
Towards Dependable
Network-on-Chip Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

maandag 18 mei 2015 om 10:00 uur

door

Changlin CHEN

Master of Engineering in Information and Communication Engineering

National University of Defense Technology, China

geboren te Taian, China

This dissertation has been approved by the promotor:

Prof. dr. K. L. M. Bertels

Copromotor:

Dr. S. D. Cotofana

Composition of the doctoral committee:

Rector Magnificus voorzitter

Prof.dr. K. L. M. Bertels Technische Universiteit Delft, promotor

Dr. S. D. Cotofana Technische Universiteit Delft, copromotor

Independent members:

Prof.dr. Y. Fu National Universiteit of Defense Technische, China

Prof.dr. A. Rubio Universitat Politecnica de Catalunyam, Spain

Prof.dr. K. Goossens Technische Universiteit Eindhoven

Prof.dr. M. Berekovic Technische Universitat Braunschweig, Germany

Prof.dr. H. Sips Technische Universiteit Delft

Prof.dr. P. French Technische Universiteit Delft, reservelid

The work described in this thesis has been carried out in the Computer Engineering

(CE) lab. This work was supported by Delft University of Technology (TUDelft) and

China Scholarship Council (CSC).

ISBN 978-94-6186-470-3

Keywords: Network on Chip, Dependability, Partially Faulty Link Utilization, Fault

Tolerance, Routing Algorithm, Task Mapping, Resource Utilization

Copyright c© 2015 by Changlin CHEN

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without permission of the author.

Cover picture is downloaded from https://www.shutterstock.com and used with

permission.

Printed in The Netherlands

Dedicated to my

Grandparents, Parents, and Wife

Towards Dependable

Network-on-Chip Architectures

Changlin Chen

Abstract

T
he aggressive semiconductor technology scaling provides the means

for doubling the amount of transistors on a single chip each and ev-

ery 18 months. To efficiently utilize these vast chip resources, Multi-

Processor Systems on Chip (MPSoCs) integrated with a Network-on-Chip

(NoC) communication infrastructure have been widely investigated. However,

the transistor miniaturization also significantly increases the possibility of tran-

sient and permanent faults occurrence inside the chip, especially for NoCs as

they geometrically spread all over the chip real estate. To provide dependable

communication service, the NoC must maintain its functionality and grace-

fully degrade its performance in the presence of faults. In this dissertation, we

propose several novel NoC tailored mechanisms to tolerate faults induced by,

e.g., variability agents, ageing, environmental aggression factors, as well as to

efficiently utilize still functional NoC components. We first introduce a low

cost method to allow for correct flit transmission even when soft errors are oc-

curring in the router control plane. Then we propose a Flit Serialization (FS)

strategy to tolerate broken link wires and to efficiently utilize the remaining

link bandwidth. Within the FS framework heavily defected links whose fault

levels exceed a certain threshold value are deactivated to diminish the conges-

tion in their upstream routers. Moreover, we design a distributed logic based

routing algorithm able to tolerate totally broken links as well as to efficiently

utilize UnPaired Functional (UPF) Links in partially defected interconnects.

We also introduce a link bandwidth aware run-time task mapping algorithm to

improve the mapping quality for newly injected applications in the MPSoCs.

Last but not least, we discuss the application of aforementioned strategies in

3D NoC systems and propose a Bus Virtual channel Allocation (BVA) mecha-

nism to enable vertical wormhole switching to improve the performance of 3D

NoC-Bus hybrid systems. All proposals are evaluated in our mixed language

NoC simulation platform and their advantage over state of the art counterparts

are proved by means of experimental results.

i

Acknowledgments

Here it comes the end of the four and a half years PhD study which has been

full with moments of joy, sorrow, confusing, struggling, and happiness. Such a

wonderful period definitely will be one of the most cherishable part of my life.

However, it would be impossible for me to make it without the support of my

colleagues, friends, and family. I would like to take this opportunity to express

my gratitude to each and every one of you.

First of all, I own my deepest thankfulness to my supervisor Dr. Sorin Cotofana

for his patient guidance, enthusiastic encouragement, and useful critiques of

this research work. He gave me all the freedom to carry out the research that I

am interested in; he cheered me up every time when I came across failures; he

sacrificed leisure time to correct and improve my technical writing; he helped

me to find the direction whenever I was confused. It is a great honor to do PhD

research under his supervision and what he taught me will keep on guiding me

in my future career.

I would like to thank my promotor, Prof. dr. Koen Bertels. Not every boss

gives the employees more encouragement to play than that to work, and he is

one of the few who does. He organized so many social events, e.g., carting,

bowling, football, barbeque, Belgium beer, and spaghetti, to make the tedious

research work colorful. He is always willing to help me whenever I turn to him.

I also extend my thanks to the thesis committee for they spent their precious

time to review my thesis and gave me valuable feedback in such limited time.

Many thanks to our CE secretary Lidwina Tromp and the associate coordinator

Franca Post from the TU CICAT office, they helped me solved so many trivial

but important affairs like visa application, settle down at the beginning, resi-

dent permit extension, etc. Sincere thanks to Eric and Eef for their technical

support to ensure the HPC clusters run steadily throughout these years.

I really appreciate the international environment created by all CE colleagues.

We came from more than twenty countries and regions, yet we were able to

work together harmoniously. Special thanks go to my previous and current

office-mates: Laiq Hasan, Yao Wang, Nicoleta Cucu Laurenciu, Mahroo Zan-

iii

drahimi, Thomas Marconi, and Jiaoyan Chen. Laiq is really talented with

languages. My oral English was quickly improved through chatting with him

in the first few months. Yao was always generous in sharing his experience

of research and life, he is truly a brother to me. Collaboration with Nicoleta

was always enjoyable. Mahroo was not just a nice office-mate but also a nice

neighbor. Many thanks to Marius Enachescu, George Razvan Voicu, and Mi-

hai Lefter for our interesting chatting about history, geography, and culture,

and for helping me to synthesize my design, build up the work platform, and

improve my presentation. Thank Mottaqiallah Taouil for numerous jokes and

laugh you brought to us and for found the glasses. God is with you all the

time, Motta. Thank Mottaqiallah Taouil and Joost Hoozemans for translating

my thesis abstract and propositions into Dutch. Thank Chunyang Gou very

much for all the meals, barbeques, and travels we had together. My apprecia-

tion also goes to Razvan Nane, Imran Ashraf, Mafalda Cortez, Innocent Agbo,

Shanshan Ren, Lei Xie, Berna Torun, M. Faisal Nadeem, Nor Zaidi Haron,

and numerous other friends that I have failed to name here for the interesting

talks and activities.

Life in the Netherlands would be incomplete without my dear Chinese fellows.

Sincere Thanks to Zhang Li, Jianfei Yang, Shaoying Wang, Shanfei Li, Wenbo

Wang, Yan Ren, Ting Hao, and Ling Zhang for the precious time we spent

together and all the delicious meals we had together. Many thanks to Jing Chu

for teaching me how to do physical exercise scientifically. Thanks to Chang

Wang, Siqi Shen, Yunlong Li, Song Yang, Yuan He, and Jianbin Fang for our

friendship.

I would also like to thank China Scholarship Council and my teachers from Na-

tional University of Defense Technology: Xiang Li, Hongqiang Wang, Yaowen

Fu, Weidong Jiang, and Zhaokun Qiu, without their support I would not be

possible to come to TU Delft in the first place. During my stay in the Nether-

lands, my friends Chengguang Wu and Tianpeng Liu helped me solved many

personal affairs in China, my sincere gratitude also goes to them.

Last but not least, my special thanks go to my family. Thanks to my grandpar-

ents and parents, they have always been supporting me to pursuit my dreams.

In the last few years, I spent such a little time with them yet they never com-

plained. My dear wife, Hongling Wang, thank you so much for your sacrifice

and supports during my PhD study, you are the most beautiful part of my life.

Changlin Chen Delft, The Netherlands

iv

Table of Contents

Abstract . i

Acknowledgments . iii

Table of Contents . v

List of Tables . ix

List of Figures . xi

List of Algorithms . xvii

List of Acronyms and Symbols . xix

1 Introduction . 1

1.1 Network-on-Chip . 2

1.1.1 From Single Processor to Multi-Processor SoCs 2

1.1.2 From Bus and Crossbar to Network-on-Chip 3

1.2 Research Challenges . 5

1.3 Dissertation Contributions 8

1.4 Dissertation Organization . 12

2 NoC Background Knowledge . 15

2.1 An NoC Example . 15

2.2 NoC Architecture . 16

2.2.1 NoC Topology . 16

2.2.2 Routing Algorithm 17

2.2.3 Switching Policy . 18

2.3 Router Architecture . 20

2.3.1 Router Pipeline . 21

2.3.2 Virtual Channel States 21

v

2.3.3 Speculative Virtual Channel and Switch Allocation . . 22

2.4 Simulation Platform . 23

2.4.1 Synthetic Traffic . 24

2.4.2 Real Application Traces 25

2.4.3 Task Mapping Benchmarks 25

2.4.4 Evaluation Metrics 26

2.5 Conclusions . 28

3 Soft Error Tolerance in Router Control Plane 29

3.1 Introduction . 30

3.2 Soft Errors in Links and Router Datapath 31

3.3 Soft Errors in The Control Plane – Related Work 32

3.4 Soft Errors Detection . 33

3.4.1 Errors in Routing Units 33

3.4.2 Errors in VC Allocators 37

3.4.3 Errors in Switch Allocators 38

3.5 Soft Error Correction . 39

3.6 Evaluation . 40

3.6.1 Reliability . 40

3.6.2 Area and Power Overhead 41

3.6.3 System Performance 42

3.7 Conclusion . 44

4 Effective Utilization of Partially Faulty Links 47

4.1 Introduction . 48

4.2 Related Work . 49

4.3 Partially Faulty Link Utilization 51

4.3.1 Link Diagnosis . 51

4.3.2 Flit Serialization and Deserialization 53

4.3.3 Flit Transmission Process 54

4.3.4 Redundant Link Section 56

4.3.5 Link Latency and Reliability 57

4.4 Evaluation . 59

4.4.1 FS Performance on Synthetic Traffic 60

4.4.2 FS Performance on PARSEC Benchmarks 66

4.4.3 Area and Power . 67

4.5 Conclusion . 69

vi

5 Heavily Defected Link Deactivation and Fault Tolerant Routing 71

5.1 Introduction . 72

5.2 Related Work . 74

5.2.1 Link Bandwidth Aware Routing 74

5.2.2 Fault Tolerant Routing Algorithms 75

5.3 Heavily Defected Links Deactivation Threshold 76

5.4 Unpaired Functional Link Aware Fault Tolerant Routing Al-

gorithm . 78

5.4.1 Fault Pattern Validation 79

5.4.2 Turn Rules . 81

5.4.3 VC utilization Constraints 83

5.4.4 Deadlock Freeness 83

5.5 Evaluation . 85

5.5.1 UPF-FTRA Performance on Synthetic Traffic 85

5.5.2 UPF-FTRA performance on PARSEC Benchmarks . . 87

5.5.3 The Effectiveness of the Link Deactivation Threshold . 87

5.5.4 Area and Power . 92

5.6 Conclusion . 93

6 Link Bandwidth Aware Task Mapping 95

6.1 Introduction . 95

6.2 Related Work . 97

6.3 Problem Description . 98

6.4 The Mapping Algorithm . 100

6.4.1 Region Selection . 101

6.4.2 Task Mapping . 104

6.5 Evaluation . 107

6.5.1 Mapping Quality . 108

6.5.2 Loose Factor . 110

6.5.3 Real Applications . 111

6.6 Conclusion . 112

7 Enabling Wormhole Switching and Tolerating Faults in 3D NoC Verti-

cal Links . 113

7.1 Introduction . 114

7.2 Related Work . 116

7.3 VC Allocation Along Vertical Buses 117

7.3.1 Problem Description 117

vii

7.3.2 Bus VC Allocation Mechanism 119

7.3.3 Bus Data Transmission Policy 121

7.4 Evaluation . 122

7.4.1 Critical Path Length 123

7.4.2 Synthetic Traffic . 123

7.4.3 BVA Efficiency . 127

7.4.4 PARSEC Benchmarks 127

7.4.5 Area and Power . 129

7.5 Fault Tolerance in 3D NoCs Vertical Links 130

7.5.1 Transient Faults . 130

7.5.2 Partially Defected Vertical Buses 132

7.5.3 Fault Tolerant Routing 133

7.6 Conclusion . 134

8 Conclusions and Future Work . 135

8.1 Summary . 135

8.2 Future Research Directions 139

Bibliography . 141

List of Publications . 149

Samenvatting . 151

Propostions . 153

Stellingen . 154

Curriculum Vitae . 155

viii

List of Tables

3.1 Area and power of soft error tolerant methods for RU 41

3.2 Area and power of soft error tolerant methods for VA/SA. R-

R: Round-Robin. 42

3.3 Performance of RUS at different SERs 43

4.1 Average flit transmission latency (cycles/flit) when flits are

transmitted continuously . 58

4.2 Power and area overhead of different link fault-tolerant methods 68

5.1 Area and power overhead of different RAs. The NoC size is

10× 10 for Ariadne∗ and 8× 8 in other cases 93

6.1 Mapping quality for synthetic benchmarks. 108

6.2 Mapping quality for video applications. 111

7.1 Area and power of router and bus stage in different 3D NoC

systems. 130

ix

List of Figures

1.1 ITRS roadmap [48] for the number of processing cores, pro-

vided and required processing performance. 3

1.2 ITRS [47] projected relative delay for wires and logical gates

in different technologies. 4

2.1 A NoC example with 4× 4 2D mesh topology. R: Router. NI:

Network Interface. Each router is connected with 1 cores and

4 neighbor routers. 16

2.2 NoC topology examples. In (c), all interconnects are uni-

directional. In (d), the interconnects can be bidirectional or

unidirectional according to the system requirements. In other

topologies, all interconnects are bidirectional. 17

2.3 Use VCs to solve blocking issues. (a) Both packets A and B

are blocked. (b) Packet A is blocked, but packet B can still be

transmitted. 19

2.4 The credit-based buffer management mechanism. The num-

bers in the second column, below “Router A”, indicate the

number of available buffer slots in the downstream VC. 20

2.5 A typical VC based router architecture. RU: routing unit; VA:

VC allocation; SA: switch allocation. 20

2.6 The pipeline stages to transmit a packet. 21

2.7 Two ways to organize VC buffers. (a) Each VC is indepen-

dently implemented; (b) All VC buffers are implemented in

one block memory. 22

2.8 An implementation of speculative VA/SA. Each router has p

physical ports and each port is shared by v VCs. 23

xi

2.9 Structure of the simulation platform. 24

2.10 Performance of a 2D 8 × 8 mesh NoC under uniform traffic

using XY routing algorithm. Each physical port is shared by

4 VCs. The buffer depth of each VC is 4-flits. The packet

length is 4-flits. 27

3.1 Routing unit sharing among neighboring input ports. 34

3.2 Percentage of packets protected by RUS in synthetic traffics.

Bit compliment (bc) and random (rand) traffic patterns, XY

and Opt Y routing algorithms, packets with a length of 8-flits

(p8) and 4-flits (p4) are evaluated. 35

3.3 Percentage of packets protected by RUS in real applications.

XY and Opt y routing algorithms are evaluated. 36

3.4 Detect soft errors in VA result. 37

3.5 Changes of input VC states. 39

3.6 Average latency at different SERs and FIRs. 43

3.7 Detected error numbers at different SERs. 44

4.1 Proposed fault-tolerant link architecture. 52

4.2 Flit serialization unit - TX. 53

4.3 Flit deserialization unit - RX. 54

4.4 Timing diagram of proposed mechanism (a) Timing diagram

for a fault-free link; (b) Transmitter side when one section

contains faulty wires; (c) Receiver side when one section con-

tains faulty wires. 55

4.5 Average flit transmission latency of different partially faulty

link utilization strategies. The link is divided into 8 sections

for FS and SHFS. 59

4.6 Fault link Patterns at different wire fault rate. 61

4.7 Continue – Fault link Patterns at different wire fault rate. . . . 62

4.8 NoC Performance at different wire fault rate. 63

4.9 Continue – NoC Performance at different wire fault rate. . . . 64

xii

4.10 Average packet transmission latencies of PARSEC Bench-

marks at different fault rates. Links are divided into 8 sections

for FS and SFHS. 66

4.11 Average packet transmission latencies of PARSEC Bench-

marks at different fault rates. Links are divided into 8 sections

for FS and SFHS. 67

4.12 Normalized value of area*power/saturation throughput metric

of different link fault tolerant strategies. Lower is better. . . . 69

5.1 Detouring example. (a) The misrouting-contour of L0. (b)

Detouring delay. 77

5.2 Flow chart of fault pattern validation FSM in each router. . . . 79

5.3 Validated fault pattern. (a) Routers and links seen by router C;

(b-g), Fault Patterns can be tolerated by the proposed RA. . . 80

5.4 Misrouting direction of different messages. The dashed

boarder of the shadows may not be fault walls. 82

5.5 Misrouting of column messages. The shadows indicate the

directions of fault walls. (a) livelock occurs; (b) destination is

reached; (c) destination is not reachable 82

5.6 Channel dependency graphs. 84

5.7 NoC performance at different fault rates and traffic patterns.

In the legend, R means random traffic pattern, and L means

localized traffic pattern. 86

5.8 Average packet transmission latency (cycles) of different

benchmarks when the NoC has different percentage of broken

links. 88

5.9 The link fault level change trend at different wire fault rate.

The legend is the number of broken link sections in a heavily

defected link. 89

5.10 The system average packet transmission latency when deacti-

vate links with high fault level with different threshold. 90

5.11 The system saturation throughput when deactivate links with

high fault level with different threshold. 91

xiii

5.12 The system saturation throughput at different link deactivation

threshold when each link is split into 4 sections. A link is

deactivated if 3 and 4 sections are broken in the T3 and T4

cases, respectively. 92

6.1 An application to map example. 103

6.2 A NoC architecture example. 104

6.3 Map tasks into the target region with loose factor λ = 1.20.

Link bandwidth is illustrated in (a), link traffic load is illus-

trated in (b). 107

6.4 prop.CeMD mapping quality at different NoC wire fault rate.

Results are normalized against the fault free case. 109

6.5 CASqA to prop.CeMD mapping quality ratio at different NoC

wire fault rate. 110

6.6 Network latency for different λ values. Results are normalized

against the λ = 0.2 case. 111

7.1 NoC-Bus hybrid system structure. The BVA arbiter locates

in the middle layer and the colored zones can run at different

clock frequencies. 118

7.2 Conventional VC allocation mechanism. The number of VCs

is v. The number of physical ports is p. 119

7.3 The proposed BVA scheme. 120

7.4 Timing diagram of the BVA mechanism. 120

7.5 Cluster Mesh Inter-layer topology. 122

7.6 Critical path length of routers and buses. 124

7.7 Average packet transmission latency in different 3D NoC sys-

tem when buses are not shared. The packet length is 8-flits. . . 125

7.8 Average packet transmission latency in different 3D NoC sys-

tem when buses are shared. 1x, 2x means the bus frequency

is 1, or 2 times higher than the NoC router frequency, respec-

tively. The packet length is 8-flits. 126

7.9 The system saturation throughput at different packet length

and layers number. The packet length is 8-flits. 128

xiv

7.10 Average packet transmission latency of PARSEC benchmarks.

The buses work at the same frequency with the routers. 129

7.11 Structure to detect erroneous BVA results. 131

xv

List of Algorithms

1 Map region selection. 102

2 Pick nodes in the frontier. 103

3 Map application to the selected region. 105

4 Map a task to the best node. 106

xvii

List of Acronyms and Symbols

2D 2 Dimensional

3D 3 Dimensional

AC Allocation Comparator

ALL Average Link Load

AP Application

AP/S Area*Power/Saturation throughput

ASIC Application Specific Integrated Circuit

AWeMD Average Weighted extended Manhattan Distance

AWMD Average Weighted Manhattan Distance

BIST Built-In-Self-Test

BN Best Neighbor

BVA Bus Virtual Channel Allocation

BW Buffer Write

CASqA Contiguity Adjustable Square Allocation

CDG Channel Dependency Graph

CeMD Congested extended Manhattan Distance

CM Central Manager

CMIT Cluster Mesh Inter-layer Topology

CS Circuit Switching

CSL Configurable Fault-Tolerant Serial Link

CT Crossbar Transverse

dTDMA dynamic Time Division Multiple Access

E East

E2E End-to-End

ECC Error Correcting Code

EDC Error Detection and Correction

ELU Effective Link Utilization

eMD extended Manhattan Distance

FF First Free

FIR Flit Injection Rate

FPGA Field Programmable Gate Array

FS Flit Serialization

FSM Finite State Machine

FTRA Fault Tolerate Routing Algorithms

GALS Globally Asynchronous and Locally Synchronous

xix

HBH Hop-By-Hop

HD Heavily Defected

HDL Hardware Description Language

HIBS High-performance Inter–layer Bus Structure

HOL Head Of Line

IC Integrated Circuit

ICEB Internal Congestion and Energy per Bit

I − IVAD Input side Invalid VC Allocation Detection

INC Incremental mapping heuristic

ITRS International Technology Roadmap for Semiconductors

LFSR Linear Feedback Shift Register

LSH Least Significant Half

LT Link Transverse

MD Manhattan Distance

MPSoC Multi-Processor Systems on Chip

MSH Most Significant Half

N North

NACK Negative Acknowledgement

NF Neighbor-aware Frontier

NI Network Interface

NMRD Normalized Mapped Region Dispersion

NN Nearest free Neighbor

NoC Network-on-Chip

O − DVAD Output side Duplicated VC Allocation Detection

PC Physical Channels

PFLRM Partially Faulty Link Recovery Methods

PFLUM Partially Faulty Link Utilization Methods

PL Path Load

PPV Process Parameter Variation

PS Packet Switching

RA Routing Algorithm

RC Routing Computation

RC Receiver Concave

RU Routing Unit

RUS Routing Unit Sharing

RX Receiver

S South

SA Switch Allocation

SEC/DED Single Error Correction and Double Error Detection

xx

SER Soft Error Rate

SET Single Event Transient

SEU Single-Event Upset

SFHS Simple Flit Half Splitting

SFRT Solid Fault Region Tolerant

SHiC Smart Hill Climbing

SLLD Standard Link Load Deviation

SoC System-on-Chip

TC Transimitter Concave

TDG Test Data Generator

TDMA Time Division Multiple Access

TED Test Error Detector

TMR Triple Modular Redundancy

TSV Through Silicon Via

TX Transmitter

ULSI Ultra Large Scale Integration

UPF UnPaired Functional

UPF − FTRA UPF link aware Fault Tolerant Routing Algorithm

VA VC Allocation

VC Virtual Channel

VCID Virtual Channel Index

VCT Virtual Cut-Through

VNT Vertical Node Tree

W West

WS Wormhole Switching

xxi

1
Introduction

S
ince the first Integrated Circuit (IC) prototype was demonstrated in

1958 [46], the semiconductor fabrication technology feature size has

been continuously scaled down driven by consumers’ demands for

higher performance and lower power consumption. This spectacular evolu-

tion enables the transistors amount on a single chip to be doubled in every

18 months [105]. To efficiently utilize the vast amount of chip resources and

address issues like long global wire delay, system synchronization, and de-

sign productivity, the digital system paradigm has been evolved and sequen-

tially experienced the room-, rack-, board-, and chip-level systems. As the

number of processors in chip-level systems increases towards Multi-Processor

Systems on Chip (MPSoC), the Network-on-Chip (NoC) paradigm [23] has

been proposed and is still widely investigated as a scalable and reliable com-

munication infrastructure replacement of buses and crossbars [11]. However,

transistor miniaturization also makes the manufacturing yield and chip depend-

ability increasingly serious concerns. The chips are becoming more prone to

various kinds of failures caused by issues like single event upset [52], manu-

facturing defects [40], chip wear-out effects [14], Process Parameter Variations

(PPVs) [42,98], etc., especially for NoCs, which geometrically spread all over

the chip real estate. Given that the NoC is the MPSoCs backbone, to avoid sig-

nificant system performance degradation due to fault occurrence, its depend-

ability need to be improved by means of mechanisms located at different NoC

abstraction levels, e.g., circuit, architecture, and their introduction constitutes

the focal point of this dissertation.

In this chapter, we discuss the necessity to implement NoC based MPSoCs in

modern ICs in Section 1.1, present state of the art ICs dependability issues and

their corresponding NoC design challenges in Section 1.2, highlight the disser-

tation contributions in Section 1.3, and introduce the dissertation organization

in Section 1.4.

1

2 CHAPTER 1. INTRODUCTION

1.1 Network-on-Chip

Conventionally, a System-on-Chip (SoC) consists of a single processor, re-

quired peripherals, and buses or crossbars to connect the processor and periph-

erals. As the chip size and required performance soar, the design paradigm

shifts towards Multi-Processor Systems on Chip (MPSoCs) in which the sin-

gle high performance processor is replaced by multiple low performance ones

and the buses/crossbars are replaced by a Network-on-Chip (NoC). We note

that MPSoCs are also multi-core systems thus in this dissertation, we deem an

MPSoC processor as being equivalent with a core in the multi-core system and

we use the two terms, processor and core, interchangeably unless otherwise

stated.

1.1.1 From Single Processor to Multi-Processor SoCs

Many techniques have been utilized to improve the single processor SoC per-

formance, with increasing chip frequency being the most straightforward one.

However, the maximum clock frequency cannot be increased “ad infinitum”

without any limitations and undesired consequences [75]. Even though it is

possible to run a processor core at a high frequency, e.g., 6GHz, it is not wise

to run the entire chip at such high speed as this significantly increases the chip

power density [50]. Other strategies to improve a processor’s performance

include adding architectural features like hyper-threading, superscalar, out-of-

order execution, branch prediction, etc., at the expense of higher design and

validation efforts [12].

In fact, parallelism is always one of the best ways to improve performance and

this concept has been successfully applied to SoCs resulting in the introduc-

tion of MPSoCs [75]. By replacing the single high performance processor with

multiple low performance ones, the same or even higher computation power

can be achieved while operating at lower voltage, frequency, and power den-

sity. Moreover, when compared with single processor SoCs, MPSoCs are more

reliable due to their inherent redundancy, i.e., when one processor is broken, its

tasks can be taken over by other functional ones. The strict global synchroniza-

tion requirement can also be released if MPSoCs are implemented as Globally

Asynchronous and Locally Synchronous (GALS) systems [18]. Last but not

least, MPSoCs can speed up the time-to-market as they enable the existing

processors reuse.

Nowadays, MPSoCs embedding tens to hundreds of processing cores have

1.1. NETWORK-ON-CHIP 3

Figure 1.1: ITRS roadmap [48] for the number of processing cores, provided and

required processing performance.

been fabricated, e.g., Teraflops [106] with 80 cores and Ambric [104] with

336 cores. As illustrated in Fig. 1.1, the International Technology Roadmap

for Semiconductors (ITRS) predicts that by 2026, there will be chips with

upwards of 10x more cores than current MPSoCs, while the gap between the

required and provided processing performance is still widening. ITRS also

predicts that the number of cores increases linearly in the foreseeable future,

and by implication the intra-system communication requirements, thus the on

chip interconnection infrastructure must be scalable in order not to become the

system bottleneck.

1.1.2 From Bus and Crossbar to Network-on-Chip

As transistor size shrinks and the SoC design paradigm shifts from compu-

tation centric towards communication centric, the on chip communication,

which was considered to be cheaper than computation, starts to become a ma-

jor contributor to the SoC performance and implementation cost.

Traditionally, the SoC on-chip interconnects have followed the conventional

bus or crossbar structures. However, as the number of processing cores in-

creases, buses and crossbars are becoming the system bottleneck due to their

low scalability.

4 CHAPTER 1. INTRODUCTION

0.1

1

10

100

Process Technology Node (nm)

R
e
la

ti
v

e
 D

e
la

y

Gate Delay

Local

Global with Repeaters

(Scaled Die Edge)

Global w/o Repeaters

(Scaled Die Edge)

250 180 130 90 65 45

(Fan out 4)

(Scaled)

 32

Figure 1.2: ITRS [47] projected relative delay for wires and logical gates in different

technologies.

A bus is by nature a sequential data transport medium as by an arbitration pro-

cess it is exclusively assigned to one source and destination pair in each and

every clock cycle. To enable concurrent data transmission, buses can be seg-

mented [64] at the expense of higher arbitration complexity or replaced with

crossbars at the expense of a significantly larger number of wires. However,

segmented buses and crossbars are not fully scalable and thus should be per-

ceived as intermediate solutions.

As (MP)SoCs are getting more and more complex, long wires are extensively

utilized in buses and crossbars. However, as semiconductor technology scales

down, the wire resistance per mm is increasing and long wires become more

expensive in terms of power consumption. Moreover, wires scale much slower

than transistors do [11], thus wire delays rather than gate delays are becoming

the dominant contributors to the clock period length [99]. As illustrated in Fig.

1.2, for the 32nm technology node, global wires are already more than 100x
slower than gates, and still about 10x slower even when repeaters are utilized.

This makes the system level synchronization very challenging and limits the

bus and crossbar maximum operating frequency.

The aforementioned issues can be addressed by interconnecting the cores with

an NoC [23], which is constructed from multiple point to point data links inter-

1.2. RESEARCH CHALLENGES 5

connected by routers, such that messages can be relayed from any source node

to any destination node over several links, by routing decisions performed by

the involved routers [107]. Network Interfaces (NIs) are implemented between

cores and the NoC to decouple computation from communication by packing

and unpacking the messages. Note that messages are usually transmitted in the

form of packets, and each packet is further split into several flits, which have

the same width with the NoC’s links. More details about NoC architectures

are presented in Chapter 2.

When compared with bus and crossbar, NoC is not just more scalable, but also

can operate at much higher clock frequency and has lower power consumption

[3]. For example to interconnect 64 cores, both bus and crossbar require large

arbiters to control the data flow, while in a 2 dimensional (2D) mesh NoC,

each router just connects with the local core and 4 neighboring routers thus

small arbiters are required. In addition, neighboring routers are interconnected

with short wires thus NoCs can work at higher frequency. The wires in buses

and crossbars are fanned out to all their targets while NoC links offer point to

point connection between adjacent routers, thus NoCs also have lower dynamic

power consumption.

