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ABSTRACT The use of cutting edge object detection techniques to build an accurate phoneme sequence

recognition system for English and Arabic languages is investigated in this study. Recently, numerous

techniques have been proposed for object detection in daily life applications using deep learning. In this

paper, we propose the use of object detection techniques in speech processing tasks. We selected two

state-of-the-art object detectors, namely YOLO and CenterNet, based on a trade-off between detection

accuracy and speed. We tackled the problem of phoneme sequence recognition using three systems: the

domain transfer learning system (DTS) from image to speech, intra-language transfer leaning system

(IaTS) between speech corpora within the same language (English to English), and inter-language transfer

learning system (IeTS) between speech corpora from dissimilar languages (English to Arabic). For English

phoneme recognition, the Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus is used

to evaluate the performance of the proposed systems. Our IaTS based on the CenterNet detector achieves

the best results using the test core set of TIMIT with 15.89% phone error rate (PER). For Arabic phoneme

recognition, the best performance, with 7.58% PER, was achieved using the CenterNet. These results show

the effectiveness of using object detection techniques in phoneme recognition tasks. Furthermore, based on

the findings of this study, speech processing tasks may be treated as object detection tasks.

INDEX TERMS CenterNet, object detection, phoneme recognition, transfer learning, YOLO.

I. INTRODUCTION

Phoneme recognition plays a dominant part in many applica-

tions such as speech recognition [1], speaker recognition [2],

and pronunciation error detection and correction [3]. With

the success of deep learning techniques for computer vision,

many studies have been conducted on speech processing tasks

by converting speech signals to a visual representation such

as spectrogram [4]. Recently, research efforts have focused

on object detection, which aims to localize the objects on an

image and identify the class of each object [5]. In this paper,

we consider phonemes with their time boundaries as objects

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

in a spectrogram (i.e., image). Hence, we apply object detec-

tion techniques to detect the phonemes in the spectrogram.

In general, object detection techniques can be classified

into two major classes: two-stage detectors and one-stage

detector [6]. The detection process of the two-stage detectors

consists of two steps. In the first step, the image is divided into

candidate regions; then, each region is classified separately.

An example of a two-stage detector is a region-based CNN

(RCNN) [7]. In one stage detectors, the whole image is

fed to the network at once to detect the objects and their

respective bounding boxes. Examples of one-stage detectors

are YOLO [8] and CenterNet [9]. In general, one stage

detectors are faster than two-stage detectors [10]. Owing to

their speeds, modernity and accuracies, YOLO and Center-

Net were investigated in this study for phoneme sequence
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recognition. The speed of the techniques is crucial for real

time applications such as speech recognition. Transfer learn-

ing techniques have been applied in many domains such

as image classification [11], semantic segmentation [12],

and object detection [13] to overcome the lack/imbalance

of training data and accelerate the training process. The

aim of this study is to answer the following research

questions:

Q1: What is the effectiveness of applying object detectors

to phoneme recognition?

Q2: Does intra language transfer learning improve the

recognition accuracy in this type of task?

Q3: Does inter language transfer learning improve the

recognition accuracy in this type of task?

Q4: Can we relate the evaluation metrics of object detec-

tion to the metrics of phoneme recognition?

Our investigation is based on using English and Ara-

bic corpora. To answer the first research question, we pro-

posed the domain transfer learning system (DTS) by adapting

YOLO and CenterNet for the phoneme recognition task using

the Texas Instruments/Massachusetts Institute of Technology

(TIMIT) corpus, which is in the English language. In this

system, Image-Net pre-trained weights, rather than randomly

initializing weights, were used as the initial weights for the

backbone networks of the detectors. To answer the second

research question, the intra-language transfer learning sys-

tem (IaTS) is proposed. TIMIT is a small vocabulary cor-

pus compared to other object detection benchmarks. Hence,

in IaTS, we start by training the detectors of DTS using a

random subset from the LibriSpeech corpus [14], which is

a large English language vocabulary corpus. Subsequently,

we fine-tune and test the detectors using TIMIT. We selected

LibriSpeech because it is a free corpus, and its acoustic

model and lexicon are freely available. To answer the third

research question, we proposed the inter-language transfer

learning system (IeTS). This system aims to study the effect

of transfer learning between English language as a source lan-

guage and the Arabic language as a target language, by fine-

tuning the trained detectors of DTS by a small Arabic corpus.

Finally, to answer the fourth research question, we used

two evaluation metrics to evaluate the performance of the

proposed methods. The first metric, mean average precision

(mAP), is from the object detection domain and the second

metric, Phone Error Rate (PER), is from speech recognition

domain.

To the best of our knowledge, this is the first attempt to use

object detection techniques for phonemes sequence recogni-

tion, except for one study on keyword spotting using the first

version of YOLO [15]. That study was published few months

ago during the development of our study. The rest of this

paper is organized as follows: the related studies are presented

in section II, a detailed research methodology is explained

in section III, and experimental results and analysis are pre-

sented in section IV. Finally, the conclusions are given in

section V.

II. RELATED WORK

As the topic of this study belongs to the object detec-

tion and speech recognition fields, we shall first introduce

state-of-the-art techniques in object detection by exploring

their growth curve from the pre-deep learning era to the

present day and will highlight the most well-known bench-

marks. Then, we shall present diverse related studies on

TIMIT phoneme recognition. Finally, some prior studies

of Arabic Automatic Speech Recognition (AASR) will be

discussed.

A. OBJECT DETECTION

Object detection plays a vital role in many real life appli-

cations, such as face detection and pedestrian detection in

the security field, autonomous driving and traffic sign recog-

nition in the transportation field, flyer detection and topo-

graphic survey in the military field, glaucoma detection and

skin lesion analysis in the medical filed, etc. [5]. The follow-

ing section is mostly inspired from the recent comprehensive

surveys in object detection techniques [5], [6], [10]. Before

the deep learning era, some object detection techniques were

proposed such as Viola Jones detectors [16], the histograms

of oriented gradients detector [17], and discriminatively

trained, multiscale, deformable part model [18], which are

based on hand crafted features. During the evolution of

deep learning and GPU computation, the curve of object

detection techniques has grown rapidly. The deep detectors

can be classified into two categories: one-stage and two-

stage detectors. In two-stage detectors, an image is first

divided into candidate regions and then, each region is fed

to a convolutional neural network (CNN) to extract features,

which are fed to detection layers to identify the class of these

regions. The R-CNN [7], Fast-RCNN [19], Faster-RCNN

[20], SPPNet [21], and Mask-RCNN [22] are examples of

two-stage detectors. On the other hand, one-stage detectors

work by feeding the entire image to a CNN to extract features,

which are then fed to detection layers to predict objects

and bounding boxes. YOLO and its varieties [8], [23], [24],

SSD [25], RetinaNet [26], CornerNet [27], and Center-

Net [9], [28] are examples of one-stage detectors. In terms of

benchmarks, there are different object detection benchmarks.

