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Abstract

Energy communities will play a central role in the sustainable energy transition by helping
inform and engage end users to become more responsible consumers of energy. However, the
true potential of energy communities can only be unlocked at scale. This scalability requires
data-driven solutions that model not just the behaviour of building occupants but also of
energy flexible resources in buildings, distributed generation and grid conditions in general.
This understanding can then be utilized to improve the design and operation of energy
communities in a variety of real-world settings. However, in practice, collecting and analysing
the data necessary to realize these objectives forms a large part of such projects, and is
often seen as a prohibitive stumbling block. Furthermore, without a proper understanding
of the local context, these projects are often at risk of failure due to misplaced expectations.
However, this process can be considerably accelerated by utilizing open source datasets and
models from related projects, which have been carried out in the past. Likewise, a number of
open source, general-purpose tools exist that can help practitioners design and operate LECs
in a near-optimal manner. These resources are important because they not only help ground
expectations, they also provide LECs and other relevant stakeholders, including utilities and
distribution system operators, with much-needed visibility on future energy and cash flows.
This review provides a detailed overview of these open-source datasets, models and tools,
and the many ways they can be utilized in optimally designing and operating real-world
energy communities. It also highlights some of the most important limitations in currently
available open source resources, and points to future research directions.

Highlights:

1. The importance of open-source datasets and tools for local energy communities

2. Common use cases for open-source datasets, models and tools for energy communities

3. A thorough review of electricity demand and meteorological datasets and models

4. Most important shortcomings with currently available datasets, models and tools
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1. Introduction

Climate change concerns and accelerating digitization are causing arguably the largest
shift in energy systems in the last decades [1]. Many countries are facilitating, or plan to
facilitate, an increasing proliferation of renewable energy sources (such as wind and solar)
by making energy demand more flexible. Digitization is a vital enabling technology in this
transition. It allows system operators to better plan and operate the energy grid in light of
both demand variations, and supply variability and intermittency introduced by renewable
energy sources (RES). Concurrently, bottom-up initiatives, such as energy communities,
have emerged as potential solutions to further accelerate the uptake of renewable energy
technologies at a local level, while emphasising self-sufficiency, local determination, and
engagement and empowerment of energy consumers and prosumers [2].

1.1. Local energy Communities (LECs)

Over the years, many different formulations of energy communities have emerged, includ-
ing local energy communities, citizen energy communities, market energy communities and
renewable energy communities. While a number of definitions have been proposed [3], there
remains a tremendous amount of diversity in energy communities in practice. For instance,
many energy communities are characterized by a strong emphasis on citizen engagement
[4] which allows energy consumers and prosumers to become more involved with how their
energy is sourced (or consumed). Often, such energy community projects emphasize inno-
vation in renewable technologies [5] and decentralized ownership through local stakeholders’
involvement [6]. These are especially useful in the context of reducing the barriers placed
by high investment costs in many community-scale energy projects. In these contexts, there
is also a strong element of sharing financial and social benefits for the local community [7].

It must be emphasized here that the energy community concept is much more expansive
than community energy [8]. While community energy is often seen as an instrument to
reduce the barriers of entry to local generation (e.g. through renewable sources such as
solar PV or wind power etc.), energy communities go much further [9]. For instance, energy
communities are characterized by their strong focus on public-private partnerships to further
develop local competences. Such energy communities also emphasize the prosumer role,
whereby energy consumers in the community are encouraged to take on a more active role by,
for instance, installing distributed generation and energy flexible resources such as battery
storage. The presence of metering infrastructure is also an important component in modern
energy communities, as it allows real-time monitoring of energy flows.

A number of North-Western European countries (such as Sweden, Denmark and the
Netherlands) have been forerunners in the development of energy communities emphasizing
renewable energy. These efforts have been largely driven by conducive regulatory conditions
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leading to citizen-led decentralized renewable energy projects. For instance, the Tvindkraft
Project1 developed in Denmark in 1978 is an example of an early local energy community.
On the EU level, the recent Recast Renewable Energy Directive (RED-II) builds on the
existing regulatory framework for climate and energy to further stimulate the development
of renewable energy communities (RECs) in Member States [10]. As of April 2020, the
European Federation of Citizen Energy includes a network of 1500 European energy coop-
eratives and about one million citizens active in the energy transition2. Some important
energy community projects in Europe are detailed in [11].

Historically, energy communities have also been used as an effective means of providing
affordable access to energy to people in rural and low population density regions, especially in
the USA. As a result, these co-operatives are responsible for 11% of the total energy sold, and
manage around 13% of the overall connections in the USA [9]. Over the past few years, the
same ideas have also been extended to electrify off-grid communities in developing countries.
The unavailability or unreliability of the national grid means that the self-sufficiency aspect
of energy communities fits in very well with the issues faced by people in such communities.
For example, use of community solar and micro-hydro plants has become widespread in
South and South-East Asia [12].

It is important to point out that the RECs highlighted above are meant to foster com-
munity engagement and incentivise local renewable energy projects, and are separate from
Citizen Energy Communities (CECs), as postulated by another recent European directive.
Unlike RECs, CECs are meant to be technology-neutral and not renewable-specific. Further-
more, they are not necessarily geographically constrained, and allow large corporations to
participate in the energy community project, albeit with some restrictions [9]. This reflects
the broader picture where, over time, energy communities have come to encompass not just
residential communities, but also other energy consumers in neighborhoods, ranging from
tertiary buildings and local industry to public electric vehicle charging infrastructure.

In practical terms, energy communities have a long track record of promoting renewable
energy and managing energy consumption, while empowering end users and increasing their
energy awareness. Some of the most interesting practical use cases are discussed in subse-
quent sections. Going further, we will use local energy communities (LECs) as an umbrella
term to refer to the overarching concepts of energy communities in general, and RECs in
particular. We use LECs to denote that our focus in this paper is primarily on the pro-
motion of renewable generation and the prosumer mentality in such energy communities.
However, the definition we employ is broader than the EU REC formulation in the sense
that we do not impose any limitations on who can be part of the energy community, thereby
incorporating some elements of the CECs.

1.2. Digitization

As mentioned above, a key enabling technology to operationalize energy communities in
practice is by increasing digitization. The most critical component of this is the advanced

1https://www.tvindkraft.dk/en/
2https://www.rescoop.eu/
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metering infrastructure, which provides a way to record energy demand and generation
values in (near-)real time, thereby paving the way for monitoring, user engagement, peer
to peer trading concepts and downstream optimization [13]. However, accessing this data
as well as processing it in a way that creates additional value can often be prohibitively
expensive for bottom-up citizen initiatives. This is an especially hard problem, as the value
of data for downstream services only becomes visible once it has been collected and analysed.
The large upfront costs to collect and process this data can therefore dampen the enthusiasm
of such community initiatives.

Pre-existing open sourced data and software projects offer an attractive solution to this
problem. Such datasets, when collected previously in similar settings, can unlock a number
of use cases. For instance, they can be used in an ex ante analysis to estimate the economic
feasibility of setting up a new energy community. This open sourcing of datasets is, in many
cases, mandated by project funding bodies, which may require or request that data collected
using public money should be made available for future scientific research. This includes
the emphasis placed on open access and data management in Horizon 2020 projects by
the European Commission [14]. Besides compliance with grant agreements, open sourcing
datasets can also benefit companies, research organizations and society at large by helping
advance scientific state of the art and enabling meta-analysis.

