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Abstract— Recently, the fifth-generation mobile network (5G)
is getting significant attention. Empowered by Network Func-
tion Virtualization (NFV), 5G networks aim to support diverse
services coming from different business verticals (e.g. Smart
Cities, Automotive, etc). To fully leverage on NFV, services must
be connected in a specific order forming a Service Function
Chain (SFC). SFCs allow mobile operators to benefit from the
high flexibility and low operational costs introduced by net-
work softwarization. Additionally, Cloud computing is evolving
towards a distributed paradigm called Fog Computing, which
aims to provide a distributed cloud infrastructure by placing
computational resources close to end-users. However, most SFC
research only focuses on Multi-access Edge Computing (MEC)
use cases where mobile operators aim to deploy services close
to end-users. Bi-directional communication between Edges and
Cloud are not considered in MEC, which in contrast is highly
important in a Fog environment as in distributed anomaly
detection services. Therefore, in this paper, we propose an SFC
controller to optimize the placement of service chains in Fog
environments, specifically tailored for Smart City use cases.
Our approach has been validated on the Kubernetes platform,
an open-source orchestrator for the automatic deployment of
micro-services. Our SFC controller has been implemented as
an extension to the scheduling features available in Kubernetes,
enabling the efficient provisioning of container-based SFCs while
optimizing resource allocation and reducing the end-to-end (E2E)
latency. Results show that the proposed approach can lower
the network latency up to 18% for the studied use case while
conserving bandwidth when compared to the default scheduling
mechanism.

Index Terms—Resource Provisioning, Service Function Chain,
Fog Computing, IoT, Kubernetes

I. INTRODUCTION

In recent years, the fifth-generation mobile network (5G)

rapidly started gaining popularity due to the wide adoption of

network virtualization and Cloud technologies. Augmented re-

ality, tactile Internet, autonomous vehicles are among the envi-

sioned 5G use cases. These services will have stringent quality

of service (QoS) requirements in terms of network bandwidth,

mobility coverage, end-to-end (E2E) latency, among others

[1]. To fully leverage from this kind of services, researchers

have introduced Network Function Virtualization (NFV) [2],

[3] since traditional hardware is unable to meet the high

demanding requirements introduced by these use cases. NFV

decouples network functions from the physical devices on

which they run to be executed by software running on Virtual

Machines (VMs), thus achieving the purpose of reducing

Operational Expenditures (OPEX) and Capital Expenditures

(CAPEX) while easing the deployment of new services [4].

Nevertheless, several challenges still remain to fully benefit

from NFV. One important challenge is called Service Function

Chain (SFC) [5], [6]. SFC encompasses an emerging set of

technologies aiming to enable mobile operators and cloud

providers to dynamically reconfigure softwarized Network

Services (NSs) without having to implement changes at the

hardware level. Thus, providing a flexible and cost-effective

alternative to today’s static network environment. Services

must be connected in a specific order forming an SFC that

each user has to traverse to achieve a particular NS as shown

in Fig. 1. All circles represent different service functions while

the arrows show how traffic is steered in the network. Users are

then routed through the SFC according to the service graph,

which results in optimized resource provisioning and reduced

operational costs.

Recently, Cloud computing is also evolving towards a dis-

tributed paradigm called Fog Computing [7] due to the massive

impact of the Internet of Things (IoT). Smart Cities [8] pow-

ered by IoT are transforming different domains of urban life,

such as public transportation, environmental monitoring, and

health-care to improve citizen welfare. Fog Computing aims

to provide computing resources at the edges of the network,

thus helping to meet the demanding constraints introduced by

IoT (e.g. low latency, high mobility). Service providers may

benefit from Fog Computing by deploying their applications

across geographically distributed clouds, so that real-time pro-

cessing, storage procedures and data analytics can be brought

closer to end users, overcoming the limitations of traditional

centralized cloud infrastructures [9]. Autonomous vehicles

and environmental monitoring are among the envisioned Fog

use cases benefiting from these architectures. Furthermore,

container-based micro-services are currently revolutionizing

the way developers build their software applications [10]. An

application is decomposed in a set of small, self-contained

containers deployed across a large number of servers instead of

the traditional code-heavy monolithic application. Nowadays,

containers are the de facto alternative to the conventional VMs,

due to their low overhead and high portability.

