs() {

int n = maxDoc();

if (deletedDocs != null)

n -= deletedDocs.count();

return n;

}

Listing 6.4: Snippet from class SegmentReader in Lucene

Bait correctly adds annotations to make instances of priority queues for text
search scores thread safe, namely, the class HitQueue in org.apache.lucene.search.
First, in the abstract class PriorityQueue which HitQueue extends, an atomic set
with the fields heap, maxSize, and size is added, with an alias from the array field
heap to its elements and to the atomic set of class ScoreDoc, whose instances are
stored in the queue. In HitQueue, the method lessThan is added as unit of work for
the atomic sets of both its ScoreDoc arguments.
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The atomic set for CompoundFileReader in the package org.apache.lucene.index

includes the fields entries and stream, with an alias from the latter field to the
atomic set of FSDirectory.FSIndexInput in org.apache.lucene.store. On inspec-
tion of the class CompoundFileReader, the methods close() and openInput(), which
both access entries and stream, are synchronized, lending support that there is an
invariant between the fields and justifying their inclusion in the atomic set.

6.7.3 Xalan

Xalan is an XSLT processor for transforming XML documents. In the DaCapo
benchmark, Xalan repeatedly transforms a set of XML documents using several
threads, scaled to the available processor cores.

The atomic sets derived by Bait often have many members for classes with
many fields. For example, class TransformerImpl in org.apache.xalan.transformer

is annotated with a set with 34 fields. Closer inspection of the class suggests that
only a few of these fields are accessed by concurrent threads, as evidenced by the
use of locks, and that some of the fields can only be set once, for instance in the
constructor. While it could be justified to have large atomic sets in some cases, the
results suggest it is worthwhile enhancing our tool using static analyses, e.g., for
determining field mutability, to reduce the number of fields in atomic sets.

For the class ElemTextLiteral in org.apache.xalan.templates, the algorithm
infers an atomic set containing the char array field m_ch, and the String field m_str,
among others. The synchronized method getNodeValue() in the class, shown in
Listing 6.5, suggests that m_str is accessed by concurrent threads, and that m_str

is related to m_ch in that the former is the string representation of the latter.
However, the presence of a public mutator method setChars(char[]) for m_ch, also
shown in the figure, makes it trivial to break the invariant by calling the method
with a new char array after a call to getNodeValue(), and enables races between
calls by different threads to the two methods.

As far as we have been able to determine, the method setChars(char[]) is
actually only called in a method which creates and initializes a ElemTextLiteral

instance, before that instance is passed as a method argument and potentially used
by other threads. Still, the inclusion of m_ch and m_str in the atomic set makes the
invariant between them more explicit, and protects from races that could otherwise
be introduced by future development.

When executing the workload, Bait reports races on the fields m_hasTextLitOnly
and m_prefixTable in the class ElemTemplateElement in org.apache.xalan.templates.
The inferred atomic set for the class include both of these fields, ruling out such
races.

6.8 Discussion

Bait successfully infers annotations for atomic sets, aliases, and units of work
from the execution traces of a program; if these are not available they have to be
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public void setChars(char[] v) {

m_ch = v;

}

/*...*/

public synchronized String getNodeValue() {

if(null == m_str) {

m_str = new String(m_ch);

}

return m_str;

}

Listing 6.5: Snippet from class ElemTextLiteral in Xalan

generated by executing the program. In particular, converting isolated modules of
a large code base requires unit tests which execute these modules. The algorithm
further assumes that all observed execution traces are mostly correct, that is, reflect
programmer intent. This assumption can hold even if a program contains bugs:
schedule-dependent Heisenbugs that never (or rarely) appear during testing will
still produce odds in favor of an invariant. In this case, the inferred annotations
will prevent the bugs in future executions.

The major factor driving the suggestion of additional annotations is the docu-
mentation of obvious behavior. Obvious behavior concerns high-level understanding
of a program’s concurrency semantics. Developers use this understanding to avoid
annotating classes they deem irrelevant for achieving the intended behavior. The
inference algorithm lacks this concept of obviousness and generates annotations for
all classes. From the perspective of project-external developers, these annotations
provide a guard against accidentally violating behavior invariants, while at the same
time documenting these invariants.

The degree of concurrency in a program with inferred annotations depends on
the concurrency manifest in the execution traces that are used. It is therefore
important to collect traces using workloads that trigger as much correct concurrent
behavior as possible. It would be feasible to automate the generation of workloads,
for example using concolic execution to explore thread scheduling.

Another factor limiting concurrency is the current lock-based implementation of
atomic sets. Our algorithm treats read–read sharing of fields as non-interleaved ac-
cess and therefore includes these fields in atomic sets. In the converted program, the
fields are therefore protected by locks, preventing the concurrent reading observed
in the execution traces. Although unnecessarily restrictive, the resulting behavior
will be correct. Better implementations of atomic sets, for example using software
transactional memory, or inferring advanced annotations such as fastread, partial
unitfor, and internal, would improve the degree of concurrency. As demonstrated
by Dolby et al. [62], these annotations may have a dramatic effect on a program’s
performance.

Our evaluation focuses on whether Bait produces correct, reasonable, and use-
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ful annotations. Another important aspect is whether programs that have been
annotated by Bait can be executed with acceptable overhead when concurrency
control is based on those annotations. We leave such a performance study as future
work, since it would require the development of a fast, high-quality AJ compiler,
to replace the proprietary, defunct prototype compiler. Nevertheless, based on pre-
vious results when compiling annotated programs from the SPECjbb benchmark,
we expect that throughput between 80 % and 90 % can be achieved, depending on
the degree of optimization [62]. In addition to such a performance analysis, there
is a wide range of options open for enhancing our tool with heuristics to improve
annotation quality, such as performing escape analysis to detect thread-local fields
and use of statically derived information on classes with immutable instances.

6.9 Related Work

The automatic inference of a program’s concurrency semantics has been treated in
the context of data race detection. There, the concurrency semantics is used to
warn about violations of the likely intended atomicity semantics of variables.

A dynamic approach that learns the atomicity intentions for shared variables
from execution traces is the AVIO system of Lu et al. [130, 129]. AVIO observes
the read and write operations on a shared variable and treats it as atomic if all
operations were serializable. Observing each variable in isolation, AVIO can only
detect low-level data races. In contrast, Artho et al. [12] introduce the notion
of high-level data races and explicitly design their dynamic algorithm to consider
races on sets of semantically related variables. The AssetFuzzer algorithm of Lai
et al. [114] uses partial order relaxation to detect potential, but unmanifested,
violations in the execution trace. All of these methods are similar to our algorithm
in that they work without user annotations. The Atomizer system of Flanagan
and Freund [73] additionally considers windows of vulnerability, but requires a few
source code annotations and potentially raises false alarms.

The MUVI tool of Lu et al. [127] follows a static approach to inferring atomicity
intentions. It computes variable correlations by mining the program source code.
As opposed to our tool, it relies on the static (source code) distance to infer semantic
relationships.

The static heuristic [84, 191] of defining one atomic set per class that contains
all non-static fields has also been proposed in the context of race detection. Tar-
geting race detection, none of the aforementioned approaches considers aliasing
information, which is essential for our use case.

Huang and Milanova propose a static inference system for AJ types that signifi-
cantly reduces the number of annotations that a developer has to write [96]. While
simplifying the use of AJ, it needs a set of foundational annotations. Hence, their
and our methods complement each other: the static inference rules propagate the
base annotations inferred by our analysis, yielding a complete set of AJ annotations.
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Liu et al. [125] describe a technique for statically inferring atomic sets based on
program dependence analysis. The inferred sets are then used for finding atomic
composition bugs dynamically in programs. This is a different focus compared to
our algorithm, whose main aim is to provide annotations for documentation and
safe execution. In addition, our algorithm also infers aliases, which are arguably
harder to infer than atomic sets, least of all statically.

Flanagan et al. [75] present a sound and complete dynamic atomicity checker
for Java programs. The tool, Velodrome, takes a workload and list of methods
that are assumed to be atomic as input, and outputs a list of atomicity violations.
Biswas et al. [21] improve on the significant overhead introduced by Velodrome
in their DoubleChecker tool, while maintaining soundness and completeness. A
tentative list of atomic methods can be derived from the annotations produced by
our tool by simply enumerating all methods that are units of work for some atomic
set. When used as input to an atomicity checker, the resulting analysis is sound but
not complete with respect to AJ semantics, since aliasing introduces requirements
on cross-method atomicity. If an atomicity checker is extended to support the fine-
grained atomicity specifications offered by aliases, the resulting tool chain could be
used for automatically identifying more subtle atomicity violations than are possible
at present.

Atomic sets take a declarative approach to synchronization. Synchronizers [79,
59] provide a similar notion in the context of Actor systems, where they constrain
the message dispatch in a group of actors. The available constraints differ from
atomic sets in that Synchronizers can provide temporal atomicity—messages arrive
at the same time—not the spatial atomicity offered by atomic sets. Furthermore,
Synchronizers cannot easily express the non-interleaving of message sequences,
which is the Actor equivalent of non-interleaved access to shared data, and do
not support transitive extensions similar to aliases in atomic sets.

By boosting belief in the existence of an invariant after atomic access and main-
taining or possibly even strengthening that belief unless witnessing interleaved ac-
cess, Bait follows the approach of accentuating the positive [203, 129] by suppressing
rarely observed Heisenbugs that violate atomicity. A study of real-world concur-
rency bugs [128] finds that nearly half of all errors are related to atomicity; with
deadlocks ruled out, that fraction rises to nearly 70 %. While this kind of safety
comes at the cost of a coarser concurrency semantics, the experiments of Weer-
atunge et al. [203] suggest that a low runtime overhead of 15 % can be achieved.

6.10 Conclusions

We presented a novel algorithm, Bait, that dynamically infers annotations for
data-centric synchronization in multi-threaded programs that use control-centric
synchronization. The algorithm uses Bayesian probabilistic inference to incorpo-
rate evidence from program execution traces into overall odds of the existence of
invariants between fields of objects. By taking into account locality properties (dis-
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tance) of field accesses in evidence, improving accuracy with more data from traces,
bounding observation data by code base size, and incorporating a heuristic to pre-
vent inferring aliases that introduce global locks, the algorithm improves on the
state of the art for dynamic inference of data-centric synchronization annotations.

