
Towards Cyber-Physical Systems as Services:
the ASIP Protocol

Mirco Bordoni∗, Michele Bottone†, Bob Fields†, Nikos Gorogiannis†,
Michael Margolis†, Giuseppe Primiero†, Franco Raimondi†

∗Ocado Group, Hatfield Business Park, Hatfield, UK
Email:mirco.bordoni@ocado.com

†School of Science and Technology, Middlesex University, London
Email: {m.bottone, b.fields, n.gkorogiannis, m.margolis, g.primiero, f.raimondi}@mdx.ac.uk

Abstract—The development of Cyber-Physical Systems needs
to address the heterogeneity of several components that interact
to build a single application. In this paper we present a model
to enable easy integration and interaction of micro-controllers.
Specifically, we describe the Arduino Service Interface Protocol
(ASIP), we provide an implementation and client libraries for
Java, Racket and Erlang, together with the description of a
practical example.

I. INTRODUCTION AND RELATED WORK

Cyber-Physical Systems (CPS) are typically built using
multiple interacting components, including sensors for a range
of parameters (temperature, acceleration, pressure, humid-
ity, etc) and actuators (such as servo motors, relays, step-
per motors, etc.). These components may be connected to
micro-controllers that need to be programmed individually
to take into account both low-level implementation details
and the high-level requirements of the application of which
the microcontrollers are part. Several solutions have been
put forward in the past to address the issue of modeling
CPS and abstracting low-level implementation details, see
for instance [1] and references therein. In terms of concrete
applications, the Robot Operating System (ROS) [2] is one
example of an abstraction mechanisms for concrete hardware
implementations. ROS can be seen as middleware that enables
the integration of different platforms with support for a range
of programming languages. However, ROS targets mainly
robotic platforms and the hardware requirements for a minimal
installation are beyond the capabilities of microcontrollers
such as Arduino boards. Even a more powerful board such
as the Raspberry Pi presents a number of performance issues
with ROS. TinyOS [3] is another example of operating system
developed with a specific focus on wireless sensor networks;
a typical TinyOS application requires approximately 30 Kb of
flash space, making it appropriate for a range of motes, but it
may still be too large for some Arduino boards, such as the
common Arduino Uno.

Instead of relying on a dedicated operating system, in this
paper we propose that sensors and actuators are exposed by
microcontrollers as services, so that more complex software
applications can be built by composing them. Concretely, in
this paper we show how this can be achieved on Arduino
micro-controllers by means of the Arduino Service Interface

Fig. 1. The overall ASIP architecture

Protocol (ASIP). The ASIP protocol is similar, in spirit, to the
Firmata protocol [4] in that it enables a computer to discover,
configure, read and write a microcontrollers general purpose
IO pins. However, ASIP has a smaller footprint than Firmata
(using around 20% less RAM). And uniquely, it supports high
level abstractions that can be easily attached to hundreds of
different services for accessing sensors or controlling actua-
tors. These abstractions can decouple references to specific
hardware, thus enabling different microcontrollers to be used
without software modification. Although ASIP is currently
implemented for Arduino boards, the protocol is hardware
agnostic. We provide an overview of the ASIP service model in
Section II and we describe the actual protocol with clients for
Java, Racket and Erlang in Section III. We provide a concrete
example application in Section IV.

II. THE ASIP SERVICE MODEL

Figure 1 depicts the high-level architecture of ASIP. An
AsipClass models the core functionality that should be
implemented by a micro-controller. In particular, an imple-
mentation of an AsipClass should include a run() method
(described below), input and output streams for data exchange
(these could be a serial port, a network or Bluetooth con-
nection, etc.), and an initialisation mechanism. More impor-
tantly, an AsipClass is composed of one or more services,
modelled by means of an AsipServiceClass. Examples
of services offered by a micro-controller are a set of motors
connected to wheels and sensors for: distance, temperature,
acceleration, heading etc.

A. The Main ASIP loop

After an initialisation step to set up the input and out-
put streams for communication, the implementation of an



AsipClass executes the run method in which the following
operations are performed:

• A listener listens to incoming messages on the input
stream and dispatches the messages to the appropriate
registered service.

• In case of system messages (such as a request for the list
of active services, or for remapping of pin resources) the
run() method invokes the appropriate methods.

• System messages, such as error messages, periodic status
(if enabled), etc. are written to the output stream at the
appropriate time intervals (which can be reconfigured).

• Services are queried for periodic messages to be written
to the output stream, for instance to continuously report
the value of analog pins or sensor services.