NoC is also intrinsically more reliable than bus and crossbar. An NoC usually

provides multiple routing paths between any source and destination pair, thus

if one path is broken, the messages can be detoured along alternative paths.

Nevertheless, as the transistor size scales down, the fault variety and occur-

rence frequency are increasing, which make the design of dependable NoCs a

real challenge.

1.2 Research Challenges

A system is dependable if it is able to offer service without failures that are

more frequent and more severe than acceptable [6]. The acceptability level

is very much dependent on the application nature, demands, and operating

environment, thus dependability requirements for different chips may be vary

quite significantly. However, as the transistor size keeps on scaling, the chips

are generally becoming more prone to various kinds of dependability issues

and thus have to deal with more errors [22].

Generally speaking, the dependability issues can be classified into the follow-

ing categories:

• Single-Event Upset (SEU). An SEU happens when the normal state of

6 CHAPTER 1. INTRODUCTION

a logic unit is flipped by high energy particles, e.g., neutrons and pro-

tons, and the resulting logic glitch is propagated to an output or captured

by memory units [52]. SEU occurrence rate is related to, e.g., transistor

size, power supply value, chip area, and increases with technology scal-

ing. Thus state of the art ICs, MpSoCs included, are more sensitive to

SEU occurrence in both computation and data transport parts.

• Process Parameter Variations (PPVs). PPVs are sourced from random

dopant fluctuations, sub-wavelength lithography, and heat flux which is

time and context variant [14]. As the worst-case design strategy is usu-

ally employed to ensure correct system functionality in all potentially

possible operating conditions, increased PPVs not just bring more de-

sign challenges but also reduce the manufacturing yield, which increases

the costs and diminishes the technology scaling benefits [98].

• Manufacturing Defects. Manufacturing defects occur due to the imper-

fection of the chip production steps. As the transistor size scales down,

the expectation of getting a fault-free chip from manufacturing process

drops significantly. Note that manufacturing defects need to be detected

and masked to avoid abandoning the entire chip [49].

• Wear-out Effects. As technology scales, time-dependent wear-out ef-

fects, e.g., electromigration, hot carrier degradation, and time depen-

dent oxide breakdown, are getting stronger and the chip lifetime is ob-

viously shortened. Although the chip aging process can be potentially

predicted and monitored by various kinds of aging models [59,102] and

sensors [58, 103], the chips must be periodically diagnosed to detect

worn-out components and to deal with them by means of proper tech-

niques.

Due to the aforementioned dependability issues, transient, intermittent, and

permanent faults may occur in MPSoCs which could lead to computation and

data transmission errors and eventually in service failures. We note that: (i)

transient faults occur randomly but rarely at the same location, (ii) permanent

faults do not disappear once they happened and their amount increases with

chip aging, and (iii) intermittent faults exhibit the same syndromes as perma-

nent faults but they vanish after a short time period.

As it is impossible to prevent fault occurrence, they must be dealt with to

maintain the system functionality and ensure that the system performance

gracefully degrades during its operational lifetime. As the SoC design shifts

from computation-centric to communication-centric, and NoCs geometrically

1.2. RESEARCH CHALLENGES 7

spread all over the chip real estate, NoC dependability is becoming a key con-

tributor to the dependability of the entire system. In view of this, in this dis-

sertation, we combat NoC dependability issues at the architecture level, and

mainly address the following:

• Soft error occurance in the router control plane.

Message data bits can be flipped when SEU induced soft errors happen

in links and/or routers’ data path, i.e., input/output buffers and crossbars.

Such errors can be detected and corrected by means of various kinds of

Error Correcting Codes (ECC) [80]. However, when soft errors happen

in the router control plane, packets or flits could be transmitted to wrong

output ports even that the data correctness is not affected. Note that such

errors cannot be detected by ECC means and require novel soft error

tolerant strategies.

• Effective utilization of still functional resources in permanent fault

affected NoCs.

Due to dependability issues, NoC links and routers may be affected by

permanent faults, which need to be tolerated to maintain the basic NoC

functionality. Equally important, the still functional resources should be

effectively utilized to achieve graceful performance degradation. In this

line of reasoning links with a small portion of broken wires are dealt with

Partially Faulty Link Utilization Methods (PFLUMs), e.g., [61,72,100],

and totally broken links are bypassed by detouring the packets along al-

ternative fault free paths by means of Fault Tolerate Routing Algorithms

(FTRAs), e.g., [1, 16, 17, 19, 29, 39, 56, 81, 101, 116]. However, state of

the art proposals focus on fault tolerance give little attention to the effec-

tive utilization of the remained partially functional NoC resources. For

example, all PFLUMs double the link transmission latency even if the

link contains only one broken wire, and most FTRAs discard the entire

interconnect between two adjacent routers despite the fact that only one

of the two links is broken. Note that we assume that an interconnect be-

tween two adjacent routers is composed of a pair of unidirectional links,

each link having its own control flow wires and handling either outgoing

or incoming traffic. In view of the previous discussion we can conclude

that PFLUMs that can utilize the remained link bandwidth more effi-

ciently and FTRAs that can make use of UnPaired Functional (UPF)

links in partially defected interconnects are required.

• NoC link bandwidth variation aware application mapping.

In NoC based MPSoCs, applications are usually split into sets of con-

8 CHAPTER 1. INTRODUCTION

current tasks, which are mapped onto different processor nodes to en-

able their parallel execution. Existing run time task mapping heuris-

tics, e.g., [15,20,21,33,34,36], perceive NoC links as being either fully

functional or totally broken despite of the fact that when partially broken

links are utilized and their diminished bandwidth is carefully considered,

a better mapping quality could be achieved. In view of the fact that par-

tially broken link utilization is a centric point of our research the identi-

fication of novel mapping heuristics able to take advantage of such links

can be viewed as its natural continuation at a higher abstraction level.

An essential aspect in this context is that the identification/definition of

new task mapping metrics able to better reflect link bandwidth varia-

tions is required to select the best processing node candidate for each

application task.

• Vertical link dependability improvement in 3-dimensional (3D)

NoC.

With the emerging of 3D IC stacking, various 3D NoC architectures have

been proposed [82]. In 3D chips, silicon tiers are vertically stacked and

connected with Through Silicon Vias (TSVs) [7] which, when compared

with moderate size planar wires, exhibit extremely low data transmis-

sion latency, but suffer from low manufacturing yield [63]. As most 2D

NoC principles can be applied to each silicon layer, the main challenge

in 3D NoCs relates to the vertical links’ implementation and utilization.

Thus 3D NoC designs that can exploit the benefit of negligible TSV de-

lay while improving the vertical link dependability are essential in 3D

MPSoC implementations.

We note that in this dissertation, we focus on generic NoC dependability is-

sues which are independent to the cores, while the dependability issues related

with NIs are quite specific to the type of cores they attached to [11] that NIs

are not considered. However, as long as NIs pack/unpack messages accord-

ing to the NoC required packet structure, all NI dependability improvement

strategies, e.g., [38, 84], are applicable in conjunction with our proposals in

this dissertation.

1.3 Dissertation Contributions

The main goal of this dissertation is to augment the NoC dependability at, but

not limited to, the architectural level by: (i) improving the NoC fault toler-

1.3. DISSERTATION CONTRIBUTIONS 9

ance capabilities, (ii) efficiently utilizing remained partially functional NoC

resources, (iii) mapping applications into the NoC in awareness of the faults

and link bandwidth variation, and (iv) designing new dependable NoC infras-

tructures. The final goal being to construct NoCs able to deliver trusted com-

munication service to the MPSoCs computation units during their expected

lifetime. In this section, we highlight the main contributions of the research

work described in this dissertation, as follows:

• We propose a low cost method to tolerate soft errors potentially occur-

ring in router control plane functional units, i.e., routing units, Virtual

Channel (VC) allocators, and switch allocators. Rather than relying

on a Triple Modular Redundancy based implementation of each func-

tional unit, we choose to exploit the intrinsic redundancy available in

the router hardware structures and signals. In essence we detect Rout-

ing Computation (RC) errors by comparing RC results from the local

Routing Unit (RU) and idle RUs available at neighboring input ports.

The RC results are recalculated in case errors are detected or neighbor-

ing RUs are not available. We detect errors in the VC Allocation (VA)

and Switch Allocation (SA) results by checking if they are consistent

with the correct RC results, each NoC resource is exclusively assigned

to one request initiator, and each request initiator is allocated only one

NoC resource. VA/SA errors are corrected by redoing the failed proce-

dures and retransmitting the flits. Experimental results on an 8×8 2D

NoC indicate that: (i) in the routing units, the proposed method requires

38% more silicon real estate than the Σ & Branch method when the XY

routing algorithm is utilized, but it is more general and can be utilized

in conjunction with other routing algorithms; and (ii) in the combined

VA/SA units, the proposed method is simpler and more effective than

state of the art counterparts. When compared with the Triple Modular

Redundancy strategy, for similar error detection and correction capabil-

ities, the proposed method can reduce the area and power overhead in

routing units by 53% and 38%, respectively, and in combined VA/SA

units by 45% and 46%, respectively. The average packet transmission

latency is less than 5% higher than the one of the baseline router with no

soft error detection/correction mechanisms even if the soft error rate is

as high as 0.1 errors/router/cycle.

• We propose a Flit Serialization (FS) method to tolerate broken link wires

and to effectively utilize the remained link bandwidth. The FS approach

divides the links and flits into several sections, and serializes sections

10 CHAPTER 1. INTRODUCTION

of adjacent flits to transmit them on all available fault-free link sections

to avoid the complete waste of partially defective links. The proposed

transmitter and receiver are transparent to the router such that their uti-

lization is not constrained by the router architecture and implementation

or network topology. Experimental results obtained on synthetic traffic

and PARSEC benchmarks indicate that FS reduces the latency overhead

significantly and enables graceful performance degradation when com-

pared with related partially faulty link utilization proposals. It reduces

area cost and power consumption by up to 29% and 43.1%, respectively,

when compared with spare wire replacement methods, and can achieve

lower area*power/saturation throughput values than all state of the art

link fault tolerant strategies. We also propose the link augmentation

with one redundant section as a low cost mechanism to further increase

the link dependability. Experimental results indicate that when 10% of

the NoC wires are broken, adding a redundant section to each link can

improve the NoC saturation throughput by 18%.

• We propose a distributed logic based Fault Tolerant Routing Algorithm

(FTRA) to tolerate broken links and efficiently utilize the UnPaired

Functional (UPF) links in partially defected interconnects. The basic

fault pattern tolerated by the UPF link aware FTRA (UPF-FTRA) is a

fault wall, which is composed of adjacent broken links with the same

outgoing direction. Messages are routed around the fault walls along

the misrouting contours of the broken links. The proposed Routing Al-

gorithm (RA) requires at least 3 VCs and dynamically reserve them to

the detoured messages to avoid deadlock. Our experiments indicate that,

for random and localized traffic patterns, we achieve an average satura-

tion throughput 20% higher than the Solid Fault Region Tolerant (SFRT)

RA, and 22% and 14% higher than the Ariadne routing table based RA,

respectively. Simulation results on PARSEC benchmarks also suggest

that UPF-FTRA provides much lower packet transmission latency than

SFRT and Ariadne. Synthesis results with Synopsis Design Compiler

and TSMC 65nm technology indicate that, embedding the proposed RA

into a baseline router results in 9% area overhead, which is only 1%

higher than that of SFRT and does not increase for bigger size NoCs.

• We introduce a strategy to differently treat partially faulty links that have

different fault levels as follows: (i) links whose fault level is lower than

a threshold are still utilized by means of the FS method, while (ii) Heav-

ily Defected (HD) links whose fault levels exceed the threshold are de-

1.3. DISSERTATION CONTRIBUTIONS 11

activated and dealt with the UPF-FTRA. Although utilizing HD links

can preserve more NoC link bandwidth, they can actually cause high

congestion in the upstream routers and significantly degrade the system

performance. As the FS induced link flit transmission latency increases

slowly when the link fault level is low but fast when the fault level is

high, the optimal threshold can be easily determined by comparing the

zero load packet transmission latency on the HD links and that on the

shortest alternative path. Simulation results we obtained at various wire

broken rate configurations indicate that we achieve the highest satura-

tion throughput if 4- or 8-section links with a flit transmission latency

longer than 4 cycles are deactivated.

• We propose a run-time task mapping algorithm, which takes both the

path traffic load and link bandwidth variation into consideration and

maps applications onto contiguous near convex NoC regions to reduce

the internal and external congestion. We rely on a backtracking strategy

to guaranty that the maximum link traffic load does not exceed a given

limit determined by the link bandwidth and a loose factor. Note that

the loose factor is employed to adjust the maximum percentage of link

bandwidth that can be utilized. To evaluate our proposal we map syn-

thetic and real video processing applications on partially defective 8× 8
NoCs. The experiments indicate that our approach substantially out-

performs equivalent state of the art task mapping heuristics when NoC

defects are present, e.g., for 5% broken wires, we achieve at least 16%

communication cost reduction and 45% shorter average packet transmis-

sion latency.

• We propose a Bus VC Allocation (BVA) mechanism to enable vertical

Wormhole Switching (WS) in 3D NoC-Bus hybrid systems. We note

that by implementing the vertical 3D NoC links as buses we can exploit

the benefit of negligible TSV delay by running the bus at a higher fre-

quency than its planar NoCs and reduce the amount low manufacturing

yield TSVs by letting multiple routers resident on one tier to share the

same bus. In such an NoC-Bus hybrid system, data are usually transmit-

ted according to the Packet Switching strategy because enabling verti-

cal Wormhole Switching (WS) in the conventional way requires a large

amount of TSVs. The BVA mechanism address this issue by assigning

in each layer to at most one cross layer packet a free input VC in its tar-

get router before injecting the packet into the bus. In this way, a routing

path is reserved by the head flit, and the rest of the packet flits can be WS

12 CHAPTER 1. INTRODUCTION

transmitted through the vertical buses. Given that VC allocation is per-

formed only once per packet per hop BVA can be implemented in such

a way that it doesn’t become a system bottleneck. We evaluate our pro-

posal with both synthetic and PARSEC benchmarks. The experimental

results indicate that when compared with conventional pipelined bus or

Time Division Multiple Access (TDMA) bus based systems, implement-

ing vertical WS can reduce the bus critical path length by at least 31%,

diminish the average packet transmission latency by at least 22%, and

save the area cost and power consumption of the output buffers incident

to the bus by 47% and 43%, respectively.

1.4 Dissertation Organization

The reminder of this dissertation is organized as follows:

Chapter 2 introduces the essential NoC background knowledge by covering

aspects as NoC topology, routing algorithm, switching policy, and router ar-

chitectures. We also present the mixed language NoC simulation platform we

utilize to evaluate and validate the contribution described in this thesis, the

strategies to inject synthetic traffic and real application traces into the NoC,

and the NoC performance evaluation metrics.

Chapter 3 presents our approach to tolerate soft errors occurring in the NoC

router control plane, i.e., routing units, VC allocators, and Switch Allocators.

The implementation details related to the error detection and correction are

described.

Chapter 4 introduces the Flit Serialization (FS) method which can efficiently

utilize remained bandwidth in partially defective NoC links. We also propose

a low cost link augmentation method with one redundant link section to make

up the FS drawback that the link bandwidth is reduced even if a link contains

only one broken wire.

Chapter 5 presents our approach to tolerate Heavily Defected (HD) links.

Specifically, we first find the optimal threshold to deactivate HD links by com-

paring the zero load packet transmission latency on the HD links and that on

the shortest alternative path, and then propose a fault tolerate routing algorithm

to tolerate deactivated links and to efficiently utilize unpaired functional links.

Chapter 6 introduces 4 new mapping quality evaluation metrics which take the

link bandwidth variations into consideration and presents the link bandwidth

aware backtracking based run time task mapping algorithm. This algorithm

1.4. DISSERTATION ORGANIZATION 13

consists of two sub-algorithms which are utilized to search for a near square

free NoC region and to map the newly injected application into the selected

region, respectively.

Chapter 7 introduces the Bus VC Allocation (BVA) mechanism to enable

vertical wormhole switching data transmission in 3D NoC-Bus hybrid systems

and discusses its utilization in pipelined and Time Division Multiple Access

(TDMA) vertical buses. To deal with potential transient and permanent faults

in 3D NoCs, we also discuss the application of our aforementioned fault toler-

ant techniques to detect and correct soft errors in bus VC allocators, to utilize

partially faulty vertical buses, and to tolerate deactivated or totally broken ver-

tical buses.

Finally, Chapter 8 concludes our work and provides outlook on potential fu-

ture work.

2
NoC Background Knowledge

I
n this chapter, we introduce essential NoC background knowledge.

Specifically, we first present the basic NoC components with a simple ex-

ample, and then introduce the NoC architecture by covering the aspects

as network topology, routing algorithms, and switching policies. After that,

a router architecture embedding wormhole switching technology is described.

We also present the mixed language NoC simulation platform we utilize to

evaluate and validate the contribution described in this thesis, the strategies to

inject synthetic traffic and real application traces into the NoC, and the NoC

performance evaluation metrics.

2.1 An NoC Example

A simple NoC example structured as a 4× 4 2D mesh is presented in Fig. 2.1.

An NoC consists of Network Interfaces (NIs), routers, and links.

• Network interfaces act as the interface between the cores and the NoCs

to decouple computation from communication. In the NIs, data to be

injected into the NoC are packed into packets and received packets from

the NoC are unpacked.

• Routers are utilized to route packets to the destination according to the

employed routing protocols. Based on the NoC topology, each router

can be connected with multiple cores and neighboring routers. We note

that the cores can be processing or memory units.

• Links connect adjacent routers. The interconnect between two adjacent

routers are usually composed of two unidirectional links which in charge

of the outgoing or incoming traffic, respectively. It is possible to replace

15

16 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

R

Core

NI

Figure 2.1: A NoC example with 4 × 4 2D mesh topology. R: Router. NI: Network

Interface. Each router is connected with 1 cores and 4 neighbor routers.

the unidirectional links with bidirectional ones [97]. However, unidirec-

tional links are still attractive as they provide better means to implement

the control logic and to address timing error issues [95]. In this thesis,

we focus on NoCs that utilize unidirectional links.

2.2 NoC Architecture

Based on the target application context, a NoC places the routers and con-

nects them with links according to a certain topology and routes the packets

according to the most suitable routing protocols. The routing protocols are

implemented with corresponding router structures.

2.2.1 NoC Topology

Some basic NoC topologies are illustrated in Fig. 2.1, among which the most

common one is 2D mesh. When compared with 2D mesh, 2D torus has more

routing path diversity but also longer links between routers, fat tree and but-

terfly can better exploit the traffic locality but have fixed routing path and thus

2.2. NOC ARCHITECTURE 17

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) Torus (b) Fat Tree (c) Bu!erfly

(d) Irregular (e) Mixed topology (f) 3D Cube

Figure 2.2: NoC topology examples. In (c), all interconnects are unidirectional. In

(d), the interconnects can be bidirectional or unidirectional according to the system

requirements. In other topologies, all interconnects are bidirectional.

lower reliability. The irregular topologies, e.g., Fig. 2.2(d), are usually appli-

cation specific and thus can be optimized for the target applications. By mixing

multiple topologies together, e.g., Fig. 2.2(e), one can balance the versatility

and specificity of the NoC system. With the advent of 3D IC era, various 3D

NoC topologies are proposed [82]. On each silicon layer, all the aforemen-

tioned 2D NoC topologies can be applied. The stacked layers are connected

with Through Silicon Vias (TSVs). In Fig. 2.2(d), we present a 3D cube as an

example, in which the vertical links can be implemented in the same way as

planar links to provide point-to-point connection between vertically adjacent

routers, or be implemented as buses to provide all-to-all connection among all

routers in the same Z-pillar. In this dissertation we focus on the 2D mesh NoC

topology in chapter 3 to 6, and expand the applications of 2D NoC technolo-

gies to 3D NoC systems in chapter 7.

2.2.2 Routing Algorithm

Routing Algorithms (RAs) are utilized to determine the routing path of each

packet from the source node to the destination node. A well designed RA is

able to find the shortest routing path, balance the traffic load, and tolerate bro-

ken routers and links to enable graceful NoC performance degradation [24].

18 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

Generally, the RAs must be carefully designed to avoid deadlocks and live-

locks. As an exception, some RAs allow deadlocks but provide methods to

detect and recover from them.

The RA can be deterministic or adaptive. Deterministic RAs always route

packets along the same path between a given source/destination pair, while

adaptive RAs are able to select paths according to the network status to route

packets around congested or faulty regions. Based on whether minimal routing

paths are always provided, adaptive RAs can be referred as minimal or non-

minimal. The most typical deterministic RAs are XY (for 2D mesh) and e-cube

(for hypercubes), in which packets sequentially traverse every dimension. Opt-

Y [88] is an minimal adaptive RA example as it offers two admissible output

ports to each packet when the destination node is not in the same row or column

with the current router. Non-minimal adaptive RAs are usually utilized as Fault

Tolerant Routing Algorithms (FTRAs), e.g., [17], as they can find alternative

paths when the minimal paths are broken.

2.2.3 Switching Policy

The switching policy determines how the data are transmitted along the routing

path. The most commonly utilized ones are Circuit Switching (CS), Packet

Switching (PS), Virtual Cut-Through (VCT), and Wormhole Switching (WS).

With the CS technology, a path from the source to the destination is formed

before the data transmission by reserving the routers and links with a probe

message. It is suitable to the case where the message transmission time is

much longer than the path set up time. It has the advantage of low buffering

needs at the routers, but has the drawback that the reserved routers and links

cannot be utilized by other users.

To save the path set up time and enable flexible resource utilization, the long

messages can be divided into multiple packets and be transmitted with the PS

technology. The routing and control information is stored in each packet head.

At each hop, i.e., intermediate router, the entire packet is buffered and then the

head information is extracted to determine the downstream router over which

the packet should be forwarded to.

In fact, once the packet head is received, the output port can be determined

without waiting until the entire packet is received. This means that the already

received part can be transmitted to the downstream router while the reminder

part is still being received. Such switching technique is referred as VCT. With

VCT, an entire packet is only buffered in a router when the packet head is

2.2. NOC ARCHITECTURE 19

AB

Des�na�on BA blocked

B blocked

Des�na�on BA blocked

B B B

A A

(a) (b)

Figure 2.3: Use VCs to solve blocking issues. (a) Both packets A and B are blocked.

(b) Packet A is blocked, but packet B can still be transmitted.

blocked. When compared with PS, VCT has reduced packet transmission la-

tency as the time to wait for integral packets is removed.

PS and VCT require large buffers in the routers to buffer integral packets. With

WS, the buffer size can be reduced. A packet is split into a certain number of

flits, i.e., a head flit, several body flits, and a tail flit, which have the same width

as the links. The head flit carries the routing and control information to reserve

the routing path at each hop for the body and tail flits. The buffer in each

route port is only required to be able to store a few flits. When the head flit is

blocked, a packet may occupy buffers in multiple routers. To avoid blocking

the transmission of packets with different destinations, a physical channel is

usually shared by a number of Virtual Channels (VCs). Accordingly, the buffer

in each router physical port is divided into the same number of VC buffers.

When one packet is blocked, other packets in the same physical port but using

different VCs can still be transmitted as illustrated in Fig. 2.3. In the rest part

of this dissertation, we assume that VC based WS technique is always utilized

in the NoC unless otherwise stated.

When WS is implemented, an upstream router can only transmit flits when free

buffer slots exist in the downstream router. The buffer availability can be man-

aged with the credit-based mechanism illustrated in Fig. 2.4. The upstream

router uses a counter to actively maintain the number of buffer slots, i.e., cred-

its, in each downstream VC. Once a flit is transmitted, a credit is consumed

and the counter decrements by 1. In case the counter value is zero, all down-

stream buffer slots are occupied and no flits can be transmitted until a buffer

slot becomes available again. In the downstream router, once a flit is forwarded

and the associated buffer is freed, a credit is returned to the upstream router,

causing the counter increments by 1.

20 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

CLK

0

1

2

3

4

5

Router A Router B Router C

1

0

1

credit flit

flit

flit

credit

credit credit flit

0

0

0

Figure 2.4: The credit-based buffer management mechanism. The numbers in the

second column, below “Router A”, indicate the number of available buffer slots in the

downstream VC.

VC 0

…

crossbar

Datapath

Control

plane

M
U

X

SA1 SA2

M
U

X

… T

X

SA1 result SA2 resultRU

VA

…
...

output port new vcid

Input port i output port j

Rou!ng Computa!on

Buffer Write Crossbar Transverse Link Tranverse

1

2

3

4

Fsm of an input VC

1: Idle

2: Rou!ng

3: Alloca!on

4: Ac!ve

From upstream

router

To down-

stream router

vcid

T B B H

H: head

B: body

T: tail

Switch/VC Alloca!on

H?
Y

R

X

VC 0

output port new vcid

Fsm of an

output VC:

1: Idle

2: Ac!ve

3: Wait credit

1 2

3

Figure 2.5: A typical VC based router architecture. RU: routing unit; VA: VC alloca-

tion; SA: switch allocation.

2.3 Router Architecture

The block diagram of a typical VC based router architecture is depicted in Fig.

2.5. The router functional units can be partitioned into the datapath group,

which handles the storage and movement of the packets, and the control plane

group, which is responsible for coordinating the movement of packets through

the resources of the datapath [24]. The datapath consists of input buffers, mul-

tiplexors, the crossbar, and output buffers (if implemented). The control path

consists of Routing Units (RUs), VC allocators, switch allocators, and other

control logic.

2.3. ROUTER ARCHITECTURE 21

BW/RC VA/SA CT LT

CT LT

CT LT

CT LT

Head flit

Body flit 1

Body flit 2

Tail flit

Cycle 0 1 2 3 4 5 6

Figure 2.6: The pipeline stages to transmit a packet.

2.3.1 Router Pipeline

As illustrated in Fig. 2.6, the pipeline to transmit a flit consists of the following

steps:

• Buffer Write (BW): A flit arrives at a router input port and is written

into the VC buffer indicated by the VC index (VCID) transmitted along

with the flit.

• Routing Computation (RC): If it is a head flit, the destination informa-

tion is extracted and the output port is computed. BW and RC usually

happen in the same clock cycle.

• VC Allocation (VA): According to the output port, the VC allocator

assigns the packet a free output VC, i.e., an input VC in the downstream

router. RC and VA do not exist for body and tail flits.

• Switch Allocation (SA): Each flit requests for a time slot on the crossbar

and the output port from the switch allocator when VC credits exist. In

modern routers, VA and SA are usually speculatively implemented in

the same cycle to reduce the number of router pipeline stages.

• Crossbar Transverse (CT): The flit is transmitted from the input VC to

the output port through the crossbar.

• Link Transverse (LT): The flit is transmitted to the downstream router.

2.3.2 Virtual Channel States

As illustrated in Fig. 2.7, the VCs in each input port can be organized in dis-

tributed or centralized ways, which are suitable to be implemented in Applica-

tion Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays

22 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

VC 0

VC n

...
head tail

VC_ctrl

VCID
Switch grant

Data in
Data to

crossbar

VC 0

VC n

VC_ctrl

VC_ctrl

...

Switch grant

Data in
Data to

crossbar

VCID

(a) (b)

Figure 2.7: Two ways to organize VC buffers. (a) Each VC is independently imple-

mented; (b) All VC buffers are implemented in one block memory.

(FPGAs), respectively. The states of input and output VCs are maintained by

Finite State Machines (FSMs) at the input and output side, respectively.

An input VC can be in one of the four states: idle, routing, allocation, and

active. An input VC is initially idle. When it receives a head flit, it enters the

routing state where the routing information is computed. After an output VC

is allocated to the packet, the input VC stays active until the entire packet is

successfully transmitted and then returns to idle.

The state of an output VC can be idle, active, or wait credits. An output VC

is initially idle and becomes active once it is assigned to an input VC. After

tail flit of the packet which hold the output VC is transmitted, it waits until all

credits are returned and then becomes idle again.

2.3.3 Speculative Virtual Channel and Switch Allocation

We can implement VA and SA in the same pipeline stage by speculating that

they can both succeed. A head flit asserts the VA/SA request only when free

output VC(s) is/are available in the target output port, thus if it won the SA

arbitration, it can be granted a free output VC. Fig. 2.8 illustrates an imple-

mentation of the speculative VA/SA mechanism proposed by Lu et al. [65].

The SA is usually divided into two stages, i.e., SA1 and SA2, which are imple-

mented in the input port and the output port, respectively. The SA1 arbiter in

each input port selects one of the requests from the VCs that have pending flits

in their buffers ① . The selected request is then forwarded to the SA2 arbiter

in the target output port along with its type i.e., VA or SA ② . The SA2 arbiter

performs arbitration among the requests from different input ports ③ . The SA2

results are then routed back to the relative input ports ④ . A request is granted

if it won both SA1 and SA2 ⑤ . The allocation process finishes or continues

2.4. SIMULATION PLATFORM 23

V:1

SA1

arbiter

VC_0

VC_1

VC_v

VC_0

VC_1

VC_v

P:1

SA2

arbiter

New vcid

VA/SA

request

Output

Physical

channel

Free VC list

Input channel n-1

Input channel n

Input channel n+1

Output channel n-1

Output channel n

Output channel n+1

grant

ENB

SA2_grant

SA1_grant

VC_0

VC_1

VC_v

Request type:

0: SA_req

1: VA_req

...

...
From other

input port

...

... ...

...

... ...

...

...

1

2

3

4

5

6

7

8

Figure 2.8: An implementation of speculative VA/SA. Each router has p physical

ports and each port is shared by v VCs.

based on the request is a SA request or a VA request, respectively ⑥ . In the

latter case, a free output VC is picked out from the free VC list and is broadcast

to the input ports ⑦ . At the input port side, the correct new VCID is selected

according to the destination of the granted request ⑧ . Since the requests which

do not have free VCs in their target output ports have been removed by the re-

quest regulating logic and at most one request can be granted by each output

port, the request initiator which won SA is guarantied a free output VC.

2.4 Simulation Platform

The proposals in this dissertation are evaluated in our mixed language simula-

tion platform with both synthetic traffics and real application traces. The plat-

form is developed based on the one designed by Lu et al. [65]. The synthetic

traffic generator and the NoC infrastructures, i.e., NIs, routers, and links, are

implemented with Verilog Hardware Description Language (HDL). The real

application traces are read from the records and then be injected into the NoC

platform with C language. The simulation platform is illustrated in Fig. 2.9.