Our evaluation of Bait compares manual annotations of available AJ programs
to the annotations produced by our Java-based algorithm implementation. The re-
sults show that most manual annotations are inferred properly, while highlighting
several bugs in the manual annotations and in the original programs. These bugs
lend support to our premise that while understanding program concurrency se-
mantics is a major obstacle for manually adding data-centric annotations to legacy
code, there are considerable benefits of having such annotations. Our case studies
reveal that many useful annotations can be derived by the algorithm implemen-
tation for large, widely-used programs, and thus potentially used to migrate these
programs away from a control-centric style of concurrency management to the safer
data-centric style.
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Appendix A

Core ABS Syntax and Semantics

This appendix defines the syntax and semantics of Core ABS without cogs.

A.1 Syntax

The syntax consists of a functional level with algebraic data types and (side-effect
free) functions, and an object level with interfaces, objects, methods and statements.

A.1.1 Functional Level

The definition of the syntax of the functional level of Core ABS is given in Table A.1;
square brackets [ ] are used for optional elements. The use of an overline on a
syntactic variable signifies a list of syntactic entities, as in e and x. The delimiter
for a list is implicit, but in most cases a comma. For variable and method type
declarations, there is a slight abuse of notation for conciseness, namely, T x ; is a
possibly empty list T1 x1; .. ; Tnxn ;.

Syntactic categories Definitions

T in Ground Type T ::= B | I | D[〈T 〉] | Fut〈T〉
B in Basic Type B ::= Bool | Int | · · ·
A in Type A ::= N | T | D〈A〉 | Fut〈A〉
N , I in Name Dd ::= data D[〈N〉] = Cons[| Cons] ;

x in Variable Cons ::= Co[(A)]

e in Expression F ::= def A fn[〈N〉](A x) = e ;

b in Bool Expression e ::= b | x | t | this | destiny | Co[(e)] | fn(e) | case e {br}
t in Ground Term t, v ::= Co[(t)] | null | o | f | True | False

br in Branch br ::= p ⇒ e ;
p in Pattern p ::= _ | x | t | Co[(p)]

Table A.1: Core ABS functional level syntax
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Ground types include basic types such as Bool and Int, which can be considered
built in, and also user-defined algebraic data types D and user-declared interfaces
I . In contrast to ground types, a type A can contain type variables N , enabling
polymorphism for data types and functions. In a data type declaration Dd, possibly
parameterized with the type variables N , there must be at least one constructor
Cons, possibly with a list of parameters A. Function declarations F , which again
may be parameterized with variables N , include a return type A, a list of function
parameters T x with their types, and an expression e.

Expressions e are boolean expressions b, variables x, ground terms t (at the
object level, referred to as values v), special variables this and destiny, data
type constructor expressions Co(e), function expressions fn(e) and case branches
case e {br}. Boolean expressions are mentioned explicitly because of their use in
the object level and its semantics, but do not differ significantly from expressions
typed by user-defined data types. Such expressions can consist of variables, func-
tion expressions, and the ground terms True and False, composed by standard
operators such as conjunction and disjunction. Patterns p can be used to decom-
pose a constructor in a case branch, checking for term equality or binding variables
to subterms. Exhaustiveness of case branches for a given case expression type is
not enforced.

The functional level is intermingled with the object level in that interface names
I are ground types, there are special expression keywords this and destiny, and
there are special ground terms null, o and f . null plays the part of default value
for interface and future types. A future value f has type Fut〈T 〉, for some ground
type T , capturing the fact that it is a placeholder for a yet-to-be-seen value of the
type T . An object identifier o is generated at runtime during object instantiation
and is typed by its class C .

A.1.2 Object Level

The object level syntax, shown in Table A.2, defines interfaces, classes, methods,
object creation and method calls. A Core ABS program P defines data types,
functions, interfaces, classes and a list of statements (main block) that is executed
initially. An interface declaration IF consists of an interface name I and Sg ;,
which, again by slight abuse of notation, is a possibly empty list of method signa-
tures Sg1 ; .. ; Sgn ;. A class declaration CL consists of a class name C , an optional
list of interfaces I whose methods the class implements, and a list of method decla-
rations M . The first, optional, comma-separated list of variable-type declarations
T x defines mandatory constructor parameters that must be given when instan-
tiating an object of the class with new C (e). The second, semicolon-separated
such list declares the class fields, which assume the default values for their types
on instantiation. Classes can optionally define a method named init to manually
initialize the fields to other values.

A method signature Sg consists of a return type T , a method name m, and
a list of parameter variables and their types. Methods M have a signature, a list
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Syntactic categories Definitions

C , m in Name P ::= Dd F IF CL {T x ; s}
g in Guard IF ::= interface I {Sg ; }
s in Statement CL ::= class C [(T x)] [implements I] {T x ; M}

Sg ::= T m (T x)

M ::= Sg {T x ; s return e ; }
g ::= b | e? | g ∧ g

s ::= x = rhs; | suspend ; | await g; | skip ;
| if b {s} [else {s}] | while b {s}

rhs ::= e | new C (e) | e!m(e) | e.m(e) | e. get

Table A.2: Core ABS object level syntax

of declarations of local variables, a list of statements s, and a single, final return
statement.

An asynchronous method invocation statement x = e!m(e) ; does not block, and
assigns a future identifier to the variable x, with e reducing to the callee’s identifier
and e the argument list. The actual return value of the invocation can later be
retrieved into the variable y by the assignment y = x. get ; which possibly blocks.
Synchronous method invocation x = e.m(e) ; can block and assigns a value of the
method’s return type directly. The special this variable can be used by a class to
call internal methods, which are possibly not defined in any interface.

Guards g consist of ordinary boolean conditions b and special tests e?, which
check that the future value e reduces to is resolved, i.e., that the associated method
invocation has finished. If a tested future is unresolved, the guard is false and the
current process is suspended, making it possible for other processes to execute. The
statement suspend ; allows direct, unconditional suspension.

A.2 Type System of Core ABS

The type system of Core ABS can be divided into one part for the functional level
and one part for the object level, with the latter building heavily upon the former.

A.2.1 Functional Level

The functional level well-typing relation, defined in Figure A.1, is given with respect
to a typing context in the form of a finite map Γ from variables and constants to
types. A lookup on the variable x in Γ is given by Γ(x). The addition to Γ of a
binding of x to T is given by Γ[x 7→ T ]; an existing binding for x to another type in
Γ is not relevant in the resulting map. Two finite maps Γ and Γ′ can be composed
to form a map Γ ◦ Γ′, so that Γ ◦ Γ′(x) = Γ′(x) whenever there is binding for x in
Γ′, and Γ ◦ Γ′(x) = Γ(x) otherwise. Γ and Γ′ are in the extension relation, Γ ⊆ Γ′,
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whenever Γ′ has bindings for all keys with bindings in Γ, and the corresponding
types coincide. [ ] is the empty map, while [x 7→ T ] is the map with the single
binding of x to T .

(T-ConsDecl)

Γ(Co) = A → D[〈N〉]

Γ ⊢ Co(A) : D[〈N〉]

(T-DataDecl)

Γ ⊢ Cons : D[〈N〉]

Γ ⊢ data D[〈N〉] = Cons ;

(T-Sub)
Γ ⊢ e : T T � T ′

Γ ⊢ e : T ′

(T-Case)
Γ ⊢ e : A

Γ ⊢ br : A → A′

Γ ⊢ case e {br} : A′

(T-FuncExpr)

tmatch (A, A
′

) = σ σ 6= ⊥

Γ ⊢ e : A
′

Γ(fn) = A → A

Γ ⊢ fn(e) : A σ

(T-ConsExpr)

Γ ⊢ e : A
′

σ 6= ⊥

tmatch (A, A
′

) = σ

Γ(Co) = A → D[〈N〉]

Γ ⊢ Co(e) : D[〈N〉] σ

(T-ObjectId)
Γ(o) = C

Γ ⊢ o : C

(T-FutureId)
Γ(f ) = Fut 〈T〉

Γ ⊢ f : Fut 〈T〉

(T-Wildcard)

Γ ⊢ _ : A

(T-Bool)

Γ ⊢ b : Bool

(T-Null)

Γ ⊢ null : A

(T-FuncDecl)
Γ(fn) = A1, .. , An → A

Γ[x1 7→ A1, .. , xn 7→ An ] ⊢ e : A

Γ ⊢ def A fn[〈N〉](A1 x1, .. , An xn) = e ;

(T-Branch)
Γ′ ⊢ p : A Γ′ ⊢ e : A′

Γ′ = Γ ◦ psubst (p, A, Γ)

Γ ⊢ p ⇒ e ; : A → A′

(T-Var)
Γ(x) = A

Γ ⊢ x : A

Figure A.1: Core ABS functional level type system

An initial typing context is assumed to map the names of the data types and
function declarations under consideration to appropriate types, which is reflected
in the rules T-ConsDecl and T-FuncDecl. The rule T-Null allows the null term to
have any type. The rule T-Var types a variable according to the type recorded for
it in the context, as is done in, e.g., T-FuncDecl. The tmatch auxiliary function,
used in T-FuncExpr and T-ConsExpr, attempts to match the type variables of the
formal parameter types to the actual parameter types; if there is no match, tmatch

returns ⊥. The psubst auxiliary function, used in the rule T-Branch, constructs a
typing context for which a pattern must be well-typed. If A is a type variable N ,
then p is a variable x and psubst(p, N , Γ) = [x → N ]. If, on the other hand, A

is not a type variable, we define the result based on the structure of p. If p = x

and Γ(x) = T , then psubst(p, N , Γ) = [ ]. If p = x and Γ has no binding for x,
then psubst(p, N , Γ) = [p 7→ A]. If p = t or p = _, then psubst(p, N , Γ) = [ ].
Finally, if p = Co(p1, .. , pn) and Γ(Co) = A1, .. , An → A, then psubst(p, N , Γ) =
psubst(p1, A1, Γ) ◦ .. ◦ psubst(pn, An, Γ). The subtyping relation �, used in the
rule T-Sub, is such that C � I whenever the class C implements the interface I .
The relation also anticipates extension to interface subtyping via inheritance, which
is present in full ABS but not Core ABS.