Once relevant data has been acquired (either within the LEC, or using a historically
similar project), a number of open-source software projects exist already to analyze it, which
can quickly help LECs estimate the additional value that can be created with the data. The
motivation for software developers participating in developing these open source projects is
often multi-fold [15]. On the one hand, there are intrinsic rewards for participation, such as
altruism and personal fulfilment. On the other, extrinsic rewards such as expected future
returns can also play a large role in developer motivation. More recently, a number of large
companies, including Google, Facebook and Uber, have started open sourcing their internal
tools (often focused on analysing data at different stages of a project’s life), with the aim to
accelerate scientific development and stimulate community participation in software systems
development [16].

1.3. Challenges

Even though open source tools and datasets can theoretically be used to estimate or
even improve the economic viability of LECs, a number of challenges remain. For instance,
the energy sector has lagged behind in both publicly available datasets of energy demand
and production, and specialized open source tools to analyze them [17]. Some of the rea-
sons for this delay include large institutional inertia, privacy concerns and the slow pace of
digitization. Legislation requiring metering of energy data has also hit roadblocks in many
countries, with even European Union member states showing a fractured landscape. Fur-
thermore, the disparate nature of many different energy vectors (including electricity, gas,
heat etc.) complicate efforts to measure demand and supply in a holistic manner. Finally,
the data being recorded often leads to loss of privacy and can leave customers vulnerable to
security exploits - which means data availability and privacy concerns go hand in hand [18].
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Beyond these challenges, a number of operational issues also persist before LECs can
achieve mainstream adoption. Foremost amongst these is the fact that LECs rely on either
direct user engagement or automation to elicit energy flexibility that can be used to improve
energy usage or grid reliability in some way. However, in practice, both of these instruments
can be rather limited in scope. For instance, automation-driven flexibility requires poten-
tially expensive instrumentation to enable remote control, and is then limited only to the
few devices that have been instrumented in this way. Similar issues persist with direct user
engagement: providing feedback to users can lead to information fatigue, especially when
the financial rewards are low. Further, convincing users to install more energy efficient ap-
pliances can have a rebound effect on usage, implying that gains in efficiency do not always
translate to an equivalent reduction in emissions [19].

Therefore, in the business as usual scenario, LECs face a number of operational hurdles,
such as limited flexibility in the case of automation, and user indifference in the case of
engagement. Even in the best case scenario when sufficient flexibility is available, the lack
of availability of data and tools necessary to analyze the collected data remain stumbling
blocks. Indeed, the lack of real data means that planners often have to work in the dark
while planning and operating their LECs.

1.4. Contributions

This paper presents a detailed overview of the open source tools, datasets and models
that can be used to operationalize LECs in practice. By compiling state of the art, open-
source datasets, tools and models in one place, this paper will form a quick reference guide
of available resources, and help identify any potential shortcomings. More concretely, in this
paper, we focus on LECs from the perspective of electrical energy demand and generation
using solar PV (although the same data can be extended to work with solar thermal systems
as well). We also explore available ambient conditions data and provide a brief overview of
thermal and electrical storage. This information is relevant not just to prospective energy
communities, but also practitioners and system operators that might help with the organi-
zation and setting up of such communities. Furthermore, electricity utilities and aggregators
of distributed energy resources (DERs), in addition to the wider community of architects,
building engineers and policy makers, may find it useful as well. A more detailed overview
of these use cases in presented in the next section. Finally, even though the paper cannot
directly influence the amount of energy flexibility available in an LEC, it provides the tools
and data necessary to estimate and leverage the available flexibility in the most optimal
manner.

The remainder of the paper is organized as follows: in section 2, we highlight key use
cases which openly available data can enable for different stakeholders in a LEC. Section
3 discusses the terminology employed in this paper. Section 4 provides a compilation of
open-source datasets that can be leveraged in LECs, including demand side data in the
built environment, generation data, as well as relevant markets and weather data. It also
identifies some key shortcomings in existing datasets. Section 5 discusses existing models
that have been built using either human domain expertise or using collected data that
could not be made available due to privacy concerns. These models can, in turn, be used to
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generate data that can then be used for further analysis in real world LECs. Related to these
software models, section 6 provides a review of some general purpose open source software
projects that can be utilized to gain insights from energy-related data in LECs. Section 7
provides a conclusion, as well as some future directions for research in and operationalization
of LECs.

2. Data use cases in LECs

Data availability is critical for the successful operationalization of LECs, both during
the design and the operation phase. During the design phase, it is necessary to estimate
the optimal dimensions of local energy flexible resources (EFRs) such as battery-inverter
systems and distributed or community generation. On the other hand, in the operation
phase, it is necessary to manage any local flexibility in a way that helps achieve community
goals such as maximal energy efficiency, self consumption etc. Figure 1 presents an overview
of these use cases.

Figure 1: LEC data use cases pipeline

These use cases will become increasingly important as the value addition of energy com-
munities shifts from accumulating capital to overcome investment barriers (i.e. community
energy projects) to unlocking diverse streams of revenue with the installed assets by oper-
ating them in a flexible manner. More concretely, a number of researchers and practitioners
have attempted to formalize such use cases into a number of business models depending
on the entity under consideration. For instance, [20] identify a number of different en-
ergy community archetypes and the major stakeholders in them. These archetypes include
cooperative investment, energy sharing platform, aggregator and microgrid. The availabil-
ity of data and existing models which can generate this data for the energy community’s
geographical location can benefit all of these archetypes, as we explain next.

For the cooperative investment archetype, having access to the approximate energy de-
mand requirements, generation potential and climate conditions in the LEC’s operational
area can help inform the cooperative about its investment decisions. These insights can be
used to optimize the dimensions of storage and generation systems in the LEC. The local
context (e.g. renewable generation potential and electrification rates) considerably alters the
optimal resource mix of a LEC. For instance, LECs in North-Western European countries
frequently need to over-dimension storage to bridge the diurnal supply-demand gap, and
also consider long-term storage (e.g. in aquifers) to bridge the seasonal supply-demand gap.
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For regions with a smaller temporal mismatch between supply and demand, this is often
not required. Local tariffs and carbon intensity also affect the profitability and desirability
of these investments. The importance of tariff structure and local resource mix means that
the local utilities and distribution system operators (DSOs) are also often involved with the
design of LECs. In practice, using pre-existing datasets (described in section 4) and models
(described in section 5) can help all the relevant stakeholders in achieving their objectives
at a lower price point by making more informed decisions: the cooperative gets to make
cost-optimal investments, while the DSO can incentivize LEC designs which help stable grid
operation in the future and avoid the need for costly grid reinforcement investments.

Likewise, for the energy sharing archetype, having access to this data as well as possible
future forecast values can facilitate market players (such as balance responsible parties and
DSOs) in optimizing energy flows for maximal self-consumption in energy sharing settings.
Modern Peer-to-Peer (P2P) energy trading concepts enable the energy needs of a LEC to
be met by internal trade among local prosumers and consumers. This can increase the
operational efficiency of a LEC, and avoid issues with large-scale grid injection. On top of
that, there are other approaches such as Peer-to-platform [23], or community-based [58],
where a common agent or intermediary trades the surplus or lack of energy in an external
market, either between LECs or in a wholesale market, when possible. The LEC operator,
either prosumers in the LEC itself or a contracted third party, can help setup and operate
this platform, making use of tools highlighted in section 6 as well as models presented in
section 5.