In this paper, an SFC controller is presented to optimize the

placement of container-based service chains in Fog Computing

environments, since most SFC studies only focus on Multi-

access Edge Computing (MEC) use cases. The main differ-

ence between MEC and Fog Computing is in the considered



Fig. 1: An example of a Service Function Chain deployment.

interactions (i.e. between Edges and Cloud). MEC focuses

on deploying services close to end-users to reduce latency

and avoid congestion in the network core. In Fog Computing,

bi-directional communications between Edges and Cloud are

crucial due to the hierarchical architecture. For instance, a

service is allocated in the cloud due to high computational

requirements but needs to interact with another service, which

may be located in the Fog. These interactions (e.g. necessary

bandwidth) must be guaranteed. MEC is currently not taking

these bi-directional communications into account. The pro-

posed SFC controller has been implemented as an extension to

the default scheduling feature available in Kubernetes [11], an

open-source container management platform originally devel-

oped by Google, which simplifies the deployment of scalable

distributed systems by managing the complete orchestration

life-cycle of containerized applications. Finally, evaluations

have been performed to validate our approach, specifically

for container-based Smart City use cases. The proposed SFC

controller enables Kubernetes to efficiently allocate container-

based SFCs while maintaining bandwidth conservation and

reducing the E2E latency.

The remainder of the paper is organized as follows. In the

next Section, related work is discussed. Section III highlights

the importance of SFC in Fog-Cloud environments and in-

troduces the proposed SFC controller and its provisioning

algorithm. In Section IV, the evaluation setup is described

which is followed by the evaluation results in Section V.

Finally, conclusions are presented in Section VI.

II. RELATED WORK

In recent years, SFC allocation and resource provisioning

issues gained significant attention in the fields of NFV, MEC

and Cloud computing. In [12], the challenge of allocating

Virtual Network Functions (VNFs) has been addressed. Their

approach focused on finding the required number of VNF

instances and their optimal placement while minimizing op-

erational costs and maximizing network utilization, without

violating service level agreements. The authors presented an

Integer Linear Programming (ILP) formulation for finding the

optimal solutions for small scale networks, while a heuristic-

based algorithm has been proposed for larger-scale networks

instead. In [13], the SFC allocation problem has been stud-

ied. The authors focused on determining the optimal VNF

placement while minimizing the E2E latency and maximizing

resource efficiency. In [14], the SFC orchestration problem in

5G virtualized infrastructures has been addressed. The authors

modeled the problem as a robust binary optimization. Further-

more, in [15], a mixed ILP model has been presented as a

solution to ease the SFC orchestration in a Cloud environment.

The model finds the optimal VNF placement while deciding

whether to re-instantiate or migrate the VNFs and minimizing

the SFC delays. In [16], an ILP formulation has been presented

to solve the SFC allocation problem, while considering E2E

latency and data rate requirements. The authors also proposed

a heuristic algorithm to address the scalability issue of the ILP-

based solution. Our work goes beyond the state-of-the-art since

the SFC orchestration problem has not been addressed for Fog

Computing environments, where considering the interactions

between Fog and Cloud is highly important for a proper SFC

allocation.

