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Abstract—Based on the latest achievements in computer vision
and RGB-D SLAM, a practical way for dense moving object
segmentation and thus a new framework for robust dense RGB-
D SLAM in challenging dynamic scenarios is put forward. As the
state-of-the-art method in RGB-D SLAM, dense SLAM is very
robust when there are motion blur or featureless regions, while
most of those sparse feature-based methods could not handle
them. However, it is very susceptible to dynamic elements in
the scenarios. To enhance its robustness in dynamic scenarios,
we propose to combine dense moving object segmentation with
dense SLAM. Since the object segmentation results from the
latest available algorithm in computer vision are not satisfactory,
we propose some effective measures to improve upon them so
that better results can be achieved. After dense segmentation of
dynamic objects, dense SLAM can be employed to estimate the
camera poses. Quantitative results from the available challenging
benchmark dataset have proved the effectiveness of our method.
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I. INTRODUCTION

As simultaneous localization and mapping (SLAM) ma-

tures, more and more researchers are interested in enhancing

its robustness thus making it more applicable in various chal-

lenging real scenarios [1] [2]. In sparse feature-based SLAM,

although RANSAC [3] and robust kernels [4] are being widely

used to handle outliers, good results can be obtained only when

the outliers constitute a minority of the data. When it comes to

dynamic scenarios where moving objects amount to be a larger

part of the data, their performance will degrade dramatically

[5]. Furthermore, sparse feature-based SLAM cannot handle

motion blur and featureless regions. On the other hand, dense

SLAM [6], as the latest achievement in RGB-D SLAM,

is very robust against motion blur and featureless regions.

Nevertheless, it is very susceptible to dynamic elements in the

images. Therefore, neither kind of the available approaches in

SLAM area is capable of handling scenarios composed of large

motions, and how to extend these mature solution frameworks

originally designed for doing SLAM in static environments to

handle dynamic scenarios gracefully is still an open problem.

On the other hand, in multibody SLAM (also known as

multibody structure and motion (MSaM) [7] in computer

vision) which aims to describe the structures of both the

static and moving objects as well as the objects’ motions and

camera poses, various motion segmentation methods have been

proposed to firstly separate different motion groups from each

other. Although, based on feature trajectory analysis, there

exist some algebraic methods, such as generalised principal

component analysis (GPCA) [8] and local subspace affinity

(LSA) [9], that can separate moving objects from each other

as long as the objects are all rigid and enough frames have

been taken into account, they usually require that the same

feature set is available throughout the n chosen frames (there-

fore called n-view based motion segmentation thereafter for

convenience), which amounts to be a very tough condition in

real scenarios. As the result, most of the applicable motion

segmentation methods in multibody SLAM/MSaM are two-

view based [7], which only need two frames for analysis, but it

also means that across every two consecutive video frames the

moving objects may not be separated out completely. Instead,

due to the inherent sensor noises, only when those movements

go well beyond the noise level can the motion segmentation

methods detect them as moving parts confidently.

Nevertheless, as the latest achievement in computer vision

for n-view based motion segmentation, [10] tries to get grid

of some unrealistic conditions and has proved to be capable

of producing good dense segmentation results of non-rigid

moving objects for some real data.

In this paper, we are concerned about doing SLAM with

some continuous videos taken by a freely-moving RGB-D

camera which is the only input and no other prior knowledge

available. In addition to motion blur and featureless regions,

those videos contain non-rigid objects that may be static,

partially moving, or totally moving within large ranges from

time to time. To cope with motion blur and featureless regions,

dense SLAM [6] is a better choice than those sparse feature-

based methods. However, special measures need to be taken

to enhance its robustness in dynamic scenarios. Inspired by

multibody SLAM, to do dense SLAM in such kinds of

environment, we need to densely separate the moving objects

out before doing SLAM. And [10] is quite promising for

this goal. To substantiate our ideas, firstly, through theoretical

analysis, we argue that moving object segmentation is a better

choice to enable us to do robust SLAM in dynamic scenarios as

well as multibody SLAM when compared with other motion

segmentation methods. Then, we propose a practical avenue

to achieve this goal: based on the output of [10], we propose

practical measures to improve the dense segmentation results,



then employ dense SLAM to estimate camera poses. The

main characteristics of our method are that it aims to separate

different moving objects out before doing SLAM, it can handle

both rigid and non-rigid moving objects in a unified manner,

and both the segmentation and SLAM are done densely.