Pascal VOC 2007 and VOC2012 (20 classes) [29], [30],

ILSVRC (200 classes) [31], MS-COCO (80 classes) [32],

and OID (600 classes) [33] are examples of these

benchmarks.

Most of the object detection techniques that are based

on deep learning consist of two networks, backbone net-

works and detection networks [5]. The backbone network

is used to extract the features, and the detection network

is used to classify the objects and detect the correspond-

ing bounding boxes. The backbone networks are based

on a CNN without fully connected layers. In the litera-

ture, several backbones are used, such as AlexNet [34],

VGG [35], ResNet [36], Darknet-53 [24], deep layer aggre-

gation (DLA) [37], MobileNet [38], and Hourglass [39].
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B. ENGLISH ASR

ASR systems have received considerable attention in the age

of deep learning. Several speech corpora have been released

with small and large vocabularies such as TIMIT [40], Lib-

riSpeech [14], TEDLIUM [41],WSJ [42], andVystadial [43].

TIMIT is a well-known, time-aligned (at word and phone

level) corpus that was designed to develop ASR [44]. TIMIT

is a suitable choice for investigating a new method for speech

recognition because of its extensive publication, simplicity,

and size [45]. Hence, we will briefly discuss the perfor-

mance ofASRusing the TIMIT corpus. Diverse deep learning

architectures have been published for English ASR systems,

such as deep neural networks (DNN), convolutional neu-

ral networks (CNN), recurrent neural networks (RNN), and

attention-based RNN, as described in detail in the following

sections.

1) ENGLISH DNN-BASED ASR

For many decades, conventional ASRs have been developed

using the Gaussian mixture model-hidden Markov model

(GMM-HMM) acoustic model. ASRs based on DNNs have

outperformed those based on the GMM-HMM model for

different speech benchmarks [45]. An acoustic model for

phone recognition based on the deep belief network (DBN)

is proposed in [46]. It outperformed the other conventional

approaches in terms of phone error rate by achieving a 23.0%

PER on TIMIT. A DBN with multiple hidden layers was also

proposed by the same authors in [47] and achieved a 20.7%

PER on TIMIT. Recently, a DNN acoustic model for TIMIT

phone recognition based on multi resolution speech represen-

tation proposed in [48] achieved the best PER of 18.25%.

The performances of a feed forward DNN, time delay neural

network (TDNN), and long short-term memory (LSTM) are

explored in [44] for TIMIT phone recognition, where LSTM-

based phone recognition achieved a PER of 15.02%.

2) ENGLISH CNN BASED ASR

Abdel-Hamid et al. [49] proposed a CNN acoustic model

for TIMIT phone recognition and large vocabulary speech

recognition. They compared the performances of an acoustic

model based on CNN and an acoustic model based on DNN,

and noticed that the model based on the CNN outperformed

that based on the DNN. For TIMIT phone recognition, they

reported 21.87% and 20.17% as an average PERs for the

DNN and CNN-based models, respectively. A hierarchical

CNN based on the maxout activation function instead of

ReLU is proposed in [50] for phone recognition. A PER

of 16.5% was achieved on the TIMIT core test set, which the

authors claimed was the best result that had been achieved

on TIMIT to that date. By replacing the softmax layer in

a CNN by a support vector machine (SVM), Passricha and

Aggarwal [51] developed a convolutional SVM (CSVM)

for speech recognition. They experimented with different

training criterion on TIMIT and reported an overall PER

of 16.9%. SincNet is a novel CNN proposed for speech and

speaker recognition [52]. It achieved a PER of 17.2% for

TIMIT phone recognition, outperforming the standard CNN.

Quaternion values based on a CNN rather than real values was

proposed for TIMIT phone recognition and a PER of 19.64%

was realized [53].

3) ENGLISH RNN BASED ASR

A hybrid model CNN-RNN is proposed for phone recog-

nition and emotion recognition, and accomplished a PER

of 18.0% on a TIMIT core test set [54]. Light gated recur-

rent units (Li-GRU) have been proposed for speech recog-

nition [55]. Experiments were conducted using TIMIT and

other speech corpora, and a PER of 14.9% was attained

using feature-space maximum likelihood linear regression

(fMLLR). An attention-based RNN was applied for a TIMIT

phone recognition task and competitive PER of 17.6% was

achieved [1]. The performance of a combination of Li-GRU

and multi-layer perceptron (MLP) with concatenation of

different features such as mel frequency cepstral coeffi-

cient (MFCC), filter banks (FBANK), and fMLLR using

pytorch-kaldi speech recognition toolkit is presented in [56].

A PER of 13.8% for the TIMIT test set was achieved, which

were the best published results at that time, as mentioned by

authors.

C. ARABIC ASR

Challenges in building Arabic ASR are presented in [57].

An Arabic ASR system for broadcast news transcription is

described in [58]. The experiment was conducted on an Ara-

bic broadcast news corpus containing 7.5 h of recordings;

7 h were used for training and 0.5 h were used for testing.

The reported word error rate (WER) was 10.14% on a test

set of 3585 words and 8.61% for non-vocalized text (text

without diacritical marks). A rule-based method for creating

a pronunciation dictionary for large vocabulary Arabic ASR

was proposed in [59]. The proposed method was evaluated

on a broadcast news corpus with 5.4 h of recordings (4.3 for

training and other remaining for testing). They reported a

WER of 9% using text without diacritical marks. Building

a language model for Holy Quran ASR using CMU Sphinx

4 is investigated in [60]. The authors of [61] proposed spectro-

temporal directional derivative (STDD) feature for high per-

formance Arabic ASR for a serious game. Ten digits from

(1 to 10) were recorded from 50 normal and 70 pathological

speakers. They used the HMM for the acoustic model and

obtained a word accuracy of 99.01%.

The above studies were performed at the word level.

As examples of studies on the Arabic language at the

phoneme level, we present the following. A study on Arabic

speech processing that concentrated on five Arabic conso-

nants phonemes (pharyngeal and uvular), which appear only

in the Arabic language, is presented in [62]. The authors

conducted experiments on the WestPoint Modern Standard

Arabic corpus using the HTK toolkit. They also studied the

effect of non-native speakers on the recognition rate of these

phonemes. The highest recognition rates were for the pharyn-

geal consonants Ain / / and Haa /h̄/ and were 72% and 76.9%,
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respectively. The recognition rates for the uvular consonants

Ghain / /, Qaa /q/, and Khaa /x/ were 64%, 55%, and 86.7%

respectively. Arabic phoneme classification using HMM is

presented in [63]. Experiments were conducted on The Holy

Quran (THQ) corpus, which has been prepared from THQ

recitations and is segmented semi-manually at the phoneme

level. Four systems were designed, namely monophone, left

context biphone, right context biphone, and triphone, and

correction rates of 76.04%, 93.01%, 93.59%, and 92.81%,

respectively, were obtained.