Recently, a handful of research efforts has been performed

in the context of resource provisioning in Fog Computing envi-

ronments that combine aspects coming from Cloud computing,

network virtualization and sensor networks. In [17], a resource

management approach based on demand predictions has been

presented. Their work focused on allocating resources based

on users’ demand fluctuations by using cost functions, differ-

ent types of services and pricing models for new and existing

customers. Simulation results showed that the suggested model

achieves a fair performance by preallocating resources based

on user behavior and future usage predictions. In [18], the

IoT resource provisioning issue has been modeled as an ILP

formulation. Application QoS metrics and deadlines for the

provisioning of each type of application have been considered

in their approach. Additionally, in [19], the Fog resource pro-

visioning problem has been addressed. The authors studied the

trade-off between maximizing the reliability and minimizing

the overall system cost. A highly computationally complex

ILP model has been presented. Then, the authors presented

simulation results coming from a heuristic-based algorithm

able to find suboptimal solutions, albeit achieving better time

efficiency. Nevertheless, none of the aforementioned studies

considered realistic latency-sensitive services with actual E2E

latency demands envisioned to be supported by future 5G net-

works or considered the strict requirements coming from SFC

or container-based applications. Furthermore, most research

has only been focused on theoretical modeling and simulation

studies, which limit their applicability to real deployments.

Previously, in [20], we have tackled the problem of resource

provisioning in Fog Computing. The present work builds

further on our previous one since the SFC placement issue

has now been addressed. SFC capabilities for Fog-Cloud

environments are still quite unexplored. To the best of our

knowledge, our approach goes beyond the current state-of-the-

art by extending a well-known platform called Kubernetes with

SFC controlling mechanisms enabling the efficient allocation



of container-based SFCs, specifically tailored for Smart City

use cases. Furthermore, a practical implementation of the

proposed SFC controller has been evaluated to show the full

applicability of our approach. By combining Fog Computing

alongside SFC concepts, our work paves the way towards an

efficient resource provisioning of SFCs in softwarized Fog

Computing infrastructures.

III. TOWARDS SFC IN FOG COMPUTING

This section introduces the proposed SFC controller mecha-

nism followed by the discussion of its provisioning algorithm.

A. The SFC Controller

The SFC controller has been implemented as an extension

to the Kubernetes platform, based on previous work presented

in [22]. Although Kubernetes makes use of containers as the

underlying mechanism to deploy micro-services, additional

layers of abstraction exist over the container runtime environ-

ment to provide scalable life-cycle orchestration features. In

Kubernetes, micro-services are often tightly coupled together

forming a group of containers. This is the smallest work-

ing unit in Kubernetes, which is called a pod [23]. A pod

represents the collection of containers and storage (volumes)

running in the same execution environment. Additionally, Ku-

bernetes provides a feature called Service, which is an abstract

way to define a logical set of Pods and expose applications

running on them as an NS [24]. By using this abstraction, there

is no need to use a service discovery mechanism since pods

have their own IP address and a single Domain Name System

(DNS) name is assigned to a set of pods, which makes load-

balancing a straightforward process across them. The rationale

behind this abstraction process comes from the pods’ volatility

as they may be terminated, meaning that pods running at a

certain moment may be different than the ones which are pro-

viding the service a few days later. This could lead to service

disruptions. For instance, imagine two services, a frontend and

a backend service. If pods are constantly being terminated

and rescheduled, how could the frontend service keep track of

which IP address it needs to connect to the backend service?

Thus, the actual pods that compose the backend service may

change, but users should not need to be aware of that, nor

should they need to keep track of them. The SFC controller

logic solves the issue of routing between different services in

the SFC. An example of a container-based SFC in Kubernetes

is shown in Fig. 2. Nevertheless, Kubernetes does not provide

scheduling features to properly allocate SFCs. Kubernetes

allocates pods based only on available resources (e.g. CPU and

RAM usage rates), without making any consideration about

the complete E2E service or even any concern about latency

or bandwidth limitations. Furthermore, Kubernetes provisions

pods, one by one, without taking into account previous pod

allocations. In fact, the component that assigns pods to specific

nodes in Kubernetes is called Kube–Scheduler (KS). The KS

is the default scheduling feature in the Kubernetes platform,

which is responsible for deciding on which adequate nodes

pods should be allocated. The SFC controller logic has been

Fig. 2: An example of a container-based Service Function

Chain deployment in Kubernetes.

