
Published as a conference paper at ICLR 2018

TOWARDS DEEP LEARNING MODELS RESISTANT TO

ADVERSARIAL ATTACKS

Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu∗

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{madry,amakelov,ludwigs,tsipras,avladu}@mit.edu

ABSTRACT

Recent work has demonstrated that neural networks are vulnerable to adversarial
examples, i.e., inputs that are almost indistinguishable from natural data and yet
classified incorrectly by the network. To address this problem, we study the
adversarial robustness of neural networks through the lens of robust optimization.
This approach provides us with a broad and unifying view on much prior work on
this topic. Its principled nature also enables us to identify methods for both training
and attacking neural networks that are reliable and, in a certain sense, universal.
In particular, they specify a concrete security guarantee that would protect against
a well-defined class of adversaries. These methods let us train networks with
significantly improved resistance to a wide range of adversarial attacks. They also
suggest robustness against a first-order adversary as a natural security guarantee.
We believe that robustness against such well-defined classes of adversaries is an
important stepping stone towards fully resistant deep learning models.

1 INTRODUCTION

Recent breakthroughs in computer vision and speech recognition are bringing trained classifiers
into the center of security-critical systems. Important examples include vision for autonomous cars,
face recognition, and malware detection. These developments make security aspects of machine
learning increasingly important. In particular, resistance to adversarially chosen inputs is becoming
a crucial design goal. While trained models tend to be very effective in classifying benign inputs,
recent work (Dalvi et al., 2004; Szegedy et al., 2013; Goodfellow et al., 2014; Nguyen et al., 2015;
Sharif et al., 2016) shows that an adversary is often able to manipulate the input so that the model
produces an incorrect output.

This phenomenon has received particular attention in the context of deep neural networks, and there is
now a quickly growing body of work on this topic (Fawzi et al., 2015; Kurakin et al., 2016; Papernot
& McDaniel, 2016; Rozsa et al., 2016; Torkamani, 2016; Sokolic et al., 2016; Tramèr et al., 2017b).
Computer vision presents a particularly striking challenge: very small changes to the input image
can fool state-of-the-art neural networks with high probability (Szegedy et al., 2013; Goodfellow
et al., 2014; Nguyen et al., 2015; Sharif et al., 2016; Moosavi-Dezfooli et al., 2016). This holds even
when the benign example was classified correctly, and the change is imperceptible to a human. Apart
from the security implications, this phenomenon also demonstrates that our current models are not
learning the underlying concepts in a robust manner. All these findings raise a fundamental question:

How can we learn models robust to adversarial inputs?

There are now many proposed defense mechanisms for the adversarial setting. Examples include
defensive distillation (Papernot et al., 2016a; Papernot & McDaniel, 2016), feature squeezing (Xu
et al., 2017), and several detection approaches for adversarial inputs (see Carlini & Wagner (2017) for
references). While these works constitute important first steps in exploring the realm of possibilities,
they do not offer a good understanding of the guarantees they provide. We can never be certain

∗Authors ordered alphabetically.

1

Published as a conference paper at ICLR 2018

that a particular defense mechanism prevents the existence of some well-defined class of adversarial
attacks. This makes it difficult to navigate the landscape of adversarial robustness or to fully evaluate
the possible security implications. Moreover, subsequent work (Carlini & Wagner, 2016a; He et al.,
2017) has shown that most of these defenses can be bypassed by stronger, adaptive adversaries.

In this paper, we study the adversarial robustness of neural networks through the lens of robust
optimization. We use a natural saddle point (min-max) formulation to capture the notion of security
against adversarial attacks in a principled manner. This formulation allows us to be precise about
the type of security guarantee we would like to achieve, i.e., the broad class of attacks we want to
be resistant to (in contrast to defending only against specific known attacks). The formulation also
enables us to cast both attacks and defenses into a common theoretical framework. Most prior work
on adversarial examples naturally fits into this framework. In particular, adversarial training directly
corresponds to optimizing this saddle point problem. Similarly, prior methods for attacking neural
networks correspond to specific algorithms for solving the underlying optimization problem.

Equipped with this perspective, we make the following contributions.

1. We conduct a careful experimental study of the optimization landscape corresponding to this
saddle point formulation. Despite the non-convexity and non-concavity of its constituent
parts, we find that the underlying optimization problem is tractable after all. In particular,
we provide strong evidence that first-order methods can reliably solve this problem and
motivate projected gradient descent (PGD) as a universal “first-order adversary”, i.e., the
strongest attack utilizing the local first order information about the network. We supplement
these insights with ideas from real analysis to further motivate adversarial training against a
PGD adversary as a strong and natural defense.

2. We explore the impact of network architecture on adversarial robustness and find that model
capacity plays an important role. To reliably withstand strong adversarial attacks, networks
require a significantly larger capacity than for correctly classifying benign examples only.
This shows that a robust decision boundary of the saddle point problem can be significantly
more complicated than a decision boundary that simply separates the benign data points.

3. Building on the above insights, we train networks on MNIST and CIFAR10 that are robust
to a wide range of adversarial attacks against adversaries bounded by 0.3 and 8 in ℓ∞
norm respectively. Our approach is based on optimizing the aforementioned saddle point
formulation and uses our optimal “first-order adversary”. Our best MNIST model achieves
an accuracy of more than 89% against the strongest adversaries in our test suite. In particular,
our MNIST network is even robust against white box attacks of an iterative adversary. Our
CIFAR10 model achieves an accuracy of 46% against the same adversary. Furthermore, in
case of the weaker black box (transfer) attacks, our MNIST and CIFAR10 networks achieve
an accuracy of more than 95% and 64%, respectively (a more detailed overview can be
found in Tables 1 and 2). To the best of our knowledge, we are the first to achieve these
levels of robustness on MNIST and CIFAR10 against a broad set of attacks.

Overall, these findings suggest that secure neural networks are within reach. In order to further support
this claim, we have invited the community to attempt attacks against our MNIST and CIFAR10
networks in the form of an open challenge1,2. At the time of writing, we received about fifteen
submissions to the MNIST challenge and the best submission achieved roughly 93% accuracy in
a black box attack. We received no submissions for the CIFAR10 challenge that went beyond the
64% accuracy of our attack. Considering that other proposed defenses were often quickly broken
(Carlini & Wagner, 2017), we believe that our robust models are significant progress on the defense
side. Furthermore, recent work (Carlini et al., 2017) on verifiable adversarial examples showed that
our proposed defense reliably increased the robustness to any ℓ∞-bounded attack.

2 AN OPTIMIZATION VIEW ON ADVERSARIAL ROBUSTNESS

Much of our discussion will revolve around an optimization view of adversarial robustness. This
perspective not only captures the phenomena we want to study in a precise manner, but will also

1https://github.com/MadryLab/mnist_challenge
2https://github.com/MadryLab/cifar10_challenge

2

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge

Published as a conference paper at ICLR 2018

inform our investigations. To this end, let us consider a standard classification task with an underlying
data distribution D over pairs of examples x ∈ R

d and corresponding labels y ∈ [k]. We also assume
that we are given a suitable loss function L(θ, x, y), for instance the cross-entropy loss for a neural
network. As usual, θ ∈ R

p is the set of model parameters. Our goal then is to find model parameters
θ that minimize the risk E(x,y)∼D[L(x, y, θ)].