24 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

N
e

tw
o

rk
 o

n
 C

h
ip

!ming
Injected packets

counter

Inject

regula!o

n

Received packets

counter & !ming
Network

Interface

Synthe!c traffic:

Uniform

Localized

Bit compliment

...

Applica!on traces

Network Interface

Network Interface

Packet Source

Packet Source

Packet

Source

Source queue

Figure 2.9: Structure of the simulation platform.

2.4.1 Synthetic Traffic

The NoC behavior differ considerably from one architecture to another and

from one application to another. As there has been no standard traces to eval-

uate the NoC performance, most researchers and designers refer to synthetic

workloads with different characteristics. A synthetic traffic pattern can be de-

fined by the destination distribution and the traffic load which is indicated by

Flit Injection Rate (FIR) and packet length [27].

The most frequently utilized destination distribution is the uniform one. In this

distribution, a node sends packets to any other nodes with the same probability.

In our simulation platform, we use Linear Feedback Shift Registers (LFSRs)

to generate pseudo-random numbers which are then translated to destination

node coordinates. The case of nodes sending packets to themselves is excluded

as the network is not utilized. The NoC performance with uniform traffic can

be treated as the upper bound on the mean communication distance.

In practice, most probably the application mapping is optimized and each node

just communicates with nodes in short distance, case in which the localized

traffic pattern can better reflect the NoC performance. The destination distri-

bution in localized traffic pattern can be sphere of locality or decreasing prob-

ability distribution [85]. In the former case, a node communicate with nodes

inside a sphere with the same high probability φ and with the nodes outside

of the sphere with probability 1 − φ. In the latter case, the probability of a

node sending packets to another one decrease as their distance increases. In

2.4. SIMULATION PLATFORM 25

our simulation platform, the former distribution is utilized.

Another synthetic traffic patten employed in this dissertation is bit compliment,

in which the node with binary coordinates (a0, a1, ..., an−2, an−1) communi-

cates with the node (a0, a1, ..., an−2, an−1).

2.4.2 Real Application Traces

To be more accurate, the NoC performance should be evaluated with

application-driven workloads. To this target, the simulation can be performed

in a “full-system” platform consists of both NoC and processors, e.g., M5 [10],

with the intended applications running on the processors. This approach has

the drawback that the traffic generated by the applications can be influenced by

the NoC feedback, which makes it difficult to locate the NoC bottleneck [24].

Alternatively, we can record the message from an application in advance and

then replay the traffic trace in the simulation. Since the NoC feedback can-

not change the recorded traffic trace, the simulation results can better reflect

the NoC performance. Although this approach may decrease the simulation

accuracy, it can significantly reduce the simulation platform’s complexity and

the simulation time. In this dissertation, we evaluate our proposals with traffic

traces of PARSEC benchmarks [9] which are recorded with the Netrace [43]

tool on the M5 full system simulator. The traces are replayed according to each

packet time flag while maintaining the packets dependencies.

2.4.3 Task Mapping Benchmarks

One target of our research is to optimize the application mapping in the MP-

SoCs in awareness of the link bandwidth variation. The mapping algorithm

is evaluated with TGFF [26] generated applications and four video processing

applications [8]. Each application is split into a certain number of tasks. The

communication between two tasks is characterized by the traffic volume and

FIR. Note that we assume that the FIR does not change during the application’s

execution. In our experiments, the application mapping algorithms are imple-

mented with C language. After every task is allocated to a processor, the tasks

information, in terms of communication volumes and FIRs of the communica-

tion edges, are sent to the utilized processors via the control network [21]. The

processors then generate communication messages according to the received

task parameters.

26 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

2.4.4 Evaluation Metrics

Among the various metrics to evaluate the NoC performance, the most fre-

quently utilized three in our research are latency, throughput, and fault toler-

ance.

Latency is the time, i.e., the number of clock cycles, required to transmit a

packet from the source to the destination since the packet head flit is generated

in the source node till the last flit is received by the destination node, i.e., the

source queuing time is included. In the early stage of the NoC development,

the performance can be estimated with the zero-load latency, i.e., the average

packet transmission latency when there is only one packet traverses the net-

work at any time. Although it ignores the influence of contention among the

packets, the zero-load latency provides a fast way to characterize a new struc-

ture’s effect on the NoC performance. More generally, the contention should

be considered and the network performance should be evaluated at different

FIRs.

Throughput is the maximum amount of information delivered per time unit

[27]. Strictly speaking, throughput is the amount, or portion, of the offered

traffic that be accepted by the NoC. Note that the offered traffic can be mea-

sured with FIR, i.e., the rate of flits be generated by the packet source.

Fig. 2.10 plots the changes of throughput and average packet transmission la-

tency at different FIRs in a baseline 8× 8 2D mesh NoC. We can observe that

as the FIR increases, the NoC throughput increases linearly until the NoC be

saturated when the FIR is 0.3 flits/node/cycle, and the packet latency starts at

the horizontal asymptote of zero-load latency and slopes upward to the ver-

tical asymptote of saturation throughput. Now that the throughput has linear

relationship with FIRs before the NoC is saturated and the packet transmis-

sion latency approaches infinity at the saturation throughput, we just depict the

latency vs. FIR graphs in the rest part of this dissertation.

Fault tolerance is the NoC’s capability to perform its functionality in the oc-

currence of faults. The faults can exist in the NIs, routers, or links. Fault

tolerance is of vital importance to the modern NoC based MPSoCs as it is al-

most impossible to manufacture fault free chips due to the aggressive scaling

of semiconductor technology. In principle, we expect the NoC performance

degrades gracefully as the number of faults increases. As fault tolerance is

hard to be quantified, it can be reflected by the packet transmission latency and

saturation throughput when faults exist, and the number of faults that can be

tolerated by the NoC architecture.

2.4. SIMULATION PLATFORM 27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Flit injection rate (flits/node/cycle)

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
 c

o
u

n
t)

(a) NoC throughput.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
20

40

60

80

100

120

140

160

180

200

Flit injection rate (flits/node/cycle)

L
a

te
n

c
y
 (

c
y
c
le

s
)

(b) Average packet latency;

Figure 2.10: Performance of a 2D 8 × 8 mesh NoC under uniform traffic using XY

routing algorithm. Each physical port is shared by 4 VCs. The buffer depth of each

VC is 4-flits. The packet length is 4-flits.

28 CHAPTER 2. NOC BACKGROUND KNOWLEDGE

2.5 Conclusions

In this chapter, we introduced the essential NoC background knowledge by

covering the aspects as NoC topology, routing algorithm, switching policy, and

router architectures. We also presented the mixed language NoC simulation

platform we utilize to evaluate and validate the contribution described in this

thesis, the strategies to inject synthetic traffic and real application traces into

the NoC, and the NoC performance evaluation metrics.

In the following chapters, we present our contributions to improve the NoC de-

pendability, evaluate their performance on our mixed language NoC platform,

and compare the merits with that of state of the art counterparts.

3
Soft Error Tolerance in Router Control

Plane

S
oft errors in the Network-on-Chip (NoC) links and router datapath flip

flits data bits but can be easily detected and corrected through the use of

Error Correcting Codes (ECCs). Conversely, soft errors in the router

control plane do not corrupt flits but cause packets or flits be transmitted to

wrong output ports and are hard to detect. In this chapter, we solve this is-

sue with a low cost method. The idea behind our proposal is to detect Routing

Computation (RC) errors by comparing RC results from the local Routing Unit

(RU) and idle RUs available at neighboring input ports. The RC results are re-

calculated in case errors are detected or neighboring RUs are not available. We

detect errors in the VC Allocation (VA) and Switch Allocation (SA) results by

checking if they are consistent with the correct RC results, each NoC resource

is exclusively assigned to one request initiator, and each request initiator is al-

located only one NoC resource. The VA/SA errors are corrected by redoing the

failed procedures and retransmitting the flits. Experimental results on an 8×8

2D NoC indicate that: (i) in the routing units, the proposed method requires

38% more silicon real estate than the Σ & Branch method when the XY routing

algorithm is utilized, but it is more general and can be utilized in conjunction

with other routing algorithms; and (ii) in the combined VA/SA units, the pro-

posed method is simpler and more effective than state of the art counterparts.

When compared with the Triple Modular Redundancy strategy, for similar er-

ror detection and correction capabilities, the proposed method can reduce the

area and power overhead in routing units by 53% and 38%, respectively, and

in combined VA/SA units by 45% and 46%, respectively. The average packet

transmission latency is less than 5% higher than the one of the baseline router

with no soft error detection/correction mechanisms even if the soft error rate is

as high as 0.1 errors/router/cycle.

29

30 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

3.1 Introduction

Due to miniaturization, permanent and soft errors occurring in the cores and

Network-on-Chips (NoCs) are becoming more frequent and in order to prevent

application misbehavior one should detect and correct them. In this line of

reasoning, we focus on tolerating soft errors in NoCs in this chapter.

NoCs are composed of routers and links. As illustrated in Fig. 2.5, the com-

ponents in a router can be partitioned into the datapath group, which mainly

consists of memory elements, and the control plane group, which mainly con-

sists of combinational logic circuits [24]. Previous research has been focusing

on tolerating soft errors in links [74, 113] and router datapath [68], which are

supposed to be more susceptible to soft errors than the router control plane.

However, the Soft Error Rate (SER) in nowadays combinational logic cir-

cuits is already comparable with that encountered in unprotected memory ele-

ments [109]. Consequently, we further concentrate our attention to soft errors

in the router control plane.

The main functional units in the router control plane are Routing Units (RUs),

Virtual Channel (VC) allocators, and switch allocators. For each received

packet, the RU compute the output port, the eligible output VCs at that output

port when adaptive routing algorithms, e.g., Opt-Y [88], are employed, and

the necessary misrouting information when fault tolerant routing algorithms,

e.g., [19], are utilized. The VC allocator chooses one free eligible output VC

and assigns it to the packet. Switch allocators decide which flits can be trans-

mitted in the next clock cycle. Soft errors in these functional units can lead to

deadlock or flits loss during packets transmission.

A soft error occurs only if a Single Event Transient (SET) is propagated to an

output and latched into a memory element [52]. During the propagation, SETs

can be diminished by logical masking, electrical masking, and temporal mask-

ing mechanisms [91]. Circuit design methods, e.g., gate resizing [25], circuit

rewiring [109], and output multiple sampling [5], have been proposed to ex-

ploit these masking mechanisms. However, these methods have the drawbacks

of high physical level design effort and high chip area overhead.

In NoC routers, it is inherently required that one output resource can only be

assigned to at most one request at a given time. This feature is exploited in [55,

74,115] to detect soft errors with low silicon overhead. However, such schemes

either have restricted application scope [115], or are still too complicated to

allow for practical implementations [74].

In this chapter, we propose a low cost method to tolerate soft errors in the main

3.2. SOFT ERRORS IN LINKS AND ROUTER DATAPATH 31

functional units in the router control plane.

By noticing that the RU is usually replicated at each input ports, especially if

it is logic based, and it is only utilized when a head flit arrives at that port, we

propose to detect Routing Computation (RC) errors by comparing RC results

from the local RU and idle RUs available at neighboring input ports. The RC

results are recalculated in case errors are detected or neighboring RUs are not

available. The proposed method requires 38% more area overhead than the Σ
& Branch method proposed in [115] when XY routing algorithm is utilized on

a 2D mesh NoC, but is applicable in conjunction with many more routing algo-

rithms. When compared with the Triple Modular Redundancy (TMR) strategy,

for similar error detection and correction efficacy, our method can reduce the

area and power overhead in RU by 53% and 38%, respectively, when Opt Y

routing algorithm [88] is utilized.

One common requirement for the VC Allocation (VA) and Switch Allocation

(SA) results is that they should be consistent with the RC results. Moreover,

they must correspond to legal states, i.e., one output resource can maximally

be assigned to one request. In view of these, we propose to detect the ille-

gal VA results at the output port side by checking if multiple head flits were

transmitted to the same output VC. The method to detect illegal results of ar-

biters in [115] is expanded in this chapter to detect erroneous SA results and

is implemented with simple logic. The VA/SA errors are corrected by redoing

the failed procedures and retransmitting the flits. When compared with the

Allocation Comparator (AC) unit in [74], our method is easier to implement

and more reliable. If utilized in the implementation of the combined VA/SA

units, which are embedding matrix arbiters, the proposed method can reduce

the TMR area and power overhead strategy by 40% and 46%, respectively.

In the rest part of this chapter, Section 3.2 briefly introduces the methods to

tolerate soft errors in the links and router datapath for the integrity of the con-

tents. Section 3.3 presents a brief survey of state of the art strategies to tolerate

soft errors in the router control plane. Section 3.4 introduces the proposed soft

error tolerant method. Section 3.5 introduces the strategy to recover from the

soft errors. Section 3.6 evaluates the proposed method and compares it with

tightly related work. Section 3.7 concludes the presentation.

3.2 Soft Errors in Links and Router Datapath

Soft errors in NoC links and router datapath, i.e., input and output buffers,

multiplexers, and crossbars, can be detected and even corrected using an ECC.

32 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

Among numerous ECC proposals, the Single Error Correction and Double Er-

ror Dectetion (SEC/DED) codes are the most commonly utilized ones.

The error detection and correction can be performed Hop-By-Hop (HBH) or

End-to-End (E2E). In the HBH strategy, the correctness of each flit is checked

at the input port of each router. If the error cannot be corrected, a Negative-

Acknowledgment (NACK) signal is sent back to the upstream router and the flit

is retransmitted. In the E2E strategy, the correctness of each packet is checked

at the destination router. If there are errors in the packet, a NACK message

is sent back to the source router and the whole packet is retransmitted. Both

approaches require dedicated buffers to keep a clean copy of the data. The

HBH approach is more popular than E2E as it has shorter round trip to recover

from the errors and thus requires smaller retransmission buffers.

Soft errors happen in the memory units do not disappear until be corrected.

Thus to maintain the clean data copies in the router buffers, it is also important

to periodically sweep the buffers by reading each location and correcting any

single-bit errors, in case the second error occurs and then the flit cannot be

recovered.

3.3 Soft Errors in The Control Plane – Related Work

The most intuitive way to tolerate soft errors in the functional units is TMR,

with the obvious drawback of high area and power consumption overhead.

A Σ & Branch method is proposed by Yu et al. [115] to detect soft errors in RC

results by examining the appearance of forbidden signal patterns in RUs. This

method is proved to be efficient to detect erroneous output ports, because each

packet can only be transmitted to one output port unless multicast is needed.

However, it cannot detect errors in other routing results, e.g., eligible output

VCs, which can include multiple existing output VCs.

Park et al. [74] proposed an Allocation Comparator (AC) unit to detect errors

in VA results. The output VC of each input VC is compared with the routing

results to check if it is an eligible one, and with that of other input VCs to

check if the output VC is occupied already. Considering that an output VC can

be assigned to any input VC, such a comparison cannot be implemented with

trivial effort.

To detect erroneous SA results, Kim et al. [55] proposed to add a message

ID to each flit and check if the flits received by one input VC have the same

ID. The drawback of this method is that the link width is increased and the

3.4. SOFT ERRORS DETECTION 33

errors are detected in downstream routers. Differently, Park et al. [74] and Yu

et al. [115] check if the SA results are consistent with the RC results and have

legal states after they are registered. In this chapter, we apply this checking

principle to VC based NoC routers and implement it with simple logic.

3.4 Soft Errors Detection

As illustrated in Fig. 2.5, the transmission of a head flit in the router must se-

quentially go through 3 stages: Routing Computation (RC), speculative VC

Allocation (VA) and Switch Allocation (SA), and Crossbar Transverse (CT).

An extra Link Transverse (LT) stage is usually required between two neighbor-

ing routers. Body and tail flits just need to go through the SA and CT stages.

Each input VC has four states: idle, routing, allocation, and active. An input

VC waits for routing results in the routing state and VA results in the allocation

state. After that, it stays in the active state until the entire packet is successfully

transmitted.

In this section, we assume that the requests to do relative computations, i.e.,

RC, VA, and SA, are asserted correctly. In fact, the logic to generate the re-

quests can be protected by TMR method with negligible cost due the their

simplicity.

3.4.1 Errors in Routing Units

RUs decide how packets should be transmitted according to the employed rout-

ing algorithm. Erroneous RC results can misdirect packets and lead to dead-

lock or packet loss. Correct RC results are the precondition of correct VA and

SA results.

In a typical NoC router design, the RU is replicated at each input port to in-

crease throughput. Each RU deals with local routing requests only, and is only

utilized when head flits arrive at that port. Assuming that the packet length is

P , the average RU utilization rate is less than 1/P , because flits do not arrive

in every cycle. This means that RUs are most of the time idle and we pro-

pose to utilize idle neighboring RUs, when available, to do redundant routing

computation for local routing requests.

The proposed RU Sharing (RUS) method is illustrated in Fig. 3.1. When a

head flit is received at an input port, the routing request is sent to the local

RU as well as the RUs in the two neighboring ports. At each port, the highest

34 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

RU

rou ng_req

des na on

rou ng_req

des na on

rou ng_req

des na on

valid

rou ng_result valid

match

valid
rou ng_result valid

match

rou ng_result

error

port i-1

port i

port i+1

Figure 3.1: Routing unit sharing among neighboring input ports.

priority to utilize the RU is given to the local routing request. When the local

routing request is not asserted, the priority is given to a neighboring port, e.g.,

port i − 1 in Fig. 3.1. RC results from two neighboring RUs are compared.

The comparison result along with a valid signal are sent back to the routing

request initiator input port. The valid signal indicates whether the RC results

are computed for that port.

To save silicon cost and limit the critical path length increase in the RC stage,

the RC results from neighboring ports are only utilized to check the correctness

of local results. When erroneous RC results are detected, the RC is re-executed

for the packet. We note here that with the overhead of a voter at each port,

the correct RC result can be determined when two idle neighboring RUs are

available for a routing request.

In practice, depending on the executed application and traffic, situations may

occur when both neighboring RUs are occupied and only the local RC results

are available at an input port, i.e., such RC results are not protected from soft

errors. In Fig. 3.2 and Fig. 3.3, we illustrate the probability that RC results

are checked for correctness in various situations in an 8 × 8 2D mesh NoC.

We can observe in Fig. 3.2(a) that for all the evaluated synthetic traffic pat-

terns, more than 98% of the RC results are protected in each router, even if

the NoC is saturated. When the traffic load is low, almost every head flit can

‘borrow’ RUs from neighboring ports. For the real applications from the PAR-

SEC benchmarks [9], our evaluations indicate (see Fig. 3.3(c)) that more than

99.9% of their packets are protected. Moreover, more than 72% of the packets

in synthetic traffics (Fig. 3.2(b)) and more than 97% of the packets in the real

application traffic traces (Fig. 3.3(d)) are TMR protected. The statistic results

also reveal that the longer the packet length, the higher the probability that the

3.4. SOFT ERRORS DETECTION 35

0 0.1 0.2 0.3 0.4 0.5
0.98

0.985

0.99

0.995

1

Percentage of protected head flit by RUS

injection rate (flits/cycle/node)

p
e

rc
e

n
ta

g
e

bc_opt_y_p8

rand_opt_y_p8

bc_xy_p8

rand_xy_p8

bc_opt_y_p4

rand_opt_y_p4

bc_xy_p4

rand_xy_p4

(a) Percentage of protected packets in synthetic traffics;

0 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

0.9

0.95

1
Percentage of TMR protected head flit by RUS

injection rate (flits/cycle/node)

p
e

rc
e

n
ta

g
e

bc_opt_y_p8

rand_opt_y_p8

bc_xy_p8

rand_xy_p8

bc_opt_y_p4

rand_opt_y_p4

bc_xy_p4

rand_xy_p4

(b) Percentage of TMR protected packets in synthetic traffics;

Figure 3.2: Percentage of packets protected by RUS in synthetic traffics. Bit com-

pliment (bc) and random (rand) traffic patterns, XY and Opt Y routing algorithms,

packets with a length of 8-flits (p8) and 4-flits (p4) are evaluated.

36 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

p
e

rc
e

n
ta

g
e

XY

Opt_y

(a) Percentage of protected packets in real applications.

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

p
e

rc
e

n
ta

g
e

XY

Opt_y

(b) Percentage of TMR protected packets in real applications.

Figure 3.3: Percentage of packets protected by RUS in real applications. XY and

Opt y routing algorithms are evaluated.

RC results are protected.

In case the unprotected RC results are contaminated by soft errors, we let such

packets wait until at least one neighboring RU is available to make sure that

the RC results can be checked for correctness. Due to the fact that only a small

percentage of packets, e.g., less than 0.1% for PARSEC benchmarks, need to

wait for idle neighboring RUs and reassert the routing request, the induced

packet transmission latency overhead is negligible.

However, a deadlock situation can happen in this case. When a head flit is

received at every input port simultaneously, every RU is occupied by the local

routing request. In the next cycle, the local routing request at every port is as-

serted again by these head flits or newly received ones. Thus the deadlock lasts

and eventually all the input VCs are occupied and no packet can go further.

The deadlock can be solved by temporarily prohibiting the routing request of

one input port, such that one input port has an idle neighboring RU to utilize.

3.4. SOFT ERRORS DETECTION 37

For the sake of simplicity, we always prohibit the routing request from the

port connected with the local processing unit in such cases. Most probably the

routing results from the two RUs match with each other and the port will not

assert routing request until a new head flit arrives. In this way after several

cycles, every packet gets the correct RC results and enter the next stage.

Routing results are stored in registers and must be maintained unchanged un-

til the entire packet is successfully transmitted. Otherwise, the next flits will

deviate from the path reserved by the head flit. We assume that these registers

are protected against soft errors with proper technology, e.g., [90].

3.4.2 Errors in VC Allocators

After the output port of a packet is derived, the VC allocator assigns a free

output VC at that output port to the packet. The VC’s index (VCID) can be

changed when errors happen in the VA unit. Then the output VC may become:

(1) a wrong output VC, which does not exist or is not an eligible VC according

to the RC results; or (2) an eligible output VC which is already assigned to

another packet.

Type (1) errors can be easily detected by checking if the granted output VC

is consistent with the RC results [74]. Assuming that eligible output VCs are

indicated by setting the relative bits to ‘1’ in the RC results, the error can be

detected by the logic in Fig. 3.4(a). We name this method as Input Side Invalid

VC Allocation Detection (I-IVAD).

In a router which has p physical ports and v VCs at each port, an output VC can

be assigned to any of the pv input VCs. It is expensive to check if any two input

VCs are granted with the same output VC by doing pairwise comparisons [74].

As it is guaranteed by I-IVAD that each input VC is assigned with an eligible

output VC, we propose an Output Side Duplicated VC Allocation Detection

(O-DVAD) method (see Fig. 3.4(b)) to detect type (2) errors.

(a) I IVAD;

head_flit

CLR

SET
Q

VC_idle

error

>

VCID_match

(b) O DVAD;

Figure 3.4: Detect soft errors in VA result.

38 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

In O-DVAD, a 1-bit latch is added to each output VC with the initial state

‘0’. Once a head flit is transmitted to the downstream router, the latch of the

relative output VC turns to ‘1’ to indicate that the output VC is occupied. The

latch stays in ‘1’ until the output VC returns to the idle state. If another head

flit is transmitted to the same output VC when the latch is ‘1’, it means that an

attempt is made to assign the output VC to multiple packets and the error is

detected. The input VC that is related with the error can be determined based

on the SA results. The output VC remains under the utilization of the first

packet it was assigned to.

I-IVAD and D-DVAD are implemented in the CT stage. The strategy to recover

VA errors is presented in detail in Section IV. Similar with the RC results, we

assume that VA results are stored in registers protected against soft errors.

3.4.3 Errors in Switch Allocators

Switch allocation is usually divided into the local stage (SA1) at the input side

and the global stage (SA2) at the output side (see Fig. 2.5). An input VC can

transmit flits only when it won both SA stages. The main components in switch

allocators are arbiters.

The 4 symptoms of soft errors in SA results are explicitly discussed in [74]:

(1) no asserted request is granted in SA1 or SA2, (2) an input VC is allocated

with a wrong output port, (3) in the same cycle, multiple input VCs at one

input port are granted in SA1, or multiple input ports are granted by SA2 at

one output port, or an input port is granted by multiple output ports, and (4) an

input VC which does not assert request wins both SA1 and SA2.

An efficient method to detect erroneous results of arbiters is presented in [115].

We apply this method in VC based routers to detect erroneous SA results. Note

that the error detection logic has to be applied to SA1 results, SA2 results, and

SA2 grants of each input port.

The SA results correctness is checked in the CT stage after they are registered.

Thus soft errors in the registers can also be detected. In case the errors are

caused by flipped priority registers in arbiters, the relative arbiters are reset

whenever an SA error is detected [115] such that correct results can be obtained

by redoing the allocation.

3.5. SOFT ERROR CORRECTION 39

VA_error

SA_error

head flit

VA_granted

tail flit

RC_result

RC_error

Figure 3.5: Changes of input VC states.

3.5 Soft Error Correction

To recover from errors in the control plane, the failed procedures must be re-

peated to generate correct results, and flits have to be retransmitted inside the

router when necessary. During the recovery, the states of input VCs change as

illustrated in Fig. 3.5.

Errors in RC results (RC error) are detected in the RC stage. When an

RC error occurs, the input VC stays in the routing state instead of entering

the allocation state. The routing request is reasserted when no new head flit

arrives at the input port. Most probably the correct routing results will be de-

rived with one clock cycle overhead. The head flit is not transmitted yet in this

stage. So there is no need to do any retransmission.

Both errors in VA results and SA results are detected in the cycle after they are

registered, i.e., in the CT stage, such that the critical path in the VA/SA stage

is not changed. If an error is detected in the VA result, the input VC returns

to the allocation state from the active state. Both VA request and SA request

have to be reasserted to compete for a new output VC and flit transmission.

The mistakenly allocated output VC needs to be released by the input VC. If

an error is detected in SA results, only the SA requests need to be reasserted

for flit retransmission. When a VA or SA error is detected, the VA/SA results

derived in the same cycle are abandoned. Thus at least two extra clock cycles

will be introduced.

In the CT stage, flits are read out from input buffers and are sent to output

ports. If a VA or SA error is detected, the relative flit is ignored by the link

registers at the output port, and then retransmitted when correct VA and SA

results are derived. Because the original flit is still kept in the input buffers at

this stage, retransmission buffers are not required.

It is also possible that there is no soft error in the control plane but an error

signal is asserted by the error detection logic. Then the error recovery mech-

40 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

anism is triggered, which does not introduce new errors but only increase the

flit transmission latency with several cycles.

3.6 Evaluation

The different soft error tolerant approaches are evaluated in the context of a

wormhole switched 8×8 2D mesh NoC system. The routers are VC based

and implemented according to the architecture in Fig. 2.5. Each router has

5 physical ports, and each PC has 4 VCs. Note that the proposed method is

also applicable in 3D symmetric NoC system, as the only difference is that the

routers have 7 PCs in such a system.

As soft errors happen only when SETs propagate to an output and are captured

by registers [52], instead of injecting soft errors into the gates in the functional

units, we simulate the symptoms of soft errors by injecting soft errors into the

final RC, VA, and SA results. We assume that: (i) only one error can happen

in one router in a cycle, and (ii) the router datapath is error free.

3.6.1 Reliability

Simulations with different soft error rates illustrate that the proposed method

can detect and recover all kinds of errors in RC, VA, and SA results, when

assumption (i) is satisfied. Thus the NoC system can operate normally un-

less errors happen in both the functional units under protection and the error

detection logic circuits.

RUS provides TMR protection of the RC results in most of the time (see

Fig. 3.2 and Fig. 3.3). Thus the RUS reliability for each packet is similar

with that of TMR. Although the Σ & Branch method [115] is claimed to be

more reliable than TMR in the detection of erroneous output ports, it cannot

detect errors in other RC results, e.g., eligible output VCs, which are required

in sophisticated routing algorithms, e.g., Opt Y. From this aspect, RUS has

much larger application scope than Σ & Branch.

To detect the erroneous VA results when one output VC is assigned to multiple

input VCs simultaneously, the proposed method requires one D-latch and one

AND gate for each output VC. In contrast, the AC unit in [74] compares the

output VC of each input VC at the input side. Given that in a VC based router,

an input VC can be assigned with any output VC at any output port, the AC unit

is quite complicate to implement. In the evaluated router architecture, at least

3.6. EVALUATION 41

Table 3.1: Area and power of soft error tolerant methods for RU

Area (µm2) Dyn. Power (µW) Leak. Power (µW)

RA XY Opt Y XY Opt Y XY Opt Y

Router* 64812.6 65231.3 24690.7 24720.1 452.7 454.1

baseline
219.6 638.3 18.0 47.4 0.758 2.174

100% 100% 100% 100% 100% 100%

RUS
465.8 1018.4 52.8 95.6 1.768 4.027

212% 160% 294% 200% 233% 185%

TMR
774.0 2157.5 60.1 153.1 3.004 8.191

352% 338% 335% 321% 396% 376%

Σ & Branch
336.6 – 25.6 – 1.290 –

153% – 143% – 170% –

* The router makes use of baseline matrix arbiters and RUs.

950 XOR gates are required to do the comparison in the AC unit. Assuming

that the SER of a D-latch is 10 times higher than that of a gate [23], the SER

ratio of O-DVAD to AC unit is 220/(950+X), where X is the number of other

gates besides XOR gates in an AC unit. So the O-DVAD logic is more reliable

than the AC unit.

3.6.2 Area and Power Overhead

Silicon area is an important issue that affects the chip reliability as large area

overhead implies a higher chance to be hit by high energy particles, hence a

higher SER [52].

RUs and combined VC/switch allocators, equipped with different soft error

tolerant methods, are implemented at RTL level by using Verilog HDL, and

synthesized using the Synopsys Design Compiler with TSMC 65-nm standard

cell technology. The area costs and power consumption of different methods

are illustrated in Table 3.1 and Table 3.2, respectively. The area and power

costs of a router embedding baseline RUs and arbiters are also illustrated as a

reference.

We note that RUS does not increase the number of RUs in the baseline router,

and only requires half of the number of the comparators required by the TMR

strategy. Thus the implementation cost of RUS is much lower than that of

TMR, especially when complicated routing algorithms are employed. To be

42 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

Table 3.2: Area and power of soft error tolerant methods for VA/SA. R-R: Round-

Robin.