Fig. 3: The detailed Pod architecture of the SFC controller.

implemented as a “scheduler extender” process that the KS

calls out as a final step when a scheduling decision is needed,

which makes use of previous pod provisioning information to

optimize the SFC allocation. The presented approach has been

implemented in Go and deployed in the Kubernetes cluster as

a pod. The pod architecture of the SFC controller is illustrated

in Fig. 3. Essentially, every pod requiring allocation is added

to a waiting queue, which is continuously monitored by the

KS. If a pod is added to the waiting queue, the KS searches

for an adequate node for the placement. Firstly, KS executes

the node filtering operation, where KS verifies which nodes

are capable of running the pod by applying a set of filters.

The purpose of filtering is to solely consider nodes meeting

all specific pod requirements further in the scheduling process.

Thus, inadequate nodes are already removed from the list of

possible candidates by applying these filters. Then, KS calls

out the SFC controller to make the final decision on which

cluster node the service must be provisioned based on the

remaining set of nodes. Each scheduling request is handled

by the SFC controller, where a suitable node is selected based

on two provisioning strategies: Latency-aware and Location-

aware. Both algorithms are detailed next.

B. Provisioning Algorithm of the SFC controller

The main procedure of the SFC controller is stated in

Alg. 1. First, the SFC controller gathers allocation information

through pod labels defined on the pod configuration file. These

pod labels are listed in Table I. Second, the provisioning

algorithm is selected based on the Policy label. Two policies

are currently supported: Latency-aware and Location-aware.

Both algorithms are shown in Alg. 2 and Alg. 3, respectively.

On one hand, if Latency-aware is preferred, the SFC controller



TABLE I: Extending pod labels with SFC information.

Label Description

Network Service Header The specific SFC identifier (String).

Chain Position The position of the given pod in the SFC.

Total Services The total number of services in the SFC.

Target Location The preferred location for the deployment.

Policy The preferred allocation policy.

Min Bandwidth The minimum expected bandwidth.

Prev Service The previous service in the SFC.

Next Service The next service in the SFC.

Algorithm 1 Main procedure of the SFC controller

Input: Remaining Nodes after Filtering Process in

Output: Node for the service placement out

1: // Return the best candidate Node

2: selectNode(nodes, pod):

3: policy = getPolicy(pod)
4: minB = getBandwidth(pod)
5: nsh = getServideHeader(pod)
6: if policy == Latency

7: node = getLatencyNode(nodes, pod,minB, nsh)
8: if node 6= null then

9: // Store pod info in Hash Table

10: addPod(getKey(pod), node)
11: // update available Link bandwidth

12: updateB(getNodeB(node)−minB, node)
13: return node

14: else if policy == Location then

15: node = getLocationNode(nodes, pod)
16: if node 6= null then

17: addPod(getKey(pod), node)
18: updateB(getNodeB(node)−minB, node)
19: return node

20: // Otherwise → max residual bandwidth Link

21: node = getLinkNode(nodes);
22: if node 6= null then

23: addPod(getKey(pod), node)
24: updateB(getNodeB(node)−minB, node)
25: return nodeLink

26: else

27: return null, Error(”No suitable node!!”)

selects the best candidate node based on the calculation of

Dijkstra’s shortest path algorithm [25]. Provisioning records

are kept of the previously allocated pods based on the Network

Service Header label. If any of those corresponds to the same

NS, the shortest paths will be calculated for each of the

possible nodes. Otherwise, if not a single pod has been already

allocated in the network corresponding to the same NS, the

node selection is made as if the Location-aware policy was se-

lected. Regarding bandwidth, each candidate node is checked

to confirm that it has enough bandwidth to support the given

pod based on the Min Bandwidth label. Thus, the node with

the lowest combined shortest paths and enough bandwidth

will be selected for pod deployment. On the other hand, if

Algorithm 2 Latency-aware algorithm of the SFC controller

Input: Remaining Nodes after Filtering Process in

Output: Node for the service placement out

1: // Return the best candidate Node based on Latency

2: getLatencyNode(nodes, pod, minB, nsh):