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding clas-
sifiers with small population risk. Unfortunately, ERM often does not yield models that are robust
to adversarially crafted examples (Goodfellow et al., 2014; Kurakin et al., 2016; Moosavi-Dezfooli
et al., 2016; Tramèr et al., 2017b). Formally, there are efficient algorithms (“adversaries”) that take
an example x belonging to class c1 as input and find examples xadv such that xadv is very close to x
but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment the
ERM paradigm. Instead of resorting to methods that directly focus on improving the robustness to
specific attacks, our approach is to first propose a concrete guarantee that an adversarially robust
model should satisfy. We then adapt our training methods towards achieving this guarantee.

The first step towards such a guarantee is to specify an threat model, i.e., a precise definition of
the attacks our models should be resistant to. For each data point x, we introduce a set of allowed
perturbations S ⊆ R

d that formalizes the manipulative power of the adversary. In image classification,
we choose S so that it captures perceptual similarity between images. For instance, the ℓ∞-ball
around x has recently been studied as a natural notion for adversarial perturbations (Goodfellow et al.,
2014). While we focus on robustness against ℓ∞-bounded attacks in this paper, we remark that more
comprehensive notions of perceptual similarity are an important direction for future research.

Next, we modify the definition of population risk ED[L] by incorporating the above adversary. Instead
of computing the loss L directly on samples from the distribution D, we allow the adversary to
perturb the input first. This gives rise to the following saddle point problem, which is our central
object of study:

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[

max
δ∈S

L(θ, x+ δ, y)

]

. (2.1)

Formulations of this type (and their finite-sample counterparts) have a long history in robust opti-
mization, going back to Wald (Wald, 1939; 1945; 1992). It turns out that this formulation is also
particularly useful in our context. We will refer to the quantity ρ(θ) as the adversarial loss of the
network with parameters θ.

First, this formulation gives us a unifying perspective that encompasses much prior work on adversar-
ial robustness. Our perspective stems from viewing the saddle point problem as the composition of
an inner maximization problem and an outer minimization problem. Both of these problems have a
natural interpretation in our context. The inner maximization problem aims to find an adversarial
version of a given data point x that achieves a high loss. This is precisely the problem of attacking
a given neural network. On the other hand, the goal of the outer minimization problem is to find
model parameters so that the adversarial loss given by the inner attack problem is minimized. This is
precisely the problem of training a robust classifier using adversarial training techniques.

Second, the saddle point problem specifies a clear goal that a robust classifier should achieve, as
well as a quantitative measure of its robustness. In particular, when the parameters θ yield a (nearly)
vanishing risk, the corresponding model is perfectly robust to attacks specified by our threat model.

Our paper investigates the structure of this saddle point problem in the context of deep neural networks.
This formulation will be the main drive of our investigations that will lead us to training techniques
that produce models with high resistance to a wide range of adversarial attacks.

3 TOWARDS ADVERSARIALLY ROBUST NETWORKS

Current work on adversarial examples usually focuses on specific defensive mechanisms, or on
attacks against such defenses. An important feature of formulation (2.1) is that attaining small
adversarial loss gives a guarantee that no allowed attack will fool the network. By definition, no
adversarial perturbations are possible because the loss is small for all perturbations allowed by our

3

Published as a conference paper at ICLR 2018

threat model. This perspective allows us to reduce the task of finding truly robust models to an
optimization problem. Hence, we can now focus our attention solely on obtaining a good solution to
Problem (2.1).

Gradients from attacks. Since Stochastic Gradient Descent (SGD) and its variants are by far the
most successful algorithms for training neural networks, we also want to apply SGD to Problem (2.1).
This raises the question how we can compute gradients ∇θρ(θ) for the outer minimization problem.
Since the adversarial loss function ρ(θ) corresponds to a maximization problem, we cannot simply
apply the usual backpropagation algorithm. Instead, a natural approach is to compute the gradient at
the maximizer of the inner maximization problem. A priori, it is not clear that this is a valid descent
direction for the saddle point problem. However, for the case of continuously differentiable functions,
Danskin’s theorem – a classic theorem in optimization – states that this is indeed true and gradients at
maximizers of the inner problem correspond to descent directions for the saddle point problem (see
Appendix C for details).

Leveraging this connection, our goal now is to find a reliable algorithm for solving the inner
maximization problem, i.e., to evaluate ρ(θ). When instantiated for a batch of examples (instead
of the expectation over the entire distribution D), finding a maximizer δ ∈ S of ρ(θ) corresponds
exactly to finding an attack on the neural network. This allows us to employ known attacks as inner
maximization algorithms. Prior work has proposed methods such as the Fast Gradient Sign Method
(FGSM) and multiple variations of it (Goodfellow et al., 2014). FGSM is an attack for an ℓ∞-bounded
adversary and computes an adversarial example as

x+ ε sgn(∇xL(θ, x, y)).

One can interpret this attack as a simple one-step scheme for maximizing the inner part of the saddle
point formulation. A more powerful adversary is the multi-step variant FGSMk, which is essentially
projected gradient descent (PGD) on the negative loss function (Kurakin et al., 2016):3

xt+1 = Projx+S

(

xt + α sgn(∇xtL(θ, xt, y))
)

.

Loss landscape. While PGD is a well-motivated approach for the inner maximization problem,
it is not clear whether we can actually find a good solution in a reasonable amount of time. The
problem is non-concave, so a priori we have no guarantees on the solution quality of PGD. One
of our contributions is demonstrating that, in practice, the inner maximization problem is indeed
well-behaved. In particular, we experimentally explore the structure given by the non-concave
inner problem and find that its loss landscape has a surprisingly tractable structure of local maxima
(see Appendix A). This structure also points towards projected gradient descent as the “ultimate”
first-order adversary (see Section 5).

Despite the fact that the exact assumptions of Danskin’s theorem do not hold for our problem (the
function is not continuously differentiable due to ReLU activations, and we only compute approximate
maximizers of the inner problem), our experiments suggest that we can still use these gradients to
optimize our problem. By applying SGD using the gradient of the loss at adversarial examples, we
can consistently reduce the loss of the saddle point problem during training (e.g., see Figure 1 in
Section 4). These observations suggest that we reliably optimize the saddle point formulation (2.1)
and thus train robust classifiers.

Model capacity. Before we proceed to our main experiment results in the next section, we briefly
mention another important insight from our robust optimization perspective. Solving the problem
from Equation (2.1) successfully is not sufficient to guarantee robust and accurate classification.
We also require that the value of the problem (i.e., the final loss we achieve against adversarial
examples) is small, which then provides guarantees for the performance of our classifier. In particular,
achieving a very small value corresponds to a perfect classifier, which is robust to adversarial inputs.
In Appendix B, we show experimentally that network capacity plays a crucial role in enabling
robustness. In particular, training a robust classifier requires a significantly larger network than only
achieving high accuracy on natural examples.

3Other methods like FGSM with random perturbation have also been proposed (Tramèr et al., 2017a). All of
these approaches can be seen as specific attempts to solve the inner maximization problem in (2.1).