Area (µm2) Dyn. Power (mW) Leak. Power (µW)

Arbiter type Matrix R-R Matrix R-R Matrix R-R

Router* 64813 61597 24.7 24.1 452.7 434.9

baseline
10010 6794 2.1 1.5 62.1 44.3

100% 100% 100% 100% 100% 100%

proposed
12828 10127 2.5 1.8 81.0 66.7

128% 149% 119% 120% 130% 151%

TMR
23351 13824 4.6 2.4 147.7 95.5

233% 203% 219% 160% 238% 216%

* The router makes use of baseline arbiters and RUs. The underlying routing

algorithm is XY.

specific, the RUS area overhead is 53% less than that of TMR when Opt Y

routing algorithm is utilized, while the reduction is 40% when XY routing

algorithm is utilized. The RUS power consumption exhibits the same trend.

Although the RUS area and power costs are all higher than those of the Σ &

Branch method [115], it is more general can be applied in conjunction with

many more routing algorithms.

The cost to tolerate soft errors in VC and switch allocators in our method is

proportional with the numbers of output ports and VCs in a router, regardless

of the allocators implementation details. Table 3.2 suggests that the proposed

methods reduce the TMR area overhead by 45% and 27% when matrix arbiters

and round-robin arbiters are utilized, respectively. The power consumption of

the proposed method is also lower than that of TMR.

3.6.3 System Performance

The average packet transmission latencies at different SERs and different flit

injection rates (FIRs) are illustrated in Fig. 3.6. The error recovery mechanism

is triggered when an soft error is detected in RC, VA, or SA results, and will be

finished in one or two clock cycles. The experimental results indicate that even

if the SER is as high as 0.1/cycle in each router, the average packet delivery

latency increase is less than 5% when compared with the error free case.

The numbers of detected errors in different functional units are illustrated in

3.6. EVALUATION 43

0 0.05 0.1 0.15 0.2 0.25 0.3

30

40

50

60

70

80

90

100
Average packet latency at different SERs

Injection rate (flits/cycle/node)

L
a

te
n

c
y
 (

c
y
c
le

s
)

SER = 0.1

SER = 0.05

SER = 0.01

SER = 0.001

SER = 0.0001

fault free

Figure 3.6: Average latency at different SERs and FIRs.

Table 3.3: Performance of RUS at different SERs

SERs 0.0001 0.001 0.01 0.05 0.1

Injected errors 31 432 4458 21966 43275

Idle RUs available 30 425 4380 21659 42626

unprotected 1 7 78 307 649

Fig. 3.7. As both RUs and VC allocators work at packet rate, they are sup-

posed to have similar number of errors. However, in the proposed method, the

situation that a packet has no available idle neighboring RU is treated in the

same way as when an RC errors happen. As a consequence, the error number

in RC results is much higher than that in VA results, but they still have the

same increasing trend as the SER increases, because the percentage of packets

that has to wait for idle neighboring RUs depends on the traffic pattern. SA

works at flit rate, thus the number of SA errors is the biggest.

Table 3.3 demonstrates that when a head flit has no idle neighboring RUs avail-

able, it is necessary to treat such a situation as an RC error happens. Other-

wise, the absolute number of misdirected packets increases linearly as SER

and execution time increase. Fortunately, the latency overhead induced by this

strategy is marginal (see Fig. 3.6).

44 CHAPTER 3. SOFT ERROR TOLERANCE IN ROUTER CONTROL PLANE

0

1

2

3

4

5

6

0.0001 0.001 0.01 0.05 0.1

e
rr

o
r

n
u

m
b

e
r

(
x1

0
5

)

so! error rate

Detected errors

ru_error

sa_error

va_error

Figure 3.7: Detected error numbers at different SERs.

3.7 Conclusion

In this chapter, a low cost method is proposed to tolerate soft errors in the

NoC router control plane. In essential we detect Routing Computation (RC)

errors by comparing RC results from the local Routing Unit (RU) and idle

RUs available at neighboring input ports. The RC results are recalculated in

case errors are detected or neighboring RUs are not available. We detect errors

in the VC Allocation (VA) and Switch Allocation (SA) results by checking if

they are consistent with the correct RC results, each NoC resource is exclu-

sively assigned to one request initiator, and each request initiator is allocated

only one NoC resource. The VA/SA errors are corrected by redoing the failed

procedures and retransmitting the flits. Simulations with different soft error

rates on a wormhole switched 2D mesh NoC demonstrate that our method can

efficiently detect and recover soft errors in RC, VA, and SA results. In the

routing units, the proposed method requires 38% more silicon cost than the

Σ & Branch method when XY routing algorithm is utilized, but is applica-

ble to other routing algorithms; in the combined VA/SA units, the proposed

method is simpler and more reliable than the state of the art methods. The

average packet delivery latency increase is marginal when compared with the

error free case.

With the method proposed in this chapter, we can ensure that packets and flits

are correctly transmitted in the occurrence of soft errors in the router control

plane. However, the routing path can be damaged by permanent faults and thus

the packet transmission is blocked. In the next two chapters, we will propose

a flit serialization method to utilize partially faulty links and a fault tolerant

3.7. CONCLUSION 45

routing algorithm to tolerate totally broken links as well as to efficiently utilize

unpaired functional links.

Note. The contents of this chapter is based on the the following paper:

C. Chen, S. D. Cotofana, A Low Cost Method to Tolerate Soft Errors in the

NoC Router Control Plane, Proceedings of International IEEE SoC (System-

on-Chip) Conference (SOCC), 2013, pp. 374–379.

4
Effective Utilization of Partially Faulty

Links

A
ggressive MOS transistor size scaling substantially increase the

probability of faults in NoC links due to manufacturing defects, pro-

cess variations, and chip wire-out effects. Links with low fault level

should be utilized rather than be discarded to avoid significant system perfor-

mance degradation. However, state of the art partially faulty link utilization

strategies either suffer from high area and power overheads, or significantly

increase the average network latency. In this chapter, we propose a Flit Se-

rialization (FS) method to efficiently utilize partially defected links. The FS

approach divides the links into a number of equal width sections, and serializes

sections of adjacent flits to transmit them on all fault-free link sections to miti-

gate the unbalance between the flit size and the actual link bandwidth. The pro-

posed transmitter and receiver are transparent to the router such that their uti-

lization is not constrained by the router architecture and implementation or net-

work topology. Experimental results obtained on synthetic traffic and PARSEC

benchmarks indicate that FS reduces the latency overhead significantly and en-

ables graceful performance degradation when compared with related partially

faulty link utilization proposals. It reduces area cost and power consumption

by up to 29% and 43.1%, respectively, when compared with spare wire re-

placement methods, and can achieve lower area*power/saturation throughput

values than all state of the art link fault tolerant strategies. We also propose

the link augmentation with one redundant section as a low cost mechanism to

further increase the link dependability. Experimental results indicate that when

10% of the NoC wires are broken, adding a redundant section to each link can

improve the NoC saturation throughput by 18% than just utilizing FS.

47

48 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

4.1 Introduction

While the aggressive transistor size shrinking improves the chip capability, it

also makes the manufacturing yield and chip dependability increasingly seri-

ous concerns. Links in Networks-on-Chip (NoC) are becoming more prone to

various kinds of failures caused by manufacturing defects [40], chip wear-out

effects [14], or Process Parameter Variations (PPV) [98] [42]. As a single per-

manent fault in a link may degrade the system’s performance dramatically or

even render the chip useless, defective links need to be tolerated.

The most intuitive way to deal with defective links is making use of fault-

tolerant adaptive routing protocols [19] [13]. Defective links are discarded

and packets are forwarded along alternative fault-free paths. This ineffective

utilization of link bandwidth increases packet delivery time if the detouring

path is not minimal, and decreases network throughput due to the congestion

around the faulty links.

For a given permanent wire fault rate, the fault level in a defective link is

typically low, thus rather than completely discarding a defective link, a more

effective approach is to isolate the faulty wires in the defective links and to

keep on utilize the fault-free ones to transmit packets. While wires with small

frequency deviation due to PPV can be dealt with by the methods described

in [95] or [93], this chapter proposes a novel flit serialization method to tolerate

permanent faulty wires and to utilize partially faulty links. We note that links

with high fault level should be deactivated and tolerated by means of a fault

tolerant routing algorithm. Our strategy to deal with heavily defected links are

presented in details in Chapter 5.

In order to achieve the maximum utilization of the link bandwidth, in this chap-

ter we propose a Flit Serialization (FS) method to efficiently utilize defective

links with low fault level. The FS method divides the links and flits into a num-

ber of equal width sections, and place fault tolerant transmitters and receivers

inside the output and input ports of NoC routers, respectively, to make use of

all fault free link sections while mitigating the unbalance between the flit size

and the actual link bandwidth. Due to this misalignment flit sections are se-

rialized at the transmitter side to fit the narrowed link, and are deserialized at

the receiver side to reconstruct integral flits. The proposed transmitter and re-

ceiver are transparent to the router such that their utilization is not constrained

by router architecture and implementation or network topology. Moreover, we

propose the link augmentation with one redundant section as a low cost mech-

anism to further increase the link dependability.

4.2. RELATED WORK 49

The proposed link fault-tolerant architecture is compared with equivalent state

of the art solutions, i.e., the spare wire replacement method [61], the Partially

Fault Link Recovery Mechanism (PFLRM) [100], and the Simple Flit Half

Splitting (SFHS) method [72], in the context of a baseline NoC system. Ex-

perimental results indicate that our method reduces the latency overhead sig-

nificantly and enables graceful performance degradation, when compared with

related partially faulty link utilization proposals, saves the area and power over-

heads by up to 44% and 33%, respectively, when compared with the spare wire

replacement methods, and achieves lower area*power/saturation throughput

value than all state of the art link fault tolerant strategies. Moreover, when

the wire fault rate is as high as 0.1, the saturation throughput of NoC embed-

ding the proposed strategy can be further improved by 18% when each link is

augmented with an redundant link section.

The rest of this chapter is organized as follows. A brief survey of work related

with partially faulty link utilization is presented in Section 4.2. Architecture

and detailed implementation of the proposed transmitter and receiver are de-

scribed in Section 4.3. Section 4.4 presents the simulation results and Section

4.5 concludes the presentation.

4.2 Related Work

Intuitively, we can prefabricate spare wires in the chips to replace faulty wires.

Grecu et al. [40] use this method to enhance the NoC interconnect yield by

mapping m interface signals to n link wires (n ≥ m). However, their approach

is only applied to the manufacturing process and cannot address runtime fail-

ures [60]. To address this drawback, Lehtonen et al. proposed a set of runtime

faulty wire detection and replacing strategies. In [60], they divide the link

into a certain number of sections and provides each section with one spare

wire. However, this approach cannot tolerate the case in which more than one

faulty wire exist in the same section. In [61], an improved method was pro-

posed where the spare wires are shared rather than exclusively owned by each

section. The spare wire replacement method can preserve the original link

bandwidth, but the control logic is complicated and thus induces high silicon

area cost.

A packet rebuilding/restoring algorithm is proposed by Yu et al. [114] to uti-

lize links with reduced bandwidth. Each link is split into a big part with m bits

and a small part with n bits (m > n). When a link is defected, the fault free

wires in the small part are utilized to replace the faulty wires in the big part.

50 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

Accordingly, a packet first transmits the most significant m bits of each flit.

The non-transmitted small parts of the flits are reassembled into one or more

m-bit flits and then transmitted. When more than n wires are broken, the link

is abandoned. This method can be seen as implementation of the spare wire re-

placement method without using prefabricated spare wires. However, because

an integral flit can only be restored after all the reassembled flits have been

received, this method cannot be utilized in low latency routers with wormhole

or Virtual-Cut-Through (VCT) switching technology.

By noticing that the faults are rarely clustered when they randomly happen,

Vitkovskiy et al. [100] introduced a Partially Faulty Link Recovery Mecha-

nism (PFLRM), which is mainly comprised of a flit shifter, a de-shifter, and

a flit re-assembler. Assuming the maximum fault cluster size is k in a link, it

requires k + 1 cycles to successfully transmit a flit. In the first cycle, the flit

is transmitted in the normal way. In each of the rest cycles, the flit is rotated

by 1-bit before being transmitted, thus the data bits that were transmitted on

faulty wires in the previous cycle can be transmitted on fault free ones. At the

receiver side, the flits are de-rotated and the newly transmitted data bits are

selected to reassemble the original flit. Although this approach can theoreti-

cally work for defective links with an arbitrary large number of faulty wires,

the induced transmission latency overhead can be significantly high. We note

that even only a single faulty wire exists in the link, two cycles are needed to

transmit a flit successfully.

The aforementioned strategies rely on the exact knowledge of each link wire

status, which may induce high burden to the Built-In-Self-Test (BIST) mech-

anism. Conversely, Palesi et al. [72] and Lehtonen et al. [60] proposed the

method of using flit splitting to tolerate faulty wires. In this approach, a link

is divided into four sections. The fault-free sections are utilized to transmit

flits and the ones containing broken wires are abandoned. Thus the link sta-

tus is diagnosed at section level, which reduces the BIST delay overhead and

complexity. Note that the link can be divided into more sections to tolerate

more broken wires. However, their approaches cannot utilize all fault free link

sections. For example, when one of the four link sections is broken, only two

functional sections are utilized to transmit flits half by half. In the remainder

of this chapter, we name this method as Simple Flit Half Splitting (SFHS).

In summary, spare wires can preserve the NoC performance but introduce a

high silicon overhead, while SFHS and PFLRM have low area overhead but

induce high extra latency. By comparison, our FS method significantly re-

duces the latency, when compared with SFHS and PFLRM, while maintaining

4.3. PARTIALLY FAULTY LINK UTILIZATION 51

a more reasonable silicon cost, when compared with the spare wire replace-

ment methods.

4.3 Partially Faulty Link Utilization

The principle of the Flit Serialization (FS) strategy is to divide the links and

flits into k equal width sections, and make use of all functional link sections to

do data transmission. We assume that k is a power of 2 for the sake of control

logic simplicity.

Fig. 4.1 depicts the proposed fault tolerant link architecture. For each unidi-

rectional link, we use a Test Data Generator (TDG) at the Transmitter (TX)

side and a Test Error Detector (TED) at the Receiver (RX) side to diagnose the

link status and generate a k-bit fault vector to indicate the faulty link sections.

If faulty wires exist in at least one link section, sections of adjacent flits are

serialized by the flit serialization unit at the TX side and then transmitted on

the fault free link sections. All flit sections are then deserialized at the RX

side to reconstruct the original flits. On fault free links, the flits are transmit-

ted according to the normal protocol, bypassing the proposed flit serialization

and deserialization units. The FS mechanism is transparent to the rest of the

router parts thus its utilization is not constrained by the router architecture and

implementation, or by the network topology.

As the number of control signals, e.g., the data valid signal and the credit

control signals, in each link is much smaller than the number of data lines, they

are protected by Triple Modular Redundancy (TMR) method with a marginal

silicon area overhead. If a Error Correcting Code (ECC) is utlized to protect

data from transient errors, the error coding logic should be placed before the

flit serialization unit and the error decoding logic should be placed after the flit

deserialization unit, thus soft errors generated in the data link as well as inside

the transmitter and/or the receiver can be detected and corrected.

4.3.1 Link Diagnosis

Unlike spare wire replacement and PFLRM, which need to know the precise

status of each wire, our method just needs link fault vectors at the section

level, i.e., a link section is broken if it contains broken wires. For example,

if the third section of a link (with 4 sections in total) contains faulty wires,

the fault vector of the link is marked as “1101”. Thus for an n-bit wide link

52 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

divided into k sections, we just need a k-bit wide register to store the section

level fault vector.

In this chapter, we assume that the possible permanent faults are stuck-at, i.e.,

the wire value is stuck at ‘1’ or ‘0’, and crosstalk, i.e., the status of two ad-

jacent wires interfere with each other and one is in the dominant position and

determines the value of the other one. Under these fault models, to detect the

faults in a 4-bit wide link section, the TDG sequentially injects 2 test vectors

“0101” and “1010” to the link section under testing. At the RX side, received

data are XORed with expected values and if the result is not always “0000”,

an error signal is asserted to indicate that faults exist in the link section. As a

comparison, to achieve bit level fault vector, the link diagnosis method in [100]

uses the same test vectors but can only detect stuck at faults, the method in [41]

can detect crosstalk faults but requires 8 test vectors and thus 8 clock cycles

to diagnose 1 wire, and the method in [60] can diagnose wires status without

ceasing data transmission but requires complicated control logic. We note that

to distinguish permanent errors from soft ones, the test is repeated 3 times and

the link section is marked as broken only when the error signal is asserted at

least twice.

Link diagnosis is triggered periodically and when the number of soft errors

detected by the ECC logic exceeds a predefined threshold in a short time period

[60]. Because intermittent errors may have the same syndrome as permanent

errors when they happen, sections which are marked as faulty in the previous

test are also tested, to prevent situations when vanished intermittent errors are

still disabling sections. At the end of the diagnosis process the achieved fault

vector is sent to the transmitter via a TMR protected serial wire.

flit

serialization

flit

deserialization
output

buffer

...

optional

RouterRouter

input

buffer

bypass

TDG TED
ctrl line

...

...

section 1

section N

data_lines

TX RX

TXRX

Router Router

Figure 4.1: Proposed fault-tolerant link architecture.

4.3. PARTIALLY FAULTY LINK UTILIZATION 53

Flit_serialize_control

En_0

En_1

Data_acceptable

Fault_vector

Valid_flit

Data_valid

Data_in[39 : 30]

Data_in[29 : 20]

Data_in[19 : 10]

Data_in[9 : 0]

Link_reg_TX

Sec"on[0][9 : 0]

Sec"on[1][9 : 0]

Sec"on[2][9 : 0]

Sec"on[3][9 : 0]

Sec"on[4][9 : 0]

Sel

Redundant_link_sec"on

Figure 4.2: Flit serialization unit - TX.

4.3.2 Flit Serialization and Deserialization

In a typical NoC router, the head flit of each packet has to sequentially

go through 3 pipeline stages: Routing Computation (RC), combined Virtual

Channel (VC) Allocation (VA) and Switch Allocation (SA), and Crossbar

Transversal (CT). An extra Link Transversal (LT) stage is usually required to

send flits to the downstream router. The proposed flit serialization and deseri-

alization units are implemented in the LT stage. For the sake of simplicity, we

present our proposal for the case when both flits and links are divided into 4

sections, and the link width is 40-bit, i.e., each link section is 10-bit wide. We

note that the proposed principle is more general and can be applied to wider

links with more sections.

Fig. 4.2 illustrates the structure of the proposed flit serialization unit. In gen-

eral, each output port embeds a 1-flit width link register to store flits before

they are sent to the downstream router. To allow for flit serialization, we ex-

pand the link register width to 2-flits and divide it into 8 sections that can be

read and write independently. The register is designed in such a way that a new

flit can be registered in the Least Significant Half (LSH) of the register if there

are flit sections in its Most Significant Half (MSH) still waiting to be transmit-

ted, and vice versa. If the link is fault-free, only the register MSH is utilized,

acting as a conventional link register. Otherwise, flits are serialized under the

control of the flit serialize ctrl unit. The serialization process is presented in

more detail in Section 4.3.3. The number of flit sections that can be transmitted

in each cycle is the same as that of fault free link sections. Multiplexers are

54 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

Flit_deserialize_control

Link_reg_RX

Sec on[0][9 : 0]

Sec on[1][9 : 0]

Sec on[2][9 : 0]

Sec on[3][9 : 0]

Sec on[4][9 : 0]

Data_valid Fault_vector

Data_out[39 : 30]

Data_out[29 : 20]

Data_out[19 : 10]

Data_out[9 : 0]

Redundant_link_sec on

Figure 4.3: Flit deserialization unit - RX.

utilized to select the to be transmitted flit sections. The Data valid signal indi-

cates the downstream receiver whether valid data are transmitted on the link in

each cycle. With a narrowed link, the flit is transmitted on the link at a lower

rate than on the router crossbar and we rely on the data acceptable signal to

indicate if the next flit can be accepted by the serialization unit subject to the

remained buffer space.

At the RX side, a flit deserialization unit (see Fig. 4.3) reconstructs the flit out

of the serialized sections. Similar with the flit serialization unit, a 2-flit wide

link register (link reg RX) is employed. Multiplexers are utilized to select the

valid sections from the link under the control of the flit deserialize ctrl unit.

The newly received flit sections are stored into the correct link register position

to reassemble integral flits. When the link register MSH or LSH is full, one flit

was assembled and can be read out by the router.

4.3.3 Flit Transmission Process

Fig. 4.4 graphically depicts the timing diagrams capturing the flit transmission

process specific to our method. When the link is fault-free, a flit from the

crossbar is loaded into the link reg TX MSH and then directly transmitted to

the downstream router input buffers (see Fig. 4.4(a)). At the RX side, the flit

deserialization unit is bypassed.

We introduce the FS method with an example situation when one of the 4 link

4.3. PARTIALLY FAULTY LINK UTILIZATION 55

3 2 1 0
a a a a

3 2 1 0
b b bb

3 2 1 0
c c c c

3 2 1 0
a a a a

3 2 1 0
b b bb

3 2 1 0
c c c c…... …

…

CLK

data_from_crossbar

data_on_link

3 2 1 0
d d d d …...

3 2 1 0
d d d d

T1 T2 T3 T4 T5

…... …
3 2 1 0
a a a a xxxx

3 2 1 0
b b bb xxxx

3 2 1 0
c c c c xxxxcyclic_reg_TX 3 2 1 0

d d d d xxxx

3 2 1
a a a

3 2 1 0
a a a a

3 2 1 0
b b bb

3 2 1 0
c c c c

…... …

…

CLK

data_from_crossbar

data_on_link
0 3 2
a b b

2 1 0
c c c

wait
3 2 1 0
d d d d

…... …
3 2 1 0
a a a a xxxx

3 2 1 0 3 2 1 0
a a a a b b bb

3 2 1 0 3 2 1 0
c c c c b b bb

1 0 3
bb c

cyclic_reg_TX

T1 T2 T3 T4 T5

high_reg_state

low_reg_state

data_acceptable

3 2 1
a a a

3 2 1 0
a a a a

3 2 1 0
b b bb

3 2 1 0
c c c c…... …

…

CLK

data_to_input_buffer

data_ on_link
0 3 2
a b b

2 1 0
c c c

…... …
3 2 1
a a a xxxxx

3 2 1 0 3 2
a a a a b b xx

3 2 1 0 3 2 1 0
c c c c b b bb

1 0 3
bb c

cyclic_reg_RX

T2 T3 T4 T5 T6

3 2 1
d d d

3 2 1 0 3 2 1 0
c a a a b b bb

…...

flit_1_recovered

flit_2_recovered

(a)

(b)

(c)

Figure 4.4: Timing diagram of proposed mechanism (a) Timing diagram for a fault-

free link; (b) Transmitter side when one section contains faulty wires; (c) Receiver

side when one section contains faulty wires.

sections is affected by faults. As illustrated in Fig. 4.4(b), at TX side, flit a

floats at the output port of the crossbar at the rising edge of T1 and is written

into the link reg TX MSH at the rising edge of T2. During the T2 cycle, the

first three sections of the flit a (a3, a2, a1) are transmitted to the downstream

router via the three fault-free sections of the link. At the rising edge of T3,

flit b is written into the LSH of link reg TX. Flit sections a0, b3, and b2 are

transmitted in the same cycle. The signal data acceptable is set to ’0’ in T3
such that no new flit may appear at the crossbar output port in T4. A wait

cycle is inserted to allow for the transmission of the last three sections of flit c

56 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

during T5. The signals high reg state and low reg state are utilized to indicate

the status of link reg TX MSH and LSH, respectively. Each signal is asserted

once a flit is written into the corresponding register part, and de-asserted in the

clock cycle when all data belonging to the flit are read out.

At the receiver side (see Fig. 4.4(c)), flit sections are de-serialized and re-

assembled into integral flits in link reg RX. Valid flit sections are selected by

input side demultiplexers and written at the correct positions in link reg RX.

Once the register MSH or LSH is full, an integral flit is recovered. The signals

flit 1 recovered and flit 2 recovered indicate the availability of recovered flits

and control the output side multiplexers to select the corresponding register

sections.

4.3.4 Redundant Link Section

Even if we can efficiently utilize the remained link bandwidth, the flit trans-

mission latency is increased when faults exist. As illustrated in Fig 4.2 and

Fig. 4.3, by extending each link with one redundant section, we can combine

the benefits of the spare wire replacement method and the FS method. If only

one fault exists, or multiple faults exist but “luckily” they are all resident in the

same link section, the link can still transmit one integral flit per cycle. We note

that such scenario is a “disaster” for the PFLRM method as it may cause large

fault cluster size and hence long flit transmission latency.

We do not rely on bit level spare wire replacement methods, e.g., [60, 61],

because overlapping FS with these methods requires: (i) an extra multiplexing

and demultiplexing step, which can significantly increase the link critical path

length, and (ii) additional registers to store the selection bits, which results in

significant area overhead and power consumption. Given that FS extra area

is dominated by the 2-flit wide link registers, especially for wide links, and

that adding one redundant link section does not require larger link registers

the link augmentation with a redundant section is a cost effective solution. As

illustrated in Section 4.4, by adding one redundant section per link we can

achieve up to 18% saturation throughput improvement when the link fault rate

is as high as 0.1, with only 4.7% area and 2.4% power overhead, respectively.

4.3. PARTIALLY FAULTY LINK UTILIZATION 57

4.3.5 Link Latency and Reliability

The flit transmission latency when the FS method is utilized (lFS) to continu-

ously transmit a number of flits (flit number) can be expressed as:

lFS =

⌈

section number × flit number

fault free section number

⌉

, (4.1)

where section number is the number of sections in the link. For example,

transmitting 10 flits via a link which has one broken section requires 14 and 12

cycles when the link is divided into 4 and 8 sections, respectively.

For the sake of comparison, PFLRM (lPFLRM) and SFHS (lSFHS) flit transmis-

sion latencies are expressed in (4.2) and (4.3), respectively.

lPFLRM = (cluster size + 1)× flit number , (4.2)

where cluster size is the maximum fault cluster size.

lSFHS =
section number

available section number
× flit number . (4.3)

Note that the available section number is not the number of fault free sections.

It can be equal with or less than the number of sections in the link and can

have the value of 2i , i = 0, 1, 2, For example, when the link is divided into

4 sections, it can be 1, 2, or 4.

Table 4.1 presents the average flit transmission latency (cycles/flit) when FS,

PFLRM, and SFHS are utilized to continuously transmit flits via a defective

link. The number of faults in the first table row indicates the fault cluster

sizes for PFLRM, and the numbers of faulty sections for FS and SFHS. S4

and S8 mean that the link is divided into 4 and 8 sections, respectively. From

the Table we observe that PFLRM and SFHS latencies double in the presence

of one error while for FS this happens only after half of the link sections are

broken.

In Fig. 4.5, we depict the average flit transmission latency on 40-bit wide

links when fault wires are uniformly distributed and each link is divided into

8 sections. The results are obtained by doing Monte Carlo simulations when

the following methods are applied: FS, FS with one redundant link section

(FS+1), PFLRM, and SFHS. Note that the links with no fault free section are

not considered. We can observe that from the statistic point of view, FS pro-

vides lower flit transmission latency than PFLRM when the link has less than

6 faulty wires. When more faulty wires exist, FS performs worse than PFLRM

58 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

but still better than SFHS. We can also observe that FS+1 achieves lowest flit

transmission latency when there are less than 9 faulty wires.

When 9 or more faulty wires are uniformly distributed in the links, PFLRM

outperforms all the other counterparts. However, in the cases corresponding to

large physical defects multiple, e.g., k , adjacent wires may get faulty. In such

a scenario, PFLRM requires k + 1 cycles to successfully transmit a flit, which

results in a large latency overhead, and a spare wire replacement method has

to make use of k spare wires, which results in a large area overhead. Given

that such a large defect will most likely affect only one or two link sections

the proposed FS approach can handle such extreme cases with an efficiency

corresponding to the case when one or two faulty wires are detected in the

link.

In principle, we can split a link into more sections, e.g., 16 or more, to achieve

more graceful performance degradation. However, this implies that more and

larger multiplexers are required, which have a negative impact on area and

power overheads. If we assume that each wire has the same probability (pe) to

be permanently faulty, the probability that an n-bit wide link has k faulty wires

can be calculated using (4.4).

Pk =

(

n

k

)

p k
e (1− pe)

n−k
(4.4)

Thus even if pe is as high as 0.001, the probabilities for a 40-bit wide link to

have 4 and 8 faulty wires are only 8.8 × 10−8 and 7.4 × 10−17, respectively.

This means that by dividing the link into 8 sections, we can ensure that the

link probability to have a flit transmission latency of 2 cycles is lower than

10−8 and the probability for a link to be totally broken is lower than 10−16.

Given that faulty wires are not always evenly distributed in different sections,

Table 4.1: Average flit transmission latency (cycles/flit) when flits are transmitted

continuously

number of faults 0 1 2 3 4 5 6 7 8

FS
4 sections 1 1.33 2 4 – – – – –

8 sections 1 1.14 1.33 1.60 2 2.67 4 8 –

PFLRM 1 2 3 4 5 6 7 8 9

SFHS
4 sections 1 2 2 4 – – – – –

8 sections 1 2 2 2 2 4 4 8 –

4.4. EVALUATION 59

0 2 4 6 8 10
0

1

2

3

4

5

6

fautly wires number

s
ta

ti
s
ti
c
 a

v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

FS_s8

FS_s8+1

PFLRM

SFHS_s8

Figure 4.5: Average flit transmission latency of different partially faulty link utiliza-

tion strategies. The link is divided into 8 sections for FS and SHFS.

the aforementioned two probabilities are much lower in practice. In view of

this analysis, we conclude that dividing links into more than 8 sections has

no practical relevance for most state of the art NoCs whose flit width is 32-

bit [87], and the section number should be a power of 2, e.g., 4 or 8, to achieve

simple control logic. The actual number of sections can be determined via

a trade-off process which takes into consideration the targeted fault-tolerance

capability and the available silicon real estate.

4.4 Evaluation

To put the implications of our link fault-tolerant architecture in a better prac-

tical prospective, we evaluate and compare it with other three tightly related

proposals presented in [61], [100], and [72], namely spare wire replacement,

PFLRM, and SFHS, respectively. To this end, we implemented all these four

link fault-tolerant methods at RTL level by using Verilog HDL, and applied

them in the context of an 8× 8 2D mesh NoC.