3: // Find pods belonging to this nsh

4: podList = getPodList(nsh, pod)
5: if podList 6= null then // Calculate Shortest Paths

6: node = getNodeDelaySP (nodes, podList)
7: else // Select Node as if Location-aware was selected

8: node = getLocationNode(nodes, pod)
9: return node

Algorithm 3 Location-aware algorithm of the SFC controller

Input: Remaining Nodes after Filtering Process in

Output: Node for the service placement out

1: // Return the best candidate Node based on Location

2: getLocationNode(nodes, pod):

3: copy = nodes;

4: loc = getLocation(pod)
5: minD = getMinDelay(nodes, loc)
6: // Node selected based on min delay & Bandwidth

7: for node in range nodes do

8: if minD == getDelay(node, loc) then

9: if minB ≤ getNodeB(node)
10: return node

11: else

12: copy = removeNode(copy, node)
13: if copy == null then

14: return null

15: else // Repeat the Process (Recursive)

16: return getLocationNode(copy, pod)

the Location-aware policy is chosen, the node selection is

based on minimizing latency depending on the Target Location

label, since certain pods may be preferred to be deployed on

a certain Fog location or even in the Cloud, as they require a

high amount of resources. Additionally, it is verified whether

each candidate node has enough bandwidth to support the

given service. After completion of each scheduling request,

pod allocation information is stored as a provisioning record

to be consulted in further scheduling requests and the node’s

available bandwidth is updated. Thus, the SFC controller

knows exactly the available bandwidth between scheduling

requests, which allows it to make informed decisions based

on latency and bandwidth information. Finally, if no suitable

node is found after policy execution, link costs are calculated

for each possible node. The node with the maximum residual

bandwidth link adequate to support the expected minimum

bandwidth is selected to allocate the pod. Otherwise, it is

not possible to allocate the service without compromising

bandwidth. Thus, similar to the KS, an event is triggered due

to the failed pod deployment (i.e. pod eviction).

In summary, the proposed SFC controller filters inappropri-



TABLE II: Software Versions of the Evaluation Setup.

Software Version

Kubeadm v1.13.4

Kubectl v1.13.4

Go go1.11.5

Docker docker://18.09.2

Linux Kernel 4.4.0-34-generic

Operating System Ubuntu 16.04.1 LTS

ate nodes based on the KS filtering step and then makes use

of the implemented pod labels to choose the best candidate

node from the filtered ones to the desired scheduling policy.

The SFC controller supports two policies, latency-aware and

location-aware, upon which it can select nodes based on min-

imizing latency established by the calculation of the shortest

paths or based on the target location for the pod deployment,

respectively. Similar to the KS, the SFC controller optimizes

the allocation of each pod, one by one. Thus, our implementa-

tion can find a sub-optimal solution when compared with ILP-

based solutions, however, in smaller execution time. It should

be noted that a dynamic SFC controller suitable for dealing

with bandwidth fluctuations and delay changes is required.

This, however, is out of the scope of this paper.

IV. EVALUATION SETUP

In this section, the testbed infrastructure used for the

Kubernetes setup is described. Then, the two use cases for

the evaluation are introduced. First, the Waste Management

scenario is presented, which is followed by the Surveillance

Camera use case.

A. Testbed Infrastructure

The Kubernetes cluster has been set up on the imec Virtual

Wall infrastructure [26] at IDLab, Belgium. The Fog-Cloud

infrastructure illustrated in Fig. 4 has been implemented with

Kubeadm [27]. The software versions of all the components

used to set up the Kubernetes cluster are listed in Table II.