Essentially, the main ASIP loop acts as a dispatcher of mes-
sages to and from registered services and performs appropriate
error checking.

B. Analysis of an ASIP Service

An ASIP service abstracts some functionality of a micro-
controller. Examples of services are servo motors, distance
sensors, pair of wheels with quadrature encoders for dis-
tance, etc. Each service is characterised by a unique ID and
must implement a processRequest() method. This is the
method that processes the messages dispatched by the run()
method of the main AsipClass. A service can implement a
reportValues() method if it needs to report values (either
continuously or upon request). For instance, a distance sensor
service could be configured to report distance every 100 ms,
while a servo motor service may not need to report values at
any time.

In our implementation (described below) we treat standard
pin-level operations as a single service, the Input-Output
Service. This service includes operation to set pin modes at
run-time; currently, the following modes are supported: digital
and analog output, digital and analog input, input with pull-
up resistor and Pulse-Width Modulation (PWM) mode. The
service also supports configuration of the reporting interval
for values of analog pins and implements error checking for
valid bounds in the arguments sent and received.

The access to pins by means of a service gives developers
the option of choosing how to implement a specific appli-
cation. For instance, consider an ultrasound distance sensor
attached to the analog pin of a micro-controller: in this case,
the developer has two options to measure distance: (1) read
the value of the analog pin using the Input-Output Service, or
(2) write a service that reserves a specific pin and calculates
and reports the distance, either upon request or continuously.
In the latter case, the computation of the distance as a function
of the value of the analog pin can be delegated to the
micro-controller. The choice of which implementation is more
appropriate depends on several factors, including the need for
accurate timing that can be achieved by the micro-controller,
or the memory requirements of the overall application on a
specific micro-controller. In some other cases the implemen-
tation of a service is influenced by the availability of dedicated

libraries. For example, motors with quadrature encoders may
be supported through a manufacturer-supplied library. In this
case the main AsipClass delegates the interaction with the
encoders to the appropriate service (a motor service, in this
case). As described in the following section, the interaction
with a main AsipClass and with its services happens by
means of plain text messages exchanges through the input and
output streams.

III. THE ASIP PROTOCOL

ASIP messages are exchanged over the input and output
streams as ASCII text strings. Individual messages are termi-
nated by the new line character and fields are usually separated
by means of commas. Messages from an AsipClass imple-
mentation begin with one of the following reserved characters:
@, ˜ and !, where @ denotes the beginning of a standard event
message, ˜ is used to start an error message and ! is used to
start a debug or info message. The start of an event message
is usually followed by a service ID and by the actual message
from the service. For instance, the following message reports
the values of the analog pins on an Arduino board with 6
analog inputs:

@I,a,6,{0:320,1:340,2:329,3:200,4:129,5:450}

This message from the implementation of the AsipClass
notifies a client that the Input-Output service (that has ID I)
is sending a message. In this specific case, this is a message
about analog pins (hence the a character after the first comma),
saying that there are 6 analog pins whose input values are
listed in brackets in the form pin:value.

Messages to an ArduinoClass implementation start with
the ID of the service to be invoked, followed by appropriate
parameters, typically a first character encoding a command for
the service, followed by optional values. For instance, this is
a sequence of two messages to set pin 13 to output mode and
then to write a value of 1 to pin 13, thus turning on an LED,
if connected:

I,P,13,3
I,d,13,1

In the first message, command P for the Input-Output
service sets pin 13 to mode 3 (OUTPUT) mode; in the
second message, command d writes the value 1 to pin 13.
Commands available for the Input-Output service include
reading and writing digital and analog pins, setting pin modes,
requesting pin modes, etc. The full list of commands, pin
modes, and additional messages for the Input-Output service
are available in the file asipIO.h available at https://github.
com/michaelmargolis/asip.

Messages for other kinds of services have the same struc-
ture. For instance, the message D,A,100 to an implementa-
tion of the AsipClass sets the auto-reporting interval for a
service with ID D to 100 ms (this is normally a distance ser-
vice). The AsipClass implementation could then reply ev-
ery 100 ms with messages of the form: @D,e,2,{42,118}
This message encodes the fact that the distance service D is



reporting a periodic event e with two values (which means
that the board is equipped with 2 distance sensors): the first
distance sensor measures 42 cm and the second measures
118 cm. Analogously, the message M,m,0,190 sends the
command m to service M with parameters 0 and 190. This
message is currently used to set the speed of a motor service
M (motor 0 in this case) to the value of 190, where the max
value is normally 255.