Each baseline router has 3 pipeline stages, i.e., RC, VA/SA, and CT, and 5

Physical Channels (PC). Each PC is shared by 4 VCs, and each VC buffer is

4-flit deep and 40-bit wide, as both of flit and link widths are 40-bit. The router

60 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

and the link fault-tolerant modules are synthesized using the Synopsys Design

Compiler with TSMC 65-nm standard cell as target technology.

4.4.1 FS Performance on Synthetic Traffic

To evaluate the performance of the FS method, we first run synthetic uniform

random traffic in the context of different fault link patterns for a wide range

of permanent wire fault rates, i.e., 0.001, 0.01, 0.05, and 0.1. We assume that

each wire has the same fault rate pe and faults are uniformly distributed across

the links. The three partially faulty link utilization strategies, i.e., FS, PFLRM,

and SFHS, are applied to the NoC system and simulated for each fault pattern.

Note that when spare wire replacement method is employed, the original NoC

performance is preserved until all spare wires are utilized to replace the broken

wires. For the section based strategies, i.e., FS and SFHS, we simulated two

cases when each link is divided into 4 (FS s4 and SFHS s4) and 8 (FS s8 and

SFHS s8) link sections, respectively. For the FS method we also simulated

the case when each link is augmented with one redundant link section, i.e.,

FS s4+1 and FS s8+1. Each packet consists of 4 flits and is routed with the

XY routing protocol.

We first run Mento Carlo Simulations to study the fault distribution at differ-

ent wire fault rates. We randomly create faulty wires in the NoC and count

the number of defected links. For each defected link, we count the number of

faulty wires, the maximum fault cluster size, and the number of broken link

sections. The fault distribution is illustrated in Fig. 4.6 and 4.7. In the fig-

ures, each column’s height represents the percentage of defective links present

in the NoC. In each column, different colors represent the percentage of de-

fective links with different fault levels. For example, the columns’ red parts

denote the percentage of links with 2 faulty wires, or links with 2 unusable

link sections in FS and SFHS, or links with a fault cluster size of 2 in PFLRM.

Take Fig. 4.6(b) for example, it illustrates that when pe is 0.01, 27.4% of the

NoC links are defected, among which the percentage of links contain 1, 2, and

3 faulty wires are 23.4%, 3.7%, and 3%, respectively. This also means that

the percentage of links contain 1, 2, and 3 broken sections are 24.2%, 3.0%,

and 0.2%, respectively, for FS s4 and SFHS s4, and 23.7%, 3.4%, and 0.3%,

respectively, for FS s8 and SFHS s8, and the percentage of links have a fault

cluster size of 1 and 2 are 27.1% and 0.3%, respectively. For FS with one re-

dundant section per link, the link bandwidth is reduced only when 2 or more

sections are broken, thus for FS s4+1 and FS s8+1 the percentage of links with

reduced bandwidth is much lower than in the other cases. Note that SFHS has

4.4. EVALUATION 61

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

fault_wire FS_s4 FS_s8 PFLRM SFHS_s4 SFHS_s8 FS_s4+1 FS_s8+1

P
e

rc
e

n
ta

g
e

 o
f

d
e

fe
ct

e
d

 l
in

k
s

4

3

2

1

(a) fault pattern when pe = 0.001;

0%

5%

10%

15%

20%

25%

30%

fault_wire FS_s4 FS_s8 PFLRM SFHS_s4 SFHS_s8 FS_s4+1 FS_s8+1

P
e

rc
e

n
ta

g
e

 o
f

d
e

fe
ct

e
d

 l
in

k
s

4

3

2

1

(b) fault pattern when pe = 0.01

Figure 4.6: Fault link Patterns at different wire fault rate.

much lower link bandwidth utilization efficiency than FS, e.g., even if a link

has only 1 broken section, SFHS s4 and SFHS s8 treat it equivalently as 2 and

4 sections are broken, respectively. Such SHFS property is reflected in Fig.

4.6 and 4.7 by rounding up the number of broken link sections to its equivalent

case.

Fig. 4.8 and 4.9 depict the NoC performance measured in terms of average

packet transmission latency obtained when different partially faulty link uti-

lization strategies are applied. The packet transmission latency is counted

since the packet is generated in the source node till the tail flit is received

by the destination node, i.e., the queuing time in the source node is included.

We gradually increase the Flit Injection Rate (FIR) at a step length of 0.01

flits/cycle/node to derive the near zero traffic load packet transmission latency

and the saturation throughput, i.e., the FIR when the packet latency approaches

infinity.

62 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

fault_wire FS_s4 FS_s8 PFLRM SFHS_s4 SFHS_s8 FS_s4+1 FS_s8+1

P
e

rc
e

n
ta

g
e

 o
f

d
e

fe
ct

e
d

 l
in

k
s 8

7

6

5

4

3

2

1

(a) fault pattern when pe = 0.05

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fault_wire FS_s4 FS_s8 PFLRM SFHS_s4 SFHS_s8 FS_s4+1 FS_s8+1

P
e

rc
e

n
ta

g
e

 o
f

d
e

fe
ct

e
d

 l
in

k
s

>8

8

7

6

5

4

3

2

1

(b) fault pattern when pe = 0.1

Figure 4.7: Continue – Fault link Patterns at different wire fault rate.

Without Redundant Link Section

We first compare the performance of the three partially faulty link utilization

strategies when the redundant link section is not provided.

As indicated in Table 4.1, FS s8 induces the lowest flit transmission latency

overhead on defective links with 1 broken section, and thus it achieves the best

performance when pe is 0.001, i.e., the average packet transmission latency is

very close to the fault-free case (see Fig. 4.8(a)). At such fault rate, the per-

formance of FS s4 is lower than that of FS s8 but still much better than that of

PFLRM and SFHS. This can be explained by the fact that in links with one bro-

ken section, both PFLRM and SFHS will double the flit transmission latency at

least, while FS s4 can keep the latency overheads as low as 33.3%. Note that

for both SFHS s8 and SFHS s4, the flit transmission latency on the defective

links is doubled at this fault rate thus they have the same performance.

As pe increases, more links contain faults and the average number of faulty

4.4. EVALUATION 63

0 0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100

120

140

160

180

200
packet_length = 4, Pe = 0.001

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

fault_free

FS_s8

FS_s4

FS_s8+1

FS_s4+1

PFLRM

SFHS

(a) performance when pe = 0.001;

0 0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100

120

140

160

180

200
packet_length = 4, Pe = 0.01

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

fault_free

FS_s8

FS_s4

FS_s8+1

FS_s4+1

PFLRM

SFHS

(b) performance when pe = 0.01;

Figure 4.8: NoC Performance at different wire fault rate.

64 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

0 0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100

120

140

160

180

200
packet_length = 4, Pe = 0.05

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

fault_free

FS_s8

FS_s4

FS_s8+1

FS_s4+1

PFLRM

SFHS_s8

SFHS_s4

(a) performance when pe = 0.05;

0 0.05 0.1 0.15 0.2 0.25 0.3
20

40

60

80

100

120

140

160

180

200
packet_length = 4, Pe = 0.1

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

fault_free

FS_s8

FS_s8+1

PFLRM

SHFS_s8

(b) performance when pe = 0.1.

Figure 4.9: Continue – NoC Performance at different wire fault rate.

4.4. EVALUATION 65

wires becomes larger, leading to more unusable sections and bigger fault clus-

ter size in links. The average flit transmission latency increases for all partially

faulty link utilization strategies. But when the fault rate is not very high, e.g.,

pe = 0.01, FS still outperforms PFLRM and SFHS (see Fig. 4.8(b)).

When pe further increases to 0.05, FS s8 still achieves the best performance

because the flit transmission latency on more than 99% of the defective links is

less than 2 cycles. However, FS s4 performs worse than SFHS s8 and PFLRM.

This is because the number of links that have a flit transmission latency higher

than 2 cycles in FS s4 is much larger than that in SFHF s8 and PFLRM. These

slow links cause severe congestion in their upstream routers and hence obvious

system performance degradation. We note that at such pe value, totally broken

links can exist in FS s4 and SFHS s4. To avoid the implication of FTRAs to

the performance of partially faulty link utilization methods, the fault patterns

which contain totally broken links are not considered in this subsection. This

cannot fundamentally affect the results because only 1 or 2 such links may

exist in the NoC at this fault rate.

When the permanent wire fault rate is as high as 0.1, 96.6% of the links are

defective and the average fault level is high, as depicted in Fig. 4.7(b). Under

this extreme conditions, FS s8 exhibits only slightly better performance than

PFLRM (see Fig. 4.9(b)) where FS s4 and SFHS s4 have so many totally bro-

ken links that they are not considered. If the fault rate keeps on increasing,

the average packet transmission latency in FS s8 increase and eventually its

performance gets worse than that of PFLRM.

With One Redundant Link Section

As illustrated in Fig. 4.6 and 4.7, when each link is augmented with one redun-

dant link section, the numbers of defective links when pe is 0.001, 0.01, 0.05,

and 0.1 are reduced by 98%, 82%, 32%, and 8%, respectively. The system

performance, in terms of average packet transmission latency and saturation

throughput, is also obviously improved. For example, when pe is up to 0.01,

FS s4+1 and FS s8+1 can still provide similar performance with the fault free

case, while FS s4 and FS s8 induce 21% and 3% saturation throughput degra-

dation already. When pe = 0.05, one redundant link section can improve the

FS s4 and FS s8 saturation throughput by 20% and 8.7%, respectively. Al-

though the number of defective links is only reduced by 8% when pe = 0.1,

the FS s8 saturation throughput is improved by 18%. As the wire fault rate

increase from 0 to 0.1, FS s8+1 provides the most gracefully system perfor-

mance degradation when compared with other counterpart partially faulty link

66 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

0

10

20

30

40

50

60

70

80

90

blacksholes bodytrack canneal dedup ferret fluidanimate swap"ons vips x264

A
v

e
ra

g
e

 l
a

te
n

cy
 (

cy
cl

e
s)

fault free FS PFLRM SFHS

(a) Average latency when pe = 0.001;

0

10

20

30

40

50

60

70

80

90

100

blacksholes bodytrack canneal dedup ferret fluidanimate swap"ons vips x264

A
v

e
ra

g
e

 l
a

te
n

cy
 (

cy
cl

e
s)

fault free FS PFLRM SFHS

(b) Average latency when pe = 0.01;

Figure 4.10: Average packet transmission latencies of PARSEC Benchmarks at dif-

ferent fault rates. Links are divided into 8 sections for FS and SFHS.

utilization strategies.

4.4.2 FS Performance on PARSEC Benchmarks

In this subsection, we evaluate our proposal with PARSEC benchmarks [9]

traffic traces recorded with the Netrace [43] tool on the M5 full system sim-

ulator [10]. We replay the benchmark traces and inject the packets into our

NoC platform according to the packet time flag while maintain the packets de-

pendencies. When compared with the full system simulation, simulation with

recorded traffic can better reflect the performance of the NoC system [24] as

the performance fluctuations caused by the interaction between the cores and

the NoC are removed. The packet length can be 4-flits and 20-flits according

to the packet type. The transmission delay of each packet is counted since the

packet is read out from the record in the source node till the tail flit is received

by the destination node. The simulation results are illustrated in Fig. 4.10 and

Fig. 4.11. We note that the links are divided into 8 sections for FS and SFHS.

4.4. EVALUATION 67

0

20

40

60

80

100

120

140

blacksholes bodytrack canneal dedup ferret fluidanimate swap"ons vips x264

A
v

e
ra

g
e

 l
a

te
n

cy
 (

cy
cl

e
s)

fault free FS PFLRM SFHS

(a) Average latency when pe = 0.05;

0

20

40

60

80

100

120

140

160

180

blacksholes bodytrack canneal dedu ferret fluidanimate swap"ons vips x264

A
v

e
ra

g
e

 l
a

te
n

cy
 (

cy
cl

e
s)

fault free FS PFLRM SFHS

(b) Average latency when pe = 0.1.

Figure 4.11: Average packet transmission latencies of PARSEC Benchmarks at dif-

ferent fault rates. Links are divided into 8 sections for FS and SFHS.

We can observe that for all the three partially faulty link utilization strategies,

the average packet transmission latency increases as the wire fault rate be-

comes higher. When the wire fault rate is quite low, i.e., pe = 0.001, only

several defected links with low fault level exist in the NoC. Given that bench-

marks’ FIRs are much lower than the saturation FIR there is no obvious dif-

ference between the 3 partially faulty link utilization approaches. As the pe
increases, the advantage of our proposal becomes obvious. For example, the

FS packet transmission latency is on average 13% and 12% lower than that

of PFLRM and SFHS, respectively, when pe = 0.01, but the FS advantage

increases to 28% and 22% latency reduction, respectively, when pe = 0.1.

4.4.3 Area and Power

The area and power overheads of the four different link fault-tolerant meth-

ods, i.e., FS, PFLRM, SFHS, and spare wire replacement, are presented in

Table. 4.2. Our proposal and SFHS are evaluated with two versions containing

68 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

Table 4.2: Power and area overhead of different link fault-tolerant methods

Area (µm2) Power (mW)

Basic router 64813 / 1.00 25.14 / 1.00

Spare wire
8 wire 55942 / 1.86 39727 / 1.61

4 wire 14.85 / 1.59 12.06 / 1.48

FS
S8 27413 / 1.42 6.49 / 1.26

S4 15812 / 1.24 4.76 / 1.19

PFLRM 15363 / 1.24 6.17 / 1.25

SFHS
S8 14407 / 1.22 3.02 / 1.12

S4 7350 / 1.11 1.90 / 1.7.6

FS+1
S8 30827 / 1.48 7.23 / 1.29

S4 17757 / 1.27 5.08 / 1.20

4 (s4) and 8 (s8) link sections, and the spare wire replacement method is evalu-

ated with two versions containing 4, and 8 spare wires. From the Table we can

observe that, the FS area and power overheads are lower than the ones of spare

wire replacement, but higher than the ones of PFLRM and SFHS. For exam-

ple, when compared with the baseline router, the FS s8 area overhead is 42%,

while those of 8 spare wires, PFLRM, and SFHS s8 are 86%, 24%, and 22%,

respectively; the FS s8 power overhead is 26%, while those of 8 spare wires,

PFLRM, and SFHS s8 are 59%, 25%, and 12%, respectively. The FS s4 area

and power overheads also falls between those of 4 spare wires and SFHS s4.

It is worth to note that FS s4 requires similar silicon area cost and less power

consumption than PFLRM but provides better system performance when the

wire broken rate is less than 0.01.

It is illustrated in Table 4.2 that adding one redundant link section to each link

in the context of the FS method (FS+1) increases the area and power consump-

tion by 6% and 3%, respectively, in the S8 case, and 3% and 1%, respectively,

in the S4 case. We note that the number of wires is increased by 12.5% and

25% for the S8 and S4 cases, respectively.

To give a comprehensive overview on the implementation cost and per-

formance of different link fault tolerant strategies, we compute their

Area*Power/Saturation throughput (AP/S) metric value and illustrate the nor-

malized results, to that of the baseline router, in Fig. 4.12. A strategy that

4.5. CONCLUSION 69

1

1.5

2

2.5

3

3.5

4

4.5

5

0.001 0.01 0.05 0.1

a
re

a
*

p
o

w
e

r/
sa

tu
ra

o

n
_

th
ro

u
g

h
p

u
t

wire fault rate

spare_8

FS_s8

PFLRM

SFHS_s8

FS_s8+1

(a) With 8 spare wires or sections;

1

1.5

2

2.5

3

3.5

4

4.5

5

0.001 0.01 0.05

a
re

a
*

p
o

w
e

r/
sa

tu
ra

o

n
_

th
ro

u
g

h
p

u
t

wire fault rate

spare_4

FS_s4

PFLRM

SFHS_s4

FS_s4+1

(b) With 4 spare wires or sections;

Figure 4.12: Normalized value of area*power/saturation throughput metric of differ-

ent link fault tolerant strategies. Lower is better.

can achieve a low AP/S value, i.e., high saturation throughput and low area

and power cost, is preferred. We can observe that when the wire fault rate

(pe) is as low as 0.001, FS, FS+1, and SFHS achieve the similar AP/S value,

which is lower than that of PFLRM and spare wire replacement. When pe
is 0.01 and 0.05, FS s8 and FS s8+1 always achieve lower AP/S value than

SFHS, PFLRM, and the spare wire replacement method. When pe is as high

as 0.1, which is unlikely to happen in practice, all partially faulty link utiliza-

tion strategies induce high saturation throughput reduction and the spare wire

replacement method becomes the most effective link fault tolerant strategy.

Thus in practice FS is an effective method to tolerate faulty link wires and to

utilize remained link bandwidth.

4.5 Conclusion

In this chapter, we proposed a Flit Serialization (FS) method to efficiently uti-

lize partially defected links. The FS approach divides the links into a num-

ber of equal width sections, and serializes sections of adjacent flits to trans-

mit them on all fault-free link sections to mitigate the unbalance between the

flit size and the actual link bandwidth. Experimental results obtained on syn-

thetic traffic and PARSEC benchmarks indicate that FS reduces the latency

overhead significantly and enables graceful performance degradation when

compared with related partially faulty link utilization proposals. It reduces

70 CHAPTER 4. EFFECTIVE UTILIZATION OF PARTIALLY FAULTY LINKS

area cost and power consumption by up to 29% and 43.1%, respectively,

when compared with spare wire replacement methods, and can achieve lower

area*power/saturation throughput values than all state of the art link fault tol-

erant strategies. We also propose the link augmentation with one redundant

section as a low cost mechanism to further increase the link dependability. Ex-

perimental results indicate that when 10% of the NoC wires are broken, adding

a redundant section to each link can improve the NoC saturation throughput by

18% than just utilizing FS.

While utilizing partially faulty links with low fault levels by means of the FS

method can preserve the NoC link bandwidth and thus reduce the NoC per-

formance degradation speed, utilizing Heavily Defected (HD) links may cause

severe congestion in their upstream routers. In the next chapter, we will dis-

cuss when HD links should be perceived as broken, and propose a fault tolerate

routing algorithm to tolerate deactivated links while make use of the unpaired

functional link in partially broken interconnects.

Note. The contents of this chapter is based on the the following papers:

C. Chen, Y. Lu, and S. D. Cotofana, A Novel Flit Serialization Strategy to

Utilize Partially Faulty Links in Networks-on-Chip, Proc. IEEE/ACM In-

ternational Symposium on Networks on Chip (NoCS), pp.124-131, May 2012.

C. Chen, Y. Fu, and S. D. Cotofana, Toward Maximum Utilization of Re-

mained Bandwidth in Defected NoC Links, submitted.

5
Heavily Defected Link Deactivation and

Fault Tolerant Routing

W
hile defected links with low fault levels should be utilized to

preserve the NoC link bandwidth, Heavily Defected (HD) links

should be deactivated and dealt with by means of a Fault Tolerant

Routing Algorithm (FTRA) to avoid severe congestion. In this chapter, we

discuss the optimal threshold to deactivate HD links and propose a FTRA to

tolerate the deactivated links as well as to efficiently utilize Unpaired Func-

tional (UPF) links in partially broken bidirectional interconnects. The optimal

link deactivation threshold is determined by comparing the zero load packet

transmission latency on the HD links and that on the shortest alternative path.

The basic fault pattern tolerated by the proposed UPF link aware FTRA (UPF-

FTRA) is a fault wall, which is composed of adjacent broken links with the

same outgoing direction. Messages are routed around the fault walls along the

misrouting-contours of the broken links. Our proposal is evaluated with both

synthetic traffic and PARSEC benchmarks. Experimental results indicated that

UPF-FTRA can improve the NoC saturation throughput by up to 22% when

compared with state of the art counterparts. Synthesis results with TSMC

65nm technology indicate that, embedding UPF-FTRA into a baseline router

increases the area and power overhead by 9% and 2% respectively, which is

similar with that of the conventional solid fault region based algorithms. Sim-

ulation results we obtained at various wire broken rate configurations indicate

that we achieve the highest saturation throughput if 4- or 8-section links with

a flit transmission latency longer than 4 cycles are deactivated.

71

72

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

5.1 Introduction

According to the portion of faulty wires to the link bandwidth, the defected

links may have different fault levels. To achieve the maximum utilization of

remained link bandwidth, the links with different fault levels should be treated

with different strategies. For a partially defected link with low fault level, only

a small number of wires in it are broken. Rather than treat such links as totally

broken, it is more beneficial to keep on utilizing them with Partially Faulty

Link Utilization Methods (PFLUM), e.g., the Flit Serialization (FS) method

proposed in the previous chapter, to minimize the system performance degra-

dation. For links with high fault levels or are already totally broken, we have

to make use of Fault Tolerant Routing Algorithms (FTRAs) to route packets

along alternate paths. We note that routers can also be partially defected and

still be utilized [54]. However, in most cases, the defected routers or router

ports can be considered as equivalent with the situation when the links inci-

dent to them are broken.

Whether to utilize a defective link can be decided (i) dynamically based on the

local traffic load or (ii) statically by checking if its fault level has exceeded the

link deactivation threshold. In case (i), an Routing Algorithm (RA) selects the

best output port according to the factors like output link bandwidth, the number

of free VCs in the downstream routers, and the paths latency to the destination

which is achieved by means of the Q-learning method [31]. Conversely, the

static solution, i.e., case (ii), just requires the calculation of the appropriate

link deactivation threshold value, and the link deactivation decision is always

made by the local router. The calculation can be performed off-line according

to the link structure, traffic pattern, and the underlying RA. Considering that

we rely on the FS method to make use of the partially defected links and the FS

induced link latency increases slowly when the link fault level is low and fast

when the fault level is high, it is easy to determine an optimal link deactivation

threshold and thus we choose the static solution in this dissertation. We note

that the link bandwidth and delay aware selection strategies, e.g., [4, 72, 100],

can still be applied to select the best output port.

Deactivated links must be dealt with by means of a FTRA. When a Heavily

Defected (HD) links is deactivated, the other link in the same interconnect is

usually still functional and should be utilized if possible to preserve the link

capabilities. Note that in this dissertation, we assume that each interconnect

between two adjacent NoC routers consists of two unidirectional links, each

link having its own control flow wires and handling either outgoing or incom-

ing traffic. Although the unidirectional links can be replaced with bidirectional

5.1. INTRODUCTION 73

ones as suggested by Tsai et al. [97], when an input or output port is broken, a

bidirectional link also becomes unidirectional. Moreover, unidirectional links

are still attractive as they provide better means to implement the control logic

and to address timing error issues [95]. However, most state of the art FTRAs,

e.g., [1,16,17,19,29,39,56,81,101,116], abandon the entire interconnect even

when only one link is broken. Thus the UnPaired Functional (UPF) links in

such partailly broken interconnects are wasted even though utilizing the UPF

links can partially preserve the link capabilities and can result in graceful sys-

tem performance degradation.

In this chapter, we first discuss the optimal link deactivation threshold by com-

paring the zero load packet transmission latency on the HD links and that on

the shortest alternative path and then propose a distributed logic based FTRA

to tolerate the deactivated link as well as efficiently utilize the UPF links. The

basic fault pattern tolerated by the proposed UPF links aware FTRA (UPF-

FTRA in short) is a fault wall, which is composed of adjacent broken links

with the same outgoing direction. Messages are routed around the fault walls

along the misrouting contours of the broken links. It requires a minimum num-

ber of 3 Virtual Channels (VCs) and dynamically reserves them to messages

whose transmission is blocked to guaranty deadlock freeness. The UPF-FTRA

and the link deactivation threshold are evaluated with both synthetic traffic and

recorded real traffic traces. Experimental results indicated that UPF-FTRA can

improve the NoC saturation throughput by up to 22% when compared with

state of the art counterparts. Synthesis results with TSMC 65nm technology

indicate that, embedding UPF-FTRA into a baseline router increases the area

and power overhead by 9% and 2% respectively, which is similar with that of

the conventional solid fault region based algorithms. Simulation results we ob-

tained at various wire broken rate configurations indicate that we achieve the

highest saturation throughput if 4- or 8-section links with a flit transmission

latency longer than 4 cycles are deactivated.

The rest of the chapter is organized as follows. Section 5.2 presents a brief

related work survey. Section 5.3 discusses the optimal threshold to deactivate

HD links. Section 5.4 describes the proposed fault tolerant routing algorithm

and proves its deadlock freeness property. Section 5.5 evaluates the perfor-

mance of the proposed algorithm and validate the efficiency of the selected

link deactivation threshold. Section 5.6 concludes the presentation.

74

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

5.2 Related Work

Targeting at different fault cases, numerous strategies are proposed to route

packets in awareness of the link bandwidth variation and tolerate deactivated

or totally broken links.

5.2.1 Link Bandwidth Aware Routing

Utilizing defective links with low fault level can preserve NoC bandwidth and

avoid severe performance degradation. Moreover, if the underlying routing

algorithm is adaptive, a proper path selection strategy can be applied to de-

termine the path with the lowest data transmission delay. However, Heavily

Defected (HD) links may cause severe congestion in the upstream routers, and

thus should be discarded. Whether to utilize or abandon a defected link should

be decided in such a way that the system performance lose is minimized.

In [72], Palesi et al. proposed an application specific routing function with

a set of selection policies which are aware of the link fault distribution. At

each routing hop, the best admissible output port is selected with a probabil-

ity determined according to the link fault level and the traffic conditions. The

probability for each link is off-line computed and stored in a routing table. This

strategy provides the best system performance when executing a certain spe-

cific application. However, it requires complicated off-line computations and

accurate traffic analysis, which makes it not suitable for dynamically changing

systems.

In [100], Vitkovskiy et al. proposed a path selection strategy which always

chooses the next progressive hop that has maximum available Virtual Channel

(VC) amount and minimum Effective Link Utilization (ELU). The ELU of a

link is the product of the number of flits that traverse this link and the flit trans-

mission latency on the link. For example, a fault free link and a link with a flit

transmission latency of 2 cycles have the same ELU if 50 and 25 flits are trans-

mitted via each link, respectively, in the same time period. Vitkovskiy et al.

also discussed the impact of discarding HD links on the system performance.

However, they did not propose a method to decide if a defected link should be

discarded or not.

When defective links are utilized, they exhibit longer data transmission la-

tency than fault free links. Thus all the delay or bandwidth aware Routing

Algorithms (RAs), e.g., [4, 30, 31, 71, 100], can be employed to select the op-

timal routing path. Such algorithms usually select the best output port from

5.2. RELATED WORK 75

multiple admissible ones according to factors like the output link bandwidth,

the number of free VCs in the downstream routers, and the path latency to the

destination achieved by means of the Q-learning method [31].

Nevertheless, for some minimal path adaptive RAs, e.g., Opt-Y [88], when the

packets are already in the same column or row with the destination routers,

there is only one admissible output path and which is utilized regardless of

the fault level of path links, even if discarding the HD links and detouring the

packets could be a better option. Thus it is necessary to determine in which

conditions HD links should be deactivated.

5.2.2 Fault Tolerant Routing Algorithms

State of the art fault tolerant RAs can be roughly classified into three groups

based on the number of tolerated faults and the way they are tolerated.

RAs in the first group, e.g., [29, 39, 116], can tolerate a bounded number of

faults by modifying the baseline RA turn rules around the faults without caus-

ing deadlock. Usually the system performance degradation is minimal when

faults occur as the modifications are turn based only and do not constraint the

VC usage in each of the routers. However, their application scope is limited to

NoC systems with low fault rates.

RAs in the second group, e.g., [17,19,56,101], can tolerate an unbounded num-

ber of faults, but the regions formed by the faults must satisfy certain require-

ments, e.g., the fault regions must have solid shapes like +, L, or T [17, 19].

Otherwise, some fault free routers have to be deactivated to make the shape

solid. To avoid deadlock, RAs in this group usually constrain the VC usage on

the fault region boundaries, which results in a substantial system performance

degradation. The main advantage of such kind of Solid Fault Region Tolerant

(SFRT) RAs is that VCs are utilized according to the underlying RA in the

fault free area. This provides the best system performance to applications if

their tasks are best effort based mapped on the NoC fault free area.

RAs in the third group, e.g., [1, 16, 81], can tolerate an unbounded number of

faults and do not pose any restrictions on the faulty region. The routing path

between source and destination routers is determined by searching the best

path during message transmission or NoC reconfiguration, when a new fault

is detected. These routing paths are stored in routing tables to indicate how

the following messages have to be transmitted. RAs in this group have the ad-

vantage that they can utilize almost all functional resources as long as they are

connected with the NoC and usually require a low number of VCs. However,

76

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

they also have drawbacks when utilized in wormhole switched NoCs. On one

hand, a routing table is maintained in each router to indicate the output ports

to requested destinations. The routing table sizes are proportional to the NoC

size, which makes such approaches less scalable than distributed RAs and in-

troduces a high silicon area overhead. On the other hand, when the VC usage

is constrained, it is applied throughout the entire NoC, i.e., both in the fault

free area and in the faulty region, which results in unjustified performance re-

duction as it is known that increasing the VC usage flexibility can substantially

improve the system performance.

In view of the previous discussion, we propose a distributed logic FTRA which

can tolerate an unbounded number of faults as well as efficiently utilize the

UPF links, and thus provides more graceful system performance degradation

when compared with the aforementioned RAs.

5.3 Heavily Defected Links Deactivation Threshold

For totally broken links, the only option is to discard them and make use of

FTRAs to route packets along alternate paths. For partially defected links, uti-

lizing the ones that have low fault level can partially preserve the NoC link

bandwidth and reduce the transmission latency overhead caused by packet de-

touring and congestion, while utilizing Heavily Defected (HD) ones may cause

server congestion in the upstream routers.

From (4.1) we can observe that for the FS strategy, the link flit transmission

latency is inversely proportional with the number of fault free link sections.

Thus for a k-section link, when the number of broken sections increases from

b to b+1, the flit transmission latency on this link becomes (k−b)/(k−b−1)
times higher. For example, when each link is divided into 8 sections, the flit

transmission latency is only increased by 14% when a new section of a fault

free link becomes broken, while the latency is doubled when the number of

broken link sections increases from 6 to 7. This FS property makes it easy to

decide the optimal link deactivation threshold.

Take the case illustrated in Fig. 5.1 for example. Assuming a packet is waiting

to be transmitted from router C to router N . By default, the packet should

be transmitted via L0. The question now is: If L0 is defected, at which fault

level should we abandon it and detour the packets to achieve minimum system

performance degradation?