Finally, for both the aggregator and microgrid archetypes, the value open-sourced models
and data bring is both in the LEC design and real-time control they can enable. Real-time
control of an optimally designed LEC can be used to provide ancillary services to the broader
grid, realize cost arbitrage on the electricity markets, and maximize self-sufficiency etc. Do-
ing so can reduce the costs of energy for energy community members, but also improve the
community’s resiliency to grid outages. For instance, openly available models for one or
more of the demand side, price signals and the local supply can be used as inputs to an opti-
mization algorithm controlling the energy flows in a LEC. In addition to automated control,
it is also possible to use these types of models to reduce energy demand by user engagement,
for instance by providing comparisons to neighbors and other similar households [21]. It
also enables DSOs to invest in LECs rather than costly grid reinforcements, necessitated
by distributed generation and elevated energy demand. Consequently, depending on the
specific context, different stakeholders in these two archetypes will find all three resources
highlihgted in this paper (datasets, models and tools) valuable.

3. The distinction between datasets, models and tools

Before proceeding further, it is important to make the distinction between tools, datasets
and models explicit. Figure 3 provides a simplified overview of this distinction.

1. A dataset refers to observation data, either in raw or cleaned form, that has been
made available for further analysis. This is often in the form of a time series, and
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Figure 2: An overview of the different ways data and models can be used in practice; (a) model-free methods
directly utilize data to optimize some metric of interest e.g. model-free control of energy flexible resources;
(b, c, and d) model-based methods depending on data, domain knowledge or both to construct a model that
is used for subsequent analysis; (e) privacy-preserving use cases where only a model trained on user data
is utilized. The general purpose tools highlighted in section 6 can be used to build models using gathered
data or domain knowledge as well as enabling a host of other services.

can be complemented by additional meta-data. An example of a dataset can be the
electricity demand of a building as a time series, while the metadata can provide
information about its geographical location and building occupant demographics etc.

2. A model, on the other hand, distills the information from a dataset, which may
or may not be made available in addition to the model, into a directly usable or
interpretable form. The model is therefore more restrictive than the broader dataset,
and can, for instance, be used to preserve user privacy. However, it is also possible to
develop models from first principles, rather than using observation data. Such models
are a valuable source of information in cases where real world data is not available or
collecting it can be expensive. These models are also useful for cases where the physics
of the process is well understood. Some examples include models for storage systems
such as battery-inverter systems and thermal systems, as well as generation models
for renewable energy technologies such as solar PV.

3. The tools considered in this paper refer to existing, open-source software projects that
can be used, either directly or indirectly, to provide services in the energy sector. As
this category features some overlap with the models category, we use tools to refer to
general purpose software projects that have been, or can be, utilized in LECs as well.
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4. Datasets

This section summarizes a number of publicly available datasets relevant to LECs. In
addition to datasets for demand and supply, other exogenous factors that may influence
the functioning of an energy community, such as ambient conditions as well as electricity
prices and carbon intensity are presented as well. Where available, data from developing
countries is highlighted as this data is much more sparse, and electrification in these countries
represents the bulk of future demand growth.

4.1. Demand side data

The energy demand in a LEC drives most downstream business cases. Therefore, get-
ting greater visibility on the demand side is arguably the most important advantage of
openly available datasets for practitioners in the field. The datasets presented next can be
distinguished based on a number of different factors, including:

1. The scale of the building constituting the LEC, i.e. whether considering a residential
or commercial building.

2. The temporal and spatial resolution of collected data. More specifically, a number
of recent studies have focused on disaggregation of electrical loads from the observed
load profile - also referred to as non-intrusive load monitoring (NILM). The key factor
differentiating these datasets is their high sampling frequency and sub-metering of
individual loads.

The remainder of this section is organized as follows. We begin by providing a review of
residential energy demand, both on an aggregated and disaggregated level. We follow this
by discussing commercial building loads and sub-metered demand in various contexts that
could also be considered useful for future LEC projects.

4.1.1. Residential building energy demand

Researchers and practitioners have made available a number of datasets for residential
energy demand. These datasets differ not just based on the geography of the buildings, but
also in the amount of buildings they provide data for. Furthermore, some datasets only
provide electrical consumption on either device or building level, while others also provide
metadata or other sensor data such as water and gas consumption. As mentioned before, the
temporal resolution of sensing can also be quite different. We begin with datasets that are
sampled at a high enough temporal resolution (i.e. 1 Hz or faster) to enable non-intrusive
load monitoring:

1. The EMBED dataset [22] includes labeled electricity disaggregation dataset contain-
ing plug load consumption data for different appliances in 3 US apartment units in
California. The plug load data, collected for 14-27 days, has a sampling frequency of
1-2 Hz (the sampling frequency of current and voltage is much higher at 12 kHz).
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2. The REDD dataset (Reference Energy Disaggregation Dataset) [23], likewise, consists
of electricity consumption measurements on the building and circuit level for 6 US
housing units over 3-19 days. At a high level, REDD provides high frequency informa-
tion sampled at 0.5 - 1 Hz for up to 20 plug-level monitors, and 24 individual circuits
along with a label for the category of appliance connected to it. The power and voltage
information are recorded at a much higher sampling frequency of 15kHz.

3. The BLUED energy disaggregation dataset [24] includes current and voltage measure-
ments from one US single-family residence, sampled at 12 kHz for 8 days. Furthermore,
the dataset includes time-stamped and labeled state transitions of each appliance dur-
ing the study period.

4. The PLAID (Plug-Level Appliance Identification Dataset) dataset [25] is another pub-
lic dataset of electrical appliance measurements for NILM research, and covers 11
different appliance types from 56 households in Pittsburgh, Pennsylvania, USA. It
provides voltage and current data, collected during the summer of 2013 and winter of
2014, at a sampling frequency of 30 kHz.

5. The ADRES concept [26] dataset provides data on power consumption and voltage
profiles from 30 Austrian households at a sampling frequency of 1 Hz. The measure-
ments are available for a total of two weeks, one in winter 2009 and another in summer
2010. However, the dataset does not include detailed appliance level data.

6. UK-DALE [27] is a domestic appliance level electricity dataset from five households
in the UK. The dataset contains both the building and appliance level power demand
with a sampling resolution of six seconds. In three of the five houses (houses 1, 2
and 5) the whole-house voltage and current is also recorded at 16 kHz. Data from
household 1 is now available for well over 4 years and can facilitate long term analysis
of seasonalities and trends.

7. The DRED (Dutch residential energy dataset) [28] dataset provides appliance and
house level energy consumption (sampled at 1Hz) data for a Dutch building for 6
months. Furthermore, minute-level ambient conditions measurements (indoor and
outdoor temperature, environmental mapping etc.), and metadata about the building
(occupancy information, building layout, application mapping etc.) are also included.

8. The ECODS dataset [29] provides measurement data for 6 households over an ob-
servation period of 8 months between June 2012 and January 2013 at 1 Hz. This
dataset contains both aggregate energy demand, as well as sub-metered measurements
for appliances such as refrigerator, freezer, television and coffee machines etc.

