
Clemson University

TigerPrints

Publications
Holcombe Department of Electrical & Computer

Engineering

1-2017

Towards Deadline Guaranteed Cloud Storage
Services
Guoxin Liu
Clemson University

Haiying Shen
Clemson University, shenh@clemson.edu

Lei Yu
Georgia Institute of Technology

Follow this and additional works at: https://tigerprints.clemson.edu/elec_comp_pubs

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Holcombe Department of Electrical & Computer Engineering at TigerPrints. It has been

accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use the publisher's recommended citation. http://ieeexplore.ieee.org/document/7820274/

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/elec_comp_pubs?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/elec_comp_eng?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/elec_comp_eng?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/elec_comp_pubs?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Felec_comp_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/document/7820274/
mailto:kokeefe@clemson.edu

Towards Deadline Guaranteed Cloud Storage Services

Guoxin Liu, Haiying Shen

Department of Electrical and Computer Engineering

Clemson University

{guoxinl, shenh}@clemson.edu

Lei Yu

School of Computer Science

Georgia Institute of Technology

leiyu@gatech.edu

Abstract—More and more organizations move their data and
workload to commercial cloud storage systems. However, the
multiplexing and sharing of the resources in a cloud storage
system present unpredictable data access latency to tenants,
which may make online data-intensive applications unable to
satisfy their deadline requirements. Thus, it is important for
cloud storage systems to provide deadline guaranteed services.
In this paper, to meet a current form of service level objective
(SLO) that constrains the percentage of each tenant’s data
access requests failing to meet its required deadline below a
given threshold, we build a mathematical model to derive the
upper bound of acceptable request arrival rate on each server.
We then propose a Deadline Guaranteed storage service
(called DGCloud) that incorporates three algorithms. Its
deadline-aware load balancing scheme redirects requests and
creates replicas to release the excess load of each server beyond
the derived upper bound. Its workload consolidation algorithm
tries to maximally reduce servers while still satisfying the
SLO to maximize the resource utilization. Its data placement
optimization algorithm re-schedules the data placement
to minimize the transmission cost of data replication. Our
trace-driven experiments in simulation and Amazon EC2 show
the higher performance of DGCloud compared with previous
methods in terms of deadline guarantees and system resource
utilization, and the effectiveness of its individual algorithms.

I. INTRODUCTION

Cloud storage (e.g., Amazon Dynamo and Gigaspaces)

is emerging as a popular business service. Currently,

more and more companies and organizations shift their

data and workloads to cloud in a pay-as-you-go man-

ner to avoid large capital expenditures in infrastruc-

ture [1]. However, cloud storage services face unpre-

dictable performance due to the multiplexing of resources

between tenants for higher utilization of servers and

network infrastructure. Tenants often experience signifi-

cant performance variations in data access latency [2–4].

Shared cloud data storage

T1: OSN Tn: File Hosting T2: Portal

. . .

S1 S2 Sm
. . .

Figure 1: Multi-tenant cloud

storage service.

Figure 1 shows an exam-

ple of the cloud storage

system with multiple ten-

ants. Tenant T1 operates

an online social network

(OSN) (e.g., Google+),

T2 operates a portal (e.g.,

BestBuy) and Tn operates

a file hosting service (e.g., Dropbox). Each server possibly

stores data from different tenants, e.g., s2 stores replicas of

data from T1, T2 and Tn. The front-end servers direct a data

request to the servers storing corresponding data replicas.

The storage sharing on s2 from T1, T2 and Tn can overload

s2 and introduce a significant access latency for the tenants.

The issue of unpredictable performance limits the types

of applications that can migrate to multi-tenant clouds. Most

online data-intensive applications, including web search,

online retail and advertising, operate under soft real-time

constraints (e.g., ≤ 300ms latency) for good user experi-

ence [5]. Experiments at the Amazon portal [6] demonstrated

that a small increase of 100ms in webpage presentation time

significantly reduces user satisfaction, and degrades sales by

1%. For a data retrieval request during the web presentation

process, the typical latency budget inside a storage system is

only 50-100ms [7], which requires strict deadlines for data

access in data storage services.

One of the key reasons for high data access latency is

server overload. The workloads caused by data requests

among servers are largely skewed [8]. Requests to workload-

intensive servers may be blocked due to their capacity

constraints, causing unexpected data access latency and

hence violations of the deadline requirements. Balancing

data request workload among servers reduces the data access

latency. However, current load balancing schemes [9] in

the cloud do not provide deadline guarantees. The works

on deadline-aware solutions for cloud focus on scheduling

work flows in datacenter networks [5, 10], and little research

has been devoted to the load balancing problem to supply

deadline-aware service in cloud storage systems. In this

paper, we use load balancing to satisfy the heterogeneous

deadline requirements from multiple tenants with minimized

energy and transmission cost for a commercial cloud storage

service. The novelty of this work lies in providing a load

balancing method that supplies deadline-aware service in

cloud storage systems.

Specifically, we propose a Deadline Guaranteed storage

service (called DGCloud) that satisfies a current form of

service level objective (SLO) [11], i.e., constrains the per-

centage of each tenant’s data access requests failing to

meet its required deadline below a given threshold. This

objective is non-trivial because the request distribution and

replica allocation among servers are complex, and data

popularity, server capacities and tenant deadline require-

ments are heterogeneous. To handle this challenge, based on

queueing theory, we mathematically derive the upper bound

of acceptable request arrival rate on each server to satisfy

the SLOs of all tenants. We then propose three algorithms

in DGCloud:

(1) A load balancing algorithm to ensure that that the request

arrival rate on each server is no higher than its upper bound.