If L0 is deactivated, most probably the packets will be misrouted along alterna-

5.3. HEAVILY DEFECTED LINKS DEACTIVATION THRESHOLD 77

Head flit

● ● ●

● ● ●

● ● ●

t1

tr
t2

tr
t3

C EW

N

L0

L1

L2

L3

L4

L5

L6

(a) (b)

tmc

Figure 5.1: Detouring example. (a) The misrouting-contour of L0. (b) Detouring

delay.

tive paths formed by its adjacent links, i.e., L1 → L2 → L3, or L4 → L5 → L6.

We refer to such paths with the concept of misouring-contour. According to

the outgoing direction of L0, we can divide its misrouting-contour into the left

half, i.e., L1 → L2 → L3, and the right half, i.e., L4 → L5 → L6.

Let us assume that the packet length is P , the NoC operates according to the

wormhole switching technique [24], and each router has 3 pipeline stages. At

zero traffic load, the time required to transmit an entire packet to router N via

L0 (TL0) and its left half misrouting-contour (Tmc) can be expressed as (5.1)

and (5.2), respectively. Here we assume that the packets are detoured along

the left side misrouting-contour by default, but we note that the analysis to the

right half misrouting-contour can be done in a similar way.

TL0 = Pt0, (5.1)

Tmc ≥ t1 + tr + t2 + tr + Pt3, (5.2)

where ti (≥ 1 cycle) is the flit transmission latency on link Li , i=0,1,2,3, and

tr (≥ 3 cycles) is the latency to traverse a 3-stages pipelined router. In (5.2),

Tmc is larger than the right side polynomial when t1 or t2 is is large enough to

create the situation when a flit arrives at a router input port after all precedent

flits have already been transmitted to the next hop.

Obviously, we should deactivate L0 and detour the packets on the misrouting-

contour when

TL0 > Tmc ≥ 8 + P , (5.3)

i.e.,

t0 > (t1 + t2 + 6)/P + t3 ≥ 8/P + 1. (5.4)

Thus the minimum link deviation threshold is inversely proportional to the

packet length, e.g., the threshold is t0 > 3 cycles when the packet length is

78

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

4 flits and decreases to t0 > 1.5 cycles when the packet length is 16 flits.

However, in practice, Tmc is much higher than 8 + P due to the fact that: (i)

the links on the misrouting-contour are not always fault free, (ii) detouring the

packets increases the congestion on the misrouting-contour especially at high

traffic load, and (iii) extra flow control delay [24] should be considered in Tmc .

We note that at near zero traffic load, the possibility for a detoured packet

and a normally transmitted packet to compete for the same NoC resource is

low, case in which deactivating HD links at the minimum threshold can reduce

the packet transmission latency. However, the congestion on the misrouting-

contour increases as the traffic load gets higher, thus if L0 is deactivated when

TL0 is only slightly higher than Tmc , the packet transmission latency on the

misrouting-contour might surpass the one on L0. This implies that in practice,

to reduce the degradation speed of the saturation throughput, the link deacti-

vation threshold should be set higher than the minimum one. In fact, even at

low traffic load, moderate increase of the link deactivation threshold will only

bring negligible increase of the average packet transmission latency because

the FS induced flit transmission latency increases slowly when less that 75%

of the sections are faulty and cannot be utilized. Thus L0 should be deactivated

only when TL0 ≫ Tmc . In view of such analysis, we adjust the minimum link

deactivation threshold to ti > 4 cycles for both short and long packets, i.e., an

8-section link is deactivated when it has 7 or more broken sections, and a 4-

section link is deactivated when all link sections are broken. The effectiveness

of the selected threshold is validated in Section 5.5.3.

5.4 Unpaired Functional Link Aware Fault Tolerant

Routing Algorithm

The deactivated links must be tolerated by means of a FTRA to maintain the

functionality of the NoC system. In this section, we propose a FTRA which

can tolerate the broken links and efficiently utilize UPF links in partially de-

fected interconnects. In the NoC fault free area, messages are transmitted ac-

cording to the underlying RA. When a message is blocked by a broken link,

the proposed RA applies. In this chapter, we employ the optimal fully adap-

tive RA Opt-Y [88] as the underlying RA, but note that other RAs can also be

utilized.

5.4. UNPAIRED FUNCTIONAL LINK AWARE FAULT TOLERANT ROUTING

ALGORITHM 79

Wait tim
e upnew fault

Local status changed info transmitted

State Computa!on

Share Informa!on

Wait Upda!ng

Ac!ve

Neighbor status updated

Local status has no change

Figure 5.2: Flow chart of fault pattern validation FSM in each router.

5.4.1 Fault Pattern Validation

When a link is deactivated or detected to be totally broken, the NoC fault

pattern must be validated before messages can be forwarded. The fault pattern

validation is controlled by a Finite State Machine (FSM), illustrated in Fig.

5.2, implemented in each NoC router. Similar with the fault pattern validation

process proposed in [56], we assume that each active router has a self-test

mechanism to periodically diagnose itself and the neighbor routers. In the rest

part of this chapter, we interchangeably use broken and deactivated to refer to

the out of service links.

The normal router state is Active. If a new broken link is detected, the router

enters the State Computation stage and computes its status and the ones of

its incident links. A router is deactivated if it has 3 or more broken TX or

RX links. If a router has 2 broken TX links in different dimensions, i.e., X

and Y, the router is marked as a TX Concave (TC) router. Similarly, an RX

Concave (RC) router has 2 broken RX links in different dimensions. If the

status of a router, i.e., active or deactivated, and TC or RC, or status of any link,

i.e., broken or functional, incident to it did change, the router broadcasts the

new status information to the 4 neighboring routers in the East (E), West (W),

South (S), and North (N), in the Share Information stage via a Triple Modular

Redundancy (TMR) protected serial wire. Otherwise, the router enters the Wait

Updating stage.

Each TC (RC) router sends a TC (RC) flag to its neighbor if the TX (RX) link

to (from) that neighbor is still functional. Upon receiving a TC (RC) flag from

one direction, e.g., W, the router checks if it has a faulty TX (RX) link in an

orthogonal direction, i.e., N or S in this case, and if the neighbor where the

flag comes from also has a faulty TX (RX) link in the same direction. If this

holds true, the router forwards the TC (RC) flag to the next neighbor, i.e., the

neighbor in the W in this case. If a router has received TC (RC) flags from two

opposite directions in the same dimension, e.g., W and E, and has a broken TX

80

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

(a)

(b) (c) (d)

(e) (f) (g)

C E

S

LE_TX

LE_RX

LS
_

T
X

LS
_

R
X

E
S

_
T

X

E
S

_
R

X

SE_RX

SE_TX

W

W
S

_
T

X

W
S

_
R

X

N
NE_RX

NE_TX

SW_TX

SW_RX

LW_TX

LW_RX

NW_TX

NW_RX

W
N

_
R

X

W
N

_
T

X

LN
_

R
X

LN
_

T
X

E
N

_
R

X

E
N

_
T

X

Figure 5.3: Validated fault pattern. (a) Routers and links seen by router C; (b-g), Fault

Patterns can be tolerated by the proposed RA.

(RX) link in another dimension, i.e., N or S, the router and all links incident to

it are deactivated.

If status information from a neighboring router is received while being in the

Wait Updating stage before the waiting time up, the router computes the local

status again. Otherwise, the router returns to the Active stage. The waiting

time is set to be equal with the longest time required to transmit the status

information from one NoC edge, e.g., the W edge, to another edge, i.e., the E

edge. We note that after the fault pattern is validated, each router is aware of

the statuses of 4 routers and 24 links adjacent to it, as illustrated in Fig. 5.3(a).

Data transmission pausing when a new fault is detected and resuming after the

fault pattern is validated can be managed with the strategy proposed in [51].

The most basic fault pattern that can be tolerated by the proposed RA is de-

picted in Fig. 5.3(b), where adjacent links in the same direction (N in this

case) are broken. We note that the number of faulty links and their directions

are not restricted in any fault pattern. When such Fault Wall exists, only the

data transmission in that direction is blocked. The direction of a fault wall is

the direction of the broken links that form the fault wall. More complex fault

patterns, e.g., the ones illustrated in Fig. 5.3(c-g), can be formed by several

fault walls, which have different fault directions. Some routers may be deacti-

vated to make the fault patterns solid as in Fig. 5.3(e-g). We note that all fault

patterns that can be tolerated by SFRT RAs are tolerable by the proposed RA.

5.4. UNPAIRED FUNCTIONAL LINK AWARE FAULT TOLERANT ROUTING

ALGORITHM 81

5.4.2 Turn Rules

In a 2D mesh NoC the direction of each link is WE, EW, SN, or NS accord-

ing to the position of its source and destination routers. A message which is

transmitted from node ns=(xs , ys) to node nd=(xd , yd) is labeled as WE if

xd > xs , or EW if xd < xs . When the message reaches its destination col-

umn, the message type changes to NS if yd > ys or SN otherwise and cannot

change its type again. WE and EW messages are row messages, while NS and

SN messages are column messages [17].

Among the admissible output ports provided by Opt-Y, one is determined by e-

cube RAs [17], e.g., XY. We name the hop via that port as e-cube hop, and the

others as adaptive hops. The e-cube hops for WE, EW, NS, and SN messages

are E, W, S, and N ports, respectively.

A message’s status is normal if it is a row message and the e-cube hop is not

blocked; or 2) it is a column message, the e-cube hop is not blocked, and the

current router is in the destination column. Otherwise, the message status is

misrouting. If the e-cube hop of a normal message is on the misrouting-contour

of a broken link, only the e-cube hop can be utilized. If an adaptive hop is on

the misrouting-contour of a broken link, the adaptive hop cannot be utilized.

When a message is blocked by a fault wall, it is misrouted around the fault

wall along the misrouting-contours of the broken links. The default misrouting

direction is clockwise. However, the misrouting direction should be counter-

clockwise if with the default misrouting direction row messages are forced to

return to the previous column or column messages are forced to return to the

previous row by another fault wall or an NoC edge. This can be anticipated by

checking if a TC flag has been received from the port in the clockwise direc-

tion. For example, in Fig. 5.4, messages M1, M4, M5, and M8 are misrouted

in clockwise direction, while messages M2, M3, M6, and M7 are misrouted

in counter-clockwise direction as otherwise they will be forced to return to the

previous column or row as illustrated by the dashed arrows.

For a misrouted row message, its status becomes normal when the e-cube hop,

i.e., E or W, is functional. Thus we can simply misroute row messages to S

or N until a functional e-cube output port is found. With this routing method,

EW links are never utilized by WE messages, and WE links are never utilized

by EW messages.

To avoid livelock as illustrated in Fig. 5.5(a), we use the localized routing

scheme proposed in [101] to misroute column messages. When a column mes-

sage is blocked, it anticipates the shortest path to the destination router of the

82

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

M2

M1 M4

M3

M6M5 M8M7

WE EW SN NS

Figure 5.4: Misrouting direction of different messages. The dashed boarder of the

shadows may not be fault walls.

D

M M

(a) (b)

D

M

(c)

D

Figure 5.5: Misrouting of column messages. The shadows indicate the directions

of fault walls. (a) livelock occurs; (b) destination is reached; (c) destination is not

reachable

broken link. The misrouting path is stored in the head flit and is dynamically

adjusted in each router in case links in the anticipated misrouting path are also

broken. For example, when an SN message is blocked by a broken SN link,

the shortest path to the next router in the same column is to take the W, N, and

E (WNE) hops. If the N hop is blocked after the W hop, the remained misrout-

ing path changes to WNEE. When the message is in the destination column

again, its status returns to normal if the next e-cube hop is not blocked (Fig.

5.5(b)). If the e-cube hop is blocked again and the destination router is still

in the North, the message starts another misrouting process. If the destination

router is already in the South but the NS link is broken, the destination router

must be broken or deactivated and thus unreachable (Fig. 5.5(c)). In this case,

the local Process Unit (PU) absorbs the message and sends an message to the

source router to report the error.

With this routing method, NS links are utilized by SN messages only when

their source routers have received RC flags from the S ports, e.g., when M6 is

routed to the south in Fig. 5.4. Similarly, SN links are utilized by NS messages

only when their source routers have received RC flags from the N ports, e.g.,

when M7 is routed to the north in Fig. 5.4.

5.4. UNPAIRED FUNCTIONAL LINK AWARE FAULT TOLERANT ROUTING

ALGORITHM 83

SN Messages never make E-S-W or W-S-E turns. According to the turn rules,

a message turns to the S after one E (W) hop only because the destination

column is reached or is still in the E (W). Thus it will not turn to the W (E)

again. Similarly, NS messages never make E-N-W or W-N-E turns.

5.4.3 VC utilization Constraints

When messages are misrouted, some forbidden turns in Opt-Y are utilized. To

avoid deadlock, extra constraints to the VC usage besides the Opt-Y ones must

be applied.

Opt-Y requires two VC classes, Y1 and Y2, in the N and S directions. Among

all the turns, two 90o turns, N-W and S-W, using Y1 are prohibited, and the 0o

turns from Y2 to Y1 are allowed only when the message does not need to route

further west. In our proposal, 3 VCs, labed as C0, C1, and C2, are required. In

the fault free region, C2 is utilized as Y1, C0 and C1 are utilized as Y2.

When messages are transmitted on misrouting contours of broken links,

whether the message status being normal or misrouting, extra VC usage con-

straints are in place: C0 is reserved for row messages on the misrouting-

contours of broken NS or SN links. C1 is reserved for NS messages on the

misrouting-contours of broken NS links and in SN links whose source routers

have received RC flags from their N ports. C2 is reserved for SN messages

on the misrouting-contours of broken SN links and in NS links whose source

routers have received RC flags from their S ports. With this VC usage strategy,

VCs are only reserved when necessary. For example, in a link which is only on

the misrouting contour of a broken EW link, C0 is reserved to row messages,

while C1 and C2 are freely utilized by all column messages. We note here that

if extra VCs are available in the NoC, they can be freely utilized by all types

of messages.

5.4.4 Deadlock Freeness

To prove that the proposed RA is deadlock free, we just need to check if dead-

lock can happen when turns forbidden by Opt-Y are utilized, as it is known

that Opt-Y is deadlock free [88]. The clockwise Channel Dependency Graph

(CDG) of Opt-Y is depicted in Fig. 5.6(a). In the figure, C0,∗, C1,∗, C2,∗, and

C3,∗ are VCs in SN, WE, NS, and EW links, respectively. The turns that are

always allowed are illustrated with solid arrows and the turns that are allowed

in certain conditions are illustrated with dashed arrows.

84

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

C1,0

C0,0

C1,1

C1,2

C2,0C0,1C0,2

C3,0

C3,1

C3,2

C2,1 C2,2

SN

C1,0

C0,0

C1,1

C1,2

C2,0C0,1C0,2

C3,0

C3,1

C3,2

C2,1 C2,2

C1,0

C0,0

C1,1

C1,2

C2,0C0,1C0,2

C3,0

C3,1

C3,2

C2,1 C2,2

NS

EW

SN

C1,0

C0,0

C1,1

C1,2

C2,0C0,1C0,2

C3,0

C3,1

C3,2

C2,1 C2,2

SN

(a) (b)

(c) (d)

Figure 5.6: Channel dependency graphs.

Dependency C3,2 → C0,2 only occurs when SN messages are forced by broken

SN links to make W-N turns (see Fig. 5.6(b)). On the misrouting contours,

i.e., in the EW and SN links involved in the W-N turns, C∗,2 is reserved to SN

messages. While other channel dependency remain the same as Opt-Y. Thus

the CDG in Fig. 5.6(b) is still deadlock free.

S-W turns from C2,2 to C3,2 only occur to SN messages. The NS and EW

links involved in the turn are on the misrouting-contour of broken EW and

SN links, respectively. Thus C∗,2 is reserved to SN messages in these links.

According to the turn rules, the other types of messages do not make S-W

turns if their statuses are normal, as illustrated in Fig.5.6(c). The dependency

C1,2 → C2,2 → C3.2 does not exist because SN messages never make E-S-W

turns. We can observe that the CDG in the figure is acyclic and thus is deadlock

free. If EW messages are forced by broken EW links to make S-W turns, they

can only use C∗,0 in the SN and EW links involved in the turns. Because EW

messages never use WE links, the turns from C1,∗ to C2,0 do not exist (see

Fig. 5.6(d)). When NS messages are misrouted, they use C∗,1 only, thus the

5.5. EVALUATION 85

turns from C1,0 or C1,2 to C2,1 do not exist. Thus the CDG in Fig.5.6(d) is also

deadlock free.

By means of a similar analysis, we can also prove that the counter-clockwise

CDG is deadlock free, thus we can conclude that the proposed routing algo-

rithm is deadlock free.

5.5 Evaluation

To put the implication of our proposal in a better practical prospective, we

evaluate the proposed UPF-FTRA and compare its figure of merit with the

one of tightly related FTRAs, i.e., the SFRT algorithm [19] and the routing

table based algorithm Ariadne [1], and examine the effectiveness of the link

deactivation threshold in different fault patterns. For a fair comparison, the un-

derlying RA is Opt-Y in all cases and every RA is implemented in the context

of an 8 × 8 2D mesh NoC platform at RTL level by using Verilog HDL. The

baseline router has 3 pipeline stages and each VC buffer is 4-flit deep.

We note that SFRT minimally requires 3 VCs which are statically reserved

to row, NS, and SN messages around each fault region, while Ariadne allows

all VCs be freely utilized by any message type. In practice, it is beneficial to

utilize more VCs than the minimum, e.g., 3 VCs for our UPF-FTRA and SFRT,

to eliminate the Head of Line (HOL) blocking issues in the NoC system. In

our experiments, 4 VCs are utilized by each RA, with one of them being freely

utilized by all message types.

5.5.1 UPF-FTRA Performance on Synthetic Traffic

The three RAs’ performance is evaluated in NoCs with different fault rates

under different synthetic traffic patterns. The average packet transmission la-

tency at light traffic load, i.e., 0.02 flits per node per cycle, and the saturation

throughput, i.e., the Flit Injection Rate (FIR) for which the average packet

transmission latency approaches infinity, of the considered RAs are illustrated

in Fig. 5.7. Each data point is derived by averaging the results of 100 different

fault patterns with the same fault rate and traffic pattern. In the random traffic,

the message destinations are uniformly distributed throughout the NoC, while

in the localized traffic, 50% of the messages are destined to the 8 nodes adja-

cent to the source node, which is the case for optimized task mappings, thus

can better reflect the system performance in practice.

86

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

0 0.02 0.04 0.06 0.08 0.1 0.12
22

24

26

28

30

32

34

36

Link fault rate

a
v

e
ra

g
e

 la
te

n
cy

 (
cy

cl
e

s)

SFRT_R

Ariadne_R

UPF-FTRA_R

SFRT_L

Ariadne_L

UPF-FTRA_L

(a) Average latency;

0 0.02 0.04 0.06 0.08 0.1 0.12
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Link fault rate

F
IR

 a
t

sa
tu

ra
ti

o
n

 (
fl

it
s/

n
o

d
e

/c
y

cl
e

)

UPF-FTRA_L

Ariadne_L

SFRT_L

UPF-FTRA_R

Ariadne_R

SFRT_R

(b) Saturation points.

Figure 5.7: NoC performance at different fault rates and traffic patterns. In the legend,

R means random traffic pattern, and L means localized traffic pattern.

Although UPF-FTRA can also be classified into the second RA group (see

Section II), it can utilize more resources and has more VC usage flexibility

than SFRT, thus has better performance. As we can observe in Fig. 5.7, when

compared with SFRT, UPF-FTRA provides a packet transmission latency re-

duction of 6% and 5%, and a saturation point increase of 20%, for random and

localized traffic, respectively. Note that some routers are deactivated when the

5.5. EVALUATION 87

link fault rate increases from 0.08 to 0.1 to achieve valid fault patterns when

UPF-FTRA and SFRT are applied. In such scenario, the total number of pack-

ets injected into the NoC per cycle is decreased and the traffic load becomes

lighter, thus the average transmission latency is reduced.

Ariadne explores the routing paths between any two routers during the NoC

reconfiguration which is triggered by the detection of a new fault. The routing

paths, although with limited adaptive capability, are fixed for any traffic pat-

tern. Although UPF-FTRA has less VC usage freedom than Ariadne around

the faults, it transmits messages according to the underlying RA, i.e., Opt-Y,

in the fault free area, and thus has more balanced traffic distribution. When

the link fault rate is low (0.02), the fault free area in the NoC is large, thus our

proposal has 34% and 25% higher saturation points than Ariadne for random

and localized traffic, respectively. As the fault rate increases, the fault free area

shrinks. When the fault rate is 0.10, our proposal still has 15% and 6% higher

saturation points than Ariadne for random and localized traffic, respectively. In

all the evaluated fault patterns, UPF-FTRA has slightly lower (< 5%) packet

transmission latency and on average 22% and 14% higher saturation points

than Ariadne for random and localized traffic, respectively.

5.5.2 UPF-FTRA performance on PARSEC Benchmarks

The RAs are also evaluated with recorded traffic traces of PARSEC [9] bench-

marks. The average packet transmission latency of the applications in different

fault circumstance is illustrated in Fig. 5.8.

Although the execution time of an application can be affected by multiple is-

sues, including traffic load, fault pattern, and so on, UPF-FTRA out performs

SFRT and Ariadne for all evaluated applications. It is worth to mention that

the average packet latency of both UPF-FTRA and SFRT increase monoton-

ically as the percentage of broken links in the NoC increases, while that of

Ariadne experiences ups and downs. This is because the performance of Ari-

adne highly depends on the structure of the connecting tree built by the router

that first detects the new broken link.

5.5.3 The Effectiveness of the Link Deactivation Threshold

In this section, we divide the links into 8 sections and examine the performance

of the proposed defective link utilization strategy at different link deactivation

threshold. The considered thresholds are T5, T6, T7, and T8, i.e., a link is

88

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

0

10

20

30

40

50

60

70

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of brokne links

blackscholes

62

64

66

68

70

72

74

76

78

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
ck

e
s)

percentage of broken links

bodytrack

0

10

20

30

40

50

60

70

80

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

dedup

0

20

40

60

80

100

120

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

ferret

0

10

20

30

40

50

60

70

80

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

fluidanimate

0

10

20

30

40

50

60

70

80

90

100

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

swap"ons

0

20

40

60

80

100

120

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

vips

0

20

40

60

80

100

120

0 2% 4% 6% 8%

L
a

te
n

cy
 (

cy
cl

e
s)

Percentage of broken links

x264

UPF-FTRA SFRT Ariadne

Figure 5.8: Average packet transmission latency (cycles) of different benchmarks

when the NoC has different percentage of broken links.

deactivated when the number of broken sections is equal with or larger than

5, 6, 7, or 8, respectively. In the experiments, we randomly select 1%, 5%,

10%, and 15% of the NoC links and inject 20% to 40% broken wires into

them to create Heavily Defected (HD) links, while the wire fault rate in the

other links is 5%. The percentage of links with different number of broken

sections at different wire fault rates are illustrated in Fig. 5.9 which indicates

5.5. EVALUATION 89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.25 0.3 0.35 0.4

A
cc

u
m

u
la

te
d

 P
e

rc
e

n
ta

g
e

Wire fault rate in heavily defected links

8

7

6

5

4

3

2

1

T6

T6

T6

T6

T7

T7

T7

T7

T8
T8

T8
T8

Figure 5.9: The link fault level change trend at different wire fault rate. The legend is

the number of broken link sections in a heavily defected link.

that most links have 5 or more broken sections when pe ≥ 20%. As the

link deactivation threshold increases from T5 to T7, an decreasing number of

links are deactivated. However, as pe grows, the number of broken sections

in the HD links increases and thus more links are deactivated at the same link

deactivation threshold.

The NoC system near zero load (FIR = 0.01 flits/cycle/node) packet transmis-

sion latency and saturation throughput at different wire fault rate configurations

are illustrated in Fig. 5.10 and Fig. 5.11, respectively. The x-coordinates in the

figures indicate the percentage of HD links (ph) in the NoC and the percentage

of faulty wires (pe) in the HD links. We simulate the cases of short (4-flits)

and long (20-flits) packets. Each experimental result is derived by averaging

the results of 20 fault patterns with the same fault rate configuration. We note

that when each link is divided into 8 sections, the average number of cycles

required to successfully transmit a flit via a link with 5, 6, 7, and 8 broken link

sections are 2.67, 4, 8, and∞, respectively.

The results in Fig. 5.10 indicate that the average packet transmission latency

at near zero traffic load in the T5, T6, and T7 cases has only small variation.

Specifically, when compared with T6, the latency in T5 is slightly higher when

the packet length is 4-flits but slightly lower when the packet length is 20-flits.

This indicates that the link deactivation threshold for short packets should be

set higher than that for long packets, which validates our analysis in Section

5.3. The difference between T6 and T5 is that the links that contain 5 broken

sections are utilized in T6 but are deactivated in T5. According to the analysis

in Section 5.3, the packet transmission latency via links at such fault level is

similar with that via their misrouting-contour, thus T5 and T6 achieve similar

90

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

0

10

20

30

40

50

60

20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40%

1% 5% 10% 15%

N
e

a
r

Z
e

ro
 L

o
a

d
 L

a
te

n
cy

 (
cy

cl
e

s)

T5

T6

T7

T8

pe

ph

(a) Average packet transmission latency when packets length is 4-flits;

0

20

40

60

80

100

120

140

20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40%

1% 5% 10% 15%

N
e

a
r

Z
e

ro
 L

o
a

d
 L

a
te

n
cy

 (
cy

cl
e

s)

T5

T6

T7

T8

pe

ph

(b) Average packet transmission latency when packets length is 20-flits;

Figure 5.10: The system average packet transmission latency when deactivate links

with high fault level with different threshold.

near zero load performance. Due to similar reason, although slower links,

i.e., the links with 6 broken sections, are still utilized in the T7 case, its near

zero traffic load packet transmission latency is only slightly higher than that

of T6, e.g., less than 9% even when ph = 15%. By comparison, links are

utilized until all link sections are broken in the T8 case, case in which the

links with a flit transmission latency of 8 cycles induce severe congestion in

their upstream routers. Consequently the packet transmission latency in T8 is

obviously higher than that of the cases with lower thresholds when ph ≥ 5%.

The results in Fig. 5.11 indicate that T7 can achieve the highest saturation

throughput for most of the fault rate configurations. We can also observe that as

the link deactivation threshold increase from T5 to T7, although the near zero

load packet transmission latency increases slowly, the saturation throughput

is quickly improved. This is caused by the fact that when the NoC traffic

load is high, deactivating HD links that contain 5 and 6 broken sections cause

high congestion on their misrouting-contours, and thus it is more beneficial to

5.5. EVALUATION 91

0

0.05

0.1

0.15

0.2

0.25

20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40%

1% 5% 10% 15%

S
a

tu
ra

tu
io

n
 T

h
ro

u
g

h
p

u
t

(fl
it

s/
cy

cl
e

/
n

o
d

e
)

T5

T6

T7

T8

pe

ph

(a) Saturation throughput when packets length is 4-flits;

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40% 20% 25% 30% 35% 40%

1% 5% 10% 15%

S
a

tu
ra

o

n
 T

h
ro

u
g

h
p

u
t

(fl
it

s/
cy

cl
e

/
n

o
d

e
)

T5

T6

T7

T8

pe

ph

(b) Saturation throughput when packets length is 20-flits.

Figure 5.11: The system saturation throughput when deactivate links with high fault

level with different threshold.

directly transmit packets along these HD links. In the T8 case, the links that

have 7 broken sections are so slow that the congestion in their upstream routers

when they are utilized is much severer than the congestion in the misrouting-

contours when they are deactivated. In the extreme case all VCs in an input

port can be occupied by packets that are transmitted via such a slow TX link,

case in which all subsequent packets are blocked even if they will be routed to

other output ports. Consequently the saturation throughput at T8 is lower than

that at T7.

It is worth to mention that when ph > 0.10 in the NoC and pe > 30% in the

HD links, too many links are deactivated and some routers are also deactivated

by UPF-FTRA to avoid deadlock. The number of deactivated routers increases

as pe grows. Consequently fewer packets are injected into the NoC and the

near zero load packet transmission latency decreases and the saturation FIR

for each node becomes higher.

92

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5% 10% 15% 20% 5% 10% 15% 20%

5% 10%

S
a

tu
ra

o

n
 T

h
ro

u
g

h
p

u
t

(fl
it

s/
cy

cl
e

/
n

o
d

e
)

T3

T4

pe

ph

(a) Packets length is 4-flits;

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5% 10% 15% 20% 5% 10% 15% 20%

5% 10%

S
a

tu
ra

o

n
 T

h
ro

u
g

h
p

u
t

(fl
it

s/
cy

cl
e

/
n

o
d

e
)

T3

T4

pe

ph

(b) Packets length is 20-flits.

Figure 5.12: The system saturation throughput at different link deactivation threshold

when each link is split into 4 sections. A link is deactivated if 3 and 4 sections are

broken in the T3 and T4 cases, respectively.

In conclusion, when the NoC links are divided into 8 sections and partially

broken links are utilized by means of the FS method, deactivating links that

have 7 or more broken sections can efficiently balance the requirements for

low near zero load packet transmission latency and high saturation throughput.

In other words, the links should be utilized when their flit transmission latency

is 4 cycles or less.

When the links are divided into less, e.g., 4, sections the average link fault

level is higher at the same wire fault rate, thus if a link is deactivated the

packet transmission latency on its misrouting-contour also becomes longer.

This means that 4-section links should only be deactivated when the flit trans-

mission latency on them is longer than 4 cycles, i.e., when all link sections

are broken. This is also proved by the results illustrated in Fig. 5.12 that the

saturation throughput for T4 is on average 33% and 18% higher than that at T3

for 4-flit and 20-flit packets, respectively.