A.2.2 Object Level

The well-typing relation of the object level, shown in Figure A.2, proceeds in a
straightforward way on the syntactic structure of the programs, for the most part.
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In the rule T-Program, a program is well-typed with respect to a context when its
all data declarations, function declarations and class declarations are well-typed;
typing of interfaces is simpler and is omitted. For the typing of the statement list
s, all variable declarations are added to the context.

(T-Poll)
Γ ⊢ e : Fut 〈T〉

Γ ⊢ e? : Bool

(T-Get)
Γ ⊢ e : Fut 〈T〉

Γ ⊢ e. get : T

(T-Skip)

Γ ⊢ skip ;

(T-Await)
Γ ⊢ g : Bool

Γ ⊢ await g;

(T-Suspend)

Γ ⊢ suspend ;

(T-Assign)
Γ ⊢ x : T

Γ ⊢ rhs : T

Γ ⊢ x = rhs;

(T-And)
Γ ⊢ g : Bool

Γ ⊢ g′ : Bool

Γ ⊢ g ∧ g′ : Bool

(T-New)
Γ ⊢ e : ptypes (C)
I ∈ interfaces (C)

Γ ⊢ new C(e) : I

(T-AsyncCall)
Γ ⊢ e.m(e) : T

Γ ⊢ e!m(e) : Fut 〈T〉

(T-Conditional)
Γ ⊢ b : Bool Γ ⊢ s [Γ ⊢ s′]

Γ ⊢ if b {s} [else {s′}]

(T-While)
Γ ⊢ b : Bool Γ ⊢ s

Γ ⊢ while b {s}

(T-SyncCall)

Γ ⊢ e : I Γ ⊢ e : T

match (m, T → T , I )

Γ ⊢ e.m(e) : T

(T-Method)
Γ′ = Γ[x1 7→ T1, .. , xi 7→ Ti , x′

1 7→ T ′

1, .. , x′

j 7→ T ′

j ]

Γ′′ = Γ′[destiny 7→ Fut 〈T〉] Γ′′ ⊢ s Γ′′ ⊢ e : T

Γ ⊢ T m (T1 x1, .. , Ti xi) {T ′

1 x′

1; .. ; T ′

j x′

j ; s return e ; }

(T-Class)

[∀ I ∈ I. implements (C , I )] Γ[ this 7→ C , fields (C)] ⊢ M

Γ ⊢ class C [(T x)] [implements I] {T ′ x′ ; M}

(T-Program)

Γ[x1 7→ T1, .. , xn 7→ Tn ] ⊢ s ∀ Dd ∈ Dd. Γ ⊢ Dd ∀ F ∈ F . Γ ⊢ F ∀ CL ∈ CL. Γ ⊢ CL

Γ ⊢ Dd F IF CL {T1 x1; .. ; Tn xn ; s}

Figure A.2: Core ABS object level type system

In the rule T-Method, parameter declarations and local variable declarations are
again added the context before deferring to the well-typedness of the statement list
and return expression. In addition, a binding is added for the special expression
destiny to the type for the return expression e, so that destiny can be used as a
variable containing the identifier of the future a method invocation produces.

The rule T-Poll formalizes the requirement that a future resolution test must
be performed on an expression that actually reduces to a future identifier, as does
T-Get for the .get operator. In T-New, for a given class identifier C , the auxiliary
function ptypes returns the class parameter types and interfaces returns the set
of identifiers of the interfaces which the class implements. The effect of the rule
is that all variables containing object identifiers must be typed with an interface
which the class of the object implements—not the implementing class itself.

In T-Class, the auxiliary function implements is used to check that the given
class properly implements the methods of all the interfaces in the list I. The aux-
iliary function fields produces type bindings for parameters and fields for a given
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class. The addition of a binding for the special expression this allows methods to
call class-internal methods, by masquerading the class name C as an interface type.
In T-SyncCall, the auxiliary function match checks that types of the given expres-
sion list of arguments coincides with the actual parameter types specified for the
method in the interface or class. T-AsyncCall expresses the typing of asynchronous
method invocations as having the future type of the corresponding synchronous
invocation. The rules for skip statements, suspend statements, conditionals, and
while loops are standard.

A.3 Operational Semantics

In the standard operational semantics of Core ABS, a runtime configuration consists
of objects, futures and method invocations. In this section, a reduction system for
functional (side-effect free) expressions paves the way to a transition system that
describes how the entities evolve and interact. The transition system rules apply to
subsets of a global configuration, modulo rearrangement of entities to fit the left-
hand side of the rules, as in the Maude style of modeling distributed systems [40].
The execution of a program is a possibly infinite sequence of global configurations,
such that the transition between a previous configuration and the next is valid in
the system.

A.3.1 Runtime Configurations

In the standard runtime syntax, shown in Table A.3, configurations cn, consisting
of futures, objects, and method invocations (fut, object, invoc), are composed via a
whitespace operator, with ǫ being the empty configuration. A global configuration
is shown inside curly brackets, e.g., {cn}.

cn ::= ǫ | fut | object | invoc | cn cn pr ::= process | idle

fut ::= fut (f , val) a, l ::= ǫ | T x v | a, a

object ::= ob (o, a, pr , q) val ::= v | ⊥
process ::= {l | sp} | error sp ::= return e ; | cont (f ) ; | s

invoc ::= invoc (o, f , m, v) q ::= ∅ | process | q q

Table A.3: Core ABS standard runtime syntax

A future fut (f , val) has a future identifier f and, by the definition of val, either
a resolved value (ground term) v, or ⊥ to indicate its status of being unresolved.
An object ob (o, a, pr , q) has an object identifier o, a store a for its field types
and values, an active process pr and a pool q of suspended processes. A normal
process process has a store l of local variable types and values, and a list of pro-
cess statements. ǫ refers also to the empty store, disambiguated from the empty
configuration by context. Process statements sp are statements s extended with
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a return statement return e ; and a continuation statement cont (f ) ;. A method
invocation invoc (o, f , m, v) contains the intended recipient object’s identifier o, the
associated future identifier f , the method name m, and a list of argument values
v. Data types, functions, interfaces and classes are not represented explicitly in
runtime configurations, since they are assumed to be static throughout execution.

A.3.2 Reduction System for Functional Expressions

Given a substitution σ binding variables to terms, functional expressions can be
reduced to terms in accordance with the reduction system shown in Figure A.3,
which defines the reduction relation σ ⊢ e  σ′ ⊢ e′. The relation intuitively holds
when the expression e in the context σ can be reduced to the expression e′ in the
context σ′. There is no guarantee that a sequence of valid reductions eventually
leads to a ground term; recursive functions can lead to infinite reduction sequences,
and incomplete case branch coverage can make the sequence halt on an expression
that is not a ground term.

(RedCons)
σ ⊢ ei  σ′ ⊢ e′

i 1 ≤ i ≤ n

σ ⊢ Co(e1, .. , ei , .. , en) σ′ ⊢ Co(e1, .. , e′

i , .. , en)

(RedVar)
σ(x) = t

σ ⊢ x  σ ⊢ t

(RedFunExp)
σ ⊢ ei  σ′ ⊢ e′

i 1 ≤ i ≤ n

σ ⊢ fn(e1, .. , ei , .. , en) σ′ ⊢ fn(e1, .. , e′

i , .. , en)

(RedCase1)
σ ⊢ e  σ′ ⊢ e′

σ ⊢ case e {br} σ′ ⊢ case e′ {br}

(RedCase3)
match (σ(p), t) = ⊥

σ ⊢ case t {p ⇒ e ; br} σ ⊢ case t {br}

(RedCase2)
match (σ(p), t) = σ′ σ′ 6= ⊥ vars (σ(p)) = {x1, ... , xn}
fresh ({y1, ... , yn}) σ′′ = σ[y1 7→ σ′(x1), .. , yn 7→ σ′(xn)]

σ ⊢ case t {p ⇒ e; br} σ′′ ⊢ e[x1 7→ y1, .. , xn 7→ yn ]

(RedFunGround)
xfn = x1, ... , xn fresh ({y1, ... , yn})

σ ⊢ fn(t1, ... , tn) σ[y1 7→ t1, .. , yn 7→ tn ] ⊢ efn [x1 7→ y1, .. , xn 7→ yn ]

Figure A.3: Core ABS reduction rules for functional expressions

Evaluation of a function expression involving the function fn, as defined in
the rules RedFunExp and RedFunGround, proceeds by first reducing all argument
expressions to terms. Suppose the list of parameter variables in the declaration of
fn is x1, ... , xn and the expression in the declaration is efn. The function expression
is then replaced with the expression that results from syntactically replacing the
parameters in efn with the new, unique names y1, ... , yn, and the substitution is
extended to include bindings from the new names to the respective terms.

Let dom(σ) be the set of names which are bound in a substitution σ, and let
vars be the function which returns the set of variables in a pattern. The match
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function in the rules RedCase2 and RunCase3, given a pattern p and a term t,
returns a substitution σ such that σ(p) = t and dom(σ) = vars(p) if it exists, and
⊥ otherwise. We define a substitution σ as well-typed for a given context Γ, written
Γ ⊢ σ, whenever, for all x bound in σ, Γ ⊢ σ(x) : Γ(x). This definition is used to
state the type preservation property of Lemma A.3.1.

Lemma A.3.1 (Type Preservation). Let Γ be a typing context and σ be a substi-
tution such that Γ ⊢ σ . If Γ ⊢ e : A and σ ⊢ e  σ′ ⊢ e′, then there is a typing
context Γ′ such that Γ ⊆ Γ′, Γ′ ⊢ σ′ and Γ′ ⊢ e′ : A.

Proof. By induction on rule applications [103].

A.3.3 Operational Semantics of Concurrent Objects

Guard expressions are not covered by the reduction system for functional expres-
sions in the previous subsection. Guard evaluation is different since it potentially
depends on the state of a global configuration. Figure A.4 shows the reduction
rules for guards. Below, the boolean result of evaluating a guard expression g with
respect to a configuration cn and a store a, if it exists, is written as JgKcn

a . Similarly,
the ground term result of evaluating an expression e with respect to a store a, if it
exists, is written as JeKa.