9. The ENERTALK dataset [30] provides measurements sampled at 15 Hz for active and
reactive power drawn in 22 houses in South Korea, on both the appliance and aggregate
building level. The measurements range from 29 days to 122 days, depending on the
building, while the monitored appliances included refrigerator, kimchi refrigerator, rice
cooker, washing machine, and television.

In addition to the datasets providing high temporal resolution, a number of other datasets
also exist. These typically cover a greater number of buildings spanning a longer duration
than a few days or weeks, due to the relatively fewer data points.
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1. PecanStreet Inc. Dataport [31] is a large scale dataset which contains appliance-level
electricity demand from around 1400 houses and apartments located in three areas of
the USA (New York, Texas and California) for multiple years, at various granularity
levels (1s, 1min, 15min). At the current time, a subset of 25 households of the entire
dataset is available for each location and granularity, up to 6 months of data or 1 year
of data. This data is however not fully open sourced.

2. The REFIT dataset [32] provides power measurements for 20 households in the UK
at both an aggregate and an appliance level. The data have a sampling period of 8
seconds and is available for a period of two years.

3. Smart* data set [33] is another large scale dataset which makes available minute-level
electricity usage data from over 400 anonymized houses. Furthermore, this data set
also includes electricity consumption and generation, weather conditions and HEMS
operational data and meta-data on three households. The same source contains data
for 114 single-family apartments in a time granularity of 1 minute and a total of 2
years of records (from 2014 to 2016), both for the aggregated electricity consumption
and the weather conditions on these time periods. The closely related NIOM dataset
combines electricity consumption with occupancy patterns in the building for 3 weeks
of minute level data on consumption and occupancy [34].

4. AMPDs [35] contains minute-level electricity, water, and natural gas measurements for
two years for a residential building in Canada. The dataset features 21 power meters,
as well as water and natural gas meters. Ambient conditions are also included in the
dataset.

5. The PRECON dataset [36] provides minute-level electricity demand data from 42
houses in Lahore, Pakistan for a period of one year. Additional meta-data such as
demographics information and device-level sub-metering is also included in the dataset.

6. The CoSSMic (Collaborating Smart Solar-powered Microgrids) dataset3 [37] contains
sub-metered energy demand for 11 households in Konstanz, Germany. The energy
demand is sampled at 1 minute intervals, and is available between October 2013 to
December 2016.

7. The SustData dataset [38] provides measurements for 50 residential units in Portugal
over a period of 1144 days. The sampling rate of the dataset is between 2 and 10
Hz, and sub-metered demand and eco-feedback information from building occupants
is also provided in addition to the aggregate energy demand.

The information in this section is summarized in Table 1.

4.1.2. Commercial buildings

Increasingly, commercial - or tertiary - buildings can also form part of an energy com-
munity, either on their own or as part of a broader community. This section includes an
overview of some public datasets detailing electricity demand in commercial buildings.

3https://data.open-power-system-data.org/householddata/2020− 04− 15
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Table 1: An overview of open-source residential buildings data

Residential buildings
Dataset
name

Country Sites Duration Resolution Ref

EMBED US 3 2-4 weeks 12 kHz (I, V); 1-
2 Hz (plug loads)

[22]

REDD US 6 2-4 weeks 15 kHz (P,
V); 0.5-1 Hz
(NILM data
at plug/circuit
level))

[23]

BLUED US 1 1 week 12 kHz (I, V) [24]
PLAID US 56 Summer

2013 and
winter
2014

30 kHz (I, V) [25]

ADRES Austria 30 2 weeks 1 Hz [26]
REFIT UK 20 2 years 0.125 Hz [32]
UK-DALE UK 5 4 years 16 kHz (I, V

in 3 build-
ings); 0.17 Hz
(appliance-level
demand)

[27]

DRED The
Nether-
lands

1 6 months 1 Hz (energy de-
mand); 1 minute
(ambient condi-
tions)

[28]

Dataport US 1400+
75 (free-license)

4 years
6 months

1 Hz, 1 minute,
15 minutes

[31]

Smart* US 3
114-400

3 weeks
1-4 years

1 Hz [33]

AMPds Canada 1 2 years 1 minute [35]
ECODS Switzerland 6 8 months 1 Hz [29]
PRECON Pakistan 42 1 year 1 minute [36]
CoSSMic Germany 11 3 years 1 minute [37]
ENERTALK South Ko-

rea
22 29-122

days
15 Hz [30]

SustData Portugal 50 1144 days 2 - 10 Hz [38]

1. The BLOND dataset [39] provides energy demand data for a typical office environment.

12



The dataset contains data from 53 appliances belonging to 17 different classes over
213 days. The data is sampled at a very high frequency: 50 kHz for aggregate energy
demand and 6.4kHz for individual appliances.

2. The I-BLEND dataset [40] provides minute-level electricity demand data from a uni-
versity campus in India. The data is available for 52 months. Additionally, the dataset
also includes occupancy information for the campus buildings, sampled at a 10-minute
interval.

3. The COMBED (commercial building energy data set) dataset [41] contains energy data
for one month from IITD’s academic building sampled at more than once a minute.

4. The IEEE Power and Energy Society (PES) has an additional repository of datasets
from commercial buildings4. These include sub-metered measurements in different
offices on the second scale. In addition, a number of competitions hosted on the IEEE
Dataport platform also provide energy demand and production data. However, the
data collection period is often on the order of a few weeks to months.

5. The ASHRAE great energy predictor III Kaggle challenge [42] provides an openly
accessible dataset with hourly energy demand from 1449 buildings for around three
years5. This competition is a follow-up to earlier competitions also conducted by
ASHRAE [43].

6. The Building Data Genome Project [44] provides hourly electrical energy demand data
from 507 non-residential buildings for one year. The dataset also contains meta data
such as floor area, ambient conditions, and primary use of the building.

The information in this section is summarized in Table 2.

4.1.3. Miscellaneous demand datasets

In addition to energy demand from classical loads in the buildings (e.g. illumination,
ventilation etc.), electrification of transport will make charging electric vehicles a significant
load as well. This is also in line with European regulations which mandate minimum EV
charging pole requirements for commercial buildings. However, openly available data for
EV charging remains sparse. An exception is the dataset made available by ElaadNL6 [45],
which contains aggregated data from different types of charging stations. Likewise, the
CoSSMic dataset highlighted above contains data on EV charging in some households as
well.

Furthermore, while a number of datasets contain sub-metered energy demand for heat-
ing, cooling and ventilation in buildings, they seldom contain any information on indoor
environment quality indicators such as temperature, humidity, air quality etc. An exception
to this is the CU-BEMS dataset [46], which contains electricity demand data in a seven-story
11,700-m2 office building located in Bangkok, Thailand. The data provides measurements

4http://sites.ieee.org/pes-iss/data-sets/
5https://www.kaggle.com/c/ashrae-energy-prediction
6https://www.elaad.nl/news/elaadnl-shares-new-data-sets-demonstrating-the-rise-of-evs-and-usage-of-

charging-stations/
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Table 2: An overview of open-source commercial buildings data

Commercial buildings
Dataset
name

Country Sites Duration Resolution Ref

BLOND Germany Office/lab 50-230
days

Aggregate:
50-250 kHZ,
Individual 6.4
(appliance-
level) 50 kHz
(aggregated))

[39]

I-BLEND India University 52 months 1 minute (load);
10 minutes (oc-
cupancy))

[40]

COMBED India University 7+ years 0.5 minutes [41]
Building
Data
Genome

US, UK,
Australia

500 (offices,
universities,
commercial)

1 year Hourly [44]

ASHRAE Worldwide 1449 3 year Hourly [42]
IEEE PES Multiple Multiple Multiple Multiple

for indoor environmental sensor data comprise temperature (°C), relative humidity (%), and
ambient light (lux) measurements of 33 different zones in the building along with demand
data for individual air conditioning units, lighting, and plug loads. The dataset is available
on a minute-level resolution for a period of 18 months between July 1, 2018 and December
31, 2019.