5.5.4 Area and Power

Routers equipped with different RAs are synthesized by using the Synopsys

Design Compiler and the TSMC 65nm technology. The silicon area and power

consumption overhead corresponding to different RAs are presented in Table

5.1. From the table we can observe that embedding SFRT, UPF-FTRA, and

Ariadne into a baseline router increases the silicon area cost by 8%, 9%, and

10%, respectively, and increases the power consumption by 1%, 2% and 5%,

5.6. CONCLUSION 93

Table 5.1: Area and power overhead of different RAs. The NoC size is 10 × 10 for

Ariadne∗ and 8× 8 in other cases

Baseline SRFT UPF-FTRA Ariadne Ariadne∗

Area 67098 72384 73231 73544 75635

(µm2) 100% 108% 109% 110% 113%

Power 26.01 26.332 26.58 27.21 27.98

(mW) 100% 101% 102% 105% 108%

respectively, when the NoC size is 8 × 8. UPF-FTRA requires more area

than SFRT because the two unidirectional links in each interconnection are

separately considered thus more registers are required to record the status of

routers and links. It is worth to mention that the area cost of UPF-FTRA and

SFRT is independent on the NoC size, while the routing table size in Ariadne

increases proportionally with the number of NoC routers. For example, for a

10 × 10 NoC, the area and power overhead induced by Ariadne increases to

13% and 8%, respectively.

5.6 Conclusion

In this chapter, we discussed the optimal threshold to deactivate HD links and

propose a FTRA to tolerate the deactivated links as well as to utilize Unpaired

Functional (UPF) links in partially broken bidirectional interconnects. The

optimal link deactivation threshold is determined by comparing the zero load

packet transmission latency on the HD links and that on the shortest alterna-

tive path. The basic fault pattern tolerated by the proposed UPF link aware

FTRA (UPF-FTRA) is a fault wall, which is composed of adjacent broken

links with the same outgoing direction. Messages are routed around the fault

walls along the misrouting-contours of the broken links. Our proposal is eval-

uated with both synthetic traffic and PARSEC benchmarks. Experimental re-

sults indicated that UPF-FTRA can improve the NoC saturation throughput by

up to 22% when compared with state of the art counterparts. Synthesis re-

sults with TSMC 65nm technology indicate that, embedding UPF-FTRA into

a baseline router increases the area and power overhead by 9% and 2% respec-

tively, which is similar with that of the conventional solid fault region based

algorithms. Analysis suggests that the links with a flit transmission latency

longer than 4 cycles should be deactivated and dealt with UPF-FTRA if they

are divided into 4 or 8 sections. Simulation results on synthetic traffic patterns

94

CHAPTER 5. HEAVILY DEFECTED LINK DEACTIVATION AND FAULT

TOLERANT ROUTING

indicate that we achieve the highest saturation throughput at this threshold in

various wire broken rate configurations.

When partially faulty links are efficiently utilized and deactivated links are tol-

erated, the identification of novel mapping heuristics able to take advantage

of link bandwidth variations can be viewed as the natural continuation of our

research at a higher abstraction level. Our link bandwidth aware task map-

ping quality metrics and backtrack based run time task mapping heuristic are

presented in the next chapter.

Note. The contents of this chapter is based on the the following papers:

C. Chen, S. D. Cotofana, An Effective Routing Algorithm to Avoid Unnec-

essary Link Abandon in 2D Mesh NoCs, Proc. Euromicro Conference on

Digital System Design (DSD), pp. 311–318, Sep. 2013.

C. Chen, S. D. Cotofana, Towards an Effective Utilization of Partially De-

fected Interconnections in 2D Mesh NoCs, Proc. IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pp. 492-497, Jul. 2014.

C. Chen, Y. Fu, and S. D. Cotofana, Toward Maximum Utilization of Re-

mained Bandwidth in Defected NoC Links, submitted.

6
Link Bandwidth Aware Task Mapping

W
ith the Flit Serialization (FS) strategy and the UnPaired Functional

link aware Fault Tolerant Routing Algorithm (UPF-FTRA), the

Network-on-Chip (NoC) performance is gracefully degraded in

the occurrence of permanent faults. When new applications are injected into

the NoC based Multi-Processor Systems-on-Chip (MPSoCs), it is a nature idea

that the faults must be properly considered during the application mapping pro-

cess to avoid substantial performance penalties. In this chapter, we propose a

run-time task mapping algorithm, which takes both the path traffic load and

link bandwidth into the consideration and maps applications onto contiguous

near convex NoC regions to reduce the internal and external congestion. We

rely on a backtracking strategy to guaranty that the maximum link traffic load

does not exceed a given limit determined by the link bandwidth and a loose

factor. The loose factor is employed to adjust the maximum percentage of link

bandwidth that can be utilized. To evaluate our proposal we map synthetic

(TGFF tool generated) and real video processing applications on partially de-

fective 8 × 8 NoCs. The experiments indicate that our approach substantially

outperforms equivalent state of the art task mapping heuristics when NoC de-

fects are present, e.g., for 5% broken wires, we achieve at least 16% commu-

nication cost reduction and 45% shorter average packet transmission latency.

6.1 Introduction

On NoC based MPSoCs, applications are usually split into a set of concurrent

tasks, which are mapped onto different processor nodes to enable their parallel

execution. If the MPSoCs running applications are static, task mapping is per-

formed at design time with sophistic strategies, e.g., Branch and Bound [44],

to achieve optimal performance and energy consumption. However, in most

95

96 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

practical situations applications enter/leave the MPSoCs dynamically, change

their execution scenario, and the MPSoC region available for their execution

is unpredictable. For such cases the task mapping has to be done dynamically,

at run time, and this is the focus of this chapter.

Up to date, targeting different optimization goals, numerous task mapping

heuristics have been proposed [92]. In mesh NoC based homogeneous system,

the mapping quality is usually evaluated with two popular metrics, i.e., Man-

hattan Distance (MD) and Path Load (PL), as for identical node capabilities the

only mapping quality factor affecting is the communication cost between con-

nected tasks. Small MD means low data transmission delay and energy cost,

and low PL means that the routing path is not congested. However, MD and PL

cannot capture NoC link bandwidth variations induced by, e.g., manufacturing

defects, process parameter variation, and chip wear-out effects. Note that in

most task mapping heuristics links are supposed to be either fully functional

or totally broken while, in fact, partially defective NoC links with narrowed

bandwidth can still be utilized and if their diminished bandwidth is carefully

considered, better mapping quality could be achieved.

In this chapter, we propose a link bandwidth aware task mapping algorithm for

2D mesh homogeneous MPSoCs, targeted at mapping each application onto

a contiguous near square region with balanced traffic load on each link. We

introduce the Congested extended MD (CeMD) metric, which takes both link

traffic load and bandwidth into consideration, and utilize it to select the best

processor node for the execution of each task. We rely on backtracking to guar-

anty that the maximum link traffic load does not exceed a certain limit deter-

mined by the link bandwidth and a loose factor. The loose factor is employed

to adjust the maximum percentage of link bandwidth that can be utilized. We

evaluate our proposal on synthetic (TGFF generated) and real video process-

ing applications on NoCs with various defective degrees. Experimental results

indicate that when 5% NoC link wires are broken, at least 16% communication

cost and 45% average packet latency reductions are achieved over state of the

art counterpart heuristics.

The rest of the chapter is organized as follows. Section 6.2 presents a brief

related work survey. Section 6.3 introduces the task mapping problem and

evaluation metrics. Section 6.4 describes our task mapping algorithm and Sec-

tion 6.5 evaluates its performance and compares it with that of closely related

work. Section 6.6 concludes the presentation.

6.2. RELATED WORK 97

6.2 Related Work

Mapping an application into NoC based MPSoCs at run time encompasses the

selection of a set of idle processor nodes and the identification of a task per

node placement that meets specific requirements.

Carvalho et al. [15] assign each task to the First Free (FF) node or the Nearest

free Neighbor (NN). To compensate for disregarding the communication cost

when choosing FF or NN, they proposed to minimize the channel or path load

and to limit the search region to the neighbor nodes of the master task in the

Best Neighbor (BN) heuristic. Applications mapped with BN have shorter

average MD between tasks and thus have less internal congestion, but BN may

lead to high external congestion as the mapping of subsequent applications is

not considered.

To minimize external congestion, Chou et al. [21] propose the incremental

mapping heuristic (INC) which first find a near convex region by selecting

nodes with minimum dispersion factor and centrifugal factor in the Neighbor-

aware Frontier (NF) of the mapped regions, and then map tasks onto the se-

lected region following the descending sequence of the tasks’ total commu-

nication volume. For applications that have long execution time, the internal

congestion is optimized with priority by forming the optimal region of the ap-

plication first, and then find such a region in the MPSoCs [20]. According to

the observed application behavior, proper heuristic is utilized to optimize the

internal or external congestion.

Fattah et al. point out that mapping an application into a contiguous near

square region with low Normalized Mapped Region Dispersion (NMRD) helps

to minimize both internal and external congestion probability. In the CoNA

heuristic [36], the first task that have the largest number of edges is mapped

on the first node that have the largest number of neighbors. The subsequent

tasks are mapped to the nodes that fit in the smallest square centered in the

first node. However, CoNA cannot guarantee that the first node is always

surrounded by enough free nodes. Thus they propose a Smart Hill Climbing

(SHiC) method [33] to find a contiguous near square region having a number

of free nodes equal or slightly larger than the number of tasks. The application

is then mapped into the region with the Contiguity Adjustable Square Alloca-

tion (CASqA) method [34] which aims at minimizing the Internal Congestion

and Energy per Bit (ICEB).

The aforementioned heuristics assume that all links are fully functional and

have the same bandwidth. However, in practice, the links can be defected and

98 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

thus have narrowed bandwidth. The generic heuristic proposed by Nollet et

al. [70] takes the link bandwidth into consideration and backtracking is utilized

to ensure that the link traffic load never exceed the bandwidth. However, the

link bandwidth is not included in the cost metric utilized for the evaluation of

admissible nodes. Note that for the same traffic load on two links with different

bandwidth, the congestion on the narrow link is much severer than that on the

wide one. Moreover, when the traffic load is low and the bandwidth limitation

is never exceeded, tasks are mapped in the similar way the non-backtracking

based schemes do.

Most heuristics require a Central Manager (CM) to run the mapping algorithm

and monitor the state of all processor nodes. Such a centralized approach can

cause communication hot spots around the CM and has the disadvantage of

limited scalability and reliability. To solve this issue, agent based distributed

task mapping approach, e.g., [32, 35, 57], are proposed. In practice, most CM

based heuristics can be easily adjusted to work with distributed managers.

We note that many other run time task mapping heuristic exist with different

optimization goals [92]. However, the impact of link bandwidth on the map-

ping results is not deeply studied in most proposals. The strategy proposed in

this chapter thoroughly takes the link bandwidth, path load, and path conges-

tion into consideration and thus can make better matches between tasks and

processor nodes.

6.3 Problem Description

An NoC based MPSoCs can be represented by the Architecture Graph

AG (N, L), containing a set of processor nodes N interconnected by a set of

links L. Data are transmitted in the form of packets composed of a certain

number of flits. The link bandwidth (bwu,v ≤ 1) is the number of flits (≤ 1)

that can be transmitted in each cycle thus the link latency is 1/bwu,v . In this

chapter, we assume that partially defected links are utilized by means of the

FS method and the underlying routing algorithm is XY. Note that links and

routers can also be totally broken case in which fault tolerant routing algo-

rithms, e.g, the UPF-FTRA proposed in Chapter 5, should be utilized, but this

has no fundamental consequences on the proposed heuristic.

We assume that each application is already divided into a certain number of

tasks that can be mapped onto different nodes and executed in parallel. One

task is exclusively mapped onto one processor node, and vice verse. An appli-

cation (AP) is represented by a directed Task Graph AP = TG (T ,E). Each

6.3. PROBLEM DESCRIPTION 99

vertex ti ∈ T represents a task. The directed communication between tasks

ti and tj is represented by an edge ei ,j ∈ E . The communication volume of

edge ei ,j , i.e., the total number of flits, is wi ,j . If T is the execution time of the

application with optimally mapped tasks, the Flit Injection Rate (FIR) of each

edge is ri ,j = wi ,j/T .

The problem now is to map each injected application into a contiguous near

square region in the MPSoC at run time with most appreciated matches be-

tween the tasks and processor nodes in the region. The mapping results can be

evaluated with one or more of the following metrics.

(1) Extended Manhattan Distance (eMD)

The communication cost of each AP edge is related with the communication

volume and the path latency between the source (Ns) and destination (Nd)

nodes in AG. When all links are fault free each link can transmit a flit in 1 cycle,

thus the path latency is proportional with the Manhattan Distance MD(Ns ,Nd)
and the application’s communication cost can be evaluated with the Average

Weighted Manhattan Distance (AWMD) [36]. When the links are partially

defected, the path latency should be evaluated with the extended Manhattan

Distance (eMD):

eMD(Ns ,Nd) =

Nd
∑

Ns

1/bwu,v . (6.1)

Where u and v are the routers on the path between Ns and Nd . Consequently,

AWMD should be replaced with the Average Weighted extended Manhattan

Distance (AWeMD):

AWeMD =

∑
(

wi ,j × eMD(Nti ,Ntj)
)

∑

wi ,j

. (6.2)

(2) Average Link Load

When a link l ∈ L is shared by multiple AP edges, its overall traffic load is
∑

l∈ei ,j

ri ,j . To reflect the link congestion degree for different bandwidth values,

we define the link load as the ratio of the link traffic load to the link bandwidth.

The Average Link Load (ALL) is computed with (6.3):

ALL =

∑

∀l∈Lu

∑

l∈ei ,j

ri ,j/bwl

|Lu|
. (6.3)

Where Lu is the set of links utilized by an AP, and |Lu| is the links number.

100 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

(3) Standard Link Load Deviation

Balanced load can prevent the NoC communication hot spots occurrence and

thus can reduce data transmission latency and energy consumption. We use

Standard Link Load Deviation (SLLD) to evaluate how even the traffic is dis-

tributed. Only utilized links are considered in SLLD.

SLLD =

√

√

√

√

√

1

|Lu|

∑

l∈ei ,j

ri ,j/bwl − ALL

2

. (6.4)

(4) Congested eMD.

Given that multiple acceptable node candidates may exist for one task, the

selected node should have minimum eMD with the mapped task neighbors,

and the transmission path should be minimally congested. To evaluate the two

issues with one metric, we define the Congested eMD (CeMD) between any

two nodes in (6.5). Here we assume that when a link is already involved in

other communication edges, only the remained link bandwidth can be utilized

by the task to map. Note that in practice, a link is exclusively utilized by one

edge in each cycle.

CeMD =
∑

1/
(

λbwu,v −
∑

ri ,j

)

,λ ∈ ℜ+. (6.5)

The λ parameter in (6.5) is the loose factor with a default value 1.0, but in

practice, λ can be set slightly higher than the maximum edge FIR of the appli-

cation, e.g., λ = 0.4 when rmax = 0.36. We require the CeMD is non-negative,

i.e., the link load should not exceed λbwu,v . This helps to balance the traffic

load on the links. In case the requirement is too tight that non mapping solu-

tion exist, λ can be set higher to loose the constraint. Thus a mapping solution

can be reached with the penalty of a higher congestion.

6.4 The Mapping Algorithm

Given that it has been demonstrated that mapping an application into a con-

tiguous near square region helps to reduce the internal and external conges-

tion [21, 33, 36], we first find such a region able to accommodate the number

of application tasks, then map the application into the selected region. For the

sake of simplicity, the proposed heuristic runs on a CM node which locates at

(0, 0) in the mesh NoC. We note that CM can run on any other NoC location

and the heuristic can also be easily adjusted to agent based strategies.

6.4. THE MAPPING ALGORITHM 101

6.4.1 Region Selection

In [21], Chou et al. search for available nodes in the NF to minimize the total

MD of the occupied and unoccupied region. However, NF has the drawback

of not being aware of the shape of the unoccupied region. For example, an

application with 9 tasks may select a 2 × 5 region but not a 3 × 3 one if the

former is closer to the CM. Fattah et al. use the SHiC [33] method to find the

first node surrounded by enough free nodes. The task with most communica-

tion edges is mapped to the first node. The available nodes around the first

node are then gradually discovered by expanding the radius, and assigned to

unmapped tasks [34]. However, the first node might not be the best one for

the first task, and the best nodes for the next to be mapped tasks may not exist

in the current radius. In our proposal, we first find for each application a con-

tiguous near square region with a node cardinality equal with the number of

application tasks, and then pick the best node from the region for each task.

The proposed region selection pseudo-code is presented in Algorithm 1 and 2.

We explain the algorithm with the example task mapping scenario illustrated

in Fig. 6.1, in which App 0, 1, and 2 are already running in the MPSoCs, and

APP 3, which has 10 tasks, is waiting to be mapped. The edge FIR and link

bandwidth values are only utilized as an example.

Immediately after an application is mapped, we discover the boundary nodes

of the unoccupied region, e.g., nodes marked with asterisks in Fig. 6.2, sort

them according the descending sequence of their (i) distance to the CM node

and (ii) idle neighbors number, and update the maximum free square size at-

tached to each boundary node with the assumption that the node locates in a

square corner. When a new application is injected, we search for the maximum

square which has equal or slightly smaller number of nodes than the number

of application tasks along the boundary nodes. Nodes in the front of the sorted

boundary node list are checked first. For APP 3 in Fig. 6.2, the target square

side length is 3.

After a square is found, e.g., the one surrounded with dashed lines in Fig. 1, its

available nodes are counted and added to the available node list. If the avail-

able nodes num is smaller than the number of application tasks, the nodes

in the square frontier (dark gray nodes in Fig. 1) are checked. The nodes

with: (i) less idle neighbors and (ii) smaller eMD from the nodes in the avail-

able nodes list are preferred. In the example in Fig. 6.2, node (2, 3) is selected

first. If all nodes in the current frontier are selected but more nodes are needed,

the nodes in the next frontier (light gray nodes in Fig. 1) will be checked.

102 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

Algorithm 1 Map region selection.

1: max square SL←sort boundary nodes(); ⊲ square SL: square side

length.

2: function SEARCH MAPPING REGION()

3: square SL← max(sqrt(task num),max square SL);
4: region found ← 0;
5: while (region found 6= 1)and(square SL > 0) do

6: for Each unchecked boundary node do

7: if square SL ≤ square SL(boundary node) then

8: Count available nodes num in the square;

9: Add available nodes in the square to the available node list;

10: if available nodes num == task num then

11: region found ← 1; break;

12: else if available nodes num < task num then

13: region found ← pick nodes in frontier();

14: if region found == 1 then return success;

15: else

16: Clear available node list;

17: available nodes num← 0;
18: end if

19: end if

20: end if

21: Mark checked boundary nodes;

22: end for

23: square SL−−;
24: end while

25: if region found 6= 1 then return failed;

26: end if

27: end function

6.4. THE MAPPING ALGORITHM 103

Algorithm 2 Pick nodes in the frontier.

1: function PICK NODES IN FRONTIER()

2: while available nodes num < task num do

3: nodes num to find ← task num − available nodes num;
4: discover available nodes in frontier;

5: Count available nodes in frontier ;

6: if available nodes in frontier > 0 then

7: if available nodes in frontier ≤ nodes num to find then

8: available nodes num← +available nodes in frontier ;
9: Add available nodes to the available node list;

10: else

11: Pick nodes num to find available nodes from the frontier

12: end if

13: else

14: return 0;

15: end if

16: end while

17: return 1;

18: end function

0
.2

6
9

0.756

0
.3

6
3

0.737

Figure 6.1: An application to map example.

104 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

CM

APP 0
APP 1

APP 2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Proposed

X

Y

Figure 6.2: A NoC architecture example.

If there are not enough available nodes around the squares with a side length

equal or larger than the target one, we reduce the target square side length by 1

and search again (line 23 in Algorithm 1). Note that the already checked nodes

will not be checked. The searching steps are repeated until a contiguous near

square region is found. In case the algorithm is failed, the CM may choose to

map the application later after other application(s) is/are finished, or to map

it into multiple unconnected regions. In this chapter, we choose for the first

option.

The mapping region for the task example in Fig. 1(a) is illustrated in Fig.

6.3(a). The remained link bandwidth is mentioned on each link. Note that the

link from (2, 5) to (2, 4) is already utilized by APP 2.

6.4.2 Task Mapping

After the mapping region is found, the tasks are mapped onto the nodes with

Algorithm 3 and 4. The algorithm is backtracking based to identify the best

mapping solution.

The first task to map is the one with the maximum total traffic load, e.g., t4
in APP 3. Such tasks have the maximum number of edges and/or the edges

have high traffic load. The first task is followed by its neighbor tasks which

are sorted in the descending sequence of their total traffic load, and so on with

the rest. In this way, we guarantee that the tasks having tight connection, i.e.,

small hop counts and high communication volume, are mapped with priority.

6.4. THE MAPPING ALGORITHM 105

Algorithm 3 Map application to the selected region.

1: function MAP APPLICATION()

2: λ← initial value;
3: sort tasks();

4: while map success 6= 1 do

5: mapped task num← 0;
6: backtrack[task num]← all 0;

7: map success ← 1;
8: previous map success ← 1;
9: while mapped task num < task num do

10: task to map = sorted task list[mapped task num];
11: if previous map success == 1 then

12: backtrack[mapped task num]← 0;
13: else

14: backtrack[mapped task num] + +;
15: end if

16: backtrack num← backtrack[mapped task num];
17: task map success ←map task(task to map,backtrack num);

18: if task map success == 1 then

19: mapped task num ++;
20: previous map success ← 1;
21: else

22: if mapped task num == 0 or max backtrack count

then

23: map success ← 0;

24: break;

25: else

26: mapped task num −−;
27: previous map success ← 0;
28: end if

29: end if

30: end while

31: if map success == 1 then return success;

32: else

33: λ = λ+ 0.1;
34: end if

35: end while

36: end function

106 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

Algorithm 4 Map a task to the best node.

1: function MAP TASK(task to map, backtrack num)

2: if bactrack num == 0 then

3: Find admissible nodes from unmapped nodes list;;

4: Sort admissible nodes(admissible nodes list);

5: else

6: Remove previous map result of task to map;

7: Move the released node to unmapped nodes list;

8: end if

9: if admissible nodes num > backtrack num then

10: best node ← admissible nodes list[backtrack num];
11: Map task to map to best node;

12: Add the best node to mapped nodes list;

13: return success;

14: end if

15: return failed;

16: end function

The sequence to map the APP 3 tasks is {4, 5, 0, 1, 3, 2, 9, 6, 7, 8}.

For each task to map, we search for candidate nodes in unmapped nodes list.

For a task ti , an admissible node Na, i.e., a node where ti can potentially run,

should meet the following requirements:

∑

ri ,j ≤ λ
∑

bwa,v , ∀tj ∈ T , MD {Na,Nv} = 1; (6.6)
∑

rj ,i ≤ λ
∑

bwv ,a, ∀tj ∈ T , MD {Na,Nv} = 1; (6.7)

ri ,j ≤ λbwu,v −
∑

lu,v∈ek,h

rk,h, ∀tj ∈ Tm, ∀u, v ∈ N. (6.8)

Where bwa,v and bwv ,a are the bandwidth of an output and input link of Na,

respectively. The links that will not be utilized by any task, e.g, the north link

of node (3, 3), are not considered in (6.6) and (6.7). In (6.8), Tm are already

mapped tasks, and ek,h is any communication edge that make use of lu,v with

a FIR of rk,h. Note that λ can be larger than 1.

For the first task, its admissible nodes are sorted in the descending sequence of

their total link bandwidth. For each subsequent task, the admissible nodes are

sorted in the ascending sequence of the their CeMD to the mapped neighbor

tasks. If two nodes have the same CeMD value, the one with more free neigh-

bor nodes is preferred. According to the backtrack count, the task select one

6.5. EVALUATION 107

(2,3) (3,3) (4,3) (5,3)

(2,4) (3,4) (4,4) (5,4)

(2,5) (3,5) (4,5) (5,5)

1

0.875

0
.8

7
5

1

1

0.875

1

0.875

0.875

1.000

1

1

1

1

0.875

1

1

1

1

0.875

0
.4

8
6

1

1 1

0
.8

7
5

1

1

0
.8

7
5

1

0
.7

5

0
.8

7
5

0
.7

5

0
.8

7
5

1

(a) Mapping region,

6 1 5 9

3 4 2

7 0 8

0

0.384

0 0

1.085

0.625

0.897

0

0

0

1.024

0

0

0.804

0

0

0

0.442

0.445

0

0
.4

8
6

0

0
.4

4
2

0
.5

0
9

0
.4

4
2

0
.2

4
1

0
.7

6
0

0
.4

9
5

1
.1

5
8

0

0

0
.1

6
0

0
.4

4
5

0
.1

6
0

(b) Mapping result.

Figure 6.3: Map tasks into the target region with loose factor λ = 1.20. Link band-

width is illustrated in (a), link traffic load is illustrated in (b).

node from the sorted admissible nodes list (line 46) and move the node to the

mapped nodes list.

If a task ti cannot find any admissible node, its mapping fails and the previous

successfully mapped task will be reallocated to the next admissible node (line

14) and return the current one to the unmapped nodes list; Such mapping steps

are repeated until all tasks are successfully mapped into the target region. In

case all admissible nodes are tried for each task but no solution was found,

the loose factor λ is increased and the mapping procedure restarted. We note

here that the λ can also be decreased for applications with low traffic load

to achieve more balanced traffic distribution. The step length to increase or

decrease λ is also adjustable. The APP 3 mapping result illustrated in Fig.

6.3(b) was reached for a loose factor λ = 1.20.

Given that we rely on a backtracking strategy, the complexity of our proposal

is obviously higher than the one of other state of the art heuristics. We note that

it can be reduced by setting a higher initial λ value or by limiting the maximum

backtrack count (line 22), e.g., 10× task num.

6.5 Evaluation

In this section, we utilize the metrics introduced in Section 2 to evaluate our

proposal and compare it with the incremental (INC) approach in [21] and the

CASqA method in [34]. Note that CASqA searches for the first node with the

SHiC [33] scheme.

The experiments are performed on our mixed language simulation platform

108 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

(processor nodes are implemented in C and the NoC in Verilog HDL). The

NoC size is 8×8, each NoC router is divided into 3 stages, the NoC frequency

is 1GHz, and the fault-free link data width is 32 bits. Partially defected links

are utilized with the FS strategy. For the sake of simplicity, totally broken links

and routers are not considered and packets are routed with the XY routing

algorithm.

All heuristics are evaluated on both synthetic and real applications and for the

sake of fair comparison, the applications enter and leave the MPSoCs in the

same sequence in in all experiments. As long as enough idle nodes exist in the

MPSoC, an application is injected, with the requirement that applications are

always mapped into contiguous regions.

6.5.1 Mapping Quality

We first evaluate the heuristics on 100 TGFF [26] generated applications. Each

application has 5 to 15 tasks and each task has up to 4 input and output com-

munication edges. The FIR of each edge is randomly distributed in the range

of 0.02 to 0.2 flits/node/cycle, and the initial λ is 0.3. The task mapping re-

sults of different heuristics, normalized to that of our proposal, are presented in

Table 6.1. The NoC contains 5% randomly distributed broken wires and thus

80% links have narrowed bandwidth.

To evaluate the effectiveness of the CeMD metric, we also simulated the case

when CeMD is replaced with Path Load (PL) [15] in Algorithm 1 and 3. In

Table 6.1, prop.CeMD and prop.PL means that the CeMD and the PL met-

ric is utilized in our proposed algorithm, respectively, and prop.CeMD* and

prop.PL* correspond to λ = 0.6.

We can observe that prop.CeMD achieves better mapping results than all the

Table 6.1: Mapping quality for synthetic benchmarks.

ALL SLLD AWeMD NMRD latency

prop.CeMD 1.00 1.00 1.00 1.00 28.64 / 1.00

prop.PL 1.05 1.07 1.04 1.00 29.46 / 1.03

prop.CeMD* 1.10 1.32 1.03 1.00 34.31 / 1.20

prop.PL* 1.19 1.54 1.06 1.00 36.44 / 1.27

CASqA 1.22 1.62 1.16 1.02 41.46 / 1.45

INC 1.25 1.82 1.19 1.12 46.30 / 1.62

6.5. EVALUATION 109

20

25

30

35

40

45

50

55

60

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1% 3% 5% 7% 9%

la
te

n
cy

 (
cy

cl
e

s)

R
a

�
o

NoC wire fault rate

ALL

SLLD

AWeMD

AWMD

latency

Figure 6.4: prop.CeMD mapping quality at different NoC wire fault rate. Results are

normalized against the fault free case.

other counterparts. When compared with non-backtracking based heuristics,

i.e., CASqA and INC, prop.CeMD achieves at least 22% lower ALL, 62%

lower SLLD, and 45% shorter average packet transmission latency. This is

because by considering the link bandwidth limitation and backtracking, the

tasks and nodes are better matched and thus the traffic load is more evenly dis-

tributed. Balanced traffic load helps to reduce the congestion and thus shorten

the average packet transmission latency. It is worth to note that because both

our proposal and CASqA map applications into contiguous near square re-

gions, they achieve similar NMRD values.

The only difference between CeMD and PL is that CeMD takes the amount

of remained link bandwidth into account while PL does not. The SLLD of

prop.PL is only 7% higher than that of prop.CeMD when λ = 0.3, but be-

comes 17% higher when λ = 0.6. Indeed, tight bandwidth constraint, i.e., low

λ value, can efficiently reduce the max link traffic load. However, when the

bandwidth constraint is loose, i.e., high λ, a mapping solution can be reached

with few or even no backtracking steps, without exceeding the bandwidth lim-

itation. In such case PL just selects the node have low path traffic load, while

CeMD can also distinguish the path with more available bandwidth which

means low ALL.

We further run prop.CeMD and CASqA on NoC platforms with different wire

fault rates and illustrate the mapping results in Fig. 6.4 and Fig. 6.5. As the

NoC wire fault rate increases, the average link bandwidth decreases and has

higher variation, and thus it is getting harder to evenly distribute the NoC traf-

fic load. Consequently, the mapping quality decreases and the packet transmis-

110 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1% 3% 5% 7% 9%

R
a

o

NoC wire fault rate

ALL

SLLD

AWeMD

AWMD

latency

Figure 6.5: CASqA to prop.CeMD mapping quality ratio at different NoC wire fault

rate.

sion latency becomes longer. The ascending lines in Fig. 6.5 indicate that the

mapping quality of CASqA decreases faster than that of our proposal. When

the NoC wire fault rate is high CASqA cannot properly balance the traffic

load, consequently some narrow links are easily saturated and thus the packet

transmission latency increases quickly.

6.5.2 Loose Factor

In this section, we study the loose factor impact on the mapping quality. To do

so, we increase the loose factor from 0.2 to 1.0 when mapping the applications.

The mapping results are illustrated in Fig. 6.6 where the CASqA mapping

quality is also illustrated as a reference.