(RedBoolGuard)
σ ⊢ b  σ ⊢ b′

σ, cn ⊢ b

 σ, cn ⊢ b′

(RedReplyGuard1)
σ ⊢ e  σ ⊢ f

fut (f , v) ∈ cn

σ, cn ⊢ e?
 σ, cn ⊢ True

(RedReplyGuard2)
σ ⊢ e  σ ⊢ f

fut (f , ⊥) ∈ cn

σ, cn ⊢ e?
 σ, cn ⊢ False

(RedGuards)
σ, cn ⊢ g1  σ, cn ⊢ g′

1 σ, cn ⊢ g2  σ, cn ⊢ g′

2

σ, cn ⊢ g1 ∧ g2  σ, cn ⊢ g′

1 ∧ g′

2

Figure A.4: Core ABS reduction rules for guard expressions

The set of transition rules for configurations is split between Figure A.5 and
Figure A.6. The rule Suspend puts the current active process into the pool of
inactive processes, allowing another process to run with the help of rule Activate.
The select auxiliary function decides the process to make active for an idle object,
given the complete global state. The function is implementation-specific and thus
left unspecified, in effect providing a hook for different schedulers. q \ process is the
pool q with process process removed, and q ∪ process is q with process added. If a

is a store, then a[x 7→ v] is the store that results when replacing the value for the
variable x with v in a.

In Bind-Mtd, the bind auxiliary function produces a process from a method
invocation, retrieving the statements to execute and initializing local variables in
the process store, among them destiny, which is assigned the future identifier f .
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The resulting process is then put in the pool, and the invocation removed. The rule
Return subsequently uses the value stored in destiny to find the future to resolve
in the configuration. The class auxiliary function, which takes an object identifier
as an argument, returns the class associated with the identifier. Note that bind

returns the process error if the class does not have the method indicated, or there
is an argument-parameter mismatch.

(Assign-Local)
x ∈ dom (l) JeKa ◦ l = v

ob (o, a, {l | x = e; sp}, q)
→ ob (o, a, {l[x 7→ v] | sp}, q)

(Assign-Field)
x ∈ dom (a) JeKa ◦ l = v

ob (o, a, {l | x = e; sp}, q)
→ ob (o, a[x 7→ v], {l | sp}, q)

(Idle)

ob (o, a, {l | }, q)
→ ob (o, a, idle, q)

(Cond-True)
JbKa ◦ l = True

ob (o, a, {l | if b {s} [else {s′}] sp}, q)
→ ob (o, a, {l | s sp}, q)

(Cond-False)
JbKa ◦ l = False

ob (o, a, {l | if b {s} [else {s′}] sp}, q)
→ ob (o, a, {l | [s′] sp}, q)

(Read-Fut)
JeKa ◦ l = f

ob (o, a, {l | x = e. get; sp}, q) fut (f , v)
→ ob (o, a, {l | x = v; sp}, q) fut (f , v)

(Bind-Mtd)
bind (o, f , m, v, class (o)) = process

ob (o, a, p, q) invoc (o, f , m, v)
→ ob (o, a, p, q ∪ process)

(Await-True)
JgKcn

a ◦ l
= True

{ob (o, a, {l | await g; sp}, q) cn}
→ {ob (o, a, {l | sp}, q) cn}

(Await-False)
JgKcn

a ◦ l
= False

{ob (o, a, {l | await g; sp}, q) cn}
→ {ob (o, a, {l | suspend ; await g; sp}, q) cn}

(Skip)

ob (o, a, {l | skip ; sp}, q)
→ ob (o, a, {l | sp}, q)

(Async-Call)
JeKa ◦ l = o′ JeKa ◦ l = v fresh (f )

ob (o, a, {l | x = e!m(e); sp}, q)
→ ob (o, a, {l | x = f ; sp}, q) invoc (o′, f , m, v) fut (f , ⊥)

(Return)
JeKa ◦ l = v l( destiny ) = f

ob (o, a, {l | return e; sp}, q) fut (f , ⊥)
→ ob (o, a, {l | sp}, q) fut (f , v)

(Suspend)

ob (o, a, {l | suspend ; sp}, q)
→ ob (o, a, idle, q ∪ {l | sp})

(Activate)
select (q, a, cn) = process

{ob (o, a, idle, q) cn} → {ob (o, a, process, q \ process) cn}

Figure A.5: Standard Core ABS reduction rules of concurrent objects, part 1.

In New-Object, fresh(o′) ensures that the identifier o′ is globally unique, init

produces a process for the initializing method of the class (or an empty process if
such a method does not exist), and atts sets the field values for the new object,
including the special field this which is given the value o′. In Rem-Sync-Call, the
new, fresh variable y is introduced to hold the future identifier associated with
an asynchronous call; to type the variable properly at run time in the store, the
method’s return type is looked up in the class using the returns auxiliary function.

The rules Self-Sync-Call and Self-Sync-Return-Sched provide the justification for
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(Self-Sync-Call)
l( destiny ) = f ′ JeKa ◦ l = o JeKa ◦ l = v
fresh (f ) bind (o, f , m, v, class (o)) = {l′ | sp′}

ob (o, a, {l | x = e.m(e); sp}, q)
→ ob (o, a, {l′ | sp′ cont (f ′); }, q ∪ {l | x = f . get; sp}) fut (f , ⊥)

(Self-Sync-Return-Sched)
l′( destiny ) = f

ob (o, a, {l | cont (f ); }, q ∪ {l′ | sp}) → ob (o, a, {l′ | sp}, q)

(New-Object)
fresh (o′) init (C) = process atts (C , JeKa ◦ l , o′) = a′

ob (o, a, {l|x = new C(e); sp}, q)
→ ob (o, a, {l|x = o′; sp}, q) ob (o′, a′, idle, process)

(While-True)
JbKa ◦ l = True

ob (o, a, {l | while b {s} sp}, q)
→ ob (o, a, {l | s while b {s} sp}, q)

(While-False)
JbKa ◦ l = False

ob (o, a, {l | while b {s} sp}, q)
→ ob (o, a, {l | sp}, q)

(Rem-Sync-Call)
JeKa ◦ l = o′ fresh (y) returns ( class (o′), m) = T

ob (o, a, {l | x = e.m(e); sp}, q) ob (o′, a′, pr , q′)
→ ob (o, a, {l, Fut 〈T〉 y null | y = o′!m(e); x = y. get; sp}, q) ob (o′, a′, pr , q′)

Figure A.6: Standard Core ABS reduction rules of concurrent objects, part 2.

extending process statements with a continuation statement. When an object calls
itself in Self-Sync-Call, control passes to a new process and must then somehow be
passed back. Therefore, a continuation statement containing the future identifier of
the caller process is added to the callee process, and eventually consumed through
the rule Self-Sync-Return-Sched.

The runtime typing rules in Figure A.7, distinguished by the turnstile subscript
R and the suffix ok in conclusions, extend the static typing systems in previous
sections to runtime configurations. The auxiliary function match in T-Invoc is the
same as in T-SyncCall. In T-Object, fields constructs a mapping from fields
names to field types for a class. A runtime typing context ∆ is assumed to contain
bindings for runtime identifiers, i.e., object identifiers and future identifiers, to their
types. This is reflected in the rules T-State1, T-Cont, T-Future-v, T-Future-bot, and
T-Invoc, when considered in conjunction with the rules T-ObjectId and T-FutureId

in Figure A.1.

A.3.4 Subject Reduction

Lemma A.3.2 defines a properly typed starting configuration for a given Core ABS
program. The configuration consists of a starting object with a process executing
the statements in the main block.
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(T-State1)
∆ ⊢ x : T

∆ ⊢ v : T

∆ ⊢R T x v ok

(T-Cont)
∆ ⊢ f : Fut 〈T〉

∆ ⊢R cont (f ); ok

(T-Future-v)
∆ ⊢ f : Fut 〈T〉
∆ ⊢ v : T

∆ ⊢R fut (f , v) ok

(T-Future-bot)
∆ ⊢ f : Fut 〈T〉

∆ ⊢R fut (f , ⊥) ok

(T-Configurations)
∆ ⊢R cn ok ∆ ⊢R cn′ ok

∆ ⊢R cn cn′ ok

(T-Empty)

∆ ⊢R ǫ ok

(T-Process-Queue)
∆ ⊢R q ok ∆ ⊢R q′ ok

∆ ⊢R q q′ ok

(T-Empty-Queue)

∆ ⊢R ∅ ok

(T-Return)
∆ ⊢ e : T ∆( destiny ) = Fut 〈T〉

∆ ⊢R return e; ok

(T-State2)
∆ ⊢R a ok

∆ ⊢R a′ ok

∆ ⊢R a, a′ ok

(T-Invoc)

∆ ⊢ f : Fut 〈T〉 ∆ ⊢ v : T

match (m, T → T , ∆(o))

∆ ⊢R invoc (o, f , m, v) ok

(T-Idle)

∆ ⊢R idle ok

(T-Process)
∆′ = ∆[x1 7→ T1, .. , xn 7→ Tn ]
∆′ ⊢R T1 x1 v1, .. , Tn xn vn ok

∆′ ⊢R sp ok

∆ ⊢R {T1 x1 v1, .. , Tn xn vn | sp} ok

(T-Object)
fields (∆(o)) = [x1 7→ T1, .. , xn 7→ Tn ]
∆′ = ∆[x1 7→ T1, .. , xn 7→ Tn ] ∆′ ⊢R pr ok

∆′ ⊢R T1 x1 v1, .. , Tn xn vn ok ∆′ ⊢R q ok

∆ ⊢R ob (o, T1 x1 v1 , .. , Tn xn vn , pr , q) ok

Figure A.7: Standard Core ABS runtime typing rules

Lemma A.3.2. Let Dd F IF CL {T1 x1; .. ; Tnxn ; s} be a Core ABS pro-
gram, and let value be a function that returns the default value for a ground
type. If Γ ⊢ Dd F IF CL {T1 x1; .. ; Tnxn ; s} for some typing context Γ, then
Γ ⊢R ob (start, ǫ, {T1 x1 value(T1), .. , Tn xn value(Tn) | s}, ∅) ok.

Proof. Let Γ′ = Γ[x1 7→ T1, .. , xn 7→ Tn]. Then, we have

Γ′ ⊢R T1 x1 value(T1), .. , Tn xn value(Tn) ok

and hence Γ ⊢R ob (start, ǫ, {T1 x1 value(T1), .. , Tn xn value(Tn) | s}, ∅) ok by
T-Object.