B. Waste Management Use Case

Waste Management is viewed as one of the key services

enabled by IoT technology in future Smart Cities [28]. Waste

bins are located everywhere (e.g. restaurants, office buildings,

retail stores), but picking up garbage has been traditionally

an inefficient service for years. Garbage trucks follow a given

route without knowing if bins are empty or full. Another issue

is that waste bins may get overloaded before the planned

cleaning. This results in high maintenance and fuel costs. IoT

can tackle this issue by collecting waste bin data. For instance,

sensors can be installed into waste bins to tell which bins

are full. Furthermore, by sending the collected data to a fog-

Cloud infrastructure, route planning services can be executed

to find the optimal route for each truck based on bin fill levels.

Thus, drivers do not waste time driving to empty bins and

broken bins may be repaired quickly. Trucks and drivers can

access this service through a dashboard available as a mobile

application, enabling them to improve their customer service.

Therefore, an IoT-based waste management service provides a

more efficient waste collection through route optimization and

higher driver productivity. The objective of this use case is to

enable the real-time access to waste bin information. In Fig. 5,

the container-based SFC for the waste management use case

is illustrated and the correspondent deployment requirements

are shown in Table III.

C. Surveillance Camera Use Case

Over the last few years, crowd surveillance has become

increasingly important due to the possibility of identifying

individuals or even objects in highly crowded areas. Neverthe-

less, several issues still need to be addressed, including data

transfer over limited bandwidth and high latency in sensor-

Cloud communication. For instance, imagine a surveillance

camera requiring a continuous streaming bandwidth of 15

Mb/s. Sending the entire data from the video camera to the

Cloud translates into approximately 4.86 TB/monthly for a

single camera. Therefore, it is essential to adopt Fog infrastruc-

tures to perform data analysis operations locally, thus reducing

the amount of data transferred to the Cloud. Surveillance

cameras placed on particular streets or crowded areas send

continuous video streams to a Fog-Cloud infrastructure where

face recognition algorithms are performed in a distributed

manner. Fog nodes located close to the surveillance cameras

receive their video streams and perform a first-level analysis,

such as face detection and feature extraction tasks. Then,

Fog nodes send the results to the Cloud for global analysis

operations, such as face matching and recognition operations.

Afterwards, global outcomes can be presented in a central

dashboard in a control room. Additionally, police officers

may access the detection results through a mobile application.

This distributed approach has been previously presented in

[29], as a proper manner to enable anomaly detection in

Fog Computing architectures for delay-sensitive IoT services.

An IoT-based surveillance camera service provides a more

efficient way of recognizing individuals in crowded areas by

distributing tasks between Fog and Cloud. The objective of this

use case is to provide a near real-time face detection system.

In Fig. 6, the container-based SFC for the surveillance camera

use case is illustrated and the correspondent deployment

requirements are shown in Table IV.

D. Use Case Deployment in Kubernetes

The deployment of both use cases has been performed

to compare the performance of our SFC controller with the

default KS. All services have been deployed based on a pod

configuration file. For example, the pod configuration file for

the api service is shown in Fig. 7. It should be noted that

a pod anti-affinity rule has been added to each service so

that pods belonging to the same service cannot be deployed

together, meaning that a node can only allocate one instance

of a particular pod for a certain service.

V. EVALUATION RESULTS

In this section, the evaluation results are detailed. First,

the execution time of the different approaches is presented,



Fig. 4: A Fog-Cloud Infrastructure based on the Kubernetes architecture.

TABLE III: Deployment properties of the Waste Management Use Case.

Network
Service
Header

Pod Name
Chain

Position
Total

Services
Policy

Target
Location

Min.
Bandwidth

(Mbit/s)

CPU
Req/Lim (m)

RAM
Req/Lim (Mi)

Replication
Factor

Waste

api 1

4

Latency-aware Any 4.0 250/500 256/512 3

waste-db 2 Latency-aware Any 5.0 500/1000 1024/2048 4

route-planner 3 Location-aware Brussels 8.0 500/1000 1024/2048 4

server 4 Latency-aware Any 4.0 250/500 256/512 3

TABLE IV: Deployment properties of the Surveillance Camera Use Case.

