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Solar flare prediction is a central problem in space weather forecasting and has

captivated the attention of a wide spectrum of researchers due to recent advances

in both remote sensing as well as machine learning and deep learning approaches.

The experimental findings basedonbothmachine anddeep learningmodels reveal

significant performance improvements for task specific datasets. Along with

building models, the practice of deploying such models to production

environments under operational settings is a more complex and often time-

consuming process which is often not addressed directly in research settings.

We present a set of new heuristic approaches to train and deploy an operational

solar flare prediction system for ≥M1.0-class flares with two predictionmodes: full-

disk and active region-based. In full-disk mode, predictions are performed on full-

disk line-of-sight magnetograms using deep learning models whereas in active

region-based models, predictions are issued for each active region individually

using multivariate time series data instances. The outputs from individual active

region forecasts and full-disk predictors are combined to a final full-disk prediction

result with a meta-model. We utilized an equal weighted average ensemble of two

base learners’ flare probabilities as our baseline meta learner and improved the

capabilities of our two base learners by training a logistic regression model. The

major findings of this study are: 1) We successfully coupled two heterogeneous

flare prediction models trained with different datasets and model architecture to

predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling

model, i.e., logistic regression, improves on the predictive performance of twobase

learners and the baseline meta learner measured in terms of two widely used

metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result

analysis suggests that the logistic regression-based ensemble (Meta-FP) improves

on the full-diskmodel (base learner) by ~9% in terms TSS and ~10% in terms of HSS.

Similarly, it improves on the AR-based model (base learner) by ~17% and ~20% in

terms of TSS and HSS respectively. Finally, when compared to the baseline meta

model, it improves on TSS by ~10% and HSS by ~15%.
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1 Introduction

A solar flare is an intense burst of electromagnetic radiation

through magnetic reconnection and plasma instability coming

from the release of magnetic energy associated with active

regions (AR) and they transpire as a sudden brightening of

light on the Sun’s corona Toriumi and Wang (2019). Coronal

mass ejections (CMEs), which are often associated with solar

flares, have comparable energies, and can release large amounts

of mass resulting into major geomagnetic storms which creates

intense currents in the Earth’s magnetosphere, changes in the

radiation belts, and in the ionosphere Feng et al. (2020). When

particles emitted by the Sun are accelerated during a flare or by a

CME event and reach the Earth along interplanetary magnetic

field lines, Solar energetic particle (SEP) events are produced

Núñez and Paul-Pena (2020). Primarily, solar flares are

considered to be the central phenomena in space weather

forecasting, and this paper discusses on the predictive models

for solar flares. Solar flares can induce intense variation in Earth’s

magnetic field, causing potential disruptions to many

stakeholders such as the electricity supply chain, airlines

industry, astronauts in space, and communication systems

including satellites and radio. Forecasting solar flares has been

a major challenge in heliophysics owing to the yet unsolved

fundamental cause of this phenomenon which makes it difficult

to predict the exact occurrence of a flare, especially for relatively

large ones. However, recent advancements in machine learning

and deep learning methods have demonstrated great

experimental success and catalyzed the efforts in prediction of

solar flares, which captivated the interest of many

interdisciplinary researchers Li et al. (2020); Nishizuka et al.

(2018); Huang et al. (2018). Developing predictive models for

flare prediction is limited to the nature, quantity, and quality of

flaring instances as well as the inductive bias of learning

algorithms when predicting such flare events. As a

consequence of the intrinsic limitations pre-incorporated by

the predictive models during problem formulation or model

selection or utilizing different data products, an individual

flare prediction model is limited in performance. Although all

the models built so far for flare forecasting have limitations,

different comprehensions and insights on data distribution are

still valuable for making the final decision in an operational flare

forecasting system. Therefore, it is intuitive to use as many pieces

of information that can be gathered from different sets of models

such as machine learning or deep learning models obtained from

different data modalities in terms of active region magnetogram

patches, full-disk magnetograms or magnetogram’s metadata

(magnetic field parameters) to issue a reduced risk prediction.

In active region-based models, predictions are issued for

certain areas on the Sun with greatly enhanced magnetic flux,

known as active regions. Active regions have lifetimes of days to

month, feature strong and entangled magnetic fields and are the

exclusive locations of strong flares and major eruptions,

including fast coronal mass ejections (CMEs). This said, only

a slim minority (10% or less) of active regions appearing in a

given solar cycle provide flares of GOES class ≥M1.0 and fast

CMEs [e.g., Georgoulis et al. (2019); Toriumi and Wang (2019)].