The structure of this paper is as follows. Firstly we talk

about different motion segmentation methods and RGB-D

SLAM algorithms in Section II, showing the advantages of

combining n-view based moving object segmentation and

dense SLAM to handle general dynamic scenarios. After this,

we propose the framework for robust dense RGB-D SLAM in

dynamic scenarios, at the centre of which is a practical way

for dense moving object segmentation based on [10] in Section

III. Then in Section IV, to demonstrate the effectiveness of

our approach, we show the moving object segmentation results

and the improved SLAM results of our method compared with

those of the original dense SLAM as well as sparse feature-

based SLAM when possible using some challenging real data.

And Section V concludes the paper.

II. RELATED WORK

In this section, we firstly give a brief review of different

ways to do motion segmentation. Motion segmentation con-

stitutes a very important step for doing SLAM in dynamic

scenarios, but practical ways capable of handling general

dynamic scenarios are still missing.

Furthermore, we give a short comparison of the available

methods for visual odometry in RGB-D SLAM, showing their

advantages and disadvantages.

A. Motion Segmentation: Two-view Versus N-view

Motion segmentation aims to separate the available sce-

narios into different motion groups without prior knowledge

about the moving objects or the camera’s motion. Generally

speaking, most of the available methods are only suitable for

rigid or articulated objects, falling into either the two-view

based or n-view based group. The output of the former group

are the detected moving groups (corresponding to detectable

moving parts beyond a threshold) of different objects; while

that of the latter maybe correspond to the moving objects or

not, depending on the whether the moving objects are rigid,

the motion is big enough and the length n is big enough.

From 2D to 3D, numerous two-view based motion seg-

mentation methods have been proposed [11], [7], [5], [12].

They constitute a quick way for us to detect instant motion

and get visual odometry in SLAM and structure and motion

[7] [5]. However, intuitively, only when the two frames are

discrete, the scenarios only contain rigid moving objects, and

the motion between them are big enough (but not too big), two-

view base motion segmentation methods can separate different

objects into different motion groups. Otherwise, this kind of

methods can only tell us those moving parts that have gone

beyond the threshold determined by the sensor noise level.

Accordingly, because of the inevitable overlapping between

different motion groups, the visual odometry and loop-closures

constraints obtained by two-view based motion segmentation

methods are usually biased or even wrong no matter which

threshold we choose, and a theoretically better way capable of

avoiding this problem is the n-view based motion segmentation

methods.

As a matter of fact, there are also lots of n-view based 3D
motion segmentation methods available in computer vision,

and interested readers can refer to [13] for a detailed review.

Nevertheless, some strong assumptions have prevented most

of them from finding practical applications in SLAM. Firstly,

most of them usually assume that every point has the same

trajectory length, which can only be met in controlled exper-

iments. Secondly, most of them are sensitive to non-Gaussian

noises and cannot tolerate errors brought forward from feature

detection, matching and tracking. Last but not least, most of

them can only handle rigid or articulated body while practical

SLAM frameworks need to handle rigid as well as various

non-rigid moving objects including human beings. Therefore,

in SLAM, we need a robust motion segmentation method that

can handle noisy continuous data with outliers and can handle

non-rigid and rigid bodies in a unified manner.

B. From Motion Segmentation to Moving Object Segmentation

As we can see, depending on the composition of the

related scenarios, chosen method and video length, motion

segmentation results can be divergent. However, for most

applications, separating moving objects apart is more desirable.