Network
Service
Header

Pod Name
Chain

Position
Total

Services
Policy

Target
Location

Min.
Bandwidth

(Mbit/s)

CPU
Req/Lim (m)

RAM
Req/Lim (Mi)

Replication
Factor

Camera

fd-ext 1

4

Latency-aware Any 8.0 500/1000 512/1024 4

fm-recog 2 Location-aware Brussels 8.0 1000/2000 2048/4096 2

cam-db 3 Latency-aware Any 2.5 500/1000 1024/2048 2

dashboard 4 Latency-aware Any 5.0 250/500 256/512 4

Fig. 5: The container-based Service Function chain envisioned

for the Waste Management Use Case.
Fig. 6: The container-based Service Function chain envisioned

for the Surveillance Camera Use Case.



Fig. 7: The pod configuration file for the api Service.

TABLE V: The execution time of the different approaches.

Scheduler
Extender
decision

Scheduling
decision

Pod Startup
Time

KS - 3.21 ms 2.83 s

SFC controller 6.08 ms 8.38 ms 2.96 s

followed by the average latency expected for each use case.

Finally, the service bandwidth per node for the different

scheduling approaches is shown.

A. Execution Time

In Table V, the execution time of the different schedulers

is shown. The execution time has been averaged over 15

consecutive runs. The KS does not issue an extender call

and, thus, the scheduling decision for each pod deployment

is made on average on 3.2 ms, while the SFC controller

requires on average 6.08 ms because of the extender procedure.

The pod startup time corresponds to the duration between the

deployment command until the moment it takes to allocate and

instantiate the given containers in the cluster. Both KS and the

SFC controller require on average between 2 and 3 seconds to

allocate the required containers, since the main difference in

execution time is only determined by the extender procedure

and how the final node is chosen.

B. Pod Allocation Scheme

In Table VI, the different allocation scheme for each of

the schedulers is shown. As expected, the KS deployment

scheme is not optimized for the service’s desired location

Fig. 8: The expected service latency for each of the schedulers.

or service latency, since no considerations are made about

location or latency in its scheduling algorithm. Thus, KS

allocates multiple pods on a single node since it tries to balance

the load in the cluster according to CPU and RAM usage rates.

For instance, the KS allocation scheme for the route planner or

the fm-recog service is fairly poor since no pods are deployed

in the preferred location (Brussels).

C. Network Bandwidth

In Table VII, the expected service bandwidth per node for

the different scheduling approaches is presented. It should be

noted that bandwidth values in bold mean that the cluster node

is overloaded based on the available bandwidth previously

shown in Fig. 4. As shown, KS allocates pods on nodes already

compromised in terms of network bandwidth. For instance, KS

overloads worker 1 and 4 by allocating to them at least 4 pods

leading to service bandwidths of 26.0 Mbit/s and 36.5 Mbit/s

for the workers 1 and 4, respectively, which surpasses the

available bandwidth of 10.0 Mbit/s. This provisioning scheme

may lead to service disruptions due to bandwidth fluctuations.

In contrast, the proposed SFC controller takes into account the

available bandwidth while making scheduling decisions, which

leads to informed decisions not only in terms of latency but

also in terms of bandwidth.

D. Network latency

In Fig. 8, the expected service latency for each of the

schedulers is detailed. As shown, the proposed SFC-controller

achieves lower delays for each of the deployed services when

compared with the default KS. In spite of overloading several

nodes, KS is not able to find optimal paths for the SFCs. The

proposed SFC controller can optimize the SFC latency while

conserving network bandwidth. In this particular allocation

scheme, the SFC-controller improves the performance of the

default KS by reducing the network latency by 18%.

E. Scalability

In Fig. 9, the execution time per Pod of the SFC controller

extender call is shown. The number of service replicas is



TABLE VI: The pod allocation scheme of the different schedulers.