4

Published as a conference paper at ICLR 2018

4 EXPERIMENTS: ADVERSARIALLY ROBUST DEEP LEARNING MODELS?

Following our understanding developed in the previous section, we can now apply our proposed
approach to train robust classifiers. For both MNIST and CIFAR10, our adversary of choice will be
projected gradient descent starting from a random perturbation around the natural example. As our
experiments suggest (Appendix A) this algorithm is very efficient at reliably producing examples of
(near) maximal loss. In a sense, it seems to correspond to a “ultimate” f irst order adversary. Since
we are training the model for multiple epochs, we did not see any benefit in restarting PGD multiple
times per batch – a new start is chosen each time the same example is encountered.

During the training procedure against the PGD adversary, we observe a steady decrease in the training
loss of adversarial examples, illustrated in Figure 1. This behavior indicates that we are consistently
decreasing the adversarial loss and indeed successfully solving our original optimization problem.

0k 25k 50k 75k 100k
Iterations

0.10

1.00

Lo
ss

 v
al

ue

0k 25k 50k 75k
Iterations

0.01

0.10

1.00

Lo
ss

 v
al

ue

(a) MNIST (b) CIFAR10

Figure 1: Cross-entropy loss on adversarial examples during training. The plots show how the
adversarial loss on training examples evolves during training the MNIST and CIFAR10 networks
against a PGD adversary. The sharp drops in the CIFAR10 plot correspond to decreases in training
learning rate. These plots illustrate that we can consistently reduce the value of the inner problem of
the saddle point formulation (2.1), thus producing an increasingly robust classifier.

We evaluate the trained models against a range of adversaries. We illustrate our results in Table 1 for
MNIST and Table 2 for CIFAR10. The adversaries we consider are:

• White-box attacks with PGD for a different number of of iterations and restarts, denoted by
source A.

• White-box attacks from Carlini & Wagner (2016b). We use their suggested loss function
and minimize it using PGD. This is denoted as CW, where the corresponding attack with a
high confidence parameter (κ = 50) is denoted as CW+.

• Black-box attacks from an independently trained copy of the network, denoted A’.

• Black-box attacks from a version of the same network trained only on natural examples,
denoted Anat.

• Black-box attacks from a different convolution architecture, denoted B, described in Tramèr
et al. (2017a).

MNIST. We run 40 iterations of projected gradient descent as our adversary, with a step size of
0.01 (we choose to take gradient steps in the ℓ∞ norm, i.e. adding the sign of the gradient, since this
makes the choice of the step size simpler). We train and evaluate against perturbations of size ε = 0.3.
We use a network consisting of two convolutional layers with 32 and 64 filters respectively, each
followed by 2× 2 max-pooling, and a fully connected layer of size 1024. When trained with natural
examples, this network reaches 99.2% accuracy on the evaluation set. However, when evaluating
on examples perturbed with FGSM the accuracy drops to 6.4%. Given that the resulting MNIST
model is very robust, we investigated the learned parameters in order to understand how they affect
adversarial robustness. The results of the investigation are presented in Appendix E.

CIFAR10. For the CIFAR10 dataset, we use the two architectures described in B (the original
Resnet and its 10× wider variant). We trained the network against a PGD adversary with ℓ∞ projected

5

Published as a conference paper at ICLR 2018

Table 1: MNIST: Performance of the adversarially trained network against different adversaries
for ε = 0.3. For each model of attack we show the most successful attack with bold. The source
networks used for the attack are: the network itself (A) (white-box attack), an indepentenly initialized
and trained copy of the network (A’), architecture B from Tramèr et al. (2017a) (B).

Method Steps Restarts Source Accuracy

Natural - - - 98.8%

FGSM - - A 95.6%

PGD 40 1 A 93.2%

PGD 100 1 A 91.8%

PGD 40 20 A 90.4%

PGD 100 20 A 89.3%

Targeted 40 1 A 92.7%

CW 40 1 A 94.0%

CW+ 40 1 A 93.9%

FGSM - - A’ 96.8%

PGD 40 1 A’ 96.0%

PGD 100 20 A’ 95.7%

CW 40 1 A’ 97.0%

CW+ 40 1 A’ 96.4%

FGSM - - B 95.4%

PGD 40 1 B 96.4%

CW+ - - B 95.7%

gradient descent again, this time using 7 steps of size 2, and a total ε = 8. For our hardest adversary
we chose 20 steps with the same settings, since other hyperparameter choices didn’t offer a significant
decrease in accuracy. The results of our experiments appear in Table 2. The adversarial robustness of
our network is significant, given the power of iterative adversaries, but still far from satisfactory. We
believe that further progress is possible along these lines by understanding how adversarial training
works and what techniques can complement it leading to robust models.

Table 2: CIFAR10: Performance of the adversarially trained network against different adversaries
for ε = 8. For each model of attack we show the most effective attack in bold. The source networks
considered for the attack are: the network itself (A) (white-box attack), an independtly initialized and
trained copy of the network (A’), a copy of the network trained on natural examples (Anat).

Method Steps Source Accuracy

Natural - - 87.3%

FGSM - A 56.1%

PGD 7 A 50.0%

PGD 20 A 45.8%

CW 30 A 46.8%

FGSM - A’ 67.0%

PGD 7 A’ 64.2%

CW 30 A’ 78.7%

FGSM - Anat 85.6%

PGD 7 Anat 86.0%

Resistance for different values of ε and ℓ2-bounded attacks. In order to perform a broader
evaluation of the adversarial robustness of our models, we run two kinds of additional experiments.
On one hand, we investigate the resistance to ℓ∞-bounded attacks for different values of ε. On the
other hand, we examine the resistance of our model to attacks that are bounded in ℓ2 as opposed
to ℓ∞ norm. The results appear in Figure 2. We emphasize that the models we are examining
here correspond to training against ℓ∞-bounded attacks with the original value of ε = 0.3, for

6

Published as a conference paper at ICLR 2018

MNIST, and ε = 8 for CIFAR10. In particular, our MNIST model retains significant resistance to
ℓ2-norm-bounded perturbations too – it has good accuracy even for ε = 4.5.We provide a sample of
corresponding adversarial examples in Figure 12 of Appendix F. One can observe that some of the
underlying perturbations are large enough that even a human could be confused.

Training Accuracy. It is worth noting our MNIST and (wide) CIFAR10 networks reached 100%
adversarial accuracy on the training set. That is we can fit the training set even against a PGD
adversary of ε = 0.3 and ε = 8 respectively. This shows that the landscape of the underlying
optimization problem is tractable and does not present a significant barrier to our techniques.

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

ε

A
cc

u
ra

cy

0 2 4 6 8

0

20

40

60

80

100

ε
0 5 10 15 20 25 30

0

20

40

60

80

ε
0 20 40 60 80 100

0

20

40

60

80

ε

(a) MNIST, ℓ∞ norm (b) MNIST, ℓ2 norm (c) CIFAR10, ℓ∞ norm (d) CIFAR10, ℓ2 norm

Figure 2: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ε = 0.3 and ε = 8 PGD ℓ∞
adversaries respectively (the training ε is denoted with a red dashed lines in the ℓ∞ plots). We notice
that for ε less or equal to the value used during training, the performance is equal or better.