These regions can host solar eruptions. To employ active region-

based models in an operational setting, individual active region

forecasts are aggregated by computing the probability of flare

from at least one active region assuming conditional

independence and then these flare probabilities are used to

compute a full-disk flare occurrence probability. However, for

an operational system, working with near-real time data and

issuing near-real time predictions, active region-based models

relying on magnetic field observations possess a limited

forecasting ability as they restrict the training datasets within

central regions (±70°) due to severe projection effects Hoeksema

et al. (2014). Besides the unreliable measurements,

foreshortening closer to the solar limbs greatly impacts the

operational use of magnetic field data. This leads to reduction

in significant information required to make reliable flare

predictions in active regions. Moreover, predictions from

active region-based models often rely on sampled subset of

statistical features that were used to train the model and

therefore when examining forecasts from different subsets of

features, it is common to observe that for the similar condition of

the photospheric magnetic field, they can give varying values for

prediction probabilities of a particular flare to happen.

To account for the limitations of active region-based flare

predictors, full-disk prediction models provide a complementary

approach for operational flare forecasting systems Pandey et al.

(2021). The full-disk model utilize the compressed line-of-sight

magnetograms and these magnetograms are used for shape based

parameters (such as size, directionality, borders of sunspots) and

do not possess the magnetic field properties as in the

magnetogram rasters which is advantageous over the active

region-based models where individual active region magnetic

field parameters used near the limb are more prone to projection

effects. The significant part of an operational flare forecasting

model is to issue a reliable forecast for which we use a

heterogeneous ensemble that combines two different base

learners. In addition, to address the operational aspect of our

system, we consider two essential system-level criteria: 1) near-

real-time availability of input data is ensured given that both of

our base learners are trained with line-of-sight magnetograms

and physical parameters obtained from a line-of-sight

magnetograms and vector magnetograms available at a

cadence of 12 min, and 2) our proposed system is scalable in

a sense that it allows the flexibility of adding a new base learner (if

needed in the future) in the system as it will be one step away

from retraining the ensemble and deploying it back to our

forecasting system.

In this work, to issue more reliable forecasts in an operational

settings, we propose a heuristic ensemble approach which

consolidates the predictive results of the two aforementioned
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prediction modalities into one combined solar flare forecast. The

major contributions of this paper are following: we present a

methodology on how to train and validate an ensemble flare

predictionmodel in regard to its operations-ready characteristics.

The ensemble combines the predictions from two base learners:

1) a deep learning-based full-disk flare predictor using SDO/HMI

images and 2) a set of probabilistic predictions from a time series

classifier utilizing active region patches’ magnetic field metadata

in the form of multivariate time series. For both base learners, we

use the similar time-segmented tri-monthly data partitioning

strategy Pandey et al. (2021) to perform 3-fold cross-validation

experiments. Finally, we use the probability scores of these two

base learners obtained from the validation and test partitions to

train and validate our proposed meta-learner which converges to

a more robust full-disk flare predictor.

The remainder of this paper is organized as follows. In

Section 2, we present the related work on ensemble solar flare

forecasting models. In Section 3, we provide a detailed workflow

of our methodology. In Section 4, we present our detailed

experimental evaluation with settings and results. In Section 5

we present a discussion on the ensembles created and, lastly, in

Section 6, we present our conclusions and discuss future work.

2 Related works

The idea of automatically extracting forecast patterns from

the large volume of intrinsic magnetic field data on the

photosphere of the sun using machine learning methods has

begun from the early 1990’s Aso et al. (1994). Since then, with the

rapid development in machine learning and deep learning

approaches, a number of research groups Nishizuka et al.

(2018); Huang et al. (2018); Li et al. (2020), Nishizuka et al.

(2021), and references therein present their efforts in applying

such methods to build flare forecasting models.

In recent years, Li et al. (2020); Huang et al. (2018) used a

deep learning model based on CNN with different data products

for flare forecasting. Although they show an impressive

performance on flare classification, they limit the scope of the

prediction to smaller areas by using active region-based data

within ± 30°–45° of the central meridian of the Sun which may

counter their performance for true operational forecasting. In

addition, Florios et al. (2018) calculated physical features of

flaring and non-flaring ARs obtained from the SDO/HMI’s

near-real-time vector magnetogram data and trained SVMs,

multilayer perceptrons (MLPs), and decision tree algorithms

to predict occurrences of ≥M1.0-class and ≥C1.0-class flares

with a forecast horizon of 24 h. In Benvenuto et al. (2018), a

combination of supervised lasso regression for identifying the

significant features and then an unsupervised fuzzy clustering is

used for the classification of ≥M1.0-class and ≥C1.0-class flares.
Furthermore, Park et al. (2018); Pandey et al. (2021) uses full-disk

magnetograms data as a point in time observation with CNN

based deep learning models, which have limitations in capturing

the evolution of solar flares and they do not account for flares that

are on the eastern-limb of the Sun. Overall, some methods are

appropriate for constructing prediction models for the temporal

data variation, whereas others are beneficial for spatial data

variation, which demands a need for a coupled hybrid model

that can exploit the gains of multiple models.