Finally, in many cases, energy demand for larger aggregations, such as districts or states
are openly available as time series which may be useful to understand the local context for
LEC developers. Two examples include the national electricity demand in Belgium made
available by Elia through its API, and the regionalized electricity and gas demand data for
Germany made available on the OpenEnergy Platform7.

To fully leverage the potential of demand side management in LECs, detailed data on
important energy flexible resources such as heat and transportation is critical. While this
is not the case at the moment, addressing this gap should consequently become a central
aspect of the next generation of datasets. Moreover, a number of other limitations exist as
well, as highlighted in Fig. 3, which plots the datasets based on their geographical locations
and whether commercial or residential building data is available. It is obvious from this
figure that while some regions are quite well represented (parts of Europe, North America,
South Asia), there remain enormous gaps in data that is publicly available, especially from
South America, Africa, Middle East, Eastern Europe, Scandinavia and China. The next

7https://openenergy-platform.org/dataedit/schemas
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Figure 3: A geographical representation of electricity demand datasets: despite tens of datasets made
available, most countries of the world and many climate zones are still not represented.

generation of data gathering should focus on these geographical locations.

4.2. Climate related data

Local weather conditions are among the biggest drivers behind both energy demand and
energy flexibility in a LEC at any given time [47]. As such, it is important to know these
conditions during both the design and operation phase. In this section, which is divided in
three subsections, we briefly explore datasets related to local ambient conditions and climate.
First, we present an overview of datasets dealing with real-time observations and forecasts
for ambient conditions and solar power generation potential: these are useful for real-time
operation. Second, we discuss historical and representative weather conditions in a given
location: these are mostly suited for design phase considerations. Finally we discuss datasets
that address the long term effect of climate change on ambient conditions. Naturally, there
is some overlap, especially between the first two categories, as the same services frequently
provide both historic data and short-term forecasts. We address this overlap by positioning
these datasets according to their primary use in the field.

4.2.1. Observed and forecast weather conditions

These datasets can be divided into two categories. On the one hand they include obser-
vations and forecasts for general weather conditions which are required for reliable operation
of LECs. On the other hand, they also include on-ground data for electricity production
with renewable energy sources such as solar photovoltaics. In subsequent sections, we discuss
models that can be used to estimate theoretical generation potential of solar PV systems in
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a region under ideal conditions, but here the focus is on actual observations and short term
forecasts. Some of the resources making this data available include:

1. Online weather services, including OpenWeatherMap, Darksky (now acquired by Apple
Inc.), Accuweather, Weatherbit and ClimaCell etc. Most such services have a free
tier with limited access that provides historic, observational and future (short-term)
forecasts for ambient conditions such as temperature, humidity, precipitation and cloud
cover. The forecast horizons vary between a few days to weeks. These services are
useful for micro-level analysis, as well as during the operation phase of a LEC. In many
countries, national meteorological offices also open-source this data.

2. ECMWF CAMS real time provides ambient conditions data and forecasts for a num-
ber of meteorological variables including temperature, precipitation, snowfall and air
quality metrics. The forecasts from the service are available on a multiple day horizon,
and they are updated every six hours during a day (at 00:00, 06:00, 12:00 and 18:00)8.

3. ENTSO-E, the European Network of Transmission System Operators for Electricity,
compiles and provides day-ahead forecasts of power generation by renewable energy
sources e.g. wind, solar PV etc. per bidding zone for the following day through
its transparency platform [48]. This information is provided for all bidding zones
in European Member States with greater than 1% feed-in of wind or solar power
generation. More specifically, ENTSO-E provides (1) the current forecast, (2) the day
ahead forecast at 18.00 (on the previous day) and (3) the intraday forecast at 08.00
(on the same day).

4. A number of transmission system operators, such as Elia in Belgium, also provide
measurements as well as multi-scale (hour-ahead, day-ahead, week-ahead) forecasts
for solar PV electricity production, disaggregated regionally which can provide more
granular information to operators of LECs9. Likewise, EIA, the US Energy Information
Administration, provides hourly electric grid data by eight different generation sources
(including solar PV)10. Unlike with weather services and ECMWF CAMS real time,
this data is specifically focused on actual electricity generation from installed renewable
generation.

5. Some of the datasets highlighted in the section on demand (for instance, COSSMIC)
also provide in-situ measurements of solar PV production. These resources can be
invaluable as they allow researchers and practitioners to understand the deviation
between theoretical and actual solar PV production. A number of other resources for
solar production data exist as well: for instance, [49] provides data for 100 solar sites
in North America from 1 Jan, 2015 to 1 Jan, 2016.

4.2.2. Historic weather conditions

While the datasets presented above are suitable for the operational phase of LECs, they
may not be applicable during the design phase when practitioners work with representative

8https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
9https://www.elia.be/en/grid-data

10https://www.eia.gov/beta/electricity/gridmonitor/dashboard/electricoverview/US48/US48
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years or actual long-term observations, rather than data from a single year. In this specific
case, alternatives based on global climate simulations or long term observations from weather
stations or satellites might be preferable. Some of these datasets include:

1. ECMWF ERA5 provides a number of meteorological data fields through a separate
reanalysis product, which spans back decades to also optimally combine historical data
with future forecasts. The grid in this case is 31x31 km, and the data is only available
on an hourly scale. While the service also provides forecasts as a result of its reanalysis,
these can be especially inaccurate in coastal, mountainous or cloudy regions.11.

2. SARAH 212 is another free-to-use dataset for ambient conditions with a higher spatial
resolution, which is also available on 30 minute intervals.

3. The National Solar Radiation Database (NSRDB) provides hourly and half-hourly
values of meteorological data as well as common measures of solar radiation for the
United States and a growing subset of international locations. The dataset makes it
possible to estimate the amount of solar energy at a given (historical) time and place,
and to make forecasts for it for the future.

4. A number of services, including the NSRDB and others, provide Typical Meterological
Year (TMY) data to explain the climate of a specified region, often in the EPW format
which can be used with tools such as EnergyPlus [50]. These tools provide extensive
coverage across the globe, and can be useful for a preliminary analysis, although they
do not necessarily account for the effects of climate change or extreme weather events.