The code available at https://github.com/michaelmargolis/
asip contains an implementation of AsipClass for Arduino
boards with serial connections, either through a USB cable or
using the pins 0 and 1 for serial communication. The reposi-
tory contains code for the Input-Output service, for ultrasound
distance sensors, for IR sensors (used for line following),
for HUB-ee wheels [5] (including their quadrature encoders),
and for NeoPixels strips [6], in addition to a base class that
can be easily extended to incorporate new services just by
providing an implementation for their processRequest()
and reportValues() methods. The code is an Arduino
library that can be incorporated into an Arduino sketch and
uploaded to an Arduino board. Several sketch examples are
available in the repository. The library has been tested on
a range of boards, including: Uno, Mega, Leonardo, Micro,
Mini Pro 3.3 V 8 MHz. It has also been tested on a bespoke
board based on the Atmel ATmega328 micro-controller and
used for controlling a robot (see Section IV). After installing
the ASIP library, an Arduino board keeps listening to incoming
messages and dispatches requests to the appropriate service.
For testing purposes, interaction with the board can happen
from the command line; however, we have developed libraries
to parse the text messages of the ASIP protocol for several
common programming languages: Java, Racket (a dialect of
LISP) and Erlang. A Python implementation is currently under
development.

A. The ASIP Java Client

The Java library for the ASIP protocol is available at https:
//github.com/fraimondi/java-asip. It contains abstract classes
for ASIP services and the implementation of concrete classes
for the services described above (Input-Output, distance, mo-
tor with encoders, Infra-red sensors for line following, and
NeoPixels). The implementation relies on the Java Simple
Serial Connector library available at https://code.google.com/
p/java-simple-serial-connector/, but serial communication can
be easily replaced by any input/output stream, for instance over
a TCP connection. The repository provides a simple client
implementation for an Arduino board with just the Input-
Output service, available in the SimpleSerialBoard class.
Objects of this class can be created by passing the name of the
USB port to which the Arduino board is attached, for instance:
SimpleSerialBoard myBoard1 = new

SimpleSerialBoard("COM5");
SimpleSerialBoard myBoard2 = new

SimpleSerialBoard("COM10");
if (myBoard1.digitalRead(5) == AsipClient.HIGH)
myBoard2.digitalWrite(13,AsipClient.HIGH);

In the example above two objects are created, corresponding
to two boards attached to the machine running the Java
code. The code then checks whether pin 5 is reading a
value HIGH (which is a static constant defined in the class
AsipClient, and also assumes that this pin was set to
INPUT mode using the appropriate method provided by
SimpleSerialBoard). If this is the case, then the code
writes the value HIGH to pin 13 of the other board.

B. The ASIP Racket Client

Racket [7] is a LISP dialect used for teaching purposes in
a number of institutions worldwide. It is the only language
taught at Middlesex University for the first year of the Com-
puter Science degree and it has been employed in conjunction
with Arduino and Raspberry Pi boards in Physical Computing
sessions for the past two years [8]. The Racket ASIP client
library is available at https://github.com/fraimondi/racket-asip
together with an implementation for the services described
above (Input-Output, distance, motor with encoders, Infra-red
sensors for line following, and NeoPixels). The following is
an example of Racket code to set pins 11, 12 and 13 to HIGH:
(map (lambda (x) (digital-write x HIGH))

(list 11 12 13))

The code above makes use of the high-order function map
that takes as its first argument a function (a lambda-function
in this case, which given an integer x applies the ASIP library
function digital-write to x) to the list of number 11,
12 and 13. As shown in this example, Racket provides an
opportunity to teach functional programming languages in
physical computing sessions.

C. The ASIP Erlang Client

Erlang [9] is a programming language originally developed
by Ericsson and focussed on the development of distributed
applications. Erlang is used in a second year course at
Middlesex University to teach Networking and Distributed
Systems. The ASIP Erlang client allows the development of
distributed applications running, for instance, on a network
of Raspberry Pi, each of which is connected to one or more
micro-controllers running an implementation of AsipClass.
The Erlang ASIP client is available at https://github.com/
ngorogiannis/erlang-asip, together with some examples. The
client supports the Input-Output service described above (the
other services are currently under development). The following
is an excerpt of Erlang code turning on a LED attached to pin
13 when a button is pressed on pin 2 (declared as input pull-
up):
-define(LED1, 11).
-define(inputPin, 2).