Running Time. Unfortunately, solving the robust version of the problem instead of the standard
one imposes a significant computational overhead. Standard training requires one forward and one
backward pass through the network for each training batch. Instead, adversarial training with a
k-step PGD adversary, requires additionally k forward and k backward passes through the network to
compute the adversarial version of the training batch. This implies an increase in running time of a
factor of (k + 1). We hope that future research will propose ways to mitigate this drawback.

5 FIRST-ORDER ADVERSARIES.

Our exploration of the loss landscape (Appendix A) shows that the local maxima found by PGD all
have similar loss values, both for normally trained networks and adversarially trained networks. This
concentration phenomenon suggests an intriguing view on the problem in which robustness against
the PGD adversary yields robustness against all first-order adversaries, i.e., attacks that rely only
on first-order information. As long as the adversary only uses gradients of the loss function with
respect to the input, we conjecture that it will not find significantly better local maxima than PGD.
This hypothesis is validated by the experimental evidence provided in Section 4: if we train a network
to be robust against PGD adversaries, it becomes robust against a wide range of other attacks as well.

Of course, our exploration with PGD does not preclude the existence of some isolated maxima with
much larger function value. However, our experiments suggest that such better local maxima are
hard to find with first order methods: even a large number of random restarts did not find function
values with significantly different loss values (see Appendix A). Incorporating the computational
power of the adversary into the threat model should be reminiscent of the notion of polynomially
bounded adversary that is a cornerstone of modern cryptography. There, this classic threat model
allows the adversary to only solve problems that require at most polynomial computation time. Here,
we employ an optimization-based view on the power of the adversary as it is more suitable in the
context of machine learning. After all, we have not yet developed a thorough understanding of the
computational complexity of many recent machine learning problems. However, the vast majority of
optimization problems in ML is solved with first-order methods, and variants of SGD are the most
effective way of training deep learning models in particular. Hence we believe that the class of attacks
relying on first-order information is, in some sense, universal for the current practice of deep learning.

Put together, these two ideas chart the way towards machine learning models with guaranteed
robustness. If we train the network to be robust against PGD adversaries, it will be robust against a
wide range of attacks that encompasses all current approaches.

7

Published as a conference paper at ICLR 2018

In fact, this robustness guarantee would become even stronger in the context of transfer attacks,
i.e., attacks in which the adversary does not have a direct access to the target network. Instead, the
adversary only has less specific information such as the (rough) model architecture and the training
data set. One can view this threat model as an example of “zero order” attacks, i.e., attacks in which
the adversary has no direct access to the classifier and is only able to evaluate it on chosen examples
without gradient feedback. Still, even for the case of zero-order attacks, the gradient of the network
can be estimated using a finite differences method, rendering first-order attacks also relevant in this
context.

We discuss transferability in Appendix D. We observe that increasing network capacity and strength-
ening the adversary we train against (FGSM or PGD training, rather than natural training) improves
resistance against transfer attacks. Also, as expected, the resistance of our best models to such attacks
tends to be significantly larger than to the (strongest) first order attacks.

6 RELATED WORK

Due to the growing body of work on adversarial examples in the context of deep learning networks (Gu
& Rigazio, 2014; Fawzi et al., 2015; Torkamani, 2016; Papernot et al., 2016b; Carlini & Wagner,
2016a; Tramèr et al., 2017b; Goodfellow et al., 2014; Kurakin et al., 2016), we focus only on the
most related papers here. Before we compare our contributions, we remark that robust optimization
has been studied outside deep learning for multiple decades. We refer the reader to Ben-Tal et al.
(2009) for an overview of this field.

To the best of our knowledge, in the context of adversarial examples, an explicit formulation of
the min-max optimization first appeared in Huang et al. (2015), Shaham et al. (2015), and Lyu
et al. (2015). All of these works, however, consider very weak adversaries/methods for solving the
maximization problem, mainly relying on linearizing the loss and performing a single step, similar
to FGSM. These adversaries do not capture the full range of possible attacks and thus training only
against them leaves the resulting classifier vulnerable to more powerful, iterative attacks.

Recent work on adversarial training on ImageNet also observed that the model capacity is important
for adversarial training Kurakin et al. (2016). However, their work was focused on FGSM attacks,
since they report the iterative attacks are too expensive computationally and don’t provide any
significant benefits. In contrast to that, we discover that for the datasets we considered training against
iterative adversaries does result in a model that is robust against such adversaries.

A more recent paper (Tramèr et al., 2017b) also explores the transferability phenomenon. This
exploration focuses mostly on the region around natural examples where the loss is (close to) linear.
When large perturbations are allowed, this region does not give a complete picture of the adversarial
landscape. This is confirmed by our experiments, as well as pointed out by Tramèr et al. (2017a).

Another recent paper (Tramèr et al., 2017a), considers adversarial training using black-box attacks
from similar networks in order to increase the robustness of the network against such adversaries.
However, this is not an effective defense against the white-box setting we consider, since a PGD
adversary can reliably produce adversarial examples for such networks.

7 CONCLUSION

Our findings provide evidence that deep neural networks can be made resistant to adversarial attacks.
As our theory and experiments indicate, we can design reliable adversarial training methods. One of
the key insights behind this is the unexpectedly regular structure of the underlying optimization task:
even though the relevant problem corresponds to the maximization of a highly non-concave function
with many distinct local maxima, their values are highly concentrated. Overall, our findings give us
hope that adversarially robust deep learning models may be within current reach.

For the MNIST dataset, our networks are very robust, achieving high accuracy for a wide range
of powerful adversaries and large perturbations. Our experiments on CIFAR10 have not reached
the same level of performance yet. However, our results already show that our techniques lead to
significant increase in the robustness of the network. We believe that further exploring this direction
will lead to adversarially robust networks for this dataset.

8

Published as a conference paper at ICLR 2018

ACKNOWLEDGMENTS

Aleksander Mądry, Aleksandar Makelov, and Dimitris Tsipras were supported by the NSF Grant
No. 1553428, a Google Research Fellowship, and a Sloan Research Fellowship. Ludwig Schmidt
was supported by a Google PhD Fellowship. Adrian Vladu was supported by the NSF Grants No.
1111109 and No. 1553428.

We thank Wojciech Matusik for kindly providing us with computing resources to perform this work.

REFERENCES

Tensor flow models repository. https://github.com/tensorflow/models/tree/

master/resnet, 2017.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
University Press, 2009.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016a.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. arXiv
preprint arXiv:1608.04644, 2016b.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. arXiv preprint arXiv:1705.07263, 2017.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Ground-truth adversarial examples.
arXiv preprint arXiv:1709.10207, 2017.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial classifica-
tion. In International Conference on Knowledge Discovery and Data Mining (KDD), 2004.

Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to adversarial
perturbations. arXiv preprint arXiv:1502.02590, 2015.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv preprint arXiv:1412.5068, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defenses: Ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701, 2017.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adversary.
arXiv preprint arXiv:1511.03034, 2015.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family for
adversarial examples. In Data Mining (ICDM), 2015 IEEE International Conference on, pp.
301–309. IEEE, 2015.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2574–2582, 2016.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 427–436, 2015.

9

https://github.com/tensorflow/models/tree/master/resnet
https://github.com/tensorflow/models/tree/master/resnet

Published as a conference paper at ICLR 2018

Nicolas Papernot and Patrick D. McDaniel. On the effectiveness of defensive distillation. arXiv
preprint arXiv:1607.05113, 2016.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In Security and Privacy (SP),
2016 IEEE Symposium on, pp. 582–597. IEEE, 2016a.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016,
pp. 372–387, 2016b.