Theorem A.3.3 states that the standard Core ABS semantics preserves well-
typing. The theorem implies, among other things, that method invocations in
Core ABS cannot go wrong at runtime for type-checked programs; when an object
makes a call to a method m using an object identifier o, there always exists an
object associated with o, which is an instance of a class where m is defined. Hence,
in an execution of a well-typed program beginning from its starting configuration,
no object gets stuck trying to execute the error process.

Theorem A.3.3 (Subject Reduction). Let ∆ be a typing context and cn a runtime
configuration. If ∆ ⊢R cn ok and cn → cn′, then there exists a typing context ∆′

such that ∆ ⊆ ∆′ and ∆′ ⊢R cn′ ok.

Proof. By induction on rule applications [103].





Appendix B

ABS-NET Semantics

This appendix defines the network-aware ABS-NET semantics of Core ABS pro-
grams, with syntax as defined in Appendix A.

B.1 Runtime Configurations

The runtime syntax of ABS-NET is shown in Table B.1. A network net consists of
nodes and arcs, composed with the whitespace operator, with ǫ the empty network.
In a node nd (u, τ), u is a node identifier (assumed globally unique) and τ is a
routing table, used to route object-related messages in the proper direction. In an
arc ar (u, Q, u′), representing a unidirectional link from u to u′, Q is a FIFO-ordered
queue of messages msg.

cn ::= ǫ | object | cn cn net ::= ǫ | node | arc | net net

object ::= ob (o, a, pr , q, Qin , Qout , Σ) node ::= nd (u, τ)
a, l ::= ǫ | T x v | a, a arc ::= ar (u, Q, u)
process ::= {l | sp} | error q ::= ∅ | process | q q

msg ::= Call(o, o, f , m, v) | Table(τ) sp ::= return e ; | cont (f ) ; | s

| Future(o, f , v) | Object(object) pr ::= process | idle

Table B.1: ABS-NET runtime syntax

An object configuration cn consists of objects, composed by the whitespace oper-
ator, again with ǫ as the empty configuration. In objects ob (o, a, pr , q, Qin, Qout , Σ),
a is a store for its field types and values, pr an active process, q a pool of suspended
processes, Qin and Qout input and output queues, and Σ a structure for storing re-
solved future values and obligations to send future values. Stores, active processes,
process statements and process pools are defined in the same way as in the standard
semantics in Section A.3.

261
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The method invocations and futures present in runtime configurations of the
standard semantics can intuitively be said to have been replaced in ABS-NET with
call and future messages, which are transported from node to node via arcs. A call
message Call(o, o′, f , m, v) consists of the identifier o of the destination object, the
identifier o′ of the sender object, the associated future identifier f , method name
m and argument list v. A future value message Future(o, f , v) has the identifier of
the destination object o, the future identifier f and the associated resolved value v.

Table and object messages, on the other hand, have no equivalent in the stan-
dard semantics. A table message Table(τ) is used to pass a routing table τ from
one node to another, allowing local routes to be updated with new information
from a neighbor. An object message Object(object) contains a complete runtime
object object and is what facilitates object mobility for network-adaptable process
execution.

B.2 Reduction System for Guard Expressions

The standard reduction system for functional expressions, given in Figure A.3, is
carried over to the ABS-NET semantics unchanged. The rules for guard evaluation
in ABS-NET, given in Figure B.1, are different, however. The rules highlight how
the structure Σ, instead of a configuration cn, is queried for the resolved values of
futures. Given a future identifier f , valof (f , Σ) returns a val, i.e., either a value v

or ⊥. If the result is a value, the future has been recorded as resolved locally. Note
that in the semantics generally, the fact that a future is unresolved locally does
not mean the associated method invocation is unfinished—there may be a future
message incoming.

(Net-RedBoolGuard)
σ ⊢ b  σ ⊢ b′

σ, Σ ⊢ b  σ, Σ ⊢ b′

(Net-RedReplyGuard1)
σ ⊢ e  σ ⊢ f valof (f , Σ) 6= ⊥

σ, Σ ⊢ e? σ, Σ ⊢ True

(Net-RedReplyGuard2)
σ ⊢ e  σ ⊢ f valof (f , Σ) = ⊥

σ, Σ ⊢ e? σ, Σ ⊢ False

(Net-RedGuards)
σ, Σ ⊢ g1  σ, Σ ⊢ g′

1 σ, Σ ⊢ g2  σ, Σ ⊢ g′

2

σ, Σ ⊢ g1 ∧ g2  σ, Σ ⊢ g′

1 ∧ g′

2

Figure B.1: ABS-NET reduction rules for guard expressions

The boolean result of evaluating a guard expression g with respect to a structure
Σ and a store a in ABS-NET is written as JgKΣ

a . As in the standard semantics, the
ground term result of evaluating an expression e with respect to a store a is written
as JeKa.

B.3 Message Queues

The nature of a FIFO queue Q of messages is specified through three auxiliary
functions: enqueue, dequeue and first. enqueue(Q, msg) returns the queue that
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results when the message msg is added to the back of Q. If Q is non-empty,
first(Q) returns the message at the front of Q, and dequeue(Q) returns the queue
that results when the front message is removed. For brevity, enqueue(Q, msg) = Q′

is defined as a relation Q
enqueue (msg)

−−−−−−−−−→ Q′, while the conjunction that first(Q) = msg

and dequeue(Q) = Q′ is defined as Q
dequeue (msg)

−−−−−−−−−→ Q′. () is the empty queue.
Appropriate encodings of queues in implementations vary significantly depend-

ing on the application and environment. For example, when using TCP sockets
as arcs, the socket library used will determine the queue characteristics. For the
purpose of formal analysis, a simple algebraic list-like encoding suffices.

B.4 Routing Tables

The nature of a routing table is specified through the four auxiliary functions
update, next, register and replace, and an infix operator ∈. The auxiliary
function update takes three arguments: the routing table τ of the current node,
the node identifier u′ of the adjacent node, and the routing table τ ′ of the adjacent
node. The function returns a routing table τ ′′, which incorporates the routes from
τ ′ into τ if appropriate, with the constraint that all such routes must go through the

node u′. For brevity, update(τ, u′, τ ′) = τ ′′ is defined as a relation τ
update (τ ′,u′)

−−−−−−−−−→ τ ′′.
The auxiliary function next takes three arguments: the routing table τ of the cur-
rent node, the object identifier o′ of the node we want the next hop for, and the
default hop u, which is the identifier of the current node. The function returns the
node identifier u′ which is the next hop of o′ according to the table. The auxiliary
function register takes four arguments: the routing table τ of the current node,
the object identifier o′ of the object we want to add a route for, the node identi-
fier u of a neighbor node (usually self) which is the next hop, and a non-negative
integer k for the distance to the object (in all instances in the rules, it is 0). The
function returns a routing table τ ′ which incorporates the new route. For brevity,

register(τ, o′, u, k) = τ ′ is defined as a relation τ
register (o′,u,k)

−−−−−−−−−−−→ τ ′. The auxiliary
function replace takes four arguments (of the same kind as register): the routing
table τ of the current node, the object identifier o′ of the object we want to replace
the route for, the node identifier u of a neighbor node which is the next hop, and
a natural number k for the distance to the object. The function returns a routing
table τ ′ which has removed any existing routes for o′ and added the route given.
For brevity, replace(τ, o′, u, k) = τ ′ is defined as a relation τ

replace (o,u,k)
−−−−−−−−−−→ τ ′. The

claim o ∈ τ , with a node identifier u given by the context, means that, according
to τ , the object with identifier o is located on the node u.

One example of a relatively simple encoding of a routing table, which can be
enough for some implementations, is as a finite map from object identifiers to sets
of tuples of node identifiers and distances. A binding in a routing table for the
identifier o to the set {(u, 2), (u′, 3)} then represents that the next hop for reaching
the object o is either in the direction of u, for a total distance of 2 hops, or in the
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direction of u′, for a total distance of 3 hops. Of course, due to object mobility, the
routes may not be accurate, but are able to reflect the last known information.

B.5 Operational Semantics of Networks

The global state in ABS-NET consists of a pair {net} {cn}. The network part and
the object part of the global state can evolve jointly by performing synchronized
labeled transitions, but also separately without exchanging information. The rules
for such synchronization and separate evolution are shown in Figure B.2. A label
α is either mv(object) (moving an object), rg(o, o′) (registering a new object iden-
tifier), or tr(o, msg) (transporting a message). Intuitively, a label with an overline
means that information is outgoing or being sent, while a label without overline
means information is incoming or being received. Like in the standard semantics,
an execution is a sequence global states with valid rule transitions between every
adjacent pair.

(Net-Red)
{net} → {net′}

{net} {cn} → {net′} {cn}

(Cn-Red)
{cn} → {cn′}

{net} {cn} → {net} {cn′}

(Cn-Out-Net-In-Red)

{cn}
α
→ {cn′} {net}

α
→ {net′}

{net} {cn} → {net′} {cn′}

(Net-Out-Cn-In-Red)

{net}
α
→ {net′} {cn}

α
→ {cn′}

{net} {cn} → {net′} {cn′}

Figure B.2: ABS-NET reduction rules connecting objects and networks

The reduction rules for networks are shown in Figure B.3. The auxiliary func-
tion id, used in the rule Net-Object-Recv-Out, takes a runtime object as argument
and returns its identifier. The function dest, used in the rules Net-Msg-Recv-Out,
Net-Msg-Send-In and Net-Route-Further, is defined only for Call and Future mes-
sages; it returns their first object identifier, which is the identifier of the intended
recipient object (destination).

For proper progress in execution, we assume networks are such that (1) there
are no dangling arcs referencing non-existent nodes, (2) for every arc between nodes
there is an arc in the opposite direction, and (3) every node comes with a self-loop
arc, i.e., an arc going from and to the node. Self-loop arcs are important for two
reasons. First, it allows us to use the same rules for message passing in both the
case where the sender object is at a different node from the receiver object, and
where the sender is at the same node as the receiver. Once a message has been
put in the self-loop queue, it intuitively appears as if it came from some other node
when applying the rule Net-Msg-Recv-Out. Second, it may not always be the case
that there is a route (next hop) to the recipient of a message, because routing tables
may not have stabilized. Such a message must be dealt with somehow when there
are other important messages pending in that queue after the message. Hence, it is
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put in the self-loop queue, i.e., the default next hop of an object-addressed message
is the node itself.