Jonas et al. (2018) designed a time series data set using

photospheric and coronal images from HMI/SDO and AIA/SDO

instruments to forecast ≥M1.0-class flares within the next 24 h.

They utilize random partitioning of datasets into 80 and 20% for

training and testing the linear classifier. Apart from devising flare

forecasting as a binary classification task, Abduallah et al. (2021)

formulates it as a multiclass classification problem to classify B-,

C-, M- and X-class flares by utilizing the physical parameters

within ± 70° provided by the SHARP series of HMI/SDO. Finally,

the author uses majority voting as an ensemble to issue a final

flare forecast from three different models trained on the same

data. The training procedure in their work uses random 10-fold

cross-validation.

Instead of using a single prediction model, ensembles use a

set of predictions and combine these results to improve on a

single-model prediction. In addition, an ensemble can be created

with a single model itself by perturbing its initial conditions or

parameter settings to produce multiple results and then combine

those results into one called homogeneous ensembles Breiman

(1996); Freund and Schapire (1996). Flare forecasting problems

also make use of decision tree-based homogeneous ensembles.

Liu C. et al. (2017) apply random forest (RF) Breiman (2001)—a

meta-algorithm that fits a number of decision tree classifiers on

different sub-samples of a dataset and utilizes averaging to

improve the model’s performance. Similarly, Nishizuka et al.

(2017) employed an extremely randomized tree (ERT) classifier

Geurts et al. (2006) by fitting several decision-tree classifiers on a

random subset of features with a randomly defined threshold to

prevent overfitting. While RF and ERT are meta-algorithms

based on the bagging technique, XGBoost Chen and Guestrin

(2016) follows boosting approach to ensemble construction and

focuses on incorrect predictions. It varies from Random Forest

such that XGBoost always prioritizes functional space while

reducing the cost of a model, whereas Random Forest tries to

prioritize hyperparameters when optimizing the model. McGuire

et al. (2019) uses XGBoost for window-based feature extraction

from time series of physical parameters to classify solar flares.

However the aforementioned ensembles can optimize on one set

of data modality.

Besides decision trees, different models trained with different

algorithms but with same data modalities can also be used in an

ensemble as in Liu J.-F. et al. (2017). However, they only included

magnetograms with ARs within ± 30° of the central meridian of

the Sun for ≥C1.0-class flares and then designed a multimodel

integrated learner (MIM) by fitting several distinct base learners,

such as neural networks, naive classifiers, and SVMs. Finally, the
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outputs of base learners were combined by a genetic algorithm.

Similar efforts for ≥C1.0-class flares forecasting can be seen in

Campi et al. (2019) where ARs extracted from SDO/HMI images

from 2012 September 14 and 2016 April 30 are used and two-

third of the instances are randomly selected for training and one-

third for testing their models. Furthermore, in Domijan et al.

(2019) they study the predictive capabilities of magnetic-feature

properties located within ± 45° from the solar central meridian

and detected using Solar Monitor Active Region Tracker Higgins

et al. (2011) in Michelson Doppler Imager (MDI) magnetograms

and analyze the features to predict ≥C1.0-class flares within the

24 h following the observation. In this data-driven era of

predictive models, complex models can bring on higher

accuracy, but also ensembles allow many weak models to be

combined to produce a meta model that can compete with the

state-of-the-art research efforts Murray (2018).

In recent years, the usage of ensembles have become a more

popular research topic in space weather forecasting. Guerra et al.

(2015) created a multi-model ensemble from four base learners

for ≥M1.0-class flare prediction, finding an improved forecast

output compared to any one single model. Similarly, Schunk et al.

(2016) built an ionosphere-thermosphere-electrodynamics

multimodel ensemble prediction system based on seven

physics-based data assimilation models. Furthermore, in

Guerra et al. (2020), full-disk probabilistic forecasts from six

operational forecastingmethods are converted to an ensemble for

≥M1.0-class flares by a linear classifier and create a total of

28 ensembles to show the improvement of such a technique over

individual model forecasts. Although, ensemble methods are

increasingly being used by space weather researchers, much of

this research has yet to be implemented into operations, where

transitioning comes with issues of model compatibility.