Similar to those of other languages, Arabic ASR systems

using deep learning have received considerable attention

recently. The Arabic ASR system using the Kaldi toolkit

for a large broadcast corpus called GALE, which contains

200 hours of recordings, is presented in [64]. This corpus

contains recordings of broadcast reports and broadcast con-

versations. Different models were proposed, and the best

WERs were obtained using DNN+MPE; they were 15.81%,

32.21%, and 26.95% on the broadcast reports, broadcast

conversations, and broadcast reports with broadcast conver-

sations, respectively.

III. METHODOLOGY

In this section, we discuss in detail the research method-

ology applied in this study, including speech corpora and

evaluation metrics, data preparation, proposed systems, and

training/testing phases. We start by describing in brief the

speech corpora and evaluation metrics that were used in this

study. The data preparation process in which raw waves are

converted into images will be explained.

Then, a general overview of the proposed systems will be

given.We will then explain the training process of YOLO and

CenterNet. The adaptation of these detectors to the phoneme

recognition task is also provided. Each of the two detectors

was used in the DTS, IaTS, and IeTS. For the DTS and

IaTS, we used two backbone networks with each of the two

detectors. For IeTS, we used one backbone network for each

of the two detectors. Finally, we describe the testing process

as well as the post processing used to generate the sequence

of phonemes from the detector’s output. A general overview

of the methodology steps is shown in Figure 1.

A. SPEECH CORPORA

To evaluate the performance of our proposed methods, three

speech corpora are used in this investigation, two from

English language and one from Arabic language. A brief

description of each corpus is presented in this section.

1) TIMIT CORPUS

The TIMIT corpus [65], developed by Texas Instruments

(TI), Massachusetts Institute of Technology (MIT), and the

Stanford Research Institute (SRI), is a well-known and pop-

ular corpus; hence, we used it to investigate our proposed

methods. TIMIT comprises the recordings of 630 speakers.

Each speaker read ten sentences, and the total duration of all

recording is about 5.4 h. TIMIT defined the corpus partition

FIGURE 1. Overview of the proposed methodology.

in the training and test sets as 462 speakers for training set,

24 speakers for core test set, and 168 speakers for complete

test set. In our experiments, we followed the configuration

of the TIMIT defined by Kaldi. The Kaldi configuration

excluded the two dialect sentences SA1 and SA2 from all

sets as suggested in most of the previous studies. We used

48 phones in the training and testing phases, and these phones

were mapped to 39 phones during evaluation as suggested

in [66].

2) LIBRISPEECH CORPUS

The LibriSpeech corpus [14] was used in our study for

the Intra-language transfer learning task. LibriSpeech is

a free corpus that contains the recordings of 1000 hours

of read speech. In our experiments, we randomly selected

the 15.7 h of recordings for training and 3.85 h for val-

idation from 50 speakers from the train-clean-100 subset.

The selected set contains utterances from 26 males and

24 females. We used this corpus to overcome the scarcity

of the data on the TIMIT corpus and to study the effect

of transfer learning within the same language. To adapt the

LibriSpeech corpus to fulfill the requirements of our research,

we had to segment it to the phone level before using it.

To do that, we used an open source force alignment tool

called the Montreal forced aligner (MFA) [67] for the phone

segmentation task. For theMFA to work, it needs the acoustic

model of the language of the speech. MFA developers have

provided an acoustic model for many languages. They used

the entire LibriSpeech corpus to build the acoustic model of

the English language. Hence, this was one of the reasons for

using the LibriSpeech corpus in our study.

3) KSU ARABIC SPEECH CORPUS

The King Saud University Arabic speech corpus [68] is a

rich Arabic corpus owing to the number of speakers of dif-

ferent genders, ages, and nationalities, as well as the number

of different recording environments and texts. In terms of

gender, the corpus contains the recordings of 269 male and

95 female speakers. In terms of nationalities, speakers are

54666 VOLUME 8, 2020



M. Algabri et al.: Towards Deep Object Detection Techniques for Phoneme Recognition

TABLE 1. Arabic phonemes and number of occurrences of each phoneme.

classified to Saudis, non-Saudi Arabs, and non-Arabs. With

regard to recording environments, the recording was done in

three environments (office, soundproof room, and cafeteria).

Each speaker uttered 16 lists that varied between words, sen-

tences, paragraphs, and spontaneous speech. As we needed

segmented data at the phoneme level, in this study, we used

a subset from the KSU corpus that was segmented at the

phoneme level [69]. The total phonemes in this subset was

14413 with a total duration of recording of about 0.47 h. This

small data size encouraged us to study the effect of transfer

learning between different languages. We used 34 Arabic

phonemes listed in [69]. The Arabic phonemes and the cor-

responding symbols and number of samples in the train and

test sets are represented in Table 1.

B. EVALUATION METRICS

We used two metrics to evaluate our proposed systems. The

first one belongs to the object detection domain, and it called

mean average precision (mAP) which is a significant metric

to measure the accuracy of object detection models. The sec-

ond metric is phone error rate (PER) which belongs to the

speech processing domain to evaluate the automatic speech

recognition systems.

1) AVERAGE PRECISION (AP)

The AP is a universal metric that can be used to evaluate

the performances of different systems, such as information

retrieval systems [70], recommender systems [71], and object

detection systems [72]. The AP is computed from the area

under the precision-recall curve [73]. The precision and recall

for each class are calculated using (1) and (2).

Precision =
True Positive

True Positive+ False Positive
(1)

Recall =
True Positive

True Positive+ False Negative
(2)

To classify each predicted bounding box as a true positive,

false positive, and false negative, we need to clarify an impor-

tant term called the intersection over union (IoU), which is

also called a Jaccard index. The IoU is the ratio between

FIGURE 2. Data preparation: a) Speech to image conversion;
b) Annotation file.

the area of intersection and the area of union of a ground

truth bounding box and a predicted bounding box [74]. The

algorithm used to calculate TP and FP using the IoU threshold

is presented in [10]. Then, the AP for each class is computed

as the average of the precision values over the interval of

recall between ‘‘0’’ and ‘‘1’’ [75]. Then, themAP is computed

by the average of the AP over all the classes. In this study,

we used the mAP50 term that means the average of the AP,

which is calculated at an IoU threshold of 0.5.

2) PHONE ERROR RATE (PER)

The word error rate is a popular metric in the speech process-

ing field. For phone-level recognition systems, the word error

rate is called a PER [76]. In our experiments, we used the

HResults analysis tool from the HTK toolkit [77] to calculate

PER, which is computed by (3).