This algorithm incorporates data request redirection and new

replica allocation to move load from overloaded servers to

underloaded servers.

(2) A workload consolidation algorithm to maximize the

system utilization and energy-efficiency. It adjusts the data

placement schedule determined by our load balancing algo-

rithm, which determines the request redirection (i.e., which

server serves a request) and data placement (i.e., which

servers stores a data replica) to minimize the number of

servers in use.

(3) A data placement optimization algorithm to minimize

the transmission cost for data replication. It regards the

data placement optimization problem as a minimum-weight

perfect matching problem [12] by considering the new

replica allocation as the transformation of data placement

schedule to find the optimal solution.

The rest of the paper is organized as follows. Section II

describes the system model and our problems. Sections III

and IV present our deadline-aware load balancing scheme

and its enhancement in detail. Section V presents the perfor-

mance evaluation of our methods in simulation and on Ama-

zon EC2. Section VI presents the related work. Section VII

concludes the paper with remarks on our future work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model and Assumptions

We consider a heterogeneous cloud storage system

consisting of M data servers, which may have different

service capability and storage capacity. We assume that

there are N tenants sharing the system. A data item consists

of a number of data partitions. Each server may host a

certain number of data partitions. Each data partition may

have multiple replicas across several data servers to enhance

the access efficiency and data availability [13], and each

replica can be stored in any server. We assume that each

data partition has at least r (r > 1) replicas. We suppose

that the system maintains the consistency among replicas

as [7], which is orthogonal to this work.

A data request from a tenant arrives at the front-end

servers of the cloud storage system first, and the load-

balancer assigns the request to the servers which hold the

replicas of the requested data partitions. The service latency

of a request is the duration between the arrival time at the

front-end servers and the time when the response is returned

to the front-end servers. For a data request involving multiple

data partitions, its latency is the longest service latency of

a partition among all the data partitions. Each tenant tk
(1 ≤ k ≤ N) has a deadline requirement for requests,

denoted by dtk , which means that tk requires service latency

on its requests to be no larger than dtk . If there are multiple

types of requests from tk that have different deadlines, tk can

be treated as several different tenants with different deadline

requirements. As in [14], we assume that the arrival of data

requests from a tenant follows a Poisson process, where the

average request rate of tenant tk is λtk . Each data server has

a single queue for queuing arriving requests from all tenants.

B. Problem Statement

In this paper, we introduce a form of SLOs [11] with

deadline guarantees for cloud storage services. That is, for

any tenant tk, no more than ǫtk percent of all data requests

have service latency longer than a given deadline dtk . Such

an SLO is denoted by (ǫtk , dtk). For example, Amazon

Dynamo should guarantee that no more than 0.1% of its

requests have a response time exceeding 300ms [11].

In order to satisfy the SLOs of all tenants, our deadline-

aware load balancing problem is how to dynamically create

data replicas in servers and redirect the requests to replicas

such that the service latency of any request from tenant tk
satisfies (ǫtk , dtk). We present our solution to this problem

in Section III. In order to save system resources and improve

resource utilization, we further address two optimization

problems for performance enhancements as follows:

(1) To find the minimum number of data servers to support

SLOs of all tenants for their requests, such that the server

resource utilization is maximized, and other idle data servers

can sleep to save energy cost and wake up whenever the

system is overloaded [15];

(2) To find an optimal data placement for data replication

with the goal to minimize the transmission cost. The trans-

mission cost of one data replication operation is measured by

the product of data size and the number of transmission hops

(i.e., the number of switches in the routing path) [16, 17].

C. Overview of Our Deadline Guaranteed Cloud Storage

Our deadline guaranteed cloud storage system (DGCloud)

incorporates three algorithms: deadline-aware load balanc-

ing algorithm (Section III), workload consolidation (Sec-

tion IV-A), and data placement optimization (Section IV-B).

DGCloud is employed in the load balancer in current com-

mercial cloud storage systems. The load balancer needs to

periodically estimate the parameters in Section III-A and

check if the deadline-aware load balancing algorithm should

be activated. If yes, the load balancer runs this algorithm

off-line to generate the data placement schedule. Then if

the system resource utilization is low, it runs the workload

consolidation algorithm to reduce the number of active

servers in order to increase the system resource utilization

while still guaranteeing the required SLOs of tenants. After

the algorithm execution, a new data placement schedule

and new request rate on each data replica are generated.

To minimize the transmission cost for data replication, the

data placement optimization algorithm is conducted to find

the optimal transformation. Finally, data is replicated based

on the final data placement schedule. We introduce each

algorithm of DGCloud in detail as below.

III. DEADLINE-AWARE LOAD BALANCING

To satisfy the deadline (SLO) requirements of all tenants,

we need to balance the workload among all servers to

avoid overloaded servers. In this paper, we define overloaded

servers as the servers that cannot satisfy the SLOs of all

tenants, and define underloaded servers as the servers that

can accept more data requests under the SLO requirements

of all tenants. The basic idea of our load balancing scheme

is to shift requests from the most overloaded servers to the

most underloaded servers. The workload shifting is achieved

by redirecting requests and creating new data replicas in

other servers. First, the load balancer attempts to redirect

arriving requests originally targeting overloaded servers to

underloaded servers. After the request redirection schedul-

ing, if some servers still cannot satisfy tenants’ SLOs, new

replicas are created in other servers, which will handle part

of the requests.