(Net-Table-Send)
u′ 6= u

Q
enqueue (Table (τ))

−−−−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
→ nd (u, τ) ar (u, Q′, u′)

(Net-Table-Recv)

Q
dequeue (Table (τ ′))

−−−−−−−−−−−−−→ Q′

τ
update (τ ′,u′)

−−−−−−−−−→ τ ′′

ar (u′, Q, u) nd (u, τ)
→ ar (u′, Q′, u) nd (u, τ ′′)

(Net-Msg-Recv-Out)

Q
dequeue (msg)

−−−−−−−−−→ Q′

dest (msg) = o o ∈ τ

ar (u′, Q, u) nd (u, τ)

tr (o,msg)
→ ar (u′, Q′, u) nd (u, τ)

(Net-Msg-Send-In)
o ∈ τ dest (msg) = o′

next (τ, o′, u) = u′

Q
enqueue (msg)

−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
tr (o,msg)

→ nd (u, τ) ar (u, Q′, u′)

(Net-Route-Further)

Q1
dequeue (msg)

−−−−−−−−−→ Q′

1 dest (msg) = o o /∈ τ

next (τ, o, u) = u′′ Q2
enqueue (msg)

−−−−−−−−−→ Q′

2

ar (u′, Q1, u) nd (u, τ) ar (u, Q2, u′′)
→ ar (u′, Q′

1, u) nd (u, τ) ar (u, Q′

2, u′′)

(Net-Object-Send-In)
o ∈ τ u′ 6= u

τ
replace (o,u′,1)

−−−−−−−−−−→ τ ′

Q
enqueue (Object (object))

−−−−−−−−−−−−−−−−→ Q′

nd (u, τ) ar (u, Q, u′)
mv (object)

→ nd (u, τ ′) ar (u, Q′, u′)

(Net-Object-Recv-Out)
id (object) = o

Q
dequeue (Object (object))

−−−−−−−−−−−−−−−−→ Q′

τ
replace (o,u,0)

−−−−−−−−−−→ τ ′

ar (u′, Q, u) nd (u, τ)

mv (object)
→ ar (u′, Q′, u) nd (u, τ ′)

(Net-New-Object-In)

fresh (o′) o ∈ τ τ
register (o′,u,0)

−−−−−−−−−−−→ τ ′

nd (u, τ)
rg (o,o′)

→ nd (u, τ ′)

Figure B.3: ABS-NET node controller reduction rules

The property of an object being located on a node is represented indirectly
through the rules, not explicitly in runtime configurations. The labeled transition
rules Net-Msg-Recv-Out, Net-Msg-Send-In, Net-Object-Send-In and Net-New-Object-In,
where a node exchanges information with an object, all use the premise o ∈ τ to
restrict actions to pertain to node-local objects.

B.6 Future Value Distribution

In the ABS-NET semantics, future values are transmitted through messages to
the objects which need them, as opposed to the centralized future access in the
standard semantics. However, as described by Henrio et al. [90], there are several
fundamentally different ways of propagating futures to objects, with different trade-
offs in performance and resource usage. The ABS-NET semantics uses what Henrio
et al. refer to as an eager forward-based strategy, where an object o that shares a
future identifier f with another object o′ is obligated to forward the value of f to



266 APPENDIX B. ABS-NET SEMANTICS

o′ when this becomes possible. This strategy is relatively easy to implement and
distributes the load of messaging related to futures over many objects, which in
balanced object-node allocations translates to many nodes.

A number of auxiliary functions in the ABS-NET reduction rules for objects
take a structure Σ as input and either retrieve data from it or produce a modi-
fied structure in order to accomplish future forwarding. They are reminiscent of
the operations modelled by Henrio et al., but have several properties specific to
the ABS setting. The function recsof takes a future identifier f and a structure
as input, and returns a set of object identifiers; intuitively, this set contains the
identifiers of the objects which are the intended recipients of the value of f . The
function sendfuts takes a set of future identifiers, an object identifier, and a struc-
ture, and returns another structure, interpreted as the given structure updated
with obligations to forward the values of all indicated futures to the indicated ob-
ject. For all structures Σ and all future identifiers f ∈ {f1, . . . , fn}, it holds that
o ∈ recsof (f, sendfuts ({f1, . . . , fn}, o, Σ)). The function clrrec, which takes an
object identifier o, a future identifier f and a structure Σ, returns an updated struc-
ture Σ′ where o has been cleared from the recipient set of f , i.e., o /∈ recsof (f , Σ′).
The function regfuts takes a set of future identifiers and a structure Σ, and returns
an updated structure Σ′ where the given futures are registered, meaning that the
futures are associated through Σ′ with a val term and a set of object identifiers.
If a future f has no such associations in Σ, it is the case that valof (f , Σ′) = ⊥
and recsof (f , Σ′) = ∅; otherwise, the associations are the same as in Σ. Finally,
the function resfut takes a future identifier f , a value v and a structure Σ, and
returns an updated structure Σ′ where v is recorded as the resolved value for f , i.e.,
valof (f , Σ′) = v.

Most straightforwardly, a structure Σ can be encoded as a pair 〈Mval, Mrec〉,
where Mval is a finite map from future identifiers to val terms, and Mrec is a finite
map from future identifiers to sets of object identifiers. The auxiliary functions
are then defined as map operations, e.g., valof(f , 〈Mval, Mrec〉) , Mval(f ) and
recsof(f , 〈Mval, Mrec〉) ,Mrec(f ).

B.7 Operational Semantics of Concurrent Objects

The labeled rules for object configurations are shown in Figure B.4. The init and
atts auxiliary functions constructs the initial task of the object as given in the
corresponding class definition, and initializes variables based on given arguments,
respectively, and are unchanged from Core ABS. The function futsof returns the
set of all future identifiers in a given value, if necessary by recursively examining
algebraic datatype terms. [ ] is the empty structure of future values and obligations.

For object creation, both the network rule Net-New-Object-In and object rule
ABS-New-Object-Out need to be involved. When such a synchronized transition has
taken place, the new object has been properly added to the interpreter layer, and its
globally unique identifier registered on the node of the object that spawned it. Given
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(ABS-Object-Send-Out)

{object cn}
mv (object)

→ {cn}

(ABS-Object-Recv-In)

{cn}
mv (object)

→ {object cn}

(ABS-Msg-Send-Out)

Qout
dequeue (msg)

−−−−−−−−−→ Q′

out

ob (o, a, pr , q, Qin , Qout , Σ)

tr (o,msg)
→ ob (o, a, pr , q, Qin , Q′

out , Σ)

(ABS-Msg-Recv-In)

Qin
enqueue (msg)

−−−−−−−−−→ Q′

in

ob (o, a, pr , q, Qin , Qout , Σ)
tr (o,msg)

→ ob (o, a, pr , q, Q′

in , Qout , Σ)

(ABS-New-Object-Out)
init (C) = process JeKa ◦ l = v sendfuts (futsof (v), o′, Σ) = Σ′

atts (C , v, o′) = a′ regfuts (futsof (v), [ ]) = Σ′′

ob (o, a, {l | x = new C(e); sp}, q, Qin , Qout , Σ)

rg (o,o′)
→ ob (o, a, {l | x = o′; sp}, q, Qin , Qout , Σ′) ob (o′, a′, idle, process, (), (), Σ′′)

Figure B.4: ABS-NET object reduction rules for node controller interaction

that we abstract from details on marshalling and pass object states directly in mes-
sages, the rules for object mobility, ABS-Object-Send-Out and ABS-Object-Recv-In,
which interact with the rules Net-Object-Send-In and Net-Object-Recv-Out above,
are straightforward. The rules ABS-Msg-Send-Out and ABS-Msg-Recv-In for passing
messages back and forth with the node controller are uncomplicated since eligible
messages have been put in the out queue of the object.

The remaining rules for object transitions, that do not involve information
exchange with a node via a label, are given in Figure B.5 and Figure B.6. In
ABS-Activate, the auxiliary function select takes two parameters: the local pool of
processes q and the object store a, skipping the configuration parameter in the corre-
sponding function in the standard semantics. The reason is that scheduling in ABS-
NET is assumed to take only local information into account. In ABS-Rem-Sync-Call,
the premise o′ 6= o is an addition when compared to the standard semantics coun-
terpart rule. This premise is used to preclude synchronous self calls from being
dispatched asynchronously, causing a deadlock. In the Core ABS semantics, such
deadlocks are ruled out by the presence of the other runtime object in the rule’s
left-hand side. In ABS-NET, the intent is for all rules to be implementable directly
on a single node, which implies it is not possible to depend on both the caller and
callee objects being present locally.

An ABS-NET global starting state is given by a network configuration having
the properties described above, and an object configuration containing a single
starting object as in Lemma A.3.2, extended with empty queues and an empty
structure of futures and obligations.