PER = 100 −

[

H − I

N
× 100%

]

(3)

where N represents the number of reference labels, H is the

total number of correct labels, and I represents the number of

insertions. Moreover, we used the correct rate metric for each

phoneme p, which is calculated by (4) [63].

Correct rate(%c) =
Hp

Np − Dp
× 100% (4)

where H = N − S −D, S represents the number of substitu-

tions, and D is a number of deletions.

C. DATA PREPARATION

The purpose of this phase is to convert the raw wave

utterances to images by using a spectrogram. In our work,

phonemes are considered objects within bounding boxes, and

these bounding boxes are given the corresponding annotation.

While in normal speech processing, phonemes are defined

by their start and end times, and this interval is given the

corresponding annotation. This phase consists of two steps: in

the first step, a 3-channel image is generated from the speech

signal. Next, the annotation files that contain the phonemes

and their respective bounding boxes are created as shown

in Figure 2-a and Figure 2-b.
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1) SPEECH TO IMAGE CONVERSION

Usually, the input of object detectors are images containing

one or more objects with their respective bounding boxes.

To use deep object detectors in the field of speech pro-

cessing, we need to represent speech signals as images and

represent the phonemes as objects within the images with

their bounding boxes. The time-frequency signal representa-

tions, such as spectrograms, are frequently used for speech

processing tasks, as described in [78]–[83]. In this work,

we will generate an image with three channels that are the log

Mel-spectrogram and its derivatives (delta and delta-delta),

as in [84].

We used Librosa [85] to generate the logMel-spectrograms

from the speech signals. First, the speech signal is divided

into overlapped frames using 256 samples (16 ms) for the

frame length and 64 samples (4 ms) for the frame stride.

The sampling rate of the signal was 16 kHz. We used the

Hanning window [86]. A Fourier Transform of the windowed

signal was calculated; then the power spectrum was calcu-

lated using (5) [86]:

PS(k) =
1

N 2
|F(k)|2, k = 0, 1, . . . ,N − 1 (5)

The power spectrum was passed through a 32 bandpass filter

so that it could be converted to the Mel scale to calcu-

late the Mel-spectrogram. Then, it was converted to the log

scale (decibel unit). The first and second derivatives were

calculated and appended to create a three-channel image

that was visually displayed as an RGB image. Each channel

was normalized to the range (0,1). The final output was an

image with dimension (number of Mels (height)× number

of frames (width)×3 (channels)), as shown in Figure2-a. For

the TIMIT corpus, the maximum width size of the generated

spectrograms was 1939, and the second one had 1885 frames.

Some detectors require a size that is divisible by 32. Hence,

by zero padding, we padded all channels of images to 1888,

which is the closest number to the average of the two highest

numbers that are divisible by 32. Detectors will resize all

images that have a size greater than 1888. For the Arabic

corpus, we observed that more than 98% of utterances have a

width size less than 512, so we padded all channels of images

to 512.

2) ANNOTATION FILE

In our experiments, we followed the Pascal VOC annotation

format [29, 30]. Once the RGB images are created from the

speech signals, the annotation files are extracted by creating

the bounding boxes of each phoneme. The start and end times

of each phoneme are provided by the phone transcript file,

which is generally supplied with the speech corpora. The

detailed steps of the technique used to create the images

and annotate them is shown in Figure 3. We found the start

and end frames of the phone from the phone transcript files,

the indices of the start and end frames were xmin and xmax

of the bounding box, respectively. We ignore any phoneme

if its width is less than or equal one frame. Given that all

phones have the same Mel-spectrogram height, we used ‘‘0’’

and number of Mels for ymin and ymax of the bounding

box coordinates, respectively. Furthermore, the class label of

each phoneme was occupied inside the annotation files as

shown in Figure2-b, where the bounding box was for a silent

phoneme.

The output of this phase is a database that contains ‘‘images

and annotation files,’’ which is similar to the Pascal VOC and

COCO databases.

D. THE PROPOSED SYSTEMS

We propose three systems, namely DTS, IaTS, and IeTS,

to answer the research questions of this study. In this section,

we give a general overview of the proposed systems.

1) DOMAIN TRANSFER LEARNING SYSTEM (DTS)

In DTS, we used ImageNet pre-trained weights as the initial

weights for the backbone networks. This means that transfer

learning from the image processing task to the speech pro-

cessing task is presented as shown in Figure 4. In the training

phase, the weights of the backbone networks are fine-tuned

by the speech data of the TIMIT corpus in the form of images

of three channels for phoneme recognition.While the weights

of the detection layers are initialized randomly. This system

allows us to evaluate the impact of transfer learning between

the image and speech domains.

2) INTRA-LANGUAGE TRANSFER LEARNING SYSTEM (IaTS)

To overcome the issue of lack of data on the TIMIT corpus,

we proposed a second system that is called IaTS. We inves-

tigated fine-tuning of the backbone networks using a corpus

that is much larger than TIMIT. We chose a subset of Lib-

riSpeech that is three times larger than TIMIT as explained

in speech corpora section. First, as in the previous system,

the weights of the backbone network were initialized using

ImageNet weights. Then, LibriSpeech was used to train the

backbone network and detection layers. The input was speech

data from the LibriSpeech corpus as 3-channel images, and

the output was the sequence of phonemes. Next, the TIMIT

data were used to fine-tune the system for phoneme recog-

nition, where the input were speech data from the TIMIT

corpus as 3-channel images, and the output was the sequence

of TIMIT phonemes. The pipeline of this system is shown

in Figure 5. This system allows us to demonstrate the per-

formance of intra language transfer learning between two

corpora.

3) INTER-LANGUAGE TRANSFER LEARNING SYSTEM (IeTS)

Finally, the third proposed system in this study is IeTS.

The Arabic speech dataset is very small; hence, it cannot

be used to train the system (backbone and detection layers)

from scratch. To address this, we used the weights of DTS,

which was initialized by ImageNet and fine-tuned by TIMIT.

We selected TIMIT as a source language in this system

because it is a well-known corpus with published results and

verified time labelling at the phoneme level.
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FIGURE 3. Data preparation steps.

FIGURE 4. Pipeline of DTS.

FIGURE 5. Pipeline of IaTS.

We started from the network weights of DTS. Then,

the system (backbone network and detection layers) was

fine-tuned using the data from Arabic speech for input and

output. We compared the performances of the first two sys-

tems with published results on TIMIT. This cannot be done

for the IeTS system; therefore, we consider as a baseline

a detector system with backbone networks initialized by

ImageNet. The flow diagram of this system is shown in

Figure 6.

For each of the proposed three systems, we investigated

the use of state-of-the-art object detection techniques, namely

YOLO and CenterNet, with different backbone networks.

In the following sections, the training and testing processes

of all the investigated proposed systems will be discussed.