To design such a scheme, a critical problem is how to

quantify the service capability of servers with regard to the

tenants’ SLOs. To handle this problem, we introduce two

concepts:

Definition 1: Deadline-guaranteed request arrival rate:

Deadline-guaranteed request arrival rate of a server sn,

denoted by λ′
sn

, is the upper bound of request arrival rates

at sn, with which the server can still satisfy the SLO

requirements (ǫtk , dtk) for all the tenants served by it.

Definition 2: Available service capacity: Available

service capacity of a server sn, denoted by asn , is defined

as asn = λ′
sn

− λsn , where λsn is the average request

arrival rate at server sn.
According to the above definitions, if a server has avail-

able service capacity no less than zero, it can satisfy SLOs of

all tenants served by it; otherwise, it cannot. Then, the load

balancing scheme moves load from overloaded serves to un-

derloaded servers. Calculating λ′
sn

is not trivial. Below, we

build a theoretical model to derive λ′
sn

in Section III-A, and

then introduce our load balancing scheme in Section III-B.

A. Deadline-Guaranteed Request Arrival Rate Derivation

Our load balancing scheme requires the following param-

eters: i) the request arrival rate at each server sn and at

each data partition replica ci in sn, denoted by λsn and

λci
sn

, respectively, for computing available service capacity,

ii) sn’s service rate denoted by µsn , and iii) the deadline-

guaranteed request arrival rate λ′
sn

. In this section, we

introduce how to estimate and compute these parameters.

1) Estimating λsn , λci
sn

and µsn : We estimate λsn and

µsn from the historical records of data requests. We assume

that the cloud storage system monitors each user’s data

request activity. In particular, the system periodically records

the number of data requests on each server for each tenant

during a certain period of time named checking period

(denoted by T). T is a tradeoff between the system overhead

and the sensitivity of request rate variation. A smaller T
could be sensitive to the variation of request rates, leading

to larger system overhead for load balancing, and vice versa.

Let Nsn be the number of data requests targeting sn during

T . Then, we estimate λsn =
Nsn

T
. Similarly, let N ci

sn
denote

the number of data requests targeting ci in sn during T ,

and then λci
sn

=
N

ci
sn

T
. When a partition is removed from sn

or a new partition is added to sn, λsn should be updated

by subtracting or adding the request arrival rate of the

corresponding partition. If a new partition ci is added by

tenant tk, since its request arrival rate is not known yet, we

use the average request arrival rate of all partitions of tenant

tk as the estimation of ci’s request arrival rate. To estimate

µsn , we profile the average service latency Tsn of the server,

and then calculate µsn = 1
Tsn

.

2) Computing λ′
sn

: Next, we compute the probability of

any request Ri from tenant tk meeting the requirement of

deadline requirement dtk in a checking period, denoted by

P
i
tk

. Based on this probability, we then derive the deadline-

guaranteed request arrival rate λ′
sn

. According to [18], the

response time of workflows follows a long tail distribution

with low latency in most cases. Thus, we approximate

service time with an exponentially distributed random vari-

able. In addition, the arrival of requests follows the Poisson

process [14], so each server can be modeled as M/M/1

queueing system [19].

Calculating P
i
tk

. Suppose that T sn
ti
k

is the tenant tk’s request

Ri’s service latency at server sn. According to [20], the

corresponding cumulative distribution of service latency of

sn, denoted as F (t)sn , is

F (t)sn = 1− e−(µsn
−λsn

)∗t. (1)

For a request targeting a data partition in sn, to guarantee the

request to be finished before dtk with probability no less than

1− ǫtk , we have F (dtk)sn ≥ 1− ǫtk . For a request targeting

multiple data partitions in several servers, the data request’s

service latency depends on the longest service latency among

all accessed servers. Then, the corresponding probability that

the service latency meets the deadline requirement is

P
i
tk

= p(Max{T sn
ti
k

}sn∈ℜ(ti
k
) ≤ dtk), (2)

where ℜ(tik) is a set of target data servers for the request.

In Equation (2), Max{T sn
ti
k

}sn∈ℜ(ti
k
) ≤ dtk also means that

∀sn ∈ ℜ(tik), T sn
ti
k

≤ dtk . Since T sn
tk

is an independent

variable for different servers, we also have

P
i
tk

=
∏

sn∈ℜ(ti
k
)

F (dtk)sn . (3)

Calculating λ′
sn

. Based on P
i
tk

, we then compute λ′
sn

on server sn defined in Definition 1. Suppose that p′ is

the probability of a request simultaneously accessing no

larger than α data partitions. Given a value of p′, such

that p′ > max{1 − ǫtk | tk ∈ J}, we estimate α with

CDF (Cumulative Distribution Function) of simultaneously

accessing a number of partitions from previous running

logs of the cloud storage system. Let pα be the probability

of any data request accessing no more than α servers

and having service latency no longer than the deadline.

Since pα = limx→∞

∑

i∈[1,x]∧|ℜ(ti
k
)|≤α(P

i
tk

∗ 1
x
), where

x is the total number of requests, and ℜ(tik) denotes the

set of servers visited by request Ri. If pα ≥ 1 − ǫtk , we

can guarantee that the probability of the service latency

satisfying ≤ dtk is larger than 1 − ǫtk . Let pl be the

lower bound of P
i
tk

for any request Ri with no more

than α accessed servers. We can get pα ≥ pl ∗ p′, and if

pl∗p
′ ≥ (1−ǫtk), the deadline requirement of tk is satisfied.