Andras Rozsa, Manuel Günther, and Terrance E. Boult. Towards robust deep neural networks with
BANG. arXiv preprint arXiv:1612.00138, 2016.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing
local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432, 2015.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pp. 1528–1540, 2016.

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. arXiv preprint arXiv:1605.08254, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

MohamadAli Torkamani. Robust Large Margin Approaches for Machine Learning in Adversarial
Settings. PhD thesis, University of Oregon, 2016.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick D. McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017a.

Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D. McDaniel. The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017b. URL
http://arxiv.org/abs/1704.03453.

Abraham Wald. Contributions to the theory of statistical estimation and testing hypotheses. The
Annals of Mathematical Statistics, 10(4):299–326, 1939.

Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pp. 265–280, 1945.

Abraham Wald. Statistical decision functions. In Breakthroughs in Statistics, pp. 342–357. Springer,
1992.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks. arXiv preprint arXiv:1704.01155, 2017.

10

http://arxiv.org/abs/1704.03453

Published as a conference paper at ICLR 2018

A THE LANDSCAPE OF ADVERSARIAL EXAMPLES

The inner problem of the saddle point formulation (2.1) corresponds to finding an adversarial example
for a given network and data point (subject to our attack model). As this problem requires us to
maximize a highly non-concave function, one would expect it to be intractable. Indeed, this is the
conclusion reached by prior work which then resorted to linearizing the inner maximization problem
(Huang et al., 2015; Shaham et al., 2015). As pointed out above, this linearization approach yields
well-known methods such as FGSM. While training against FGSM adversaries has shown some
successes, recent work also highlights important shortcomings of this one-step approach (Tramèr
et al., 2017a).

To understand the inner problem in more detail, we investigate the landscape of local maxima for
multiple models on MNIST and CIFAR10. The main tool in our experiments is projected gradient
descent (PGD), since it is the standard method for large-scale constrained optimization. In order to
explore a large part of the loss landscape, we re-start PGD from many points in the ℓ∞ balls around
data points from the respective evaluation sets.

Surprisingly, our experiments show that the inner problem is tractable after all, at least from the
perspective of first-order methods. While there are many local maxima spread widely apart within
xi + S, they tend to have very well-concentrated loss values. This echoes the folklore belief that
training neural networks is possible because the loss (as a function of model parameters) typically
has many local minima with very similar values.

Specifically, in our experiments we found the following phenomena:

• We observe that the loss achieved by the adversary increases in a fairly consistent way and plateaus
rapidly when performing projected ℓ∞ gradient descent for randomly chosen starting points inside
x+ S (see Figure 3).

0 25 50 75 100
Iterations

0

50

100

150

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

1
2
3
4
5

0 25 50 75 100
Iterations

0
20
40
60
80

0 25 50 75 100
Iterations

0.2

0.3

(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10
Natural training Adversarial training Natural training Adversarial training

Figure 3: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFAR10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the ℓ∞-ball around the same
natural example (additional plots for different examples appear in Figure 11). The adversarial loss
plateaus after a small number of iterations. The optimization trajectories and final loss values are
also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially trained
networks are significantly smaller than on their naturally trained counterparts.

• Investigating the concentration of maxima further, we observe that over a large number of random
restarts, the loss of the final iterate follows a well-concentrated distribution without extreme outliers
(see Figure 4; we verified this concentration based on 105 restarts).

• To demonstrate that maxima are noticeably distinct, we also measured the ℓ2 distance and angles
between all pairs of them and observed that distances are distributed close to the expected distance
between two random points in the ℓ∞ ball, and angles are close to 90◦. Along the line segment
between local maxima, the loss is convex, attaining its maximum at the endpoints and is reduced
by a constant factor in the middle. Nevertheless, for the entire segment, the loss is considerably
higher than that of a random point.

• Finally, we observe that the distribution of maxima suggests that the recently developed subspace
view of adversarial examples is not fully capturing the richness of attacks (Tramèr et al., 2017b).
In particular, we observe adversarial perturbations with negative inner product with the gradient

11

Published as a conference paper at ICLR 2018

MNIST

0 40 80 120 160
Loss value

lo
g(

fre
qu

en
cy

)

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

CIFAR10

0 25 50 75 100
Loss value

lo
g(

fre
qu

en
cy

)

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

Figure 4: Values of the local maxima given by the cross-entropy loss for five examples from the
MNIST and CIFAR10 evaluation datasets. For each example, we start projected gradient descent
(PGD) from 105 uniformly random points in the ℓ∞-ball around the example and iterate PGD until
the loss plateaus. The blue histogram corresponds to the loss on a naturally trained network, while the
red histogram corresponds to the adversarially trained counterpart. The loss is significantly smaller
for the adversarially trained networks, and the final loss values are very concentrated without any
outliers.

of the example, and deteriorating overall correlation with the gradient direction as the scale of
perturbation increases.

B NETWORK CAPACITY AND ADVERSARIAL ROBUSTNESS

For a fixed set S of possible perturbations, the value of the problem (2.1) is entirely dependent on the
architecture of the classifier we are learning. Consequently, the architectural capacity of the model
becomes a major factor affecting its overall performance. At a high level, classifying examples in
a robust way requires a stronger classifier, since the presence of adversarial examples changes the
decision boundary of the problem to a more complicated one (see Figure 5 for an illustration).

Figure 5: A conceptual illustration of “natural” vs. “adversarial” decision boundaries. Left: A set
of points that can be easily separated with a simple (in this case, linear) decision boundary. Middle:
The simple decision boundary does not separate the ℓ∞-balls (here, squares) around the data points.
Hence there are adversarial examples (the red stars) that will be misclassified. Right: Separating
the ℓ∞-balls requires a significantly more complicated decision boundary. The resulting classifier is
robust to adversarial examples with bounded ℓ∞-norm perturbations.

Our experiments verify that capacity is crucial for robustness, as well as for the ability to successfully
train against strong adversaries. For the MNIST dataset, we consider a simple convolutional network
and study how its behavior changes against different adversaries as we keep doubling the size of
network (i.e. double the number of convolutional filters and the size of the fully connected layer).
The initial network has a convolutional layer with 2 filters, followed by another convolutional layer

12

Published as a conference paper at ICLR 2018

with 4 filters, and a fully connected hidden layer with 64 units. Convolutional layers are followed by
2× 2 max-pooling layers and adversarial examples are constructed with ε = 0.3. The results are in
Figure 6.

For the CIFAR10 dataset, we used the Resnet model He et al. (2016); TFM (2017). We performed
data augmentation using random crops and flips, as well as per image standarization. To increase
the capacity, we modified the network incorporating wider layers by a factor of 10. This results in
a network with 5 residual units with (16, 160, 320, 640) filters each. This network can achieve an
accuracy of 95.2% when trained with natural examples. Adversarial examples were constructed with
ε = 8. Results on capacity experiments appear in Figure 6.

We observe the following phenomena:

Capacity alone helps. We observe that increasing the capacity of the network when training using
only natural examples (apart from increasing accuracy on these examples) increases the robustness
against one-step perturbations. This effect is greater when considering adversarial examples with
smaller ε.