E. TRAINING YOLO-BASED SYSTEMS

In this section, the adaptation of the YOLO object detec-

tor to phoneme sequence recognition is presented. The

three proposed systems that use the YOLO detector are

DTS-YOLO, IaTS-YOLO, and IeTS-YOLO, as shown in

Figure 7. We investigated the use of two models of the
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FIGURE 6. Pipeline of IeTS and its baseline model.

FIGURE 7. YOLO detector of the three proposed systems.

YOLO detector, which are YOLOv3 and YOLOv3-tiny (with

three scales). We used DarkNet-53 as the backbone network

for YOLOv3, and DarkNet-reference as the backbone net-

work for YOLOv3-tiny. For the last system (IeTS), we inves-

tigated the use of one model, that is, YOLOv3-tiny using a

DarkNet-reference backbone. Figure 7 shows the proposed

systems and the proposed models of each system.

1) BACKGROUND OF YOLO AND BACKBONE NETWORKS

The DarkNet framework is an open source framework devel-

oped by Josep Redmon to train YOLO detectors and perform

other tasks. Darkent is fast, designed to support GPUs and

CPUs, easy to install, and written in C and CUDA [87].

A variant of the DarkNet that was actively developed byAlex-

eyAB’s GitHub fork [88] was used to train YOLO detectors.

As already mentioned, YOLO is a real-time one-stage

object detector. Different versions of YOLO with different

backbone networks exist. The first version was presented

in 2015 and is called YOLOv1[8]. A faster version called Fast

YOLO was proposed and contained a very small backbone

network [8]. Chronologically, the YOLO team introduced a

new version called YOLOv2 [23] by making some improve-

ments on the previous model. These improvements were done

TABLE 2. YOLO loss function [8], [89].

by increasing the input resolution, using the batch normaliza-

tion for each convolutional layer, and using the Anchor boxes.

Moreover, they proposedYOLO9000 version, which is a real-

time object detection technique for more than 9000 cate-

gories. More details about the improvements are presented

in [23]. Recently, the YOLO team announced a new model

called YOLOv3 as presented in [24] andmademore enhance-

ments to increase the accuracy and maintain the detection

performance in real-time aswell. They also proposed a deeper

and more accurate backbone network called DarkNet-53,

which has 53 convolutional layers. Compared to the resid-

ual networks, the authors stated that ‘‘Darknet-53 is better

than ResNet-101 and 1.5× faster. Darknet-53 has a similar

performance to ResNet-152 and is 2× faster". Furthermore,

they made the prediction through three different scales to

improve the performance of the detection. YOLOv3 supports

multi-label classification by replacing the softmax by an inde-

pendent logistic classifiers and using binary cross entropy

loss for class predictions. YOLO is optimized in an end-to-

end manner, and the loss consists of three parts as presented

in [8] and explained in [89]. These parts are classification loss

(CL), localization loss (LL), and objectness loss (OL). Hence,

the YOLO loss function is described as a sum of all the three

parts as tabulated in Table 2.

2) YOLO TRAINING FOR DTS (DTS-YOLO)

We started by training the YOLOv3-tiny model for TIMIT

phoneme sequence recognition. YOLOv3-tiny uses a small

backbone network that is called a DarkNet-Reference, which

is pre-trained by ImageNet. DarkNet-Reference is a CNN

with fewer parameters than AlexNet, and on a par with

AlexNet in terms of performance [90]. It has 13 consecutive

convolutional and pooling layers, and achieved 61.1 and

83.0 for Top-1 and Top-5 accuracy on ImageNet, respectively.
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FIGURE 8. Training loss and mAP of YOLOv3-tiny for DTS-YOLO
[ImageNet -> TIMIT].

We followed the same training strategy in the original

paper of YOLO [8], where, as stated by the authors, extensive

data augmentation was used to avoid overfitting. In our case,

we used the same proposed data augmentation process, but

the color, rotation, and flip augmentation functions were

disabled because, after a lot of experiments the detection

accuracy was decreasing rapidly with these augmentations.

This was probably because our pixels are not real color

codes; rather, they are a concatenation of three arrays that

are represented as an RGB image. Furthermore, the rotation

and flip augmentation functions changed the semantic mean-

ing of the spectrogram unlike computer vision which is a

semantic-preservation deformation [91].

We used the following training parameters: 0.001 for the

learning rate, 0.9 for momentum, 0.0005 for decay, 64 for

batch size, and 30,000 for the number of iterations. For the

last 15% iterations, the learning rate was reduced by 10×.

The loss curve of the TIMIT training set and the mAP of the

TIMIT validation set are shown in Figure 8. We achieved an

mAP of 0.65 at IoU = 0.5 after 30,000 iterations as shown on

the left y-axis.

Furthermore, we plotted the log of the YOLO loss on the

right y-axis. The x-axis represents the number of iterations.

We also investigated the DTS-YOLO using the YOLOv3

model with DarkNet-53 for a backbone network. The training

parameters were similar to those used to train YOLOv3-tiny.

We obtained the training loss curve and mAP perfor-

mance shown in Figure 9. This model outperformed the

previous tiny model and achieved nearly 0.75 in terms of

mAP for the TIMIT validation set with a 15.3% improvement

percentage.

3) YOLO TRAINING FOR IATS (IaTS-YOLO)

We started by training the YOLOv3 and YOLOv3-tiny mod-

els using the LibriSpeech corpus with training parame-

ters similar to those of DTS-YOLO for 20,000 iterations.

Then, we fine-tuned the models using the TIMIT corpus

for another 10,000 iterations. Figure 10 shows the train-

ing loss and mAP for the YOLOv3-tiny. From the figure,

we can see the mAP increased from 0.65 for DTS-YOLO

to around 0.70 for IaTS-YOLO after only 10,000 itera-

tions. This enhancement is due to adding the LibriSpeech

FIGURE 9. Training loss and mAP of YOLOv3 for DTS-YOLO
[ImageNet -> TIMIT].

FIGURE 10. Training loss and mAP for YOLOv3-tiny, for IaST-YOLO
[ImageNet -> LibriSpeech -> TIMIT].

FIGURE 11. Training loss and mAP of YOLOv3 for IaTS-YOLO
[ImageNet -> LibriSpeech -> TIMIT].

pre-trained weights to the TIMIT phoneme sequence recog-

nition task.

We repeated the experiment using YOLOv3 with the same

training parameters and same number of iterations for Lib-

riSpeech and TIMIT. The training loss and mAP curve are

presented in Figure 11. The mAP of this model starts at

0.44 and reaches approximately 0.80, which is the best

value achieved. This performance is better than that of the

same model of a previous system (DTS-YOLO), where mAP

started at 0.15 and reached 0.75 after 30,000 iterations as

shown in Figure 9.