4.2.3. Long term forecasts for climate change

In addition to providing historic data or short-term forecasts for the future, a number of
openly available data sources also provide long-term projections in light of climate change.
These different climate models [51] usually rely on different pathways for future energy
systems and the global economy [52]. For instance, a number of energy pathways exist to
achieve the Paris climate goal of limiting average temperature increase below 2°C, however
they invariably disagree on the actual measures required to make this happen (as well as
the timing of these steps). This means that there is a lot of uncertainty about the emissions
reductions at any given point in the future. This is exacerbated due to uncertain inertial
and tipping point effects in the global climate. Consequently, climate models are inherently
noisy as they rely on changes not just to global climate dynamics but also on factors such
as the global economy and energy systems. Nevertheless, these scenarios can prove to be
useful in future-proofing LECs. Some resources that provide this information include:

1. TheWorldClim 2 dataset provides monthly climate data and projections for global land
areas with a spatial resolution of 1 km2. It contains data abaout temperature ranges,
precipitation, solar radiation, vapour pressure and wind speed [53]. The monthly
values that are made available as forecasts are calculated by averaging over 20 year

11https://confluence.ecmwf.int/plugins/servlet/mobile?contentId=129135000content/view/129135000
12https://wui.cmsaf.eu/safira/action/viewICDRDetails?acronym=SARAHV 002ICDR
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Table 3: An overview of openly available sources for climate and weather data

Climate data
Domain Sources

Historic weather conditions ECMWF ERA 5, SARAH 2
Observations and forecasts Macro-level sources: ECMWF CAMS, ENTSO-e

(Europe), EIA (US), country specific sources such
as Elia in Belgium, REE in Spain etc.; Micro-level
sources: OpenWeatherMap, ClimaCell,, COSS-
MIC, SunDance etc.

Climate change WorldClim 2, World Bank dashboard

periods (2021-2040, 2 041-2060, 2061-2080, 2081-2100). Both historical and future
data are available online, as downscaled CMIP6 future climate projections13.

2. The World Bank provides similar data fields in a more accessible fashion through their
climate change knowledge portal14. With this tool, it is straightforward to export
historical and future projections for temperature (minimum, maximum and average),
precipitation, heating and cooling degree days etc. It is possible to access this in-
formation by longitude/latitude or country name. These projections are based on
CMIP5 simulations for the global climate, the precursor to CMIP6 simulations used
by WorldClim above.

3. A number of service providers, such as White Box Technologies, are also developing
EPW files for typical year sets for future ambient conditions, taking into account the
effects of climate change. These datasets are however not always open-sourced, and
are simply mentioned for the sake of completeness.

The information in this section is summarized in Table 3.

5. Models

Models allow practitioners to generate data for specific scenarios and assets when it
is not possible to obtain real data, due to technical or economic constraints. Especially
for LECs, this can be quite useful for cases where no similar projects have been executed
before (or the data generated in them is not publicly available). In this section we describe
a number of demand and generation models following the same classification scheme as
before. Additionally, in this section, we also consider resources that model storage and the
electricity grid.

13https://www.worldclim.org
14https://climateknowledgeportal.worldbank.org/download-data
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5.1. Models for electricity demand

In this section, we focus on generative models that can simulate energy-related behaviour
of buildings and building occupants. These models usually rely either on top-down mod-
els, which are typically based on behavioural models of user demand, or on bottom-up
approaches, which emphasize individual appliance usage and are built using either diary
data or, increasingly, sub-metered or disaggregated appliance loads. The following open-
source models can be used to create electricity demand i.e. load profiles for residential and
commercial building users:

1. Load Profile Generator (LPG) generates artificial load profiles for residential energy
consumption by simulating the people in one household, thereby obtaining their load
curves [54]. The model, based on German households, uses insights from psychology
and can generate data for large populations of up to 1000 households. As a limitation,
it can be time-consuming to define a household from scratch, in the case that the user
wants to simulate a household with no flexible assets or DERs associated.

2. The Artificial Load Profile Generator (ALPG) [55] is a model that uses high level
demographic statistics as an input to build a bottom-up model and generate electricity
load profiles. This is particularly interesting for LECs as the model characterizes
devices as uncontrollable, curtailale, time-shiftable, buffer time-shiftable and buffer.
Some of its limitations are the low scalability, with a maximum of 100 households to
simulate, and the fact that individual flexible assets are not observable, since they
have pre-defined labels such as buffered, time-shiftable, etc.

3. The House Load Electricity [56] is an application programmed in MATLAB that gen-
erates synthetic electricity load profiles based on consumer loads. The application
comes with a Graphical User Interface (GUI) where the end-user can chose the model
parameters, as well as change the time resolution and time periods generated.

4. Office Load MATLAB Application generates synthetic load profiles, but in this case for
office buildings [57]. As in the previous application, the user can specify the parameters
in a MATLAB based GUI, representative for Northen Europe. The model is based on
a bottom-up approach, collecting both the behavior of the office workers as well as the
appliances installed in the specified office. Energy use of heating and air conditioning
systems is also taken into consideration.

5. Demandlib [58] is an open-source Python package that allows users to create power and
heat profiles for various sectors by following the BDEW guidelines. Besides specifying
building type, it is also possible to generate heat and load profiles in a way that
preserves calendar aspects such as national holidays.

5.2. Models for electricity generation

In addition to the data sources mentioned in the previous section, there are a number
of models available to simulate the behavior of DERs in new locations. In this section, we
focus on solar PV panels. The next section completes the DER picture with battery models.
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1. The PV Performance Modeling Collaborative (PVMPC) is an initiative from the San-
dia National Laboratories which is working towards improving the accuracy and tech-
nical rigor of PV performance models and analyses. The first models coming out of this
initiative were provided as MATLAB libraries [59], which were later ported to Python
as the pvlib-python library [60]. Like its MATLAB counterpart, this open-source li-
brary can also be used to develop PV power forecasting tools, as well as evaluating
different configurations of PV systems [61]. The models include a number of param-
eters such as the sun position, irradiance and insolation, array orientation, shading,
soiling and reflection losses, as well as inverter technical characteristics that can be
specified by the end-user.

2. PVWatts [62], developed by the National Renewable Energy Laboratory, provides a
browser-based PV system model that estimates the electricity output and economic
costs of grid-connected PV energy systems, based on geographic location, technical
characteristics of the PV system and local market conditions.

3. Renewables.ninja is a web-based system that contains a PV model to estimate its
electricity power output for any location (input as either country or a latitude-longitude
combination) [63]. The user can modify the technical specifications of the system, such
as tilt, azimuth or capacity, or work with ready-made datasets available by country in
the tool. Renewables.ninja is a GUI of the python model developed in [64].

4. OEMOF’s feedinlib is a Python package15 that allows users to estimate power pro-
duction of solar PV and wind power plants as time series, based on defined system
parameters and weather conditions. In essence, for solar PV systems, this library acts
as a high level wrapper to the pvlib library described above.

5. Atlite16 is an open-sourced Python package developed using the Aarhus University RE
Atlas [65] which allows users to convert weather data (temperature, irradiation, wind
speed etc.) into energy demand and generation time series. The package can create
time series for wind power, solar power, hydro power and heating demand at hourly
resolution on a 30 km x 30 km grid using the recommended ERA5 weather reanalysis
dataset. The library is designed to work with big weather and climate datasets at a
low computational cost.