FGSM adversaries don’t increase robustness (for large ε). When training the network using
adversarial examples generated with the FGSM, we observe that the network overfits to these
adversarial examples. This behavior is known as label leaking Kurakin et al. (2016) and stems from
the fact that the adversary produces a very restricted set of adversarial examples that the network can
overfit to. These networks have poor performance on natural examples and don’t exhibit any kind
of robustness against PGD adversaries. For the case of smaller ε the loss is ofter linear enough in
the ℓ∞ ball around natural examples, that FGSM finds adversarial examples close to those found by
PGD thus being a reasonable adversary to train against.

Weak models may fail to learn non-trivial classifiers. In the case of small capacity networks,
attempting to train against a strong adversary (PGD) prevents the network from learning anything
meaningful. The network converges to always predicting a fixed class, even though it could converge
to an accurate classifier through natural training. The small capacity of the network forces the training
procedure to sacrifice performance on natural examples in order to provide any kind of robustness
against adversarial inputs.

The value of the saddle point problem decreases as we increase the capacity. Fixing an adver-
sary model, and training against it, the value of (2.1) drops as capacity increases, indicating the the
model can fit the adversarial examples increasingly well.

More capacity and stronger adversaries decrease transferability. Either increasing the capacity
of the network, or using a stronger method for the inner optimization problem reduces the effectiveness
of transferred adversarial inputs. We validate this experimentally by observing that the correlation
between gradients from the source and the transfer network, becomes less significant as capacity
increases. We describe our experiments in Appendix D.

C STATEMENT AND APPLICATION OF DANSKIN’S THEOREM

Recall that our goal is to minimize the value of the saddle point problem

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[

max
δ∈S

L(θ, x+ δ, y)

]

.

In practice, we don’t have access to the distribution D so both the gradients and the value of ρ(θ) will
be computed using sampled input points. Therefore we can consider –without loss of generality– the
case of a single random example x with label y, in which case the problem becomes

min
θ

max
δ∈S

g(θ, δ), where g(θ, δ) = L(θ, x+ δ, y) .

If we assume that the loss L is continuously differentiable in θ, we can compute a descent direction
for θ by utilizing the classical theorem of Danskin.

13

Published as a conference paper at ICLR 2018

MNIST

1 2 4 8 16

0

20

40

60

80

100

Capacity scale

A
cc

u
ra

cy

1 2 4 8 16

0

20

40

60

80

100

Capacity scale
1 2 4 8 16

0

20

40

60

80

100

Capacity scale
1 2 4 8 16

0.01

0.1

1

Capacity scale

A
v
er

ag
e

lo
ss

Natural
FGSM
PGD

CIFAR10
Simple Wide

Natural 92.7% 95.2%
FGSM 27.5% 32.7%
PGD 0.8% 3.5%

Simple Wide

87.4% 90.3%
90.9% 95.1%
0.0% 0.0%

Simple Wide

79.4% 87.3%
51.7% 56.1%
43.7% 45.8%

Simple Wide

0.00357 0.00371
0.0115 0.00557

1.11 0.0218
(a) Natural training (b) FGSM training (c) PGD training (d) Training Loss

Figure 6: The effect of network capacity on the performance of the network. We trained MNIST and
CIFAR10 networks of varying capacity on: (a) natural examples, (b) with FGSM-made adversarial
examples, (c) with PGD-made adversarial examples. In the first three plots/tables of each dataset, we
show how the natural and adversarial accuracy changes with respect to capacity for each training
regime. In the final plot/table, we show the value of the cross-entropy loss on the adversarial examples
the networks were trained on. This corresponds to the value of our saddle point formulation (2.1) for
different sets of allowed perturbations.

Theorem C.1 (Danskin). Let S be nonempty compact topological space and g : Rn × S → R be
such that g(·, δ) is differentiable for every δ ∈ S and ∇θg(θ, δ) is continuous on R

n × S. Also, let
δ∗(θ) = {δ ∈ argmaxδ∈S g(θ, δ)}.

Then the corresponding max-function

φ(θ) = max
δ∈S

g(θ, δ)

is locally Lipschitz continuous, directionally differentiable, and its directional derivatives satisfy

φ′(θ, h) = sup
δ∈δ∗(θ)

h⊤∇θg(θ, δ) .

In particular, if for some θ ∈ R
n the set δ∗(θ) = {δ∗θ} is a singleton, the the max-function is

differentiable at θ and
∇φ(θ) = ∇θg(θ, δ

∗
θ).

The intution behind the theorem is that since gradients are local objects, and the function φ(θ) is
locally the same as g(θ, δ∗θ) their gradients will be the same. The theorem immediately gives us the
following corollary, stating the we can indeed compute gradients for the saddle point by computing
gradients at the inner optimizers.

Corollary C.2. Let δ be such that δ ∈ S and is a maximizer for maxδ L(θ, x+ δ, y). Then, as long

as it is nonzero, −∇θL(θ, x+ δ, y) is a descent direction for φ(θ) = maxδ∈S L(θ, x+ δ, y).

Proof of Corollary C.2. We apply Theorem C.1 to g(θ, δ) := L(θ, x+ δ, y) and S = B‖·‖(ε). We

see that the directional derivative in the direction of h = ∇θL(θ, x+ δ, y) satisfies

φ′(θ, h) = sup
δ∈δ∗(θ)

h⊤∇θL(θ, x+ δ, y) ≥ h⊤h = ‖∇θL(θ, x+ δ, y)‖22 ≥ 0 .

If this gradient is nonzero, then the inequality above is strict. Therefore it gives a descent direction.

A technical issue is that, since we use ReLU and max-pooling units in our neural network architecture,
the loss function is not continuously differentiable. Nevertheless, since the set of discontinuities has

14

Published as a conference paper at ICLR 2018

measure zero, we can assume that this will not be an issue in practice, as we will never encounter the
problematic points.

Another technical issue is that, due to the not concavity of the inner problem, we are not able to
compute global maximizers, since PGD will converge to local maxima. In such cases, we can consider
a subset S ′ of S such that the local maximum is a global maximum in the region S ′. Applying the
theorem for S ′ gives us that the gradient corresponds to a descent direction for the saddle point
problem when the adversary is constrained in S ′. Therefore if the inner maximum is a true adversarial
example for the network, then SGD using the gradient at that point will decrease the loss value at this
particular adversarial examples, thus making progress towards a robust model.

These arguments suggest that the conclusions of the theorem are still valid in our saddle point problem,
and –as our experiments confirm– we can solve it reliably.

D TRANSFERABILITY

A lot of recent literature on adversarial training discusses the phenomenon of transferability Good-
fellow et al. (2014); Kurakin et al. (2016); Tramèr et al. (2017b), i.e. adversarial examples transfer
between differently trained networks. This raises concerns for practical applications, since it suggests
that deep networks are extremely vulnerable to attacks, even when there is no direct access to the
target network.

This phenomenon is further confirmed by our current experiments. 4 Moreover, we notice that the
extent to which adversarial examples transfer decreases as we increase either network capacity or the
power of the adversary used for training the network. This serves as evidence for the fact that the
transferability phenomenon can be alleviated by using high capacity networks in conjunction with
strong oracles for the inner optimization problem.