It is worth noting that using a flare forecasting model in

operational settings, generally it is preferred to use more

simplistic robust methods. Diving into meteorology’s scenario,

The NASA Community Coordinated Modeling Center’s

(CCMC) CME Scoreboard 1) and solar flare Scoreboard 2)

provide an weighted and equi-weight average of multiple forecast

scores. Using an equal weighted average of multiple forecasts can be

used as a reliable first guess over a more complex model runs or

deciding on one specific forecast out of several in operationsMurray

(2018), however, an ensemble derived from a linear combination of

multiple models can add to the decision making capabilities on one

final forecast leveraging the advantage of simplicity and hence

making it more reliable to trust its decision while in operation.

To evaluate a flare forecasting system in an operational scenario,

Cinto et al. (2020) provides a set of criteria that are worth

considering and can be used to distinguish a non-operationally

evaluated system: 1) model evaluation without truly unseen data, 2)

using active region (AR) magnetograms only near the center of the

solar disk, 3) only using AR magnetograms linked to ≥C1.0-class
flares, and 4) using insufficient data instances. The author argues

that the non-operationally evaluated system are evaluated under

certain bias and that does not make them wrong, however,

evaluating under such specific conditions might impair their

predictive capabilities in real operational settings. In addition to

these guidelines, it is essential to note that, most of the studies, create

a cross-validation dataset by randomizing the process of data

splitting. While such data splitting leads to higher experimental

accuracy scores, it often fails to deliver similarly real-time

performance as discussed in Ahmadzadeh et al. (2021). We build

our models that meet the standard of the aforementioned criteria as

they can address the near-limb events with the full-disk base learner,

they are trained and tested with a time-segmented partitioning of

data from solar cycle 24, and we evaluate our models using data

instances that were not presented to the models during training to

address the operational settings of flare forecasting.

In this work, we combine the prediction probabilities of two

types of base learners by the means of a linear classifier based on

logistic regression. Our first base learner, which is a deep learning

based model which focuses on spatial variation of a full-disk

magnetogram. Similarly, our second base learner is a heuristic-

based aggregation model which outputs full disk probability

using the results from active region-based multivariate time

series classifiers. We train and validate an operations-ready

ensemble flare prediction model which optimizes the

predictive performance of both our base learners and provides

a better confidence while issuing a flare forecast.

3 Methodology

Ensemble approaches integrate multiple forecasts into a

single prediction by combining the predictions from multiple

base learners. A simplistic way of integrating the forecasts is to

use an equal weighting for each forecast and combine to improve

on a single-model prediction which we use as our baseline meta-

model. As mentioned earlier, we attempt to combine the

predictions of two base learners: 1) a deep learning-based full-

disk flare predictor using Helioseismic and Magnetic Imager

(HMI) instrument onboard Solar Dynamics Observatory (SDO)

images and 2) a multivariate time series classifier utilizing

magnetic field metadata to issue one combined full-disk flare

forecast.

3.1 Base learners

3.1.1 Time-series forest
Our active region-based prediction model is a multivariate

Time Series Forest (TSF), trained with Space Weather Analytics

1 https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/.

2 https://ccmc.gsfc.nasa.gov/challenges/flare.php.
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benchmark dataset for solar flare prediction (SWAN-SF)

Angryk et al. (2020a,b) to predict the occurrence of ≥M1.0-

class flares within the next 24 h by using an observation window

of 12 h. The SWAN-SF is an open source multivariate time

series (MVTS) dataset that provides time series instances for a

collection of space weather related physical parameters within ±

70° primarily calculated for each active regions from solar

photospheric magnetograms. The TSF model is trained by

utilizing six magnetic-field parameters: 1) TOTUSJH (Total

unsigned current helicity), 2) TOTPOT (Total photospheric

magnetic free energy density), 3) TOTUSJZ (Total unsigned

vertical current), 4) ABSNJZH (Absolute value of the net

current helicity), 5) SAVNCPP (Sum of the modulus of the

net current per polarity), and 6) USFLUX (Total unsigned flux)

from the suggested list of 13 parameters in Bobra and Couvidat

(2015) as these are available in near-real time, which is a

necessity for an operational system. The model outputs the

flaring probability for an individual active region and the

implementation of this model is based on Ji et al. (2020).

3.1.2 Deep learning model
We trained an AlexNet-based Krizhevsky et al. (2012)

Convolutional Neural Network to perform full-disk binary

flare prediction for ≥M1.0-class flares. Similar to the active

region-based counterparts, the full-disk model assumes a 24 h

prediction window, but uses a single image (point-in-time

observation) to perform the predictions. For this task, we

collected compressed 8-bit images created from full-disk line-

of-sight magnetograms provided by HMI/SDO.We collected two

compressed magnetogram images per day (bi-daily image

samples) at 00:00 UT and 12:00 UT from December 2010 to

December 2018 using Helioviewer API Muller et al. (2009) and

labeled them based on maximum of GOES peak X-ray flux

converted to NOAA/GOES flare classes observed in next 24 h

as shown in Figure 1. Unlike the TSF model, this deep learning

model outputs flaring probability for the entire full-disk and its

implementation is based on Pandey et al. (2021).