For example, in the SLAM area, firstly it will enable us to get

robust visual odometry results in dynamic scenarios. Secondly,

the continuous presence of moving objects can also disable the

traditional loop-closure estimation methods [14], and moving

object segmentation is the only way out of the dilemma.

Nevertheless, moving object segmentation is even harder

than motion segmentation when it comes to handling non-

rigid moving objects. Until quite recently, [10] proposes a

robust method for moving object segmentation based on long

term point trajectory analysis without prior model, making

it applicable for some real scenarios. Firstly, it can handle

point trajectories of arbitrary length. Secondly, by employing

spectral clustering and a model selection process, it can handle

noisy data with outliers. Furthermore, for some scenarios that

contain more than one non-rigid moving object, it can also

get good segmentation results. It is based on this method

that we propose a practical way to do dense moving object

segmentation for robust dense SLAM in dynamic scenarios.

C. RGB-D SLAM: Sparse Versus Dense?

With the advent of affordable Microsoft Kinect, we are

endowed with dense depth information along with RGB data.

And with the help of pose-graph SLAM, localization and

mapping can be decoupled into two sub-steps. In RGB-D

SLAM, maps are naturally dense. However, when calculating

camera poses, we can choose to employ sparse feature-based

methods or dense methods to get visual odometry and loop-

closure relative pose constraints [15]. Initially, sparse feature-

based methods are very popular because dense methods are

usually very slow. Now with the emergence of dense SLAM



[6], the situation is changing. Dense SLAM is making use of

every pixel, both its color and depth information, and it can

do so in real time. To cope with motion blur and featureless

regions, dense SLAM is a better choice.

Nevertheless, as we will see, dense SLAM is vulnerable to

the negative effects of dynamic elements in the images. As the

result, if we still want to make use of dense SLAM to handle

dynamic scenarios, we firstly need to densely separate the

dynamic objects out. In this paper, we propose to combine

a practical dense moving object segmentation method to fulfil

this purpose, and the improved dense SLAM results after this

step have attested the effectiveness of our method.

III. MOVING OBJECT SEGMENTATION BASED ROBUST

DENSE SLAM

A robust moving object segmentation method is proposed to

enhance the robustness of dense SLAM in dynamic scenarios,

and the overall process of our SLAM framework is illustrated

in Fig. 1.

A. Proposed Robust Moving Object Segmentation Method

Moving object segmentation, as the pre-requisite of SLAM,

need to be robust and adaptive enough to handle various

dynamic scenarios. However, the state-of-the-art method may

produce under or over-segmentation results, depending on the

scenarios. Therefore, we propose further measures solely based

on RGB information to overcome this kind of problems.

1) The Original Moving Object Detection and Segmenta-

tion Method and Its Results: As shown in Fig. 2, the original

moving object segmentation method [10] can be divided into

three steps: calculating optical flow, sparse point trajectory

clustering and densification. Through this process, we can get

good segmentation results for some videos including rigid and

non-rigid moving objects. However, for many other videos,

over-segmentation or under-segmentation can happen, and ex-

amples are shown in the left columns of Fig. 3 and 4, and

tuning the related parameters can only help convert these two

kinds of results into each other, instead of solving the problem.

2) Robust Measures to Improve Results: Since under-

segmentation is harder to tackle, we firstly turn it into the

over-segmentation scenario by tuning the related parameters

of the original method.

Secondly, we propose to look for those separated regions

that always share the same motion model during the process

and merge them. According to multi-view geometry [16], for

those points belonging to a rigid body or the static environ-

ment, if we can get their positions in every two consecutive

frames based on [17], we can find a fundamental matrix to

describe their motion. On the other hand, for non-rigid human

body, we cannot find a fundamental matrix to describe its

motion as a whole; instead, each part of it may need one to

approximate its motion, and the corresponding fundamental

matrices are changing. For those regions whose predominant

parts always share the same fundamental matrices across the

process, we will merge them into one group. A typical result

is illustrated in Fig. 3. As we can see, after this step, over-

segmented static groups can be found and combined together.