MNIST. In an attempt to understand these phenomena we inspect the loss functions corresponding
to the trained models we used for testing transferability. More precisely, we compute angles between
gradients of the loss functions evaluated over a large set of input examples, and plot their distribution.
Similarly, we plot the value of the loss functions between clean and perturbed examples for both the
source and transfer networks. In Figure 8 we plot our experimental findings on the MNIST dataset for
ε = 0.3. We consider a naturally trained large network (two convolutional layers of sizes 32 and 64,
and a fully connected layer of size 1024), which we train twice starting with different initializations.
We plot the distribution of angles between gradients for the same test image in the two resulting
networks (orange histograms), noting that they are somewhat correlated. As opposed to this, we see
that pairs of gradients for random pairs of inputs for one architecture are as uncorrelated as they can
be (blue histograms), since the distribution of their angles looks Gaussian.

Next, we run the same experiment on a naturally trained very large network (two convolutional
layers of sizes 64 and 128, and a fully connected layer of size 1024). We notice a mild increase in
classification accuracy for transferred examples.

Finally, we repeat the same set of experiments, after training the large and very large networks against
the FGSM adversary. We notice that gradients between the two architectures become significantly
less correlated. Also, the classification accuracy for transferred examples increases significantly
compared to the naturally trained networks.

We further plot how the value of the loss function changes when moving from the natural input
towards the adversarially perturbed input (in Figure 8 we show these plots for four images in the
MNIST test dataset), for each pair of networks we considered. We observe that, while for the naturally
trained networks, when moving towards the perturbed point, the value of the loss function on the
transfer architecture tends to start increasing soon after it starts increasing on the source architecture.
In contrast, for the stronger models, the loss function on the transfer network tends to start increasing
later, and less aggressively.

4Our experiments involve transferability between networks with the same architecture (potentially with
layers of varying sizes), trained with the same method, but with different random initializations. The reason we
consider these models rather than highly different architectures is that they are likely the worst case instances for
transferability.

15

Published as a conference paper at ICLR 2018

CIFAR10. For the CIFAR10 dataset, we investigate the transferability of the FGSM and PGD
adversaries between our simple and wide architectures, each trained on natural, FGSM and PGD
examples. Transfer accuracies for the FGSM adversary and PGD adversary between all pairs of such
configurations (model + training method) with independently random weight initialization are given
in tables 3 and 4 respectively. The results exhibit the following trends:

• Stronger adversaries decrease transferability: In particular, transfer attacks between two
PGD-trained models are less successful than transfer attacks between their naturally-trained
counterparts. Moreover, adding PGD training helps with transferability from all adversarial
datasets, except for those with source a PGD-trained model themselves. This applies to both
FGSM attacks and PGD attacks.

• Capacity decreases transferability: In particular, transfer attacks between two PGD-
trained wide networks are less successful than transfer attacks between their simple PGD-
trained counterparts. Moreover, with few close exceptions, changing the architecture from
simple to wide (and keeping the training method the same) helps with transferability from
all adversarial datasets.

We additionally plotted how the loss of a network behaves in the direction of FGSM and PGD
examples obtained from itself and an independently trained copy; results for the simple naturally
trained network and the wide PGD trained network are given in Table 7. As expected, we observe the
following phenomena:

• sometimes, the FGSM adversary manages to increase loss faster near the natural example,
but as we move towards the boundary of the ℓ∞ box of radius ε, the PGD attack always
achieves higher loss.

• the transferred attacks do worse than their white-box counterparts in terms of increasing the
loss;

• and yet, the transferred PGD attacks dominate the white-box FGSM attacks for the naturally
trained network (and sometimes for the PGD-trained one too).

Table 3: CIFAR10: black-box FGSM attacks. We create FGSM adversarial examples with ε = 8
from the evaluation set on the source network, and then evaluate them on an independently initialized
target network.

Target
Source

Simple
(natural
training)

Simple
(FGSM
training)

Simple
(PGD

training)

Wide
(natural
training)

Wide
(FGSM
training)

Wide
(PGD

training)

Simple
(natural training)

32.9% 74.0% 73.7% 27.6% 71.8% 76.6%

Simple
(FGSM training)

64.2% 90.7% 60.9% 61.5% 90.2% 67.3%

Simple
(PGD training)

77.1% 78.1% 60.2% 77.0% 77.9% 66.3%

Wide
(natural training)

34.9% 78.7% 80.2% 21.3% 75.8% 80.6%

Wide
(FGSM training)

64.5% 93.6% 69.1% 53.7% 92.2% 72.8%

Wide
(PGD training)

85.8% 86.6% 73.3% 85.6% 86.2% 67.0%

16

Published as a conference paper at ICLR 2018

Table 4: CIFAR10: black-box PGD attacks. We create PGD adversarial examples with ε = 8 for 7
iterations from the evaluation set on the source network, and then evaluate them on an independently
initialized target network.

Target
Source

Simple
(natural
training)

Simple
(FGSM
training)

Simple
(PGD

training)

Wide
(natural
training)

Wide
(FGSM
training)

Wide
(PGD

training)
Simple

(natural training)
6.6% 71.6% 71.8% 1.4% 51.4% 75.6%

Simple
(FGSM training)

66.3% 40.3% 58.4% 65.4% 26.8% 66.2%

Simple
(PGD training)

78.1% 78.2% 57.7% 77.9% 78.1% 65.2%

Wide
(natural training)

10.9% 79.6% 79.1% 0.0% 51.3% 79.7%

Wide
(FGSM training)

67.6% 51.7% 67.4% 56.5% 0.0% 71.6%

Wide
(PGD training)

86.4% 86.8% 72.1% 86.0% 86.3% 64.2%

Table 5: CIFAR10: white-box attacks for ε = 8. For each architecture and training method, we list
the accuracy of the resulting network on the full CIFAR10 evaluation set of 10,000 examples. The
FGSM random method is the one suggested by Tramèr et al. (2017a), whereby we first do a small
random perturbation of the natural example, and the apply FGSM to that.

Model
Adversary

Natural FGSM FGSM random PGD (7 steps) PGD (20 steps)

Simple
(natural training)

92.7% 27.5% 19.6% 1.2% 0.8%

Simple
(FGSM training)

87.4% 90.9% 90.4% 0.0% 0.0%

Simple
(PGD training)

79.4% 51.7% 55.9% 47.1% 43.7%

Wide
(natural training)

95.2% 32.7% 25.1% 4.1% 3.5%

Wide
(FGSM training)

90.3% 95.1% 95.0% 0.0% 0.0%

Wide
(PGD training)

87.3% 56.1% 60.3% 50.0% 45.8%

17

Published as a conference paper at ICLR 2018

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

Figure 7: CIFAR10: change of loss function in the direction of white-box and black-box FGSM
and PGD examples with ε = 8 for the same five natural examples. Each line shows how the loss
changes as we move from the natural example to the corresponding adversarial example. Top: simple
naturally trained model. Bottom: wide PGD trained model. We plot the loss of the original network
in the direction of the FGSM example for the original network (red lines), 5 PGD examples for the
original network obtained from 5 random starting points (blue lines), the FGSM example for an
independently trained copy network (green lines) and 5 PGD examples for the copy network obtained
from 5 random starting points (black lines). All PGD attacks use 100 steps with step size 0.3.