Then, according to Equation (3), for any server of tk, we

can derive the lower bound for F (dtk)sn as α

√

(1− ǫ′tk)/p
′.

Finally, we derive the upper bound of request arrival rate

on sn that satisfies the deadline requirement of tk as:

λ′
sn,tk

= µsn − |(ln(1−
α

√

(1− ǫtk)/p
′))/dtk |. (4)

Given p′ and α, the upper bound of λ′
sn

of a server

is decided by dtk and ǫtk . In order to supply deadline

guaranteed service to all tenants having partitions in this

server, we calculate λ′
sn

as the lowest value of the upper

bounds of all tenants having partitions in this server. We

refer to the |(ln(1 − α

√

(1− ǫtk)/p
′))/dtk | of each tk as

its deadline strictness, denoted by Ktk . Then, the tenant

with the highest value of Ktk has the strictest deadline

requirement, whose λ′
sn,tk

equals λ′
sn

. Then we can get:

λ′
sn

= Min{λ′
sn,tk

} = µsn −Max{Ktk}sn∈ℜ(tk)
. (5)

Here λ′
sn

is used to check whether sn is overloaded or

underloaded and calculate the excess load of an overloaded

server in load balancing introduced in Section III-B.

B. Scheme Description

The load balancing scheme first computes each server

sn’s deadline-guaranteed request arrival rate λ′
sn

and then

available service capacity asn . The data servers that have

positive asn values are stored into a list named allocatable

server list in descending order of the asn . Giving higher

priority to servers with higher asn in assigning overloaded

servers’ excess load helps quickly release their load. For the

servers having the same asn , they are stored in ascending

order of their available storage capacity. This way, we can

avoid storage fragmentation and the situation in which a

server cannot utilize its available storage capacity due to

lack of service capacity. The data servers with negative asn
values are stored into a list named overloaded server list in

ascending order of the asn . Then, starting from the beginning

of the overloaded server list, i.e., the most overloaded server,

we try to distribute the workload of each overloaded server

in turn to the servers in the allocatable server list until its

asn ≥ 0. In particular, to release the excess workload of an

overloaded server sn, our scheme conducts step (1) and (2)

below in order.

Algorithm 1: Request Redirection Algorithm

1 Generate Csn= {c1, c2, . . . , cI};
2 for each ci in Csn do

3 for each sm in the allocatable server list do

4 if sm has replica of data partition ci then

5 Shift the requests for ci at rate Min{asm , λ
ci
sn} from

sn to sm;

6 λ
ci
sn ← λ

ci
sn −Min{asm , λ

ci
sn};

7 asm ← asm −Min{asm , λ
ci
sn} ;

8 asn ← asn +Min{asm , λ
ci
sn};

9 if λ
ci
sn = 0 then

10 break;

11 if asn ≥ 0 then

12 return;

(1) Request Redirection. We use λci
sn

to denote the re-

quest arrival rate for data partition ci at server sn. Let

Csn = {c1, c2, . . . , cI} be the set of all data partitions with

λci
sn

> 0. For each data partition ci, the scheme tries to

distribute all of the requests for ci to the allocatable servers

having ci’s replica. Request redirection is conducted for data

partitions in Csn in descending order of their request arrival

rates, such that fewer partitions need to be redirected to

release the overloaded server’s excess load, thus expediting

the process. The complete request redirection procedure for

an overloaded sn is shown in Algorithm 1.

When Algorithm 1 finishes, if asn > 0, we add sn into

the allocatable server list. If asn < 0, step (2) is conducted

for sn to allocate new replicas in other allocatable servers

and then redirect requests to them in order to release its

excess load.

Algorithm 2: New Replica Allocation Algorithm

1 Generate Csn= {c1, c2, . . . , cI};
2 for each ci in Csn do

3 while λ
ci
sn > 0 ∧ asn < 0 do

4 Select next server sm in the allocatable server list;
5 if no next server in the list then

6 Add a spare data server to the allocatable server list as
sm;

7 if sm has enough storage to store ci then

8 Compute a
ci
sm ;

9 if a
ci
sm > 0 then

10 A new replica of ci is allocated in sm and the
requests for ci are assigned to sm with an arrival
rate of Min{a

ci
sm , λ

ci
sn};

11 λ
ci
sn , asn and asm are updated as Algorithm 1 ;

(2) New Replica Allocation. The new replica allocation

algorithm is shown in Algorithm 2. In Csn , data partitions

with equal request arrival rates are sorted in ascending order

of data size, such that the data partitions with smaller sizes

are given higher priorities for replica creation to reduce the

transmission cost. For each partition ci in Csn , the algorithm

checks the servers in the allocatable server list in order and

attempts to create ci’s replica in them.

Finally, after shifting ci’s data access workload on server

sn, if λci
sn

= 0 and the number of replicas of ci is larger

than the minimum requirement (e.g., Amazon DynamoDB

requires 3 copies for each data [13]), ci can be removed

from sn. By releasing excess workload of all data servers

in the overloaded server list, all data servers’ available

service capacities are no less than zero. Then, the SLOs

of the tenants on these severs are satisfied according to the

Definitions 1 and 2. Note that replicas are created only when

request redirection cannot release a server’s excess load.

Therefore, the number of replicas created is the minimum

to achieve load balance.