Fig. 2: Flowchart of [10] with images showing the results at

different stages.

Fig. 3: The left column represents the result before the merging

using fundamental matrix, while the right one represents that

after merging. The lower images represent the segmented

group masks in different color intensities, and the upper images

are the combination of the original image and segmentation

results. Best viewed in color.

Thirdly, based on the assumption that the largest group

corresponds to the static environment, we look for the biggest

group in each frame and remove it. And for the available

benchmark dataset [18], the aforementioned assumption is

valid.

Fourthly, we check the changes of the connection rela-

tionship between the remaining neighboring regions across

all of the frames of the video. For those regions that appear

simultaneously for some period of time and remain connected

(the distances between the closest points from different regions

are always within 1 pixel) during this process, it is highly

possible that they belong to the same object, so we propose

to agglomerate them at this step. This step can re-combine the

over-segmented parts of human body together as shown in Fig.

4.

Through these steps, we can reasonably combine some

segregated regions to produce more elegant segmentation re-

sults for the static environment and moving objects. Fig. 5

has shown the final segmentation results after applying our

merging procedures.

B. Dense SLAM

After densely separating the moving objects out of the

images, we can employ dense SLAM to get camera poses only



Fig. 1: Flowchart of the whole process for robust SLAM

Fig. 4: The left column represents the result before merging the

connected neighboring regions, while the right one represents

that after merging. The lower images represent the segmented

group masks in different color intensities, and the upper images

are the combination of the original image and segmentation

results. Best viewed in color.

using the remaining static parts.

The overall process of dense SLAM is as follows: after

getting visual odometry by using both dense color and depth

information, selecting keyframes and detecting loop-closures,

dense SLAM makes use of g2o [19] for pose optimization,

with pose trajectories as the output. Interested reader can refer

to [6] for more details.

There are several practical reasons why we need to densely

remove the moving objects before using dense SLAM. Firstly,

to improve robustness, dense SLAM proposes a fast dense

image registration method based on joint optimization of the

color and depth errors of all the available pixels. Although t-

distribution has also been employed to deal with large errors, as

we will see, those pixels corresponding to the moving objects

in the scenarios can impose unavoidable negative effects on

the optimization results. Secondly, dense SLAM proposes an

entropy-based method for keyframe selection and loop-closure

validation to reduce drift. However, without firstly densely

removing the moving objects, the entropy value will be spoiled.

As the result, unexpected keyframes may be selected and false

loop closures may be found. So, to some degree, dense SLAM

amounts to be a method specially designed for static scenarios,

and very susceptible to moving objects.

To further support our analysis, we have shown the dense

SLAM results both before and after dense moving object

segmentation in the next section as a comparison.

IV. EXPERIMENTAL RESULTS USING THE BENCHMARK

DATASET

To show the effectiveness of our method, we have chosen

to compare the SLAM results on some challenging benchmark

sequences (the walking series) provided by [18].

A. RGB-D SLAM Benchmark and Methods Involved

Soon after the establishment of RGB-D SLAM as an inde-

pendent research area, [18] provides a large benchmark dataset

for it. It is composed of 39 sequences recorded using Kinect

in different indoor environments. RGB and depth images are

provided along with ground-truth trajectories of the camera

obtained from a high-accuracy motion capture system.

Although many good results have been reported for most

of this dataset [6], the walking sequences are still among the

few most challenging ones that have not been fully solved

yet. According to [18], the walking sequences are specially

designed for evaluating the robustness of visual SLAM and

odometry algorithms when there are non-rigid moving objects

dynamically occupying large parts of the visible scene. The

major difficulties of these sequences lie in that motion blur,

featureless zones and large human movements are pervasive

in the images.

Recently, we propose a sparse feature-based two-view mo-

tion segmentation method [5]. By combining with pose-graph

SLAM, we reported a meaningful result for one challenging

walking sequence. In addition, we have also chosen dense

SLAM as another reference. Therefore, including our own

method, there are altogether three methods involved in this

paper for comparison. Nonetheless, only for one sequence the

results of the three methods are presented; while for the rest

sequences we mainly compare the results gotten by our method

with those obtained by directly applying dense SLAM to the

original videos.