We can observe that almost the same mapping quality is achieved when λ is

0.2 and 0.3. This is because the link bandwidth constraint is too tight, and λ
has to increase for every application to achieve a mapping solution. As λ keeps

on increasing, the NoC traffic load becomes uneven and the mapping quality

drops, which leads to higher packet transmission latency. When λ ≥ 0.6,

all applications can be mapped onto the selected region without backtracking.

Although there are still differences in the mapping results due to the change

of λ, the ALL, AWeMD, and packet latency do not exhibit obvious increase

any more. However, larger λ decrease the CeMD difference of the admissible

nodes, the influence of CeMD to the mapping quality is weakened and thus

the link load deviation still has moderate increase. It is worth to note that

6.5. EVALUATION 111

25

27

29

31

33

35

37

39

41

43

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

1.55
1.6

1.65
1.7

1.75

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CASqA

L
a

te
n

cy
 (

cy
cl

e
s)

ra
�

o

loose factor λ

app_load

deiva on

AWMPD

latency_H

Figure 6.6: Network latency for different λ values. Results are normalized against

the λ = 0.2 case.

because both the traffic load and the connection relationship among the tasks

are considered in the task mapping sequence, tasks that have tight connection,

i.e., low hop counts and high traffic load, are always mapped close to each

other, the increase of AWeMD is less than 5% as λ changes.

6.5.3 Real Applications

We also evaluated our task mapping heuristic with four video processing ap-

plications [8]: Video Object Plane Decoder (12 tasks), MPEG-4 decoder(12

tasks), Picture-In-Picture (8 tasks), and Multi-Window Display (12 tasks). The

4 applications are repeated 5 times with random sequence, thus they may be

mapped to different NoC regions. The loose factor of each application is de-

cided according to the maximum edge FIR in prop.CeMD and prop.PL. The

mapping results in Table 6.2 indicate that our proposal outperforms the state

of the art counterparts in a similar way it did for synthetic applications.

Table 6.2: Mapping quality for video applications.

ALL SLLD AWeMD NMRD latency

prop.CeMD 0.063 0.047 1.85 1.05 27.46

prop.PL 0.066 0.520 1.90 1.05 29.67

CASqA 0.081 0.060 2.22 1.09 33.18

112 CHAPTER 6. LINK BANDWIDTH AWARE TASK MAPPING

6.6 Conclusion

In this chapter, we proposed a link bandwidth aware dynamic task mapping

algorithms for 2D homogenous Multi-Processor Systems-on-Chip. The back-

tracking strategy is employed to ensure the maximum link traffic load does

not exceed a limit determined by the link bandwidth and a loose factor. The

Congested extended Manhattan Distance can further balance the traffic load by

selecting admissible nodes with not just low traffic load but also more avail-

able bandwidth. Experimental results on synthetic and real video processing

applications indicate that when 5% NoC link wires are broken, our proposal

achieves at least 16% communication cost and 45% average packet latency

reduction than that of counterpart task mapping heuristics.

In 2D NoCs based MPSoCs, all nodes resident on the same planar and there are

high probabilities that communication edges of different tasks are overlapped

that the NoC congestion increases. The emerging of 3D ICs opens a new path

to 3D NoC based MPSoCs which can provide more task mapping solutions.

However, novel 3D NoC infrastructures that can better exploit the Through

Silicon Vias (TSVs) low latency benefits while improve their manufacturing

yields are still expected. In the next chapter, we present our solutions to address

these issues.

Note. The contents of this chapter is based on the the following paper:

C. Chen, S. D. Cotofana, Link Bandwidth Aware Backtracking Based Dy-

namic Task Mapping in NoC based MPSoCs, International Workshop on

Network on Chip Architectures (NoCArc), pp. 5-10, 2014.

7
Enabling Wormhole Switching and

Tolerating Faults in 3D NoC Vertical

Links

W
ith the emerging of 3 dimensional (3D) IC stacking technology,

various 3D NoC architectures have been proposed to improve the

performance of 2D NoCs. As most 2D NoC principles can be ap-

plied to each silicon layer, the main challenge in 3D NoCs relates to the vertical

links implementation and utilization. Among state of the art 3D NoC propos-

als, the 3D NoC-Bus hybrid structure can better exploit the benefit of negligible

Through Silicon Vias (TSVs) delay by running the buses at a higher speed than

the routers while reduce the amout of low manufacturing yield TSVs by let-

ting multiple routers resident on one tier to share the same bus. However, data

are vertically transmitted with the Packet Switching (PS) technology but not

Wormhole Switching (WS) because implementing vertical WS in the conven-

tional way requires a large amount of TSVs. While WS enables lower packet

transmission latency and requires less silicon area cost than PS. In this chapter,

we propose a a Bus Virtual channel Allocation (BVA) mechanism that enables

vertical WS in 3D NoC-Bus hybrid systems. In each cycle, BVA assigns to

at most one cross layer packet a free input Virtual Channel (VC) in its target

router before the packet flits are injected into the vertical bus and WS trans-

mitted to the target layer. Given that VC allocation is performed only once per

packet per hop BVA can be implemented in such a way that it does not be-

come a system bottleneck. We evaluate our proposal with both synthetic and

PARSEC benchmarks. The experimental results indicate that when compared

with conventional pipelined bus or TDMA bus based systems, implementing

vertical WS can reduce the bus critical path length by at least 31%, diminish

the average packet transmission latency by at least 22%, and save the area cost

113

114

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

and power consumption of the output buffers incident to the bus by 47% and

43%, respectively. To deal with potential transient and permanent faults in 3D

NoCs, in this chapter we also discuss the application of our aforementioned

fault tolerant techniques to detect and correct soft errors in bus VC allocators,

to utilize partially faulty vertical buses, and to tolerate deactivated or totally

broken vertical buses.

7.1 Introduction

In 2 dimensional (2D) chips, the NoC induced system performance enhance-

ment is still limited due to several aspects [28, 37], e.g., restricted floor plan-

ning choices, large clock tree network, long packet transmission latency, dif-

ficult to integrate components that are produced with different technologies,

etc. With the emerging of 3 dimensional (3D) IC stacking technology, various

3D NoC architectures have been proposed [82], bringing the following bene-

fits [111]: i) much shorter global interconnect; ii) higher packing density and

smaller footprint; iii) higher performance due to low data transmission latency;

iv) lower power consumption; and v) support for mixed-technology chips. In

3D chips, silicon tiers are vertically stacked and connected with Through Sili-

con Vias (TSVs) [7].

According to how the NoC components are organized, the existing 3D NoC

structures can be briefly classified into two groups. The first group implements

a 2D NoC on each silicon layer and utilizes TSVs as traditional links to connect

vertically adjacent routers, e.g., [37,45,112], or as buses to connect all routers

in the same Z-pillar, e.g., [28,62]. The other group implements true 3D routers

to connect 2D or 3D Processing Units (PUs), e.g., [53, 67, 73]. Despite the

architecture differences, the 3D NoCs are still composed by routers and links,

thus most 2D NoC design principles are still applicable and the main challenge

relates to the implementation and utilization of vertical links.

When compared with moderate size planar wires, TSVs exhibit extremely low

data transmission delay, but suffer from low manufacturing yield [63]. Thus in

3D NoC designs one should exploit the benefit of negligible TSV delay while

reducing the TSVs amount. Among state of the art 3D NoC proposals, the 3D

NoC-Bus hybrid structure serves this purpose well. When the vertical links are

implemented as buses, it is possible to run the buses at higher speed than the

routers due to the low delay of TSVs and the simplicity of the bus structure.

Moreover, the buses can be shared by multiple routers on each silicon layer to

reduce the amount of TSVs. The bus can be accessed by the routers incident to

7.1. INTRODUCTION 115

it with a Time Division Multiple Access (TDMA) strategy [62], or be pipelined

to enable concurrent data transmission [28].

In the existing NoC-Bus hybrid systems, data are usually transmitted in the

vertical buses with the Packet Switching (PS) technology. It is well known

that, when compared with PS, Wormhole Switching (WS) requires less silicon

cost and enables lower packet transmission latency [24]. In symmetric NoC

systems, each router port is solely connected with one neighboring router thus

the allocation of one output Virtual Channel (VC), i.e., an input VC in the

downstream router, to a packet can be easily done, because the output VCs

are only utilized by packets from the current router and their status can be

actively maintained by the output port [27]. However, in a NoC-Bus hybrid

system, a vertically traveling packet can be destined to any other layer, and an

input VC in the UPDOWN port, i.e., the port connected with the bus, can be

competed by packets from different layers. Thus, for each UPDOWN output

port, maintaining the VCs status in the UPDOWN input ports in other layers

and assigning each cross layer packet a free output VC becomes much more

complicated. Due to this existing 3D NoC-Bus hybrid structures postpone the

vertical package VC assignation for the moment when the packet reaches its

target layer, i.e., PS instead of WS is utilized for data transmission over the

vertical buses.

In this chapter, we propose a Bus VC Allocation (BVA) mechanism that en-

ables vertical WS in 3D NoC-Bus hybrid systems. Because the VC allocation

is performed only once per packet per hop, the possibility that multiple BVA

requests are asserted along the same bus in the same cycle is low. Thus in each

cycle, the BVA mechanism forwards at most one request to the package target

router and picks a free input VC there. In this way the routing path is reserved,

and the packet flits can be transmitted with the WS technique on the buses. The

BVA mechanism is evaluated on a 4× 4× 4 3D NoC-Bus hybrid system with

both synthetic and real benchmarks traffic. The experimental results indicate

that when vertical WS is implemented, the bus critical path in the pipelined

and TDMA bus based hybrid systems are shortened by 31% and 34%, respec-

tively, and the average packet transmission latency are reduced by 22% and

24%, respectively. Moreover, the area cost and power consumption of the out-

put buffer incident to the bus are reduced by 47% and 43%, respectively. To

deal with potential transient and permanent faults in 3D NoCs, in this chapter

we also discuss the application of our aforementioned fault tolerant techniques

to detect and correct soft errors in bus VC allocators, to utilize partially faulty

vertical buses, and to tolerate deactivated or totally broken vertical buses.

116

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

The rest of the chapter is organized as follows. Section 7.2 presents a brief

survey related with the existing 3D NoC structures. Section 7.3 introduces

the proposed Bus VC Allocation (BVA) mechanism. Section 7.4 evaluates our

proposal and compares it with tightly related work. Section 7.5 discuss the

strategies to tolerate faults in 3D NoC vertical links. Section 7.6 concludes the

presentation.

7.2 Related Work

The most intuitive way to implement a 3D NoC is to simply stack 2D Mesh

NoCs and utilize TSVs to connect vertically adjacent routers. Despite simplic-

ity, such 3D symmetric NoC is not taking advantage of the negligible inter-

layer TSV delay [110]. To reduce the TSV amount, Hwang et al. [45] propose

to connect only a few number of TSV routers to the vertical link, while the rest

just connect with routers on the same silicon layer. This strategy substantially

diminishes the TSV count but the vertically connected routers can easily cause

communication hot spots and become the system bottleneck.

In [53], Kim et al. propose to utilize TSVs as intra-router connections to im-

plement the 3D crossbar in a 3D Dimensionally-Decomposed router structure.

Although the energy-delay product characteristic is enhanced, this approach

requires many TSVs, thus such designs are not really applicable for state of

the art 3D stacking technology.

Noticing that a large proportion of the network traffic takes place between

the Processing Units (PUs) and the closest cache memories in the same pillar

[62], Feero et al. [37] proposed a ciliated 3D NoC architecture, in which the

routers locate on only one layer or a small number of layers, and each router

is connected with multiple PUs residing in its Z pillar but on different layers.

Such design offers an advantage in terms of energy dissipation when traffic

is localized within a pillar. However, it has much lower throughput than 3D

symmetric NoC systems and requires a large amount of TSVs.

In [62], Li et al. utilize TSVs to implement dynamic TDMA (dTDMA) buses

to achieve one hop data transmission from a source layer to any destination

layer. To alleviate the dTDMA bus drawback that it can only be occupied

by one source-destination pair at any given time, Ebrahimi et al. [28] pro-

posed a High-performance Inter-layer Bus Structure (HIBS), they pipeline the

bus to enable concurrent data transmission. In such NoC-Bus hybrid systems,

each bus can be shared by multiple routers on each layer to reduce the TSV

amount. The buses are operated at higher clock frequency to provide enough

7.3. VC ALLOCATION ALONG VERTICAL BUSES 117

data throughput and prevent that they become the system bottleneck.

Many other 3D NoC structures exist [82] but when compared with the NoC-

Bus hybrid structure, they have drawbacks, e.g., large amount of TSVs, ob-

vious system performance degradation, incompatibility with existing 2D NoC

technologies, etc. Conversely, the existing NoC-Bus hybrid designs have the

drawback that do not allow WS on the vertical buses, and thus rely on com-

plicated bus structures and exhibit long packet transmission latency. In this

chapter, we first solve this issue with a a BVA mechanism and then discuss the

application of dependable 2D NoC design principles in 3D NoC systems.

7.3 VC Allocation Along Vertical Buses

The 3D NoC-Bus hybrid structure embedding the proposed BVA mechanism

is illustrated in Fig. 7.1 where only 3 layers are depicted, for the sake of sim-

plicity. We note that the scheme is general and can be applied for more silicon

layers and that the BVA arbiter always locates in the middle layer to reduce

the TSV number. The zones marked with different colors can run at different

frequencies, thus the requirement for universal clock distribution throughout

the 3D chip is released and each layer can work at its optimized speed. The

BVA units only exist around buses, thus their clock zone only occupies a small

portion of the silicon area.

On each silicon layer, a 2D mesh NoC is implemented. Each router in the NoC

has 6 physical ports, i.e., one UPDOWN port connected with the bus, and 5
ports connected with the local PU and the 4 neighboring routers located on its

layer. On each NoC layer data are transmitted WS wise. For packets whose

next hop is on another silicon layer, their head flits wait in the UPDOWN buffer

until a free input VC in the target UPDOWN port is assigned to them by the

BVA mechanism. Only after that, the packet flits can be injected into the bus

along with the target layer number and the assigned VC index (VCID).

7.3.1 Problem Description

In symmetric NoCs each router port is solely connected with one neighbor-

ing router. As illustrated in Fig. 7.2, the state of each output VC is actively

maintained in the output port by a Finite State Machine (FSM). When a packet

needs to be transmitted to another router, it first applies for an output VC by

asserting the VC Allocation (VA) request. If the request won both the local

118

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

BUS

R
o

u
te

r ...

BVA_unit
BVA Arbiter

R
o

u
te

r

...

VCID_bus

Des_layer_bus

BVA_grant

Layer a Layer b Layer c

req req
BVA_unit

UPDOWN buffer UPDOWN buffer

Figure 7.1: NoC-Bus hybrid system structure. The BVA arbiter locates in the middle

layer and the colored zones can run at different clock frequencies.

and the global arbitration, a free output VC is picked from the free VC list and

assigned to the packet.

With this conventional VA strategy, a routing path can be reserved by the head

flit without waiting until the entire packet is received, which is time efficient

and can operate with small input buffers, as only few flits are locally stored

instead of integral packets. Such VA mechanism can be easily implemented in

2D NoCs as the output VCs are only utilized by packets from the local router.

However in 3D NoC-Bus hybrid systems, a packet can be destined to any other

layer, and an input VC in the UPDOWN port can be competed by packets from

any other layers. For each UPDOWN output port, maintaining the VCs status

in UPDOWN input ports in other layers and assigning each cross layer packet

a free output VC becomes much more complicated.

In the existing 3D NoC-Bus hybrid structures, the packets are usually buffered

in the UPDOWN buffers (see Fig. 7.1) before they are injected into the bus. As

the matter of fact, a bus and the UPDOWN buffers incident to it can be consid-

ered as belonging to a virtual 3D router, i.e., the UPDOWN buffers are actu-

ally the input ports of the virtual 3D router, and the bus works as the crossbar.

Implementing the aforementioned conventional VA in the virtual 3D router

requires a large amount of TSVs. As illustrated in Fig. 7.2, each input port

needs to send p request wires to the p output ports, and each output port needs

to send p grant wires to the p input ports and log2(v) wires to broadcast the

assigned VCID, where v is the number of VCs. Moreover, each output port

needs 1 extra signal to inform the input ports whether free output VCs exist. In

an n-layer 3D NoC-Bus hybrid systems this implies that 2n2 + n log2(v) + n

TSVs are required and, as demonstrated in the next section, the proposed BVA

7.3. VC ALLOCATION ALONG VERTICAL BUSES 119

V:1

arbiter

VC0

VC1

VC2

VC3

VC0

VC1

VC2

VC3

VC0

VC1

VC2

VC3

P:1

arbiter

New vcid

VC

request

Output

Physical

channel

Free VC list

idle

ac!vewait

Output VC FSM

allo
cated

Tail flit sent

A
ll

cr
ed

it
 b

ac
k

Input channel n-1

Input channel n

Input channel n+1

Output channel n-1

Output channel n

Output channel n+1

grant

Figure 7.2: Conventional VC allocation mechanism. The number of VCs is v. The

number of physical ports is p.

mechanism significantly reduce this value.

7.3.2 Bus VC Allocation Mechanism

The conventional VA mechanism assumes that multiple VA requests can be

asserted by different input ports in the same cycle. However, at each hop, the

VA application is done once per packet which means that for a packet length

l the probability that a VA request is asserted at each port is 1/l . Considering

that packets do not arrive at the same port continuously, the actual probability

is much smaller, thus the chance that multiple VA requests are asserted by

different ports in the same cycle is also very small. In view of this analysis, we

choose a BVA mechanism that assign free downstream input VC to only one

packet per cycle.

The proposed BVA scheme is depicted in Fig. 7.3 and the associated timing di-

agram in Fig. 7.4. In each UPDOWN input port, an 1-bit free vc exist signal is

asserted when at least one idle input VC exists, and sent to all the other routers

along the bus. When a packet is destined to another layer, it is forwarded to

the UPDOWN buffer, where if the free vc exist signal from the target router

is high, its head flit asserts the VA request ① in Fig. 7.3 and 7.4. If multiple

VCs are implemented in an UPDOWN buffer, each VC has the possibility to

assert the VA request. The BVA request is generated by OR-ing the VA re-

quests ② . The VA requests are sent to the local arbiter and the BVA request is

120

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

ENB

Des_layer_0

Des_layer_n

VA_req_0

VA_req_n

V:1

Arbiter

... ...

...

target_layer_Bus
Layer_no

BVA_result_bus ENB

free_vc_list
Granted_VC

...

BVA_req
...

free_vc_exist

Layer i Layer j

free_vc_exist[n-1:0]
1-bitn-bit

bus_granted

BVA

Arbiter

1

2

3

4

5

6

7

Figure 7.3: The proposed BVA scheme.

VA_req

BVA_req

VA_grant

BVA_grant

ZZ Des_layerTarget_layer_bus

Target_this_layer

ZZ VCIDBVA_result_bus

1

2

3

4

5

6

7

Figure 7.4: Timing diagram of the BVA mechanism.

sent to the BVA arbiter. After a certain delay the arbitration results are gener-

ated and as the BVA request and grant signals have to traverse several silicon

layers, a packet receives the local VA grant ③ earlier than the BVA grant ④ .

The granted packet places its target layer number on the Target layer bus ⑤

while each UPDOWN input port monitors the BVA arbitration results and the

Target layer bus. On the target layer of the granted BVA request ⑥ , the UP-

DOWN input port chooses one idle VC from its free VC list and places the

VCID on the BVA result bus ⑦ . The free vc exist signal is also updated ac-

cording to the remained free VCs. The source router reads the VCID from the

BVA result bus and stores it into a dedicated register.

The number of TSVs (NTSV) required by the BVA mechanism is calculated

by (7.1), where n is the number of silicon layers, and v is the number of

VCs in each physical channel. We note that the n free vc exist signals, the

1-bit bus granted signal, the Target layer bus (width is log2(n)), and the

7.3. VC ALLOCATION ALONG VERTICAL BUSES 121

BVA result bus (width is log2(v)) are penetrating TSVs, while the n BVA req

signals and the n BVA grant signals are just half way duet to the fact that the

BVA arbiter is always placed in the middle of the 3D stack. For example, in a

4 layer 3D NoC-Bus hybrid system with 4 VCs per physical channel, the BVA

requires only 13 TSVs for each pillar while the conventional VA requires 42.

NTSV = 2n + log2(n) + log2(v) + 1. (7.1)

7.3.3 Bus Data Transmission Policy

After a free input VC in the target router is reserved, a packet can transmit its

flits to it via the bus with the WS technique. Each flit is transmitted together

with the target layer number and the assigned VCID, thus flits belonging to

different packets can be processed by the bus indiscriminately. In symmetric

NoC systems, the VC buffer depth is usually less than the packet length if WS

is implemented, and the credit return mechanism is utilized to inform the up-

stream router whether free buffer slots exist in the input VC. To save the TSVs

required by the credit return mechanism, we set the input VC buffer depth in

the UPDOWN port to the packet length, thus there is no need to inform the

source router how many flits can still be transmitted. This can also guaran-

tee that all flits injected into the bus will be absorbed by their target routers.

We note that the buffer depth in the other ports can be smaller than the packet

length.

In the dTDMA bus [62], a time slot is allocated to the packet that won the

bus arbitration until all its flits are transmitted which means that the integral

packet must be reassembled before the request is asserted. Otherwise, the

reserved time slot is wasted by waiting for the un-arrived flits. When the BVA

mechanism is utilized a bus request is asserted by each valid flit and the bus

arbiter allocates time slots to individual flits instead of entire packets, which

means that flits from different packages can be transmitted whenever the bus

is available.

In HIBS [28] each bus stage is actually implemented as a 3 port router and

a cross layer packet is only assigned a free input VC in the target UPDOWN

input port when it arrives at the target layer. If all input VCs are occupied

already, the packet has to wait in the bus stage buffer and causes Head of

Line (HOL) blocking in the bus. A non blocking scheme was proposed to

partially solve this issue by enabling the transmission of single hop packets

when multiple hop packets are blocked, or vice versa, the blocking still can

happen as it is possible that both kinds of packets are blocked. This scheme

122

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

Bus BVA

(a) Top view; (b) Side view.

BVABVA

BVABVA Router A

Router C Router D

Router B

...

...

B
U

S

Router A

Router E Router F

Router B

BVA

Layer i

Layer j

Figure 7.5: Cluster Mesh Inter-layer topology.

also requires that each bus stage must be able to store at least 2 integral packets

for both upward and downward data flow direction. When the BVA mechanism

is embedded, all flits are guaranteed to be absorbed by the target router, thus

the HOL blocking is totally removed. Moreover, each bus stage just need to

store several flits as the flits from different packets are equally processed by

the bus. Thus the logic area cost of each bus stage is significantly reduced.

The buses can be shared by multiple routers, e.g., 2 or 4, on each layer to

reduce the number of TSVs. As BVA grants only 1 BVA request in each cycle,

we prohibit the inter-layer or intra-layer diagonal data transmission to maintain

the simplicity and efficiency of the BVA mechanism. Each pillar still has a

dedicated BVA arbiter, and when a router transmits flits via the bus, the target

router must be right above or below it. Take the Cluster Mesh Inter-layer

Topology (CMIT) [28], in which each bus is shared by 4 routers per layer,

illustrated in Fig. 7.5 as an example, router A has to communicate with D and

F via B or C, and B or E, respectively.

7.4 Evaluation

To put the implications of our BVA mechanism in a better practical prospective

we embed it in TDMA and pipelined bus based 3D NoC-Bus hybrid systems

labeled as TDMA BVA and pip BVA, respectively, and compare their figure

of merit against that of dTDMA bus [62] and HIBS [28] based systems. We

implemented 4 × 4 × 4 NoCs with 4 VCs per physical port at RTL level by

using Verilog HDL. The VC buffer depth is the same with the packet length,

i.e., 8-flits, in the UPDOWN input ports and 4-flits in other input ports. The

flit width and the link width in 3D symmetric NoC are all 32-bits. For the

sake of fairness, the buses, either pipelined or TDMA based, are composed of

2 unidirectional data lanes, each is 32-bits wide in charge of the upward and

downward data flow, respectively. In HIBS, the input buffer in each bus stage

is able to store 2 packets for every data flow direction. While in pip BVA, the

7.4. EVALUATION 123

two Bus FIFOs, upward and downward, in each bus stage are only set to 4-flits

deep. The packets are transmitted by WS in each planar NoC and routed with

the XYZ algorithm in the 3D NoC system.

The Routers and buses are synthesized using Cadence RTL Compiler with

TSMC 45nm technology to estimate the critical path length, area cost, and

power consumption. We assumed a TSV pad size of 3 µm with a 5µm pitch

[63], and analysis with Cadence Virtuoso Spectre indicate a TSV delay of 20
ps per layer.

7.4.1 Critical Path Length

The critical path length of routers and buses in different NoC-Bus hybrid sys-

tems are illustrated in Fig. 7.6. We can observe that the BVA has shorter

critical path than the routers. If the NoC layers number increases the BVA de-

lay increases too and eventually surpasses the router delay. We note that given

that BVA can work at different speed than the routers and buses this has no

consequences on their implementation.

In the HIBS based system, each bus stage is actually a three port router and it

makes use of VCs to partially solve the HOL blocking issue. When vertical WS

is enabled, each bus stage just need to decide which of the two flits, one from

the previous bus stage and one from the UPDOWN buffer, will be forwarded.

Consequently, in pip BVA, the critical path length of each bus stage is 31%

shorter than that of HIBS, which means the bus can be twice faster than the

routers.

In the dTDMA bus based system, each cross layer packet is assigned a free

input VC when its head flit arrives at the target router. The “free input VC

exists” flag in the UPDOWN input port is also updated in the meanwhile. This

flag is then utilized by the centralized bus arbiter to decide whether another bus

request can be granted. Consequently the dTDMA bus has a long critical path.

In TDMA BVA, the arbiter grants a request just according to the request’s

current priority, thus the buses have shorter critical path than that of dTDMA

and can be 1.6 times faster than the routers.

7.4.2 Synthetic Traffic

The performance of different 3D NoC systems at various Flit Injection Rates

(FIRs) under random and localized traffic patterns is illustrated in Fig. 7.7

and Fig. 7.8. In the localized traffic, 50% of the packets are destined to the

124

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

router BVA HIBS pip_BVA dTDMA TDMA_BVA

cr
i

ca
l

p
a

th
 l

e
n

g
th

 (
n

s)

Figure 7.6: Critical path length of routers and buses.

nodes in the same pillar, to simulate the practical case when task mapping

is optimized [62]. The 3D symmetric NoC system embedding WS is also

evaluated as a reference. The packet transmission latency is counted since

the packet is generated in the source node till the tail flit is received by the

destination node, i.e., the queuing time in the source node is included.

Our simulation results when the bus is not shared on each layer indicate that the

average packet transmission latencies in HIBS and dTDMA bus based hybrid

systems are on average 22% and 24% longer than that of 3D symmetric NoC

system, respectively. This is because when WS is utilized in planar NoC and

PS is utilized in the buses, extra delay is required to reassemble the integral

packets in the UPDOWN buffer. When vertical WS is enabled, the extra delay

is removed and both TDMA BVA and pip BVA can achieve similar or even

better performance than the 3D symmetric NoC.

When each bus is shared by multiple routers, i.e., 2 and 4, per layer, the ad-

vantage of our proposal becomes more obvious (see Fig. 7.8). Note that due

to the high traffic load, the buses in the hybrid systems saturate quickly when

they work at the same frequency with the routers, especially when CMIT is

implemented. However, according to the analysis in Section 7.4.1, the buses

can be operated at higher frequencies, case in which we obtain substantial im-

provements. Note that although the maximum bus frequencies of the HIBS,

dTDMA, and TDMA BVA designs are only 35%, 7%, and 63% higher than

that of the routers, we still evaluated their performance at 2x bus speed for

comparison purpose. It is worth to note that pip BVA always achieves the best

performance, in terms of both average packet latency and saturation through-

put, in all simulation contexts.

7.4. EVALUATION 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

40

60

80

100

120

140

160

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

3D_Symmetric

HIBS

Pip_BVA

dTDMA

TDMA_BVA

(a) Random traffic;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

40

60

80

100

120

140

160

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

3D_Symmetric

HIBS

Pip_BVA

dTDMA

TDMA_BVA

(b) Localized traffic;

Figure 7.7: Average packet transmission latency in different 3D NoC system when

buses are not shared. The packet length is 8-flits.

126

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

40

60

80

100

120

140

160

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

3D_Symmetric

HIBS_1x

HIBS_2x

pip_BVA_1x

pip_BVA_2x

dTDMA_1x

dTDMA_2x

TDMA_BVA_1x

TDMA_BVA_2x

(a) Bus is shared by 2 routers, localized traffic;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

40

60

80

100

120

140

160

injection rate (flits/cycle/node)

a
v
e

ra
g

e
 l
a

te
n

c
y
 (

c
y
c
le

s
)

3D_Symmetric

HIBS_1x

HIBS_2x

pip_BVA_1x

pip_BVA_2x

dTDMA_1x

dTDMA_2x

TDMA_BVA_1x

TDMA_BVA_2x

(b) Bus is shared by 4 routers, localized traffic;

Figure 7.8: Average packet transmission latency in different 3D NoC system when

buses are shared. 1x, 2x means the bus frequency is 1, or 2 times higher than the NoC

router frequency, respectively. The packet length is 8-flits.

7.4. EVALUATION 127

7.4.3 BVA Efficiency

The proposed BVA mechanism grants only one BVA request from one silicon

layer in each cycle. Thus the BVA efficiency is expected to decrease as the

packet becomes shorter and the number of layers becomes higher. The impact

of those issues on the pip BVA design and the 3D symmetric NoC saturation

throughput is illustrated in Fig. 7.9.

Against expectation, the experimental results indicate that the saturation

throughput increases as the packet length decreases from 8 to 3. This can

be explained by the fact that although shorter packets assert BVA request more

frequently at the same FIR, they also release the VCs faster. The packet length

has more system performance influence, e.g., when the packet length decreases

from 3 to 2, the saturation throughput has a 11% and 7% reduction for random

and localized traffic, respectively. We note that the same trend exists in the 3D

symmetric NoC systems.

As expected, the system saturation throughput decreases as the silicon layers

number increases. But the decreasing speed in 3D symmetric NoC systems

is faster than that in pip BVA. Thus the decreasing is mainly