18

Published as a conference paper at ICLR 2018

Source Transfer

Clean 99.2% 99.2%

FGSM 3.9% 41.9%

PGD 0.0% 26.0%

Large network, natural train-
ing

 40 50 60 70 80 90 100 110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer

Clean 99.2% 99.3%

FGSM 7.2% 44.6%

PGD 0.0% 35.0%

Very large network, natural
training

 40 50 60 70 80 90 100 110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer

Clean 92.9% 96.1%

FGSM 99.9% 62.0%

PGD 0.0% 54.1%

Large network, FGSM train-
ing

 40 50 60 70 80 90 100 110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer

Clean 96.4% 97.8%

FGSM 99.4% 71.6%

PGD 0.0% 60.6%

Very large network, FGSM
training

 40 50 60 70 80 90 100 110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 8: Transferability experiments for four different instances (naturally trained large and very
large networks, and FGSM-trained large and very large networks, respectively). For each instance we
ran the same training algorithm twice, starting from different initializations. Tables on the left show
the accuracy of the networks against three types of input (clean, perturbed with FGSM, perturbed
with PGD ran for 40 steps); the first column shows the resilience of the first network against examples
produced using its own gradients, the second column shows resilience of the second network against
examples transferred from the former network. The histograms reflect angles between pairs of
gradients corresponding to the same inputs versus the baseline consisting of angles between gradients
from random pairs of points. Images on the right hand side reflect how the loss functions of the native
and the transfer network change when moving in the direction of the perturbation; the perturbation is
at 1 on the horizontal axis. Plots in the top row are for FGSM perturbations, plots in the bottom row
are for PGD perturbations produced over 40 iterations.

19

Published as a conference paper at ICLR 2018

E MNIST INSPECTION

The robust MNIST model described so far is small enough that we can visually inspect most of its
parameters. Doing so will allow us to understand how it is different from a naturally trained variant
and what are the general characteristics of a network that is robust against ℓ∞ adversaries. We will
compare three different networks: a naturally trained model, and two adversarially trained ones. The
latter two models are identical, modulo the random weight initialization, and were used as the public
and secret models used for our robustness challenge.

Initially, we examine the first convolutional layer of each network. We observe that the robust models
only utilize 3 out of the total 32 filters, and for each of these filters only one weight is non-zero. By
doing so, the convolution degrades into a scaling of the original image. Combined with the bias and
the ReLU that follows, this results in a thresholding filter, or equivalently ReLU(αx− β) for some
constants α, β. From the perspective of adversarial robustness, thresholding filters are immune to any
perturbations on pixels with value less than β − ε. We visualize a sample of the filters in Figure 9
(plots a, c, and e).

Having observed that the first layer of the network essentially maps the original image to three copies
thresholded at different values, we examine the second convolutional layer of the classifier. Again,
the filter weights are relatively sparse and have a significantly wider value range than the naturally
trained version. Since only three channels coming out of the first layer matter, is follows (and is
verified) that the only relevant convolutional filters are those that interact with these three channels.
We visualize a sample of the filters in Figure 9 (plots b, d, and f).

Finally, we examine the softmax/output layer of the network. While the weights seem to be roughly
similar between all three version of the network, we notice a significant difference in the class biases.
The adversarially trained networks heavily utilize class biases (far from uniform), and do so in a way
very similar to each other. A plausible explanation is that certain classes tend to be very vulnerable to
adversarial perturbations, and the network learns to be more conservative in predicting them. The
plots can be found in Figure 10.

All of the “tricks” described so far seem intuitive to a human and would seem reasonable directions
when trying to increase the adversarial robustness of a classifier. We emphasize the none of these
modifications were hard-coded in any way and they were all learned solely through adversarial
training. We attempted to manually introduce these modifications ourselves, aiming to achieve
adversarial robustness without adversarial training, but with no success. A simple PGD adversary
could fool the resulting models on all the test set examples.

20

Published as a conference paper at ICLR 2018

(a) Natural Model First Conv. Layers (b) Natural Model Second Conv. Layer

(c) Public Model First Conv. Layers (d) Public Model Second Conv. Layer

(e) Secret Model First Conv. Layers (f) Secret Model Second Conv. Layer

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 3 2 1 0 1

Figure 9: Visualizing a sample of the convolutional filters. For the natural model (a,b) we visualize
random filters, since there is no observable difference in any of them. For the first layer of robust
networks we make sure to include the 3 non-zero filters. For the second layer, the first three columns
represent convolutional filters that utilize the 3 non-zero channels, and we choose the most interesting
ones (larger range of values). We observe that adversarially trained networks have significantly more
concentrated weights. Moreover, the first convolutional layer degrades into a few thresholding filters.

21

Published as a conference paper at ICLR 2018

0 2 4 6 8
Class

0.050

0.075

0.100

0.125

0.150

0.175

So
ftm

ax
 b

ia
s

natural
public
secret

0.4 0.2 0.0 0.2 0.4
Softmax weight

0

1000

2000

3000

4000
Fr

eq
ue

nc
y

natural
public
secret

(a) Softmax biases for each class (b) Distribution of softmax weights

Figure 10: Softmax layer examination. For each network we create a histogram of the layer’s weights
and plot the per-class bias. We observe that while weights are similar (slightly more concentrated for
the natural one) the biases are far from uniform and with a similar pattern for the two adversarially
trained networks.

22

Published as a conference paper at ICLR 2018

F SUPPLEMENTARY FIGURES

MNIST

0 25 50 75 100
Iterations

0

50

100

150
Lo

ss
 v

al
ue

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

1

2

3

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.0
0.5
1.0
1.5
2.0

0 25 50 75 100
Iterations

0.0

0.5

1.0

0 25 50 75 100
Iterations

1
2
3
4
5

0 25 50 75 100
Iterations

2

4

6

CIFAR10

0 25 50 75 100
Iterations

0

50

100

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0
20
40
60
80

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0

25

50

75

0 25 50 75 100
Iterations

1.2

1.4

1.6

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.2

0.3

0 25 50 75 100
Iterations

0.5
1.0
1.5
2.0
2.5

0 25 50 75 100
Iterations

0.2

0.4

0.6

0 25 50 75 100
Iterations

0.4

0.6

0.8

1.0

Figure 11: Loss function value over PGD iterations for 20 random restarts on random examples. The
1st and 3rd rows correspond to naturally trained networks, while the 2nd and 4th to adversarially
trained ones.

Natural: 9 Natural: 9 Natural: 8 Natural: 8 Natural: 2
Adversarial: 7 Adversarial: 4 Adversarial: 5 Adversarial: 3 Adversarial: 3

Figure 12: Sample adversarial examples with ℓ2 norm bounded by 4. The perturbations are significant
enough to cause misclassification by humans too.

23

	Introduction
	An Optimization View on Adversarial Robustness
	Towards Adversarially Robust Networks
	Experiments: Adversarially Robust Deep Learning Models?
	First-Order Adversaries.
	Related Work
	Conclusion
	The Landscape of Adversarial Examples
	Network Capacity and Adversarial Robustness
	Statement and Application of Danskin's Theorem
	Transferability
	MNIST Inspection
	Supplementary Figures