This performance indicates the benefit of using transfer

learning between LibriSpeech and TIMIT corpora.
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FIGURE 12. Training loss and mAP for YOLOv3-tiny for IeTS-YOLO
[ImageNet -> TIMIT -> ARABIC].

4) YOLO TRAINING FOR IeTS (IeTS-YOLO)

IeTS-YOLO aims to study the effect of transfer learning from

English to Arabic. Our Arabic corpus is small, and its classes

are fewer than those of the TIMIT corpus as we presented in

section III.A.3. Therefore, we investigated the use of only the

tiny model of YOLO from DTS-YOLO for Arabic phoneme

sequence recognition. We transferred the weight of the layers

of the backbone network for DTS-YOLO to this system and

we fine-tuned it using the small Arabic corpus. We used the

training parameters of IaTS-YOLO. The curves of training

loss and mAP are shown in Figure 12. We can clearly see that

we achieved a high mAP of 0.87 after only 10,000 iterations.

F. TRAINING CENTERNET-BASED SYSTEMS

In addition to YOLO, we propose using another cutting

edge and recently published object detector called CenterNet,

which depends on the key points estimation strategy. Hence,

in this phase, we discuss applying the CenterNet detector to

the English and Arabic phoneme sequence recognition task

using the three proposed systems, as for YOLO. We start

this section by giving a brief background of the CenterNet

detector. Then, the training process of the three proposed

systems is presented in Figure 13. We investigated use of the

two backbone networks of CenterNet, namely ResNet-18 and

DLA-34.

1) BACKGROUND

Similar to YOLO, CenterNet is a one-stage detector that

depends on keypoints estimation networks. It does not need

to use prior anchors, as in the case of YOLOv3, and it

does not require post processing after the detection process.

CenterNet is presented in [9]. The authors proved that their

detectors were faster, simpler, more accurate than bounding

box based detectors, and could run in real time. We there-

fore considered it in our research. CenterNet starts to detect

the object from the object center point and regresses the

object size. The middle frames of phonemes are important in

speech processing systems [92]. From the acoustic point of

view, middle frames are more stable than other frames [93].

As CenterNet starts from the object center, it was an excel-

lent candidate to use for phoneme recognition. The authors

FIGURE 13. CenterNet detector for three proposed systems.

TABLE 3. Centernet loss function [9].

conducted experiments with four different backbone architec-

tures, ResNet-18, ResNet-101, DLA-34, and Hourglass-104,

which are different from the backbones used with YOLO.

Our choice of backbone network depended on a tradeoff

between accuracy and speed. Thus, we selected, for our

phoneme sequence recognition task, two networks to exam-

ine, the ResNet-18 and the DLA-34.

Residual networks were proposed by He et al. [36] to solve

the difficulties in training deeper neural networks. These

networks won first place in many visual recognition chal-

lenges such as ILSVRC and COCO. Different architectures

were proposed with different numbers of layers, such as

18 layers, 34 layers, 50 layers, 101 layers, and 152 layers.

ResNet has also been used for pose estimation. For this

purpose, up-convolutional layers have been added after the

last convolution stage in ResNet as proposed in [94]. Further-

more, the creators of the CenterNet detector modified ResNet

for pose estimation by adding a deformable convolutional

layer [95] before each up-convolutional layers.
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The other backbone network is called deep layer

aggregation (DLA). DLAwas proposed byYu et al. [37] as an

aggregation technique for fusing representations of network

layers. They proposed two architectures of deep aggregation,

iterative and hierarchal deep aggregation, and applied DLA

networks for classification, dense prediction (e.g. semantic

segmentation), etc. The creators of the CenterNet detector

have used DLA for dense prediction with some adjustments,

including adding extra skip connections and modifying the

up-sampling layers in DLA by replacing convolutional layers

with deformable convolutional layers.

The CenterNet detector depends on the keypoints

estimation.

Therefore, backbone networks are used for generate a

heatmap from the input image, and the center of each objects

is found by the peaks of the heatmap. In our case, image with

size (# frames × #mels × 3) is fed to the backbone network

to produce a keypoints heatmap of size ((# frames/R) ×

(#mels/R)×C), where (R = 4) is the output stride mentioned

in the original paper [9], and C is the number of classes

(48 for TIMIT corpus and 34 for Arabic corpus). To train

the keypoints estimation network, the ground truth keypoint

p is transformed to the lower size of the keypoint heatmap

(p̃) = ⌊p/R⌋ using a Gaussian kernel as shown in [9].

In addition to the keypoints estimation, CenterNet predicts

the local offset, which is important for overcoming the error

caused by reducing the size of the input image to the size

of a keypoints heatmap. Finally, the size of each object is

predicted by regressing the object size from the center points.

Hence, the CenterNet loss function is a sum of three compo-

nents: keypoints loss Lkeypoints, offset loss Loffset , and object

size loss Lsize. The equation of each loss part is presented in

Table 3, which is taken from the original paper [9]. We used

γoffset = 1 and γsize = 0.1 as suggested by the authors.

2) CENTERNET TRAINING FOR DTS (DTS-CENTERNET)

In the training phase, we followed the training process of the

original paper on CenterNet [9] with somemodification of the

parameters.We attempted to use the same training parameters

of the YOLO models as much as possible to make a fair

comparison. We disabled the color augmentation as we had

during YOLO training. The models were trained with a batch

size of 16 and for 48 classes for English and 34 classes for

Arabic. We used the following training parameters: number

of epochs= 140, leaning rate= 0.001, and learning reduction

(10x at 90 and 120 epochs). All losses were trained using the

Adam optimizer. FIGURE 14 shows the CenterNet loss in

the training phase for the two models: CenterNet-ResNet and

CenterNet-DLA.We can clearly see that the loss convergence

of the DLA performed better than ResNet.

3) CENTERNET TRAINING FOR IaTS (IaTS-CENTERNET)

In this system, we trained the CenterNet models using a

LibriSpeech corpus for 50 epochs without learning rate

reduction. Then, in the second phase, we fine-tuned the

models using the TIMIT corpus for another 70 epochs with a

FIGURE 14. Training loss of CenterNet with backbones (ResNet and DLA),
for DTS [ImageNet -> TIMIT].

FIGURE 15. Training loss of CenterNet with backbones (ResNet and DLA),
for IaTS [ImageNet -> LibriSpeech -> TIMIT].

10× learning rate reduction at 45 and 60 epochs.

We used training parameters similar to those used in the

DTS-CenterNet experiment. The training losses of the mod-

els are shown in Figure 15. We can see that the

CenterNet-DLA loss decreased from 2.07 to 0.28 after

70 epochs, showing better convergence compared to the

DTS-CenterNet, which was presented in Figure 14.

4) CENTERNET TRAINING FOR IeTS (IeTS-CENTERNET)

In this model, we used the CenterNet detector for the Ara-

bic phoneme recognition task. We investigated using only

the DLA backbone network for the CenterNet detector. The

pre-trained weights of the DLA were transferred from the

DTS-CenterNet to this system to examine the effectiveness

of transfer learning between English and Arabic languages.