We used trimonthly partitioning for training our models,

which is non-chronological time-segmented partitioning

FIGURE 1
A timeline diagram to present the problem formulation of our deep learning-based full-disk flare prediction model using bi-daily observations
of full-disk line-of-sight magnetograms and prediction window of 24 h considered to label the magnetogram instances.
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strategy, where Partition-1 contains data from January to March,

Partition-2 from April to June, Partition-3 from July to

September, and Partition-4 from October to December in a

timeline from 2010 to 2018. The AR-based model also uses

the same partitioning for aligning our training partitions and

avoiding the penetration of training partitions into testing data in

different prediction modalities to ensure the fair comparisons

and avoid partial memorization through temporal coherence

Ahmadzadeh et al. (2021).

3.2 Flare prediction ensemble

Our active region-based model outputs probabilities of flare

(PFL) for each active region which we then aggregate to obtain a

restricted full-disk flaring probability (i.e., from active regions in

central locations). We use the following heuristic function in Eq.

1 to determine aggregated active region flaring probability3.

Paggregated � 1 −∏
i

1 − PFL ARi( )[ ] (1)

where PFL (ARi) is the flaring probability of an active region, and

the aggregated result calculates the probability of having at least

one flaring active region, assuming the flaring events from active

regions are conditionally independent. The product term

calculates the probability of having no flaring active regions.

These aggregated results from the active-region based model

are then concatenated with full-disk model’s output. The

aggregation procedure searches for most-recent valid active-

region predictions up to 6 h prior to the designated forecast

issue time. These gathered predictions from full-disk and

aggregated full-disk probabilities are then combined to issue a

final flare forecast using an ensemble. In this work, while preparing

our final dataset for the full-disk model, we do not include

magnetogram images where the observation time of the

available image and requested image timestamp is more than

6 hours. Therefore due to data unavailability through helioviewer,

we have used a total of 4,235 data instances, where 3,502 are No

Flare (NF) instances and 733 are Flare (FL) instances. The detailed

distribution of the dataset for each tri-monthly partition is shown

in Figure 2 and the class imbalance ratios across the partitions are

generally consistent from ~ 12–22% ( ~3.6:1 to ~7.2:1).

In our baseline meta-model approach, we use equal weighted

averaging of flare probabilities from aggregated active-regions and

full-disk flaring probabilities for issuing a final forecast. In other

words, given two flaring probabilities from two approaches, the

baseline approach is to compute the arithmetic average of the

probabilities, assuming equal importance. This simplistic

combination of flare probabilities will serve as our baseline,

although it is a naive approach that does not consider the intrinsic

characteristics of long-term diagnostic results from the models.

Our alternative approach to the baseline meta-model is logistic

regression-based classifier that is trained with flaring probabilities

from the base learners. As we already use two powerful algorithms to

train our base learner to extract the complex dynamics of the datasets,

we chose a linear model, logistic regression, because of its simplicity

and computational efficiency for the final prediction result. The

infrastructure of our complete flare prediction system design is

presented in Figure 3 which shows our overall methodology for

creating an ensemble using two heterogeneous base learners that

outputs a full-disk flare forecast.

Given the flare probability scores of two base learners which

we utilize as two input features—PFL (FD) and PFL (Aggregated),

and one binary (0/1) target feature (y) where 0 is used for No flare

(NF) and 1 is used for Flare (FL). Logistic Regression aim to

optimize the weights (w1, w2, and b), such that:

Z � w1 × PFL FD( ) + w2 × PFL Aggregated( ) + b (2)
ŷ � σ Z( ) (3)

where, Z in Eq. ( 2) is the linear combination of two base

learners’ output, σ is the sigmoid activation function, and ŷ is

the predicted output as shown in Eq. ( 3). The above problem

of finding the optimized weights w1, w2 for two base learners is

formulated as an optimization problem where the loss is

minimized to get the better values of weights using a

logistic loss function as shown in Eq. (4).

loss L( ) � − 1
N

∑
N

i�1
yi · log ŷi( )( ) + 1 − yi( ) · log 1 − ŷi( )( )[ ] (4)

FIGURE 2
Total number of Flare and No Flare instances across
4 trimonthly partitions used in this work3.