B. Comparison of the Experimental Results Using Real Data

1) Experimental sequences: We firstly applied our method

and dense SLAM to four challenging walking sequences in the

TUM dataset, whose details are illustrated as follows:

a) walking static: In this sequence, the camera is being

kept in place manually, so its movement is small, whereas two

people are moving around the table with large motions.



(a) The original image (b) The found static part

(c) Found people1 (d) Found people2

Fig. 5: The original image and segmentation results (from the

walking static sequence).

b) walking halfsphere: In this sequence, the camera is

moving on a small half sphere whose diameter is about one

meter, while two persons are freely walking around in the

office scene.

c) walking xyz: In this sequence, the camera’s move-

ment is small while the two people are moving around the

table arbitrarily.

d) walking rpy: In this sequence, the camera mainly

rotates, and two people are walking around the table. Since

large parts of the visible scenes are dynamic, it constitutes a

very difficult task.

2) Comparison of the results: Following the rules proposed

by [1] [6], we have quoted both the root mean square error

(RMSE) of relative pose error (RPE) in meters per second and

the RMSE of absolute trajectory error (ATE) for comparison.

Among the four sequences, [5] only reports a meaningful

result for the first one: the RMSE of RPE is 0.084m/s,

and the RMSE of ATE is 0.161m. And for parts of the

other three sequences, the overall comparison of the results

obtained by our method (represented as MS DSLAM) versus

those of dense SLAM is summarized in Table I. In addition,

two representative detailed comparison of RPE of the four

sequences is shown in Fig. 6, and similar results can be

observed in the ATE case.

As we can see, the applicability of the traditional sparse

feature-based SLAM to challenging dynamic scenarios is lim-

ited [5], nor could dense SLAM [6], which is known as the

state-of-the-art method in RGB-D SLAM, produce good results

as in static scenarios, while our method has demonstrated its

effectiveness and robustness.

3) Discussion: As we know, sparse feature-based methods

as a classical choice in SLAM can usually produce satisfactory

results. However, as noted in [5], when it comes to blurred

images and featureless regions in dynamic scenarios, both the

TABLE I: Comparison of the RPE (m/s) & ATE (m) Results

of Dense SLAM Versus Those of Our Method (MS DSLAM)

Using the Four Sequences

Seq.
RPE ATE

DenseSLAM MS DSLAM DenseSLAM MS DSLAM

1 0.309 0.022 0.470 0.024

2 0.175 0.080 0.116 0.055

3 0.321 0.055 0.202 0.040

4 0.477 0.088 0.515 0.076

quantity and quality of detectable features decreases dra-

matically, thus jeopardizing the applicability of this kind of

methods in this case. Similarly, the results also prove that dense

SLAM is very sensitive to moving objects, as our previous

analysis has indicated.

On the contrary, our method has managed to acquire good

results comparable to those produced by dense SLAM in

static scenarios. It has verified not only our related theoretical

analysis, but also the usability and effectiveness of our practical

measures in handling some challenging dynamic scenarios.

V. CONCLUSIONS

Compared to motion segmentation, moving object segmen-

tation amounts to be a less understood, yet more difficult

and more relevant research topic to doing SLAM in dynamic

scenarios, semantic understanding of changing environments

among many other practical applications.

In this paper, we propose a practical moving object seg-

mentation method that can densely segment rigid and non-

rigid moving objects in a unified manner by building upon the

latest achievements in computer vision. Combined with dense

SLAM, it constitutes a new way for robust dense SLAM in

dynamic scenarios as well as multibody SLAM. Results from

some challenging real data have shown that this method is

quite promising.

On the other hand, in the near future, we aim to further

improve the robustness of our method and the accuracy of the

dense moving object segmentation results, and build a com-

plete solution for robust SLAM in general dynamic scenarios

and multibody SLAM problem.
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