We used training parameters similar to those of the DTS-

CenterNet. The training loss is shown in Figure 16.

G. TESTING THE PROPOSED SYSTEMS

The input of the testing phase is similar to the input of the

training phase, which is a three-channel image of the speech

signal for each utterance on the test set. The image of the

entire utterance is fed to the trained detectors without any
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FIGURE 16. Training loss of CenterNet using DLA backbone, for IeTS
[ImageNet -> TIMIT -> ARABIC].

time labelling as shown in Figure 17-a. Figure 17-b shows the

output of the YOLOv3-IaTS system for sentence SX388 of

speaker MTAS1 on the TIMIT core test set (after the

mapping to 39 phonemes). The sequence of phonemes of

the output detectors is written more clearly and shown in

Figure 17-c. The corresponding output of the post processing

is shown in Figure 17-d. The sequence of the phonemes after

post-processing is written in a clearer form and shown in

Figure 17-e. The reference phonemes with their bounding

boxes are shown in Figure 17-f, and they are written in a

clearer form in Figure 17-g.

As we can see from Figure 17-b, the output of the detector

might have an overlap between bounding boxes of different

classes. The overlap might be between bounding boxes of

the same class or bounding boxes of different classes. This

is acceptable in the object detection domain. In the object

detection field, the researchers solve this by accepting an

overlap between bounding boxes of different classes, while

for an overlap between bounding boxes of the same class,

they choose the bounding box with the highest confidence

score using the NMS algorithm [96]. In our case, there should

be no overlap between the bounding boxes of the phonemes,

and phonemes should follow each other. Hence, we apply

NMS and take the bounding box of the highest confidence

score among all classes as shown in Figure 17-d. Then,

the PER is calculated between the reference sequences of

phonemes and the predicted output after post-processing,

without using a language model. The calculated PER is

22% with the post processing step and is 28% without post

processing.

IV. RESULTS AND DISCUSSION

First, we present the performance of the domain trans-

fer learning system (DTS) for TIMIT phoneme sequence

recognition. Then, the performance of intra-language trans-

fer learning (IaST) between LibriSpeech and TIMIT for

the TIMIT phoneme recognition task is presented. Finally,

the performance of inter-language transfer learning (IeTS)

between English and Arabic for Arabic phoneme sequence

recognition task is presented.

TABLE 4. mAP and PER of DTS using TIMIT core test set.

A. DOMAIN TRANSFER LEARNING SYSTEM (DTS)

We evaluated YOLO and CenterNet detectors for the

phoneme sequence recognition task using our proposed DTS

system. The performance of the system in this experiment is

presented in Table 4. Four models were evaluated: two with

YOLO detectors, which are presented in the first two rows,

and twomodels with the CenterNet detectors are shown in the

last two rows. All the models were evaluated using the TIMIT

core test set. From Table 4, we can observe that YOLOv3 and

CenterNet-DLA had almost the same values in terms of mAP.

In terms of PER, CenterNet-DLA outperformed all other

detectors by achieving a PER of 19.06%. The obtained PER

results were 28.25%, 20.2%, 21.09%, and 19.06%, respec-

tively, and the mAP results were 63.60, 73.25, 69.79, and

73.41, respectively, for YOLOv3-tiny, YOLOv3, CenterNet-

ResNet, and CenterNet-DLA. Hence, we can observe that the

mAP is inversely proportional to the PER. Moreover, we can

observe that keypoint-based detectors (i.e., CenterNet) out-

performed the bounding box-based detectors (i.e., YOLO) in

the phoneme sequence recognition task.

B. INTRA-LANGUAGE TRANSFER LEARNING SYSTEM

(IaTS)

The best (lowest) PER in the previous system was 19.06%,

which is higher than those of the best state-of-the-art methods

but comparable to other state-of-the-art methods. This was

encouraging to us, so we investigated whether we could

improve on this by using Intra-language transfer learning

between different English corpora as in the IaTS. The perfor-

mance of the IaTS is presented in Table 5. We observed that

the PER significantly decreased for theDTS especially for the

YOLOv3 and CenterNet-DLAmodels, which achieved PERs

of 16.34% and 15.89%, respectively.

As in the DTS system, the CenterNet-DLA achieved the

best performance with PER = 15.89% (16.6% improvement

from the DTS). This improvement was attributed to the power

of transfer learning between LibriSpeech and the TIMIT

corpora. Because, the YOLO detector depends on prede-

fined anchors, unlike the CenterNet detector, we achieved

the highest mAP using the YOLOv3 detector, which sug-

gests that bounding box-based detectors can outperform the

keypoint-based detectors in terms of mAP. For our task,
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FIGURE 17. Process of testing phase.

TABLE 5. mAP and PER of IaTS using TIMIT core test set.

PER is more important than mAP; hence, CenterNet-based

systems have better performances than YOLO-based

systems. We also observed that PER is inversely proportional

to the mAP but only for the same systems, while in the DTS

system, it was inversely proportional in general, as shown

on Table 5.

The confusion matrix of the 39 phonemes (classes) of the

TIMIT corpus when the system with the best performance,

CenterNet-DLA, is used is presented in Figure 18. We can

clearly see that most of the phonemes were classified cor-

rectly with high confidence. Furthermore, we notice that the

confused phonemes have the same articulatory features. For

example, phoneme /m/ is confused with phoneme /n/, as both

have the same nasal manner, both are anterior and voiced,

and the place of articulation of phoneme /m/ is labial, while
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FIGURE 18. Confusion matrix of TIMIT phonemes using CenterNet-DLA
model of IaTS.

FIGURE 19. Percentage of correctness of each TIMIT phoneme using four
proposed models in IaTS.

that of phoneme /n/ is a coronal. Furthermore, phoneme /z/

is confused with phoneme /s/, as both have the same place

of articulation (coronal) and the same fricative classes [97].

Moreover, the confusions between vowels is more than the

other phonemes. For example, phoneme /ih/ is confused with

phonemes /ah/, /eh/, and /iy/. Furthermore, phoneme /uh/ is

highly confused with phoneme /ah/.

The correct rate of each phoneme is calculated for all

four detectors as shown in Figure 19. Most of phonemes

have a correction rate greater than 80%. We can see that

CenterNet-DLA outperforms all other detectors, and when it

is used, more than 50% of the phonemes have a correction

rate greater than 90%.

Using the CenterNet-DLA model, all the phonemes

achieved a correct rate of more than 80%, except /uh/, /eh/,

TABLE 6. PER comparison between state-of-the-art and proposed IaTS.