3 We note that, while aggregating active regions based outputs to
full-disk probabilities, there were instances that were not available
even when we search for most-recent valid active-region predictions
up to 6 h prior to the designated forecast. Therefore, such instances
are also removed from full-disk models for consistency.
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We use stochastic gradient descent (SGD) as our solver for the

optimization with hyperparameter tuning. The hyperparameters we

considered are learning rate and different regularization parameters

which includes L1 loss Tibshirani (1996), L2 loss Hoerl and Kennard

(1970), and linear mixings of L1 and L2 loss Zou and Hastie (2005).

And As we will describe later on Section 4, we employ 2-fold cross-

validation for our meta-model where we use one of the test partition

scores of the base learners to train and another for testing our meta

model, referred to as Meta-FP, interchangeably. We note that we aim

to provide full-disk forecasts by computing the aggregated flare

probability scores from active regions to make it compatible with

the full-disk model using the probabilistic heuristic shown in Eq. (1).

4 Experimental evaluation

4.1 Experimental settings

In this work, we trained two base learners for flare prediction (

≥M1.0-class flares) with two different dataset and model

configurations and architectures. Although our two base learners

utilize two different data modalities (i.e., point-in-time image and

multivariate time series), we used time-segmented tri-monthly

partitioning when training both of these models. We divided our

datasets into four partitions to ready our 3-fold holdout cross-

validation dataset. The data in Partition-1 contains images from the

months of January toMarch, Partition-2 fromApril to June, Partition-

3 from July to September, and Partition-4 fromOctober to December.

Here, this partitioning of the dataset is created by dividing the data

timeline fromDec 2010 toDec 2018 into four partitions on the basis of

months rather than chronological partitioning, to incorporate

approximately equal distribution of flaring instances in every fold

for training, validating, and testing the model. Furthermore, such a

partitioning strategy diversify the data instances in both the training

and testing phase of our models as it considers instances during solar

maxima and minima of solar cycle 24 used in this work.

We create three sets of base learner models from 3-fold cross-

validation experiments as our base learnerswherewe use Partition-3 as

our hold-out test set (i.e., never used in training and validation). Then,

• In Fold-1, we trained both of our base learners with

Partition-1 and Partition-2 and validated on Partition-4

• In Fold-2, we trained both of our base learners with

Partition-1 and Partition-4 and validated on Partition-2

• In Fold-3, we trained both of our base learners with

Partition-2 and Partition-4 and validated on Partition-1.

All of these three base learners are tested on Partition-3. Partition-

3 as a test differs from the validation sets in each fold such that, we

used the validation set in every epoch to track the performance of our

model whereas the test set, Partition-3, is used only once to confirm

the performance of the trained models and meta-models at the end.

To train and validate ourMeta-FP, we create our dataset based on

the probability scores of our three base learner sets obtained from 3-

FIGURE 3
An illustration of our ensemble flare prediction pipeline showing two base learners (AR-based FP) and (Full-disk FP) and the ensemble (Meta-FP)
followed by full-disk aggregation of AR-based FP’s flare probabilities.
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Fold cross validation experiments. The details of our experimental

design is shown in Figure 4.We used the flare probability scores from

the validation set and test set used in respective base learners

interchangeably to train and validate our Meta-FP model which is

a general linear model i.e., logistic regression (LR). The experiments

for Meta-FP are performed in such way that:

• In Expt. 1, we performed 2-fold cross validation with

Partition-4 and Partition-3.

• In Expt. 2, we performed 2-fold cross validation with

Partition-2 and Partition-3.

• In Expt. 3, we performed 2-fold cross validation with

Partition-1 and Partition-3.

In doing so, we trained six Meta-FP models based on logistic

regression and compared our results with a baseline Meta-FP

which is an equal weighted average of two base learners.

To evaluate the performance of our models, we create a

contingency matrix, which includes information on True

Positives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN) to evaluate the performance of our base

learners and Meta-FP. Note that, in the context of our flare

FIGURE 4
An experimental design diagram to depict the flow of our experiments for this work. Meta-FP experiments for logistic regression (LR) are cross-
validated using each fold results of base learners. This results into 2-fold cross-validation in each experiments of Meta-FP.
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prediction task, Flare (FL) is considered as the positive outcome

while No Flare (NF) is the negative. Using these four outcomes

we use two widely used performance metrics in space weather

forecasting, True Skill Statistics [TSS, shown in Eq. ( 5)] and

Heidke Skill Score (HSS, shown in Eq. ( 6)) to evaluate our model.