5.3. Storage models

Energy storage systems (ESS) are among the most effective flexibility sources and can
enable greater proliferation of renewables by enabling services such as self-consumption. In
the case of batteries, a general lack of real world observation data and the increasing number
of projects integrating batteries has pushed the community to create and share their models,
playing a key role in helping the integration of ESS in LECs. Some of these models include:

1. QuESt - Optimizing Energy Storage is a python-based application that contains en-
ergy storage models for simulation and analysis purposes [66, 67]. Furthermore, the

15https://feedinlib.readthedocs.io/en/latest/
16https://atlite.readthedocs.io/en/
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application includes a data acquisition option that allows import of market data, trans-
mission system data, load profiles and PV power profiles to calculate the profitability
of the ESS.

2. OSESMO provides a battery model (for Lithium-ion and flow batteries) and calculates
the optimal charge-discharge strategy in 15-minute time periods using linear program-
ming, in order to minimize the end-user monthly bill [68].

3. EnergyBoost is a learning-based control tool for home batteries that models a Lithium-
ion battery, connected with a PV energy system [69]. This physical model is then used
to control the battery charge and discharge operation by considering it an optimal
control problem.

4. While EV battery models are comparatively more difficult to find than their fixed
battery counterparts, Geotab has recently open-sourced a detailed EV battery degra-
dation model over time17. This model allows users to visualize battery degradation
over time for a number of different makes and models of EVs. Another recently open-
sourced model for the temporal modeling of EV sessions is presented in [70]. This
synthetic data generator uses real world charging sessions to jointly model the arrival
and departure times of EVs. emobpy18 is another recent Python package that uses
empirical data to model and simulate EVs in some detail [71]. More concretely, it can
generate time series for electricity charging demand of EVs as well as their mobility
state (i.e. where they are located etc.) and grid availability in terms of available
infrastructure. vencopy is another recently open-sourced tool that can be used to esti-
mate the energy flexibility potential of an EV fleet [72]. However, both of these tools,
emobpy and vencopy, are currently in the early stages of their development. Finally,
the Simulation of Urban MObility (SUMO) open source package [73], while not EV
specific, allows users to simulate traffic in the transportation system as a whole. This
can be useful in better understanding the dynamics of EV energy flexibility in the
broader context.

5.4. Other models of interest

In addition to electricity demand, storage and generation (via renewables), a number of
other models can also be utilized to optimize LECs. An example is the System Advisory
Model (SAM) created by NREL [74], which provides end-to-end decision making support for
micro-grids and LECs. SAM incorporates different models e.g. of renewable energy systems
such as solar PV systems, energy storage systems etc. and can therefore be used to obtain
data for the entire community considering different renewable and flexible assets installed
[75].

Additionally, models for power systems can also be critical to better understanding the
practical feasibility of LECs, especially with increasing proliferation of DERs, and heat
and transport electrification. There are a number of such models available, even though

17https://storage.googleapis.com/geotab-sandbox/ev-battery-degradation/index.html
18https://gitlab.com/diw-evu/emobpy/emobpy

21



actual data remains sparse. These include the PowerGenome project [76], the Open Energy
Modeling Framework (OEMOF) [77], the multi-vector simulator [78], and the renpassGIS
[79]. A number of low-level alternatives exist as well. For instance, Pandapower [80], a
general-purpose python-based power system analysis tool, allows the user to run DC optimal
power flow calculations of electrical grids. These can be used to maximize the utility of the
LECs as described earlier. Pandapower is based on the now deprecated Pypower and a
well-known MATLAB Tool for power system analysis, MATPOWER [81]. Another (non-
Pythonic) open-source alternative for simulating electric power systems is OpenDSS [82].
OpenDSS models and simulates distribution networks as stand-alone executable programs,
and can be used for planning a LEC and operating the flexibility resources contained in it.

Finally, the possibility to simulate the performance and operation of building systems
can assist in the optimal definition of resources to locate in a local energy community
or to change their operation once they have been installed. While the focus so far was
on electric storage, a number of modelling tools also exist for thermal systems. These
include Python libraries such as RC BuildingSimulator19 and TEASER20, which can be
used to create detailed thermal models for the built environment. More general-purpose
tools such as EnergyPlus can also be useful for this purpose. In the absence of detailed
indoor temperature measurements, these can be a valuable resource for LEC practitioners
in understanding and leveraging flexibility in practice. Other alternatives that take a more
holistic approach exist as well such as City Learn, an OpenAI Gym environment21 [83].
This tool allows the implementation of different (reinforcement learning-based controllers to
reshape electricity demand in a building by controlling the operation of flexible resources
such as domestic water boilers, electric heaters, PV panels, and space cooling.

The information in this section is summarized in table 4.

6. General purpose tools

As mentioned previously, a number of openly available, general-purpose tools exist to
enable practitioners to analyze and draw insights from the datasets and models discussed
above. These tools, in general, require some knowledge of data science and decision support
systems. Consequently, we expect them to only be useful for practitioners in LECs interested
in taking a deeper dive into their data. As there is a large number of such tools, we include
only a broad overview of some of the most promising and widely utilized tools in Python,
arguably the most popular data science language at the moment. Similar packages typically
exist in R, MATLAB and other programming languages. The applications in this section
broadly mirror the same use cases as the ones highlighted earlier in this review.

19https://github.com/architecture-building-systems/RCBuildingSimulator
20https://github.com/RWTH-EBC/TEASER
21OpenAI Gym is a general purpose toolkit for developing and comparing reinforcement learning algo-

rithms
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Table 4: An overview of open-source models that can be used by LECs, and their typical applications

Models
Domain Sources

Synthetic demand data Load Profile Generator (LPG) [54, 84], Artificial
Load Profile Generator (ALPG) [85, 55], House
Load Electricity [86, 56] , Office Load MATLAB
application [87, 57], demandlib [58]

Generation potential of re-
newables (PV)

Sandia Labs PV Performance model Program
(PVPMC) [59], PVLIB- Python [60], NREL
PVWatts [62], Renewables.ninja [63], feedinlib,
atlite

Storage models QuESt [66, 67], OSESMO [68], EnergyBoost
[69], Geotab-Sandbox, emobpy [71], vencopy [72],
SUMO [73]

Power grids and systems System Advisory Model (SAM) PowerGenome
Project [76], Open Energy Modeling Framework
(OEMOF) [77, 88], Multi-Vector Simulator [78],
renpassGIS [79]

Building systems simulation TEASER, RC BuildingSimulation, City Learn
Power systems simulation Pandapower, MATPOWER, OpenDSS
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6.1. Data wrangling and visualization

We have highlighted numerous data sources as well as models that can be used to generate
data in the previous sections. Once the data have been acquired, the next step is exploratory
data analysis (EDA) and create dashboards to provide actionable feedback to users. This
includes both summarization of key metrics (which can be achieved through libraries such as
Pandas in Python), and visualizaiton of key trends. While Matplotlib is arguably the most
well-known python library for visualizing data, other libraries such as Seaborn [89] allow for
the creation of much more visually appealing and intuitive plots. Recently, a number of tools
such as Dash Plotly [90] and Streamlit [91] have emerged that allow users to create engaging
dashboards, which can be shared with other people easily over the internet. Grafana is
another popular choice for creating custom dashboards quickly. It must be emphasized here
that the services enabled by these lower-level Python libraries are quite distinct from the
ones highlighted with energy-specific datasets and models in the previous sections as they
allow far greater customization.