C. Load Balancing Activation

Since each tenant’s data retrieval activity varies over

time, and the data partitions are continually added and

removed, the SLO of a tenant may no longer be satisfied by

the servers after load balancing and the scheme needs to run

again. To determine whether to activate the load balancing

scheme at the end of each checking period, we introduce

a measurement referred to as system service satisfaction

level (denoted by Υ). It is defined as the minimum of the

satisfaction levels of all tenants. The satisfaction level of

tenant tk is measured by

Stk =
{

Ptk/(1− ǫtk) if Ptk < (1− ǫtk)
1 otherwise

(6)

where Ptk is the ratio of data requests of tk with service

latency no longer than deadline dtk during a checking

period T . Then, Υ is computed by

Υ = Min{Stk}tk∈J . (7)

At the end of every checking period, the load balancer

calculates Υ to measure the current system service satis-

faction level and compares it with a given threshold TR. If

Υ < TR, the load balancer activates the deadline-aware load

balancing scheme to increase the system service satisfaction

level. The threshold value is determined based on the

commercial contracts between the cloud storage service

provider and tenants, which declares the deadline miss ratio

and benefit loss. We need to set a relative large value for

TR, in order to trigger the load balancing scheme before

the system is highly overloaded. TR affects the tradeoff

between the tenant satisfaction level and system cost.

IV. PERFORMANCE ENHANCEMENT

A. Workload Consolidation to Maximize System Utilization

Suppose xci
sn

is a binary variable; if server sn has the

replica of data partition ci, x
ci
sn

= 1, otherwise, xci
sn

= 0. We

use ρsn = λsn/µsn > 0 to denote server sn’s utilization,

and use MS to represent the set of active servers whose

ρsn > 0. Let Hci
sn

be the access ratio of ci’s replica on sn

among all ci’s replicas. Then, for any accessed partition ci,
we have

∑

sn∈MS
H

ci
sn

∗ xci
sn

= 1. We define the system

utilization as:
Us =

∑

sn∈MS

ρsn/|MS | (8)

We can see that a higher Us indicates fewer more highly

utilized active servers. Besides the system utilization, we

also consider the total replication cost, i.e., the transmission

cost for transforming the data placement schedule, denoted

by L. Thus, our problem aims to maximize Us while

minimizing L, which is is NP-hard.

To maximize system utilization, we propose a workload

consolidation algorithm. After the data placement schedule

is determined by the deadline-aware load balancing scheme,

the workload consolidation algorithm is executed. Basically,

it tries to shift all workload from the most underloaded

servers to other servers to minimize the number of active

servers. It follows the similar procedure as in Section III-B.

All the active servers are put into two lists one in ascending

order and the other in descending order of their current

request arrival rates λsn , respectively. Then, we try to shift

all workload on each server in the ascending-order list to the

servers in the descending-order list. The workload shifting

is conducted in the order of the list since the server with the

smallest request arrival rate has the largest probability to

successfully release all of its workload. If all the workload

of a server is released, this server is removed from the list

and set to sleep mode; otherwise, the server is kept as-is and

the algorithm stops.

B. Minimize Replication Cost

The workload consolidation runs off-line and finally gen-

erates a new data placement schedule in the system. Suppose

f = {< s0,f , (ci, cj , ..., ck) >, ..., < sm,f , (cx,
cy, ..., cz) >}, where each tuple indicates the server and the

data replicas it stores, is the original data placement schedule

which uses m servers and f ′ = {< s0,f ′ , (C ′
i, C

′
j , ..., C

′
k) >

, ..., < sn,f ′ , (C ′
x, C

′
y, ..., C

′
z) >} is the data placement

schedule generated by Algorithm 2 which uses n servers.

The transformation f to f ′ results from data replication.

We aim to find the optimal data replication schedule that

transforms f to f ′ with the minimum transmission cost.

<s1, (c1)> <s1, (c1, c3)>

<s2, (c1)>

.

6

9

f f'

<s2, (c1, c4)>

Figure 2: Optimal data place-

ment.

We use Cs,f and

Cs,f ′ to denote the data

partition set of server s
in f and f ′, respectively.

To create a replica in a

server s, we choose the

closest existing replica

of the data partition to

s to transmit the data to

s in order to reduce the

transmission cost. A straightforward method to transform

f to f ′ (which is used in our previous load balancing

scheme) is to let each server in f ′ replicate the absent

data partitions Cs,f ′ \Cs,f . However, such a method may

not be optimal in minimizing the transmission cost of all

replication operations. We use an example shown in Figure

2 to explain it. Originally, both servers s1 and s2 have

partition c1. In the new replica placement schedule f ′, s1
has {c1, c3} and s2 has {c1, c4}. In the straightforward

method, s1 copies c3 with transmission cost 6, and s2
copies c1 with transmission cost 9. The total transmission

cost is 15. However, s1 only generates transmission cost

3 for copying c4, and s2 only generates transmission cost

2 for copying c3. To reduce total transmission cost, the

second replication schedule can be used instead and s1 and

s2 are switched accordingly in the storage service if they

are homogeneous (with equal service and storage capacity),

and the switch will not degrade performance.

The problem is to find data replication schedule that

achieves an optimal mapping between homogeneous server

pairs for data replication to minimize the total transmission

cost of transforming f to f ′. We solve this problem by reduc-

ing it to the minimum-weight perfect matching problem for

a bipartite graph which has polynomial time algorithms [12].