268 APPENDIX B. ABS-NET SEMANTICS

(ABS-Skip)

ob (o, a, {l | skip ; sp}, q, Qin , Qout , Σ)
→ ob (o, a, {l | sp}, q, Qin , Qout , Σ)

(ABS-Assign-Local)
x ∈ dom (l) JeKa ◦ l = v

ob (o, a, {l | x = e; sp}, q, Qin , Qout , Σ)
→ ob (o, a, {l[x 7→ v] | sp}, q, Qin , Qout , Σ)

(ABS-Assign-Field)
x ∈ dom (a) JeKa ◦ l = v

ob (o, a, {l | x = e; sp}, q, Qin , Qout , Σ)
→ ob (o, a[x 7→ v], {l | sp}, q, Qin , Qout , Σ)

(ABS-Suspend)

ob (o, a, {l | suspend ; sp}, q, Qin , Qout , Σ)
→ ob (o, a, idle, q ∪ {l | sp}, Qin , Qout , Σ)

(ABS-Cond-True)
JbKa ◦ l = True

ob (o, a, {l | if b{s} [else {s′}] sp}, q, Qin , Qout , Σ) → ob (o, a, {l | s sp}, q, Qin , Qout , Σ)

(ABS-Cond-False)
JbKa ◦ l = False

ob (o, a, {l | if b{s} [else {s′}] sp}, q, Qin , Qout , Σ) → ob (o, a, {l | [s′] sp}, q, Qin , Qout , Σ)

(ABS-Await-True)
JgKΣ

a ◦ l
= True

ob (o, a, {l | await g; sp}, q, Qin , Qout , Σ) → ob (o, a, {l | sp}, q, Qin , Qout , Σ)

(ABS-Await-False)
JgKΣ

a ◦ l
= False

ob (o, a, {l | await g; sp}, q, Qin , Qout , Σ) → ob (o, a, {l | suspend ; await g; sp}, q, Qin , Qout , Σ)

(ABS-Async-Call-Send)
regfuts ({f }, sendfuts (futsof (v), o′, Σ)) = Σ′

JeKa ◦ l = o′ JeKa ◦ l = v fresh (f ) Qout
enqueue (Call (o′,o,f ,m,v))

−−−−−−−−−−−−−−−−−−→ Q′

out

ob (o, a, {l | x = e!m(e); sp}, q, Qin , Qout , Σ) → ob (o, a, {l | x = f ; sp}, q, Qin , Q′

out , Σ′)

(ABS-Async-Call-Recv)

Qin
dequeue (Call (o,o′,f ,m,v))

−−−−−−−−−−−−−−−−−−→ Q′

in bind (o, f , m, v, class (o)) = process

sendfuts ({f }, o′, regfuts (futsof (v) ∪ {f}, Σ)) = Σ′

ob (o, a, pr , q, Qin , Qout , Σ)
→ ob (o, a, pr , q ∪ process, Q′

in , Qout , Σ′)

Figure B.5: ABS-NET object reduction rules, part 1
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(ABS-Future-Recv)

Qin
dequeue (Future (o,f ,v))

−−−−−−−−−−−−−−−−→ Q′

in

resfut (f , v, Σ) = Σ′

ob (o, a, pr , q, Qin , Qout , Σ)
→ ob (o, a, pr , q, Q′

in , Qout , Σ′)

(ABS-Future-Send)

Qout
enqueue (Future (o′,f ,v))

−−−−−−−−−−−−−−−−→ Q′

out

valof (f , Σ) = v o′ ∈ recsof (f , Σ)
sendfuts (futsof (v), o′, clrrec (o′, f , Σ)) = Σ′

ob (o, a, pr , q, Qin , Qout , Σ)
→ ob (o, a, pr , q, Qin , Q′

out , Σ′)

(ABS-Read-Fut)
JeKa ◦ l = f valof (f , Σ) = v

ob (o, a, {l | x = e. get; sp}, q, Qin , Qout , Σ)
→ ob (o, a, {l | x = v; sp}, q, Qin , Qout , Σ)

(ABS-Idle)

ob (o, a, {l | }, q, Qin , Qout , Σ)
→ ob (o, a, idle, q, Qin , Qout , Σ)

(ABS-Activate)
select (q, a) = process

ob (o, a, idle, q, Qin , Qout , Σ) → ob (o, a, process, q \ process, Qin , Qout , Σ)

(ABS-Return)
JeKa ◦ l = v l( destiny ) = f resfut (f , v, Σ) = Σ′

ob (o, a, {l | return e; sp}, q, Qin , Qout , Σ) → ob (o, a, {l | sp}, q, Qin , Qout , Σ′)

(ABS-Self-Sync-Return-Sched)
l′( destiny ) = f

ob (o, a, {l | cont (f ); }, q ∪ {l′ | sp}, Qin , Qout , Σ) → ob (o, a, {l′ | sp}, q, Qin , Qout , Σ)

(ABS-Self-Sync-Call)
l( destiny ) = f ′ JeKa ◦ l = o JeKa ◦ l = v fresh (f )
regfuts ({f }, Σ) = Σ′ bind (o, f , m, v, class (o)) = {l′ | sp′}

ob (o, a, {l | x = e.m(e); sp}, q, Qin , Qout , Σ)
→ ob (o, a, {l′ | sp′ cont (f ′); }, q ∪ {l | x = f . get; sp}, Qin , Qout , Σ′)

(ABS-Rem-Sync-Call)
JeKa ◦ l = o′ o′ 6= o fresh (y) returns ( class (o′), m) = T

ob (o, a, {l | x = e.m(e); sp}, q, Qin , Qout , Σ)
→ ob (o, a, {l, Fut 〈T〉 y null | y = o′!m(e); x = y. get; sp}, q, Qin , Qout , Σ)

(ABS-While-True)
JbKa ◦ l = True

ob (o, a, {l | while b {s} sp}, q, Qin , Qout , Σ) → ob (o, a, {l | s while b{s} sp}, q, Qin , Qout , Σ)

(ABS-While-False)
JbKa ◦ l = False

ob (o, a, {l | while b {s} sp}, q, Qin , Qout , Σ) → ob (o, a, {l | sp}, q, Qin , Qout , Σ)

Figure B.6: ABS-NET object reduction rules, part 2





Appendix C

Shutdown Protocol Definition

This appendix lists the state transitions of a node in the shutdown protocol.

C.1 Functions, Constants, Predicates, and Statements

All set-related functions and constants used in the definition are listed in Table C.1.
All functions and constants related to routing tables are listed in Table C.2. Finally,
all special constants, predicates, and statements are given in Table C.3.

{} the empty set
in(u,set) set membership status of u in set

union(set1,set2) set union of set1 and set2

diff(set1,set2) set difference of set1 and set2

intersect(set1,set2) set intersection of set1 and set2

singleton(u) the set consisting of only the element u

Table C.1: Set-related functions and constants

[] the empty routing table
next(o,table,set) node identifier of next hop to reach o according to

routing table table, which is in the set set
remove(u,table) table, excluding all entries with u as next hop
update(table1,u,table2) table1, with routes from table2, with next hop u

register(o, u, table, i) table, with u as the next hop to reach o, for i hops
in total

Table C.2: Routing table related functions and constants

271
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self a node’s own identifier
init true when a node is first initialized, false otherwise
exists local objects true if there is some local object, false otherwise
receive msg from u true when the first message in the link from u is msg,

false otherwise; discards message if used
send msg to u; statement, which, when executed, results in dis-

patching msg to u

shutdown; statement, which, when executed, shuts a node down
loop empty true if a node’s self-loop link is empty; false otherwise
u shuts down true if the node u shuts down; false otherwise
deliver Message(o, p); statement, which, when executed, delivers a message

with payload p to local object o
dispatch Message(o, p) true if a local object dispatched a message to o with

payload p; false otherwise
obj local object true if obj is a local object, false otherwise
delete object obj; statement, which, when executed, deletes the local

object obj
id(obj) the identifier of the object obj

Table C.3: Special constants, statements, and predicates

C.2 Node Actions

upon init

do {

table := [];

unblocked := {};

blocked := {};

state := IDLE;

recd_ready = {};

sent_prepare = {};

sent_abort = {};

sent_shutdown = {};

recd_ack = {};

}

/* SINGLETON SHUTDOWN */

upon state = IDLE

/\ union(unblocked, blocked) = {}

/\ ~ exists local objects

/\ loop empty

do {

shutdown;

}
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/* IDLE STATE */

upon state = IDLE

/\ receive Notify from u

/\ ~ in(u, union(unblocked, blocked))

do {

unblocked := union(unblocked, singleton(u));

send Notify to u;

}

upon state = IDLE

/\ receive Notify from u

/\ in(u, blocked)

do {

blocked := diff(blocked, singleton(u));

unblocked := union(unblocked, singleton(u));

}

upon state = IDLE

/\ receive Prepare from u

do {

unblocked := diff(unblocked, singleton(u));

blocked := union(blocked, singleton(u));

send Ready to u;

}

upon state = IDLE

/\ receive Abort from u

do {

blocked := diff(blocked, singleton(u));

unblocked := union(unblocked, singleton(u));

}

upon state = IDLE

/\ receive Shutdown from u

do {

send Ack to u;

}

upon state = IDLE

/\ u shuts down

do {

table := remove(u, table);

blocked := diff(blocked, singleton(u));

}

upon state = IDLE

/\ u =/= self

/\ ~ in (u, union(unblocked, blocked))

do {

blocked := union(blocked, singleton(u));

send Notify to u;

}
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upon state = IDLE

/\ unblocked =/= {}

/\ blocked = {}

do {

state := TRANSACT;

}

/* TRANSACT STATE */

upon state = TRANSACT

/\ in(u, union(unblocked, blocked))

/\ ~ in(u, sent_prepare)

do {

sent_prepare := union(sent_prepare, singleton(u));

send Prepare to u;

}

upon state = TRANSACT

/\ receive Ready from u

do {

recd_ready := union(recd_ready, singleton(u));

}

upon state = TRANSACT

/\ receive Prepare from u

/\ u < self

do {

unblocked := diff(unblocked, singleton(u));

blocked := union(blocked, singleton(u));

state := ABORT;

send Ready to u;

}

upon state = TRANSACT

/\ receive Prepare from u

/\ ~ u < self

do {

if ~ in(u, sent_prepare) {

sent_prepare := union(sent_prepare, singleton(u));

send Prepare to u;

}

}

upon state = TRANSACT

/\ union(unblocked, blocked) = recd_ready

do {

state := CLEAR;

}
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/* ABORT STATE */

upon state = ABORT

/\ receive Ready from u

do {

recd_ready := union(recd_ready, singleton(u));

}

upon state = ABORT

/\ receive Prepare from u

/\ in(u, sent_prepare)

/\ ~ in(u, recd_ready)

do {

if u < self {

unblocked := diff(unblocked, singleton(u));

blocked := union(blocked, singleton(u));

send Ready to u;

}

}

upon state = ABORT

/\ in(u, unblocked)

/\ in(u, recd_ready)

/\ ~ in(u, sent_abort)

do {

sent_abort := union(sent_abort, singleton(u));

send Abort to u;

}

upon state = ABORT

/\ intersect(unblocked, sent_prepare) = sent_abort

do {

recd_ready := {};

sent_prepare := {};

sent_abort := {};

state := IDLE;

}

/* CLEAR STATE */

upon state = CLEAR

/\ ~ exists local objects

/\ loop empty

do {

state := SHUTDOWN;

}

/* SHUTDOWN STATE */

upon state = SHUTDOWN

/\ receive Ack from u

do {

recd_ack := union(recd_ack, singleton(u));

}
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upon state = SHUTDOWN

/\ in(u, union(unblocked, blocked))

/\ ~ in(u, sent_shutdown)

do {

sent_shutdown := union(sent_shutdown, singleton(u));

send Shutdown to u;