CurInput = asip:digital_read(?inputPin),
case CurInput of
0 ->
%% it’s a pull-up, so LOW means pressed
asip:digital_write(?LED1, 1),

_ ->
asip:digital_write(?LED1, 0),

end



Fig. 2. The ASIP architecture for a Robot

IV. APPLICATION: CONTROLLING A ROBOT

In this section we describe how the ASIP protocol and its
implementation can be used to control a robot. Middlesex
University has developed the Middlesex Robotic plaTfOrm
(MIRTO), described in more detail in [8]. Essentially, this is
a robotic platform composed of an Arduino layer controlling
two HUB-ee wheels, 3 infra-red sensors for line following,
and two bump sensors. The Arduino layer is connected to
a Raspberry Pi using the serial GPIO pins. Figure 2 shows
the class diagram for the implementation of the AsipClass
in a sub-class called MirtoRobot. Objects of this class
comprise 4 services, each of which is a sub-class of the
generic AsipServiceClass: the standard Input-Output
Service, an IRSensorService to control the 3 IR sensors, a
BumpSensorService for the two bumpers and a WheelService
to control the two wheels (both the speed of the motors and
the values of the quadrature encoders to measure the actual
distance travelled). The implementation of the MirtoRobot
class is available at https://github.com/fraimondi/java-asip in
the file JMirtoRobot.java. This class exposes several
methods, including setMotors(int,int) to set the two
wheels at a certain speed, getIR(int) to get the value of
an IR sensor, and the boolean function isPressed(int)
to check whether a bump sensor is pressed. These methods
allow students to develop a PID algorithm for line following
focusing only on the logic of the application. The follow-
ing is an excerpt of the full application available in the
file AsipMirtoPIDFollower.java at the link reported
above.
// This code runs on a Raspberry Pi
JMirtoRobot robot = new JMirtoRobot("/dev/ttyAMA0");

// The core PID loop
while (true) {
int leftIR = robot.getIR(2);
int middleIR = robot.getIR(1);
int rightIR = robot.getIR(0);

// the function computeError computes the error,
i.e. the displacement from the line to follow

int curError =
computeError(leftIR,middleIR,rightIR,prevError);

// the function computeCorrection implements the
PID error correction

correction =
computeCorrection(curError,prevError);

// This function computes the new speed
int newSpeedLeft = computeLeftSpeed(correction);
int newSpeedRight = computeRightSpeed(correction);

// Finally, set the new motors speed
robot.setMotors(newSpeedLeft,newSpeedRight);

} // end of core PID loop

A video of this example is available at http://youtu.be/KH
3766gNcM. This example shows that the overhead introduced
by the ASIP protocol does not affect the line following
capabilities of this robot (the error is computed every 20 ms).

V. CONCLUSION AND FUTURE WORK

In this paper we have presented how sensors and actuators
attached to micro-controllers can be modelled with the notion
of high-level services, abstracting away many implementation
details that make the integration of heterogeneous components
a difficult task. We have described the implementation of the
ASIP protocol and of three software libraries, describing an
example application (a PID line follower on a robot). We are
currently working at several extensions of this work: both the
Arduino and the client code (Java, Racket, Erlang) could be
generated automatically from a model like the one in Figure 2,
by re-using the implementation of standard services, such as
IR sensors, distance sensors, etc. Automatic code generation
has the additional benefit of enabling model-based testing
and, ultimately, it may ease the certification process when
applications need to be employed in industrial settings.

REFERENCES

[1] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling Cyber–Physical
Systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA
workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An
operating system for sensor networks,” in Ambient Intelligence. Springer
Berlin Heidelberg, 2005, pp. 115–148.

[4] H.-C. Steiner, “Firmata: Towards making microcontrollers act like exten-
sions of the computer,” in New Interfaces for Musical Expression, 2009,
pp. 125–130.

[5] “HUB-ee Robot Wheels with Quadrature Encoders,” http://www.
creative-robotics.com/About-HUBee-Wheels, accessed: 27/01/2015.

[6] “NeoPixels light strips for Arduino boards,” https://learn.adafruit.com/
adafruit-neopixel-uberguide/arduino-library, accessed: 27/01/2015.

[7] “The Racket Programming Language,” http://www.racket-lang.org/, ac-
cessed: 27/01/2015.

[8] K. Androutsopoulos, N. Gorogiannis, M. Loomes, M. Margolis, G. Prim-
iero, F. Raimondi, P. Varsani, N. Weldin, and A. Zivanovic, “A Racket-
Based Robot to Teach First-Year Computer Science,” in 7th European
Lisp Symposium, 2014, p. 54.

[9] “The Erlang Programming Language,” http://www.erlang.org/, accessed:
27/01/2015.