Considering f and f ′ defined above, if m > n, m−n empty

servers {< sn+1, ∅ >, ..., < sm, ∅ >} are added to f ′ such

that f and f ′ have the same number of servers. Similarly,

empty data servers are added to f if m < n. Then, we

consider each server in f and f ′ as a vertex. The edges are

only constructed between each pair of homogeneous servers

< si,f , sj,f ′ >. The weight on an edge < si,f , sj,f ′ > is the

transmission cost of transforming si,f to sj,f ′ . We denote the

data partition set stored in si,f by Ci,f and that in sj,f ′ by

Cj,f ′ . To transform server si,f to server sj,f ′ , the replicas in

Cj,f ′ \Ci,f need to be created by copying from the nearest

server and the replicas in Ci,f \Cj,f ′ need to be removed.

Thus, the transmission cost for transforming si,f to sj,f ′ is

the transmission cost of copying Cj,f ′\Ci,f , denoted as Lsi ,

and the transmission cost of one data replication operation

is measured by the product of data size and the number

of transmission hops. The total transmission cost of the data

replication schedule is L =
∑

si∈M Lsi . With the minimized

transmission cost by DGCloud, considering the commercial

datacenter’s bandwidth today, such as 10Gb/s, 40Gb/s and

100Gb/s [21], the replication load can be ignored.

V. PERFORMANCE EVALUATION

In simulation. In this section we measure the perfor-

mance of DGCloud in a simulator. There were 30000 data

servers in the cloud storage system. The storage capacity of

each server was randomly chosen from {6TB, 12TB, 24TB}
as [22, 23]. The topology of the storage system is a fat tree

structure with two levels. The service rate µ of each server

was randomly chosen from the range of [60,120], which

indicates the number of requests it can serve per second. The

default number of tenants was 1000. We randomly selected

X data items from [24] as each tenant’s data, and X was

randomly chosen from the range of [100,900]. The dataset

in [24] includes 4-hour data request log in a file system

generated from large scale computing applications, which

are also typical types of applications in Cloud. The request

arrival rate on a data item was set to 10 times the data’s

real visit rate [24]. Each tenant’s data item consists of x
partitions, where x is randomly chosen from the range of

[1,4]. The size of a data partition was randomly chosen from

the range of [1.5,15]GB. dtk of each tenant was randomly

chosen from the range of [100, 200]ms [6], and ǫtk was set

to 5%. In Equation (4), p′ = 99% and α = 4. We set the

minimum number of replicas of each partition to 2, and set

TR = 1 and TU = 0.7 by default. The service latency of a

server is determined by Equation (1).

On Amazon EC2. We repeated the experiments in a real

test environment consisting of 33 nodes in an availability

zone of EC2’s US west region [25]. We randomly chose 3

nodes as front-end servers on EC2, which generate the visits

with the same rates as in [24]. The size of read/write has

the same distribution as in [24]. The others are used as data

servers with service rate randomly chosen from the range of

[6,12], and particularly each node in EC2 simulates 10 data

servers for enlarging scale. Due to the storage limitation of

VMs in the testbed, the size of a partition and the storage

capacity of a data server in our cloud storage system are

reduced to 1/3000 of their previous settings to fit into the

limited hard disk storage. The default number of tenants is

10. We measured the distance of any pair of data servers by

the average ping latency.

We compared DGCloud with a deadline unaware scheme,

which places replicas greedily and sequentially to servers

with constraints of server storage capacity and service

rate. It does not sort the partitions and the underloaded

server list in load balancing, and also does not provide

deadline guarantees. This scheme is adopted by Pisces [26]

to allocate data to different servers, so we denote it by

Pisces. We further extended this method that additionally

ensures that the request arrival rate on a server does not

exceed its λ′
sn

, and denote it by DGCloud-LB. We also

compared DGCloud with a scheme, denoted by Random,

which randomly moves the data partitions from overloaded

servers to servers that have enough storage capacity without

considering service capacity.

A. Latency and Deadline Guaranteed Service

Figures 3(a) and 3(b) show the median, 5th and 95th

percentiles of all tenants’ satisfaction levels defined in

Equation (6). It shows that the median satisfaction level

follows 100%=DGCloud=DGCloud-LB>Random>Pisces.

The 5th and 95th percentiles of DGCloud-LB and DGCloud

also maintain at 100%. With deadline consideration, both

DGCloud and DGCloud-LB provide high tenant satisfaction

levels. When the number of tenants is larger than 4000,

Random exhibits a larger variance in tenant satisfaction

0%

50%

100%

150%

1000 2000 3000 4000 5000 6000

S
e

r
v
ic

e
 s

a
t
is

f
a

c
t
io

n

le
v
e

l

Number of tenants

Random Pisces

DGCloud-LB DGCloud

(a) Simulation

0%

50%

100%

150%

10 20 30 40 50 60

S
e

r
v
ic

e
 s

a
t
is

f
a

c
t
io

n

le
v
e

l

Number of tenants

Random Pisces

DGCloud-LB DGCloud

(b) Amazon EC2

Figure 3: Tenant satisfaction level vs. the number of tenants.

0%

50%

100%

1000 2000 3000 4000 5000 6000

S
y
s
te

m
 u

ti
li

z
a

ti
o

n

Number of tenants

Random Pisces

DGCloud-LB DGCloud

(a) Simulation

0%

50%

100%

10 20 30 40 50 60

S
y
s
te

m
 u

ti
li

z
a

ti
o

n

Number of tenants

Random Pisces

DGCloud-LB DGCloud

(b) Amazon EC2

Figure 4: Server utilization vs. the number of tenants.