TSS � TP

TP + FN
− FP

FP + TN
(5)

HSS � 2 ×
TP × TN − FN × FP

P × FN + TN( ) + TP + FP( ) × N( )( ) (6)

The values of TSS range from -1 to 1, where 1 indicates all correct

predictions, -1 represents all incorrect predictions, and 0 represents no-

skill, often transpiring as the random or one-sided (all positive/all

negative) predictions. It is defined as the difference between True

Positive Rate (TPR) and False Positive Rate (FPR) and does not

account for class-imbalance, i.e., treats false positives (FP) and false

negatives (FN) equally. Similarly, HSSmeasures the forecast skill of the

models over an imbalance-aware random prediction. It ranges from

-∞ to 1, where 1 represents the perfect skill and 0 represents no skill

gain over a random prediction. It is common practice to use HSS for

the solar flare prediction models (similar to weather predictions where

forecast skill has more value than accuracy or single-class precision),

due to the high class-imbalance ratio present in the datasets.

4.2 Evaluation

Although AR-based classifiers are better for pinpointing the

source active regions for flares and giving more accurate

estimations for forecasting flaring phenomena, the aggregated

results drop significantly in contrast to our expectation. The

results from AR-based models shows TSS = 0.82±0.02 and

HSS = 0.20±0.04 when these methods are evaluated solely on

active region based confusion matrices. However, when we

aggregate them, these models fail to reach the acceptable levels

of skill scores as they drop to TSS = 0.32±0.04 andHSS = 0.15±0.02.

The reason for these issues may stem from three reasons: 1) limb

events are not considered (beyond ± 70°) as there are no reliable

magnetic field readings, 2) these models are not optimized for full-

disk flare prediction, and/or 3) an independent, equally weighted

aggregation scenario in our heuristic approach. Furthermore, the

drop in aggregated skill scores can be attributed to the number of

high false positives, which is common in rare-event forecasting

problems and particularly in flare forecasting. The reason we

empirically observed throughout the years for these false

positives are often the models’ inability to distinguish [C4+ to

C9.9] flares from ≥M-class flares as discussed in Pandey et al.

(2022). All in all, our first observation is that for full-disk flare

prediction, our designated deep learning models are more effective

when compared to the AR aggregations as it considers the near-

limb events by using a compressed full-disk magnetogram which

are suitable to capture the shape parameters in the active regions

within and beyond ± 70° of the central meridian of the Sun.

Analyzing our results, we observed that our logistic

regression-based Meta-FP improves on both TSS and HSS

compared to two base learners and equal weighting baseline

meta learner on respective test partitions as shown in Figures

5–7. In our first experiment, we trained twoMeta-FP models that

utilizes the flare probability scores of two base learners that are

trained with Partition-1 and Partition-2 of the respective

datasets. We train and validate our Meta-FP with respect to

the unused two partitions that are Partition-3 and Partition-4 for

the first experiment as shown in Figure 5. Our other two

experiments are also consistent with making sure to only use

two such partitions that have not been used while training the

base learners as shown in Figures 6, 7. While the improvement in

terms of TSS and HSS on both the base learner and baseline

Meta-FP can be seen across all six logistic regression-basedMeta-

FP model, the maximum improvement of logistic regression over

base learners and baseline can be seen with base learners in Fold-

1 (trained with Partition-1 and Partition-2) where the Meta-FP is

trained with Partition 3 and tested on Partition-4 (right side of

the Figure 5). In this experiment, the logistic regression model

improves on full-disk (base learner) in terms of TSS by ~6% and

HSS by ~14%. Similarly, it improves on aggregated AR-based

models in terms of TSS by ~22% and HSS by ~28%. While we

used the equal weighted averaging as a baseline model, it does not

improve on the results from the full-disk base learner. However,

compared to the baseline for the same experiment (Fold-1) as

explained above, the logistic regression model improves by ~13%

and ~21% in terms of TSS and HSS respectively.

On an average, we observe that our full-disk model (base learner)

has TSS = 0.40±0.07 and HSS = 0.25±0.07 and the AR-based model

(base learner) has TSS = 0.32±0.04 and HSS = 0.15±0.02 computed

over both test and validation results from all three folds. When we

FIGURE 5
Validation Scores of base learners in Fold-1 (base learners
trained with Partitions 1 and 2) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 1).
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employed the baseline meta learner (equal-weighted average), the

average TSS = 0.39±0.05 andHSS = 0.20±0.04 is observed. Given that,

equal weighted average is used as a common way to ensemble two or

more models, it can be problematic as it could not even surpass the

scores of a base learner (full-disk model). With the logistic regression-

based meta learner (Meta-FP), the average TSS and HSS observed is

0.49±0.02 and 0.35±0.05 respectively. Therefore, we see that on an

average, the Meta-FP improves on the full-disk model by ~9% in

terms of TSS and ~10% in terms of HSS. Similarly, it improves on the

AR-based model by ~17% and ~20% in terms of TSS and HSS

respectively. Finally, when compared to the baseline meta model, it

improves on TSS by ~10% and HSS by ~15%.