Scheduler

Use Case Service KS SFC controller

Waste Management

api [Worker 5, Worker 11, Worker 12] [Worker 3, Worker 5, Worker 7]

waste-db [Worker 1, Worker 4, Worker 10, Master] [Worker 4, Worker 10, Worker 11, Worker 14]

route-planner [Worker 1, Worker 4, Worker 11, Master] [Worker 6, Worker 13, Worker 14, Master]

server [Worker 6, Worker 10, Master] [Worker 13, Worker 14, Master]

Surveillance Camera

fd-ext [Worker 1, Worker 4, Worker 5, Worker 12] [Worker 1, Worker 2, Worker 12, Master]

fm-recog [Worker 3, Worker 4] [Worker 13, Master]

cam-db [Worker 3, Worker 4] [Worker 7, Worker 8]

dashboard [Worker 1, Worker 4, Worker 10, Master] [Worker 8, Worker 9, Worker 10, Worker 11]

TABLE VII: The expected service bandwidth per node for the

different scheduling strategies.

Node KS SFC-controller

Worker 1 26.0 Mbit/s 8.0 Mbit/s

Worker 2 - 8.0 Mbit/s

Worker 3 10.5 Mbit/s 4.0 Mbit/s

Worker 4 36.5 Mbit/s 5.0 Mbit/s

Worker 5 12.0 Mbit/s 4.0 Mbit/s

Worker 6 4.0 Mbit/s 8.0 Mbit/s

Worker 7 - 6.5 Mbit/s

Worker 8 - 7.5 Mbit/s

Worker 9 - 5.0 Mbit/s

Worker 10 14.0 Mbit/s 10.0 Mbit/s

Worker 11 12.0 Mbit/s 10.0 Mbit/s

Worker 12 12.0 Mbit/s 8.0 Mbit/s

Worker 13 - 20.0 Mbit/s

Worker 14 - 17.0 Mbit/s

Master 22.0 Mbit/s 28.0 Mbit/s

Fig. 9: The average execution time per Pod of the SFC

controller extender call.

increased to evaluate how the SFC controller handles the

allocation of a high number of service instances in the Service

Chain. As shown, the extender decision time decreases while

the number of service replicas increases, since only a small

amount of nodes will still be free in terms of resources,

specifically in terms of bandwidth based on the previously

presented infrastructure. Increasing the number of replicas

will also lead to pod evictions since nodes will already be

exhausted and no node will be available for the service

allocation. Nevertheless, the SFC controller can cope with a

high number of replicas without compromising the decision

time as long as resources are available.

In summary, the proposed SFC-controller optimizes the

resource provisioning in Kubernetes according to network

latency and bandwidth, which is currently not supported by

the default KS.

VI. CONCLUSIONS

In recent years, Cloud computing is evolving towards a

distributed paradigm called Fog Computing, which aims to

provide a distributed cloud infrastructure by placing com-

putational resources close to end-users. Additionally, mobile

operators are researching efficient ways of connecting different

services in a specific order forming an SFC to fully benefit

from network virtualization. The deployment of SFCs will

allow mobile operators to profit from the high flexibility

introduced by network softwarization. Nevertheless, SFC re-

search only focuses on MEC use cases and only a few studies

consider Fog-Cloud environments. Therefore, in this paper, an

SFC controller has been presented as a scheduling approach to

efficiently place container-based service chains in Fog-Cloud

environments, specifically tailored for Smart City use cases.

The popular open-source project Kubernetes has been used to

validate the proposed approach. The SFC controller has been

implemented as an extension to the scheduling features avail-

able in Kubernetes, enabling the allocation of container-based

SFCs while optimizing resource provisioning and reducing the

E2E latency. Evaluations have been performed to compare the

proposed solution with the default scheduling feature available

in Kubernetes. Results show that the proposed approach can

significantly reduce the network latency while conserving

bandwidth just by increasing the scheduling decision time by

only 6ms per pod. As future work, dynamic strategies will be

added to our SFC controller to further refine the allocation

scheme in terms of bandwidth fluctuations and delay changes.
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