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n

c
o

s
t

(G
B

*
h

o
p

)

Arrival rate variance degree

DGCloud-LB

DGCloud (w/o DPO)

DGCloud

(a) Simulation

0.E+0

2.E+3

4.E+3

6.E+3

8.E+3

10% 20% 30% 40% 50%

D
a

ta
 t

ra
n

s
m

is
s
io

n

c
o

s
t

(G
B

*
h

o
p

)

Arrival rate variance degree

DGCloud-LB

DGCloud (w/o DPO)

DGCloud

(b) Amazon EC2

Figure 5: Minimize data transmission cost.
level. Pisces generates the largest variance, and the variance

increases as the number of tenants increases. Both meth-

ods do not consider deadline guarantee. As the workload

increases, the tenant satisfaction level decreases due to the

longer service latency. As Random distributes workload to

more servers, while Pisces accumulates workloads in as

few servers as possible, Pisces generates a larger variance.

Figures 3(a) and 3(b) indicate that DGCloud constantly

supplies services with high tenant satisfaction levels even

under heavy workload.

B. System Utilization

Figures 4(a) and 4(b) show the median, 5th and 95th

percentiles of the server utilization defined in Section II-B.

We see the system utilization follows Random<Dead-

line<DGCloud<Pisces. Random distributes workload

randomly among all servers while other methods try to

allocate workload to as few servers as possible, so Random

generates the smallest median server utilization. Though

Pisces generates the highest median server utilization, since

it does not consider deadline guarantee, it produces very low

system service satisfaction level as shown in Figure 3(a).

It is worth noting that DGCloud produces a higher system

utilization than DGCloud-LB. This is because with the

workload consolidation algorithm, DGCloud minimizes the

number of active servers. Also, when allocating excess load,

DGCloud gives higher priority to servers with higher avail-

able service capacity, which helps increase server resource

utilization and reduce the number of active servers. This

is also the reason that DGCloud has smaller variances in

server utilizations than other methods. These methods may

allocate partitions with small request rates to servers with

large service capacities, leading to low system utilization.

C. Transmission Cost

In the following experiments, there were 5000 tenants

in simulation and 50 tenants on EC2 in the system and

the average request rate of tenants was set to 1500 and

150 in simulation and EC2, respectively. We use DGCloud

(w/o DPO) to denote DGCloud without the data placement

optimization algorithm. We varied the request arrival rate

of each data item, λc, to a value randomly chosen from

[λc ∗ (1− β), λc ∗ (1 + β)], where β was varied from 10%

to 50% with step size of 10%.

We measured the transmission cost in GB∗hop as defined

in Section IV-B. Figures 5(a) and 5(b) show the median, 5th

and 95th percentiles of data transmission cost. Each result

follows DGCloud-LB>DGCloud (w/o DPO)>DGCloud.

DGCloud produces lower transmission cost than DGCloud

(w/o DPO), because the data placement optimization algo-

rithm helps reduce the communication cost in data repli-

cation. DGCloud-LB does not have the data placement

optimization algorithm. Thus, DGCloud (w/o DPO) gen-

erates lower transmission cost than DGCloud-LB. These

results verify the low transmission cost of DGCloud and the

effectiveness of the data placement optimization algorithm.

VI. RELATED WORK

Recently, several works [5, 10, 18, 27] have been proposed

on deadline guaranteed services in datacenters by focusing

on scheduling work flows. Vamanan et al. [5] proposed

a Deadline-aware Datacenter TCP protocol, which handles

bursts of traffic by prioritizing near-deadline flows over far-

deadline flows in bandwidth allocation to avoid congestion.

Hong et al. [10] proposed a distributed flow scheduling

protocol, in which all intermediate switches adopt a flow pri-

oritization method based on a range of scheduling principles.

Zats et al. [18] proposed a cross-layer network stack to re-

duce the long tail of flow completion times. Wang et al. [27]

proposed Cake to guarantee service latency SLO and achieve

high throughput using a two-level scheduling scheme of data

requests within a datacenter. Corral [28] places a job and its

requested data into the same rack, and different jobs into

different racks to avoid resource competition to expedite

job execution. Zhao et al. [29] proposed scheduling jobs

onto geo-distributed datacenters by leveraging their differ-

ent pricing policies and resource availabilities to minimize

payments to cloud providers and meet job deadlines. In [30],

the lower bound of work flow deadline violation probability

is predicted, and a heuristic scheduling algorithm is proposed

to achieve this lower bound. Though our work shares a

similar goal of meeting service deadlines, the above works

focus on scheduling work flows or workloads while our work

focuses on a load balancing problem.

Bonvin et al. [31] proposed a cost-efficient self-organized

data replication method to ensure the data availability by

adaptively adding new storage according to node failures.

Wang et al. [22] proposed a scalable block storage sys-

tem using pipelined commit and replication techniques to

improve the data access efficiency and data availability.

In [32, 33], the data availability is improved by selecting

data servers inside a datacenter to allocate replicas in order to

reduce data loss due to simultaneous server failures. In [34],

the failure rate and payment cost of different fault tolerance

techniques are modeled, so that users can choose from differ-

ent techniques to support a required service availability with

minimized cost. To reduce the service latency of tenants,

Pisces [26] allocates the data partitions of tenants to under-

loaded servers without exceeding storage and service capac-

ity of servers. However, the above methods cannot guarantee

the deadline SLOs of tenants of cloud storage systems.