6.2. Modelling and forecasting

Forecasting demand and generation using data-driven (or physical) models is arguably
one of the core activities in a LEC. While we have highlighted services that provide forecasts
for some relevant variables including solar generation and ambient conditions, these usually
do not cover all the forecasts that need to be made in a LEC, including for local demand as
well as grid and market conditions. These services can either be out-sourced to a third party,
or they can be done using statistical and machine learning algorithms. Modern low-code
libraries such as Darts, sktime [92] and Pycaret [93] allow users to quickly build forecasting
models in a few lines of code. While many of these libraries are wrappers around other
low-level Python libraries, they also offer other important tools such as data imputation and
backtesting to understand how well a model will perform in real world conditions. Increas-
ingly, no-code alternatives such as Dataiku, which include a free-tier for non-commercial
users, are gaining traction as well.

6.3. Design and operational optimization

As opposed to time series analysis and machine learning methods for modelling and
forecasting energy loads, decision support tools are necessary to optimally design and operate
the LEC. Decision support systems can take on numerous form, some of these were already
presented in the modelling section. However, a large body of general-purpose optimizers
exist as well. These include tools that are primarily used for convex problems such as Pyomo
[94], PuLP [95] and CVXPY. Many such tools allow users to formulate the problem in a
higher level language, while using well-known solvers such as GLPK, CPLEX and Gurobi
as the backend. Some of these frameworks also support solving stochastic programs, which
can be important for risk averse (or risk aware) planning. Likewise, a number of libraries
such as DEAP [96], Nevergrad [97] and Optuna allow the solution of nonconvex problems,
which can often be required when the underlying models are built using machine learning
algorithms. Finally, in recent years, many variants of reinforcement learning have emerged
as feasible optimisation strategies for the energy domain, especially in settings where a model
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Table 5: An overview of open-source tools that can be used by LECs and their typical applications

Tools
Domain Sources

Data visualization and
dashboarding

Visualization: Matplotlib, Seaborn, Plotly Dash;
Interactive dashboarding : Panel and Streamlit

Modelling and forecasting Time series modelling : Darts, Sktime, Facebook
Prophet; Machine learning modelling and cluster-
ing : Scikit-learn, Tensorflow, PyTorch, Pycaret
etc.

Design and operational op-
timization

Convex optimization: Pyomo, Gurobi, PuLP,
CVXPY; Non-convex optimization: Nevergrad;
DEAP; Reinforcement learning : City Learn
project, ChainerRL, KerasRL, TensorForce

for the environment is not available. While this is a rapidly evolving space, libraries such as
ChainerRL [98], KerasRL [99] and TensorForce [100] provide off-the-shelf implementations
of a number of standard reinforcement learning algorithms.

6.4. Tracking tools

A relative newcomer that can automate the tracking of energy flows in a LEC is blockchain
or distributed ledger technology. Blockchain technology has found accelerating adoption in
LECs and peer-to-peer energy trading concepts. Such blockchains can be implemented in the
definition of smart contracts, enhancing the deployment of peer-to-peer markets and there-
fore ensuring the traceability of the energy that is being produced and consumed within the
community. Hashlib is a popular tool for Blockchain definition in Python [101], however
this is a rapidly evolving field as well.

The information in this section is summarized in table 5.

7. Conclusions

In this paper, we have focused on local energy communities, and provided a detailed
overview of publicly available datasets, tools and models that can be used to optimize their
design and operation. While the energy domain has, in general, lagged behind other sectors
when it comes to digitization, we have gathered a multitude of resources in this review.
These include openly available datasets for energy demand and generation (via renewable
energy sources). Since there are lots of regions of the world which still do not have any
open datasets, we complement this information with models that can generate such data
in more general settings. Where one or the other should be used, depends on the use case.
A general rule of thumb is to use actual datasets if they are similar enough to the current
use case. Models excel, however, when the design must use projections for the future.
This will become increasingly important while designing LECs keeping the effects of climate
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change and a changing energy supply mix in mind. Finally, the tools we highlighted in
this paper include general purpose data science related frameworks which can allow data
visualization and modelling as well as optimization and tracking of energy flows. This is
especially important for players in the platform archetype highlighted in section 2, but can
also be useful in the aggregator and microgrid archetypes.

More concretely, the resources presented in this paper can be utilized by different roles
in real-world LECs in numerous ways. These are explained in section 2 on data use case
in LECs. Besides these archetypes, it is also possible to distil these guidelines based on
whether the LEC is currently operational or not:

1. Different stakeholders in aspiring LECs (e.g. prosumers, DSOs, balance responsible
parties, third party service providers etc.) often need to make assumptions about
the energy demand and generation potential in the LEC to optimally dimension the
energy flexible resources (e.g. battery-inverter etc.) and distributed or community
generation. This analysis can be considerably improved by making use of real-world
data from similar projects (when it is available) or models that can simulate this data.
Likewise, such aspiring LECs can use the frameworks and tools presented in this paper
with pre-existing data or models to simulate future performance in different scenarios
and estimate profitability while keeping local regulations in mind.

2. Existing LECs will likely find the tools presented in this paper more useful than ex-
isting datasets. For instance, the data visualization and modelling tools can help third
party LEC operators develop tools that can be used to engage users and prosumers in
the LEC. On the other hand, the optimization algorithms and frameworks presented
in this paper can be used to both optimally dimension the energy flexible resources
(e.g. DERs, heat pumps etc.) and also to operate them in a way that it minimizes
grid energy offtake and maximizes self-consumption. Finally, the grid models and
frameworks (e.g. OpenDSS, Pandapower etc.) can be used by advanced practitioners
to ensure that the energy flexible resources in the LEC can also help keep distribution
grid operation stable (e.g. minimizing voltage and congestion issues etc.).

In gathering these resources, we have also unearthed some obvious shortcomings. These
include a general lack of openly available data for electric vehicles. This extends beyond
the energy demand, and encompasses mobility patterns and the long-term longevity of EV
batteries, especially if they are used with fast chargers or in vehicle-to-grid mechanisms.
Likewise, detailed data from space conditioning (heating, cooling, ventilation) and hot wa-
ter production is quite limited, when compared with electricity demand data. Even in cases
where the energy demand for heating and cooling is sub-metered, it is not often that detailed
temperature values are recorded inside the medium of interest (e.g. building and/or hot wa-
ter vessel). This lack of temperature data limits the usefulness of the data with regards
to estimating the amount of available flexibility. Finally, even though demand data from
thousands of buildings is openly available, it is often limited either in space or time. Tem-
poral limitations mean it is difficult to generalize the observed trends and detect seasonality
in the data. Likewise, the fact that most datasets are concentrated in a few geographical
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regions does not lend itself to broader generalization. As LECs are seen as a potential solu-
tion for sustainable community-driven electrification in developing countries, this is a major
shortcoming at the moment which needs to be addressed in future work.

The situation with open-source tools is rather different. Here, numerous options exist
to help LECs analyze and better understand data. However, even thought this is slowly
changing, many of these tools require coding proficiency which can limit their general appli-
cability. More applications with intuitive user interfaces will hopefully alleviate these issues
in the years to come. Future work to address these issues will therefore greatly assist in not
just the design and operation of LECs, but the broader field of smart buildings and grids as
a whole. Using the resources highlighted in this review as a basis for an easy to use, holistic
framework, which integrates the many different elements of a LEC, can also further lower
the barriers to widespread operationalization of LECs.
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