}

upon state = SHUTDOWN

/\ union(unblocked, blocked) = recd_ack

do {

shutdown;

}

/* OBJECTS AND TABLES */

upon receive Table(other_table) from u

do {

table := update(table, u, other_table);

}

upon u =/= self

do {

send Table(table) to u;

}

upon in(u, unblocked)

/\ obj local object

/\ id(obj) = o

do {

send Object(obj) to u;

table := register(o, u, table, 1);

delete object obj;

}

upon receive Object(obj) from u

/\ id(obj) = o

do {

table := register(o, self, table, 0);

}

upon receive Message(o, p) from u

/\ obj local object

/\ id(obj) = o

do {

deliver Message(o, p);

}

upon receive Message(o, p) from u1

/\ next(o, table, union(unblocked, singleton(self))) = u2

/\ u2 =/= self

do {

send Message(o, p) to u2;

}
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upon dispatch Message(o, p)

/\ next(o, table, union(unblocked, singleton(self))) = u

do {

send Message(o, p) to u;

}

upon receive Message(o, p) from u

/\ next(o, table, union(unblocked, singleton(self))) undefined

do {

send Message(o, p) to self;

}

upon dispatch Message(o, p)

/\ next(o, table, union(unblocked, singleton(self))) undefined

do {

send Message(o, p) to self;

}





Appendix D

Shutdown Protocol Transition

System Model

D.1 Runtime Configurations

A runtime configuration is a collection net of nodes and arcs, as defined in Table D.1.
A valid configuration is either the empty configuration ǫ or a configuration that
can be reached by applying the reduction rules, given below, starting from a valid
configuration. Note that in valid configurations, nodes have a self-loop arc, and
there are always arcs in both directions between two nodes, if at all.

u node identifier
U set of node identifiers
q queue of msg

net ::= ǫ | net net ′ | node | arc

arc ::= ar (u, q, u′)
node ::= nd (u, Uunblk , Ublk , st, Urdy, Uprep, Uabrt , Ushtdn, Uack)
st ::= IDLE | TRANSACT | ABORT | CLEAR | SHUTDOWN

msg ::= Notify | Prepare | Ready | Abort | Shutdown | Ack

Table D.1: Transition system runtime configuration syntax

D.2 Reduction Rules

The reduction rules are defined in the rewriting logic style [40]. The use of curly
brackets around a configuration in a rule indicates that the reduction takes place
at the global level, as opposed to rules without brackets, that change only part of
a configuration. Table D.2 lists the predicates and functions used in the rules. The
rules sometimes use U n for Uunblk , Ublk , and U m for Urdy, Uprep, Uabrt , Ushtdn, Uack ,
or sublists, as determined by context. Figures D.1, D.2, and D.3 show the rules.

279
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fresh (u, net) for all u′ that are identifiers of nodes in net, u′ < u

first (q) the first (top) message msg in the queue q, if any

dequeue (q) q with the first (top) message removed, if q is
nonempty

enqueue (q, msg) q with msg added to the end

add_arcs(u, net) net with arcs (with empty queues) added, connecting
nodes in net and u, in both directions

rm_arcs_blk(u, net) net with all arcs to or from u removed, and u re-
moved from the set Ublk in all nodes in net

Table D.2: Transition system predicates and functions

(Init)
fresh (u, net net′)

{net net′} → {nd (u, ∅, ∅, IDLE, ∅, ∅, ∅, ∅, ∅) ar (u, emp, u) add_arcs(u, net) net′}

(Shutdown)
Uunblk ∪ Ublk = Uack

{nd (u, Uunblk , Ublk , SHUTDOWN, Uack , Um) net} → {rm_arcs_blk(u, net)}

(Shutdown-singleton)
Uunblk ∪ Ublk = ∅

{nd (u, Uunblk , Ublk , IDLE, Um) ar (u, emp, u) net} → {rm_arcs_blk(u, net)}

(Recv-notify-unknown)
first (q) = Notify dequeue (q) = q′′ u′ /∈ Uunblk ∪ Ublk

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk ∪ {u′}, Ublk , IDLE, Um) ar (u, enqueue (q′, Notify), u′)

(Recv-notify-blocked)
first (q) = Notify dequeue (q) = q′ u′ ∈ Ublk

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) →

ar (u′, q′, u) nd (u, Uunblk ∪ {u′}, Ublk \ {u′}, IDLE, Um)

(Idle-recv-prepare)
first (q) = Prepare dequeue (q) = q′′

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk \ {u′}, Ublk ∪ {u′}, IDLE, Um) ar (u, enqueue (q′, Ready), u′)

(Idle-recv-abort)
first (q) = Abort dequeue (q) = q′

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) →

ar (u′, q′, u) nd (u, Uunblk ∪ {u′}, Ublk \ {u′}, IDLE, Um)

Figure D.1: Shutdown protocol reduction rules, part 1
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(Idle-recv-shutdown)
first (q) = Shutdown dequeue (q) = q′′

ar (u′, q, u) nd (u, Uunblk , Ublk , IDLE, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk , Ublk , IDLE, Um) ar (u, enqueue (q′, Ack), u′)

(Idle-send-notify)
u′ 6= u u′ /∈ Uunblk ∪ Ublk

nd (u, Uunblk , Ublk , IDLE, Um) ar (u, q, u′) →

nd (u, Uunblk , Ublk ∪ {u′}, IDLE, Um) ar (u, enqueue (q, Notify), u′)

(Idle-enter-transact)
Uunblk 6= ∅ Ublk = ∅

nd (u, Uunblk , Ublk , IDLE, Um) → nd (u, Uunblk , Ublk , TRANSACT, Um)

(Transact-send-prepare)
u′ ∈ Uunblk ∪ Ublk u′ /∈ Uprep

nd (u, Uunblk , Ublk , TRANSACT, Uprep, Um) ar (u, q, u′) →

nd (u, Uunblk , Ublk , TRANSACT, Uprep ∪ {u′}, Um) ar (u, enqueue (q, Prepare), u′)

(Transact-recv-ready)
first (q) = Ready dequeue (q) = q′

ar (u′, q, u) nd (u, Un , TRANSACT, Urdy , Um) →

ar (u′, q′, u) nd (u, Un , TRANSACT, Urdy ∪ {u′}, Um)

(Transact-recv-prepare-lt)
first (q) = Prepare dequeue (q) = q′′ u′ < u

ar (u′, q, u) nd (u, Uunblk , Ublk , TRANSACT, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk \ {u′}, Ublk ∪ {u′}, ABORT, Um) ar (u, enqueue (q′, Ready), u′)

(Transact-enter-clear)
Urdy = Uunblk ∪ Ublk

nd (u, Uunblk , Ublk , TRANSACT, Urdy , Um) → nd (u, Uunblk , Ublk , CLEAR, Urdy , Um)

(Transact-recv-prepare-nlt-in-prep)
first (q) = Prepare ¬ u′ < u

u′ ∈ Uprep dequeue (q) = q′

ar (u′, q, u) nd (u, Un , TRANSACT, Uprep, Um) →

ar (u′, q′, u) nd (u, Un , TRANSACT, Uprep, Um)

(Transact-recv-prepare-nlt-notin-prep)
first (q) = Prepare dequeue (q) = q′′ ¬ u′ < u u′ /∈ Uprep

ar (u′, q, u) nd (u, Un , TRANSACT, Uprep, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Un , TRANSACT, Uprep ∪ {u′}, Um) ar (u, enqueue (q′, Prepare), u′)

(Abort-recv-ready)
first (q) = Ready dequeue (q) = q′

ar (u′, q, u) nd (u, Un , ABORT, Urdy , Um) → ar (u′, q′, u) nd (u, Un , ABORT, Urdy ∪ {u′}, Um)

Figure D.2: Shutdown protocol reduction rules, part 2
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(Abort-recv-prepare-have-sent-lt)
first (q) = Prepare dequeue (q) = q′′ u′ ∈ Uprep u′ /∈ Urdy u′ < u

ar (u′, q, u) nd (u, Uunblk , Ublk , ABORT, Urdy , Uprep, Um) ar (u, q′, u′) →

ar (u′, q′′, u) nd (u, Uunblk \ {u′}, Ublk ∪ {u′}, ABORT, Urdy , Uprep, Um)
ar (u, enqueue (q′, Ready), u′)

(Abort-recv-prepare-have-sent-nlt)
first (q) = Prepare dequeue (q) = q′

u′ ∈ Uprep u′ /∈ Urdy ¬ u′ < u

ar (u′, q, u) nd (u, Un , ABORT, Urdy , Uprep, Um) →

ar (u′, q′, u) nd (u, Un , ABORT, Urdy , Uprep, Um)

(Abort-send-abort)
u′ ∈ Uunblk u′ ∈ Urdy u′ /∈ Uabrt

nd (u, Uunblk , Ublk , ABORT, Urdy , Uabrt , Um) ar (u, q, u′) →

nd (u, Uunblk , Ublk , ABORT, Urdy , Uabrt ∪ {u′}, Um) ar (u, enqueue (q, Abort), u′)

(Abort-enter-idle)
Uunblk ∩ Uprep = Uabrt

nd (u, Uunblk , Ublk , ABORT, Urdy , Uprep, Uabrt , Ushtdn , Uack) →
nd (u, Uunblk , Ublk , IDLE, ∅, ∅, ∅, Ushtdn , Uack)

(Clear-enter-shutdown)

nd (u, Un , CLEAR, Um) ar (u, emp, u) → nd (u, Un , SHUTDOWN, Um) ar (u, emp, u)

(Shutdown-recv-ack)
first (q) = Ack dequeue (q) = q′

ar (u′, q, u) nd (u, Un , SHUTDOWN, Uack , Um) →

ar (u′, q′, u) nd (u, Un , SHUTDOWN, Uack ∪ {u′}, Um)

(Shutdown-send-shutdown)
u′ ∈ Uunblk ∪ Ublk u′ /∈ Ushtdn

nd (u, Uunblk , Ublk , SHUTDOWN, Ushtdn , Um) ar (u, q, u′) →

nd (u, Uunblk , Ublk , SHUTDOWN, Ushtdn ∪ {u′}, Um) ar (u, enqueue (q, Shutdown), u′)

Figure D.3: Shutdown protocol reduction rules, part 3