VII. CONCLUSIONS

In order to provide deadline guaranteed cloud storage

services, in this paper, we first propose a deadline-aware

load balancing scheme. It dynamically redirects requests and

creates data replicas in servers to ensure a current form of

SLO, i.e., the deadlines of the requests from tenants are

met with a guaranteed probability. We mathematically derive

the extra load that a server needs to move out to meet

the SLOs of all tenants. We further enhance our scheme

with work consolidation to maximize the system resource

utilization, and data placement optimization to minimize

the transmission cost in data replication. The trace-driven

experiments in simulation and Amazon EC2 show that our

scheme provides deadline-guaranteed service while achiev-

ing high system resource utilization compared with other

methods. Our enhancement methods also reduce energy cost

and transmission cost of data replication. In our future work,

we will design a load balancing scheme that dynamically

redirect requests and replicate data to ensure SLO under a

request burst.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty

Award 5501145 and Microsoft Research Faculty Fellowship

8300751.

REFERENCES

[1] H. Stevens and C. Pettey. Gartner Says Cloud Computing Will Be
As Influential As E-business. Gartner Newsroom, Online Ed., 2008.

[2] N. Yigitbasi A. Iosup and D. Epema. On the Performance Variability
of Production Cloud Services. In Proc. of CCGrid, 2011.

[3] S. L. Garfinkel. An Evaluation of Amazons Grid Computing Services:
EC2, S3 and SQS. Technical Report TR-08-07, 2007.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environments.
In Proc. of OSDI, 2008.

[5] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware
Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.

[6] R. Kohavl and R. Longbotham. Online Ex-
periments: Lessons Learned., 2007. http://exp-
platform.com/Documents/IEEEComputer2007OnlineExperiments.pdf.

[7] B. F. Cooper and et al. PNUTS: Yahoo!s Hosted Data Serving
Platform. In Proc. of VLDB, 2008.

[8] G. You, S. Hwang, and N. Jain. Scalable Load Balancing in Cluster
Storage Systems. In Proc. of Middleware, 2011.

[9] Amazon Elastic Load Balancing.
http://aws.amazon.com/documentation/elasticloadbalancing/.

[10] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In Proc. of SIGCOMM, 2012.

[11] C. Peng, M. Kim, Z. Zhang, and H. Lei. Dynamo: Amazon’s Highly
Available Key-value Store. In Proc. of SOSP, 2007.

[12] W. Cook and A. Rohe. Computing Minimum-Weight Perfect Match-
ings. INFORMS Journal on Computing, 1999.

[13] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.
[14] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of

Multichannel P2P Live Video Systems. TON, 2010.
[15] S. Seny, J. R. Lorch, R. Hughes, C. G. J. Suarez, B. Zill, W. Cordeiroz,

and J. Padhye. Don’t Lose Sleep Over Availability: The GreenUp
Decentralized Wakeup Service. In Proc. of NSDI, 2012.

[16] A. Beloglazov and R. Buyya. Optimal Online Deterministic Algo-
rithms and Adaptive Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in Cloud Data Centers.
CCPE, 2011.

[17] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual Machine Image
Distribution Network for Cloud Data Centers. In Proc. of INFOCOM,
2012.

[18] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks.
In Proc. of SIGCOMM, 2012.

[19] L. Kleinrock. Queueing Systems. Wiley-Interscience, 1975.
[20] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation:

The Mathematical Basis of Performance Modeling. Princeton Uni-

versity, 2009.
[21] H. Liu, C. F. Lam, and C. Johnson. Scaling Optical Interconnects

in Datacenter Networks Opportunities and Challenges for WDM. In
Proc. of HOTI, 2010.

[22] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin. Robustness in the Salus scalable block
store. In Proc. of NSDI, 2013.

[23] Apache Hadoop FileSystem and its Usage in Facebook.
http://cloud.berkeley.edu/data/hdfs.pdf.

[24] CTH. http://www.cs.sandia.gov/Scalable IO/SNL Trace Data/.
[25] Amazon EC2. http://aws.amazon.com/ec2/.
[26] D. Shue and M. J. Freedman. Performance Isolation and Fairness for

Multi-Tenant Cloud Storage. In Proc. of OSDI, 2012.
[27] A. Wang, S. Venkataraman, S. Alspaugh, R. H. Katz, and I. Stoica.

Cake: Enabling High-Level SLOs on Shared Storage Systems. In
Proc. of SoCC, 2012.

[28] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar. Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. In Proc. of SIGCOMM, 2015.

[29] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. M. Lau. Dynamic
Pricing and Profit Maximization for the Cloud with Geo-Distributed
Data Centers. In Porc. of INFOCOM, 2014.

[30] H. Wu, X. Lin, X. Liu, and Y. Zhang. Application-Level Scheduling
with Deadline Constraints. In Porc. of INFOCOM, 2014.

[31] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage.
In Proc. of SoCC, 2010.

[32] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the Frequency of Data Loss in
Cloud Storage. In Proc. of USENIX ATC, 2013.

[33] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Practical Power-
Proportionality for Data Center Storage. In Proc. of Eurosys, 2011.

[34] A. J. Gonzalez, B. E. Helvik, P. Tiwari, D. M. Becker, and O. J.
Wittner. GEARSHIFT: Guaranteeing Availability Requirements in
SLAs using Hybrid Fault Tolerance. In Proc. of INFOCOM, 2015.

	Clemson University
	TigerPrints
	1-2017

	Towards Deadline Guaranteed Cloud Storage Services
	Guoxin Liu
	Haiying Shen
	Lei Yu
	Recommended Citation

	tmp.1496760320.pdf.8rVW6