/ae/, /uw/, /th/, /ah/, and /ow/. All of these phonemes are vow-

els, except /th/. This observationmay open a new direction for

future work to examine different features instead of the Mel

spectrogram to enhance the recognition of vowels.

C. COMPARISON OF PROPOSED IaTS WITH

STATE-OF-THE-ART METHODS

Experiments of TIMIT phone sequence recognition have

been conducted and discussed in previous sections. Now,

we compare the performance of our best proposed models

using our proposed systems with state-of-the-art. Previous

studies on TIMIT phoneme recognition can be grouped into

two categories. The first category used audio files and their

transcripts, at the training and testing phases, without using

the time boundaries of the phones. While the second category

used phone time boundaries at train and test phases. In our

work, we tackled the problem differently, ourmodels required

time boundaries only at the training level, while at the testing

phase, only the audio of the whole utterance is required,

aiming to predict the phonemes and their time boundaries.

Hence, our comparison is with the first category, as presented

in Table 6. We want to mention that most of the first category

methods need a language model to work while our proposed

methods work without a language model.

From Table 6, we notice that our CenterNet-DLA model

performs better than most (75%) of state-of-the-art methods

except three methods.We discuss here the difference between

our models and the best three approaches. Firstly, the DNN

model proposed in the paper [44] achieved 15.02% PER

using LSTM. This was done using a bi-gram language/phone

model for decoding. Pytorch-kaldi toolkit [56] reached 13.8%

PER, which was the best published result for that time in

TIMIT phone recognition task. This result is realized by

a combination of different networks such as Li-GRU and

MLP and combination of different features such as MFCC,
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FBANK, and fMLLR. For decoding, an n-gram language

model was used. Lastly, the best result up to date for TIMIT

phone recognition was reported by Speech-XLNET [99].

Speech-XLNET achieved 13.3% PER on TIMIT core test

set using self-attention network (SAN). Pre-training was

conducted using three large unlabeled corpora namely Lib-

riSpeech, TED-LIUM release2, and WSJ-si284 using four

GPUs (Tesla M40). They used a bigram phone language

model for decoding.

The main goal of our work is investigating the use of object

detection techniques for phoneme recognition task and we

found that it gave an excellent results and outperformedmany

state of the art systems. The systems that outperformed our

proposed systems used many features that we did not use.

For example, all of them used language model while in our

case we did not use a language model. Some of them used

combination of different speech features, while we used only

Mel spectrogram and its derivatives. The one with the best

performance used pre-training with a three large corpora.

Likewise, we observe that the proposed YOLOv3 model

is on a par with most of stat-of-the-art models such as

[50, 51, 100] and outperforms many of cutting edge models

such as [1], [48], [52], [53].

D. INTER-LANGUAGE TRANSFER LEARNING SYSTEM

(IeTS)

We used a subset from the KSU Speech corpus that

researchers have published results on [69]. The authors used

a subset of the KSU corpus that contains utterances from

native and non-native speakers.We compared our results with

the results of the best experiments in [69] (Experiment 5.b).

For training, the authors used 32 native speakers (16 were

time labeled) and 5 time-labeled nonnative speakers. For

testing, they used 11 non-native speakers. In our experiment,

we needed only the time-labelled speakers. For the native

speakers, we found only the data for 15 of the 16 speakers they

used. Hence, in our work, we used only 15 native speakers and

5 nonnative speakers for training (time labeled) and 11 nonna-

tive speakers for testing (non-time labeled). Table 7 shows the

performance of the proposed models with TIMIT pre-trained

weights and the performance of the baselines of the ImageNet

pre-trained weights as defined in section III.D.3.

From Table 7, we can see the our proposed systems

achieved an excellent PER result compared to the traditional

method [69]. Comparing our proposed systems with the base-

lines, the proposed YOLO based system has a slightly better

performance (around 1%) than the YOLO-based baseline

with regards to the PER and an mAP of around 2%. For the

CenterNet-based system, there was not much of a difference

between the results of the proposed system and the corre-

sponding baseline. We cannot argue that there is no effect

by applying transfer learning between dissimilar languages

duo to the small size of test set of an Arabic speech corpus.

The confusion matrix of 34 Arabic phonemes for the best

model, which is a CenterNet-DLA, is presented in Figure 20.

TABLE 7. mAP and PER for KSU arabic speech corpus.

FIGURE 20. Confusion matrix of Arabic phoneme recognition using the
CenterNet-DLA model of IeTS.

FIGURE 21. Correction rate of Arabic phonemes using the CenterNet-DLA
model.

We notice that confusion occurred with phonemes that have

similar articulatory features. For example, the phone /D/ is

confused with phone /∼Z/ and the two phones are emphatic

and voiced and very near in place of articulation. Further-

more, the phone /T/ is confused with phone /t/, as both are
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stops and have the same place of articulation (alveo-dental);

furthermore, both are unvoiced, and while /T/ is emphatic,

/t/ is non-emphatic. Phone /S/ is confused with phone /s/,

as both are fricatives and have the same place of articulation

(alveo-dental); furthermore, both are unvoiced, and while /S/

is emphatic, /s/ is non-emphatic [62].

The correct rate of each phoneme is calculated for the

best model, CenterNet-DLA, and presented in Figure 21. All

phonemes have a correction rate greater than 90%, except

five phonemes, which are /D/, /∼Z/, /T/, /S/, and /d/. From

the 34 phonemes, 20 phonemes (58.8%) achieved a correc-

tion rate greater than 95%. This excellent result shows the

effectiveness of our third proposed IeTS system.

V. CONCLUSION

In this study, we proposed and investigated the use of object

detection techniques for phoneme sequence recognition.

We selected two state-of-the art real-time detectors, YOLO

and CenterNet, and adapted them to phone sequence recog-

nition in the English and Arabic languages. To overcome the

scarcity of training data, three systems (DTS, IaTS, and IeTS)

were proposed using different transfer learning scenarios.

Two evaluation metrics, one from the speech recognition area

and another from the object detection domain, were used

to evaluate the performance of the proposed systems. For

English phoneme recognition, we conducted the experiments

on the TIMIT corpus. The results showed the effectiveness

of using object detection techniques for phoneme sequence

recognition. A comparison of 12 state-of-the-art methods for

TIMIT phone recognition was presented, and our method

outperformed most of those state-of-the-art techniques. For

Arabic phoneme recognition, a subset of the KSU speech

corpus was used. We compared our results with the avail-

able published results. Two models were examined and they

outperformed the published results. From the results of the

proposed systems, we can conclude that object detection

techniques can be applied successfully to speech recognition

tasks, especially to phoneme sequence recognition. Further-

more, transfer learning between corpora within the same lan-

guage or between corpora from different languages improved

the results.

In future work, we will investigate the effect of adding a

language model to the proposed system. We anticipate this

enhancement will produce better results and the resultant

systemmay outperform state-of-the art methods with the best

published results.
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