5 Discussion

Ensemble methods combines multiple models to obtain

better predictive performance than could be obtained from

any of the constituent model alone. By using an ensemble

method, we learn how the single model output can be

improved based on 1) maximum voting, 2) equal weighted

averaging, and 3) weighted voting. Learning the weights in

weighted voting, in the scope of this paper, is structured as a

logistic regression problem. One usual way to create an ensemble

is to simply average the forecast probabilities of multiple models

and provide a final forecast decision, however, it is naive to

assume that all base-learners are equally good. Therefore, the

main objective of training an ensemble here is to learn and assign

better weights for two base-learner predictions by quantifying the

level of impact of individual models predictions on the final

forecast. The prediction distribution for Partition-3 and

Partition-4 used in Experiment-1 for training and testing the

ensemble alternatingly and the learned decision-boundary by

Meta-FP LR is shown in Figure 8 as an example to show how an

ensemble improves over the base-learner by coupling using a

linear classifier. The predicted probability distribution and

learned decision boundary in Experiment-2 and 3 is presented

in Supplementary Figures S1, S2 respectively. Furthermore, the

confusion matrices for base-learners predictions and for the

consequent ensembles created in all three experiments are

presented in Supplementary Tables S1–S6.

Ensemble methods defy the idea of making one model and

relying on this model as the best/most accurate predictor we can

make. It rather take a multitude of models into account, and

combine those models to produce one final model that issues a

final forecast. At this point, we do have access to very complex

machine learning paradigms that have proven to be very effective in

several areas, such as computer vision and image classification.

However, relying on the forecast of a singlemodel for rare events like

major solar flares might be critical for a system in operation. The

model thus obtainedmight be biased on the dataset used to train the

model and can be just as good as the curated dataset used to create

themodel. Therefore, it is essential to have a reliable flare forecasting

model obtained by assembling multiple models with different data

modalities to leverage the most with coupling.

6 Conclusion and future work

In this work, we trained a logistic regression-based meta

learner for flare prediction that combines the probabilities of

two flare prediction models trained with different datasets and

machine learning paradigms. While we have two models (base

learners) with their own advantages in prediction capabilities,

we observed that for base learners, full disk models have better

performance for full disk flare forecasting compared to AR-

aggregation. Therefore, with a motive of further improving the

FIGURE 6
Validation Scores of base learners in Fold-2 (base learners
trained with Partitions 1 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 2).

FIGURE 7
Validation Scores of base learners in Fold-3 (base learners
trained with Partitions 2 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 3).
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FIGURE 8
The figure shows the distribution of predicted probability scores for all the data instances used in Experiment-1 and the decision boundary
learned by the trained logistic regression classifier for both the partitions: (A) Distribution of probabilities scores in partition-3 of two base learner
mapping to actual ouput. (B)Distribution of probabilities scores in partition-4 of two base learner mapping to actual ouput. (C) The learned-decision
boundary by Meta-FP LR while training on partition-4. (D) The learned-decision boundary by Meta-FP LR while training on partition-3. (E) The
learned-decision boundary by Meta-FP LR validated on partition-3. (F) The learned-decision boundary by Meta-FP LR validated on partition-4.
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performance of base learners, we explored a simplest way to

combine them by training an ensemble flare predictor which

automates the task of assigning weights to the outputs of our

base learners, thus improving the overall performance of our

models and adding robustness to the prediction task

compared to equal weighted ensembling.

Furthermore, considering that we only used bi-daily

observations, the shape parameters considered in compressed

magnetograms proves to be actually powerful. AR-based models

on the other hand, using magnetic field data, either as images or

derived products, as they are now, will have limited capability

although they have higher sensitivity per active region. Therefore,

a complementary approach is necessary that does not only rely

directly on magnetic field rasters and this work introduces a

technique which considers both the magnetic-field parameters

and shape-based parameters to obtain flare forecasting models

with their own essence and abilities. Finally, we combine these

two heterogeneous models into one coupled model using a linear

ensemble to improve overall performance. Although we see

significant improvements in skill scores after ensembling, our

coupledmodels are not without limitations that are also inherited

from our full-disk based model trained with point-in-time bi-

daily observations, which overlooks the temporal evolution of

magnetic-field parameters of the active regions which can limit

the predictive capabilities of full-disk flare predictors. Therefore,

our next goal is to formulate the flare prediction task as a video

classification problem using full-cadence image sequences that

will account for the temporal evolution of active regions.

Furthermore, there are several other directions that can be

explored such as using a basis function on the aggregated

active region prediction probabilities, finding other better

aggregation strategies that could boost the performance of

AR-based models while computing a full-disk probability and

elaborate the ensemble using more sophisticated classifiers,

aiming to further improve the predictive capabilities of our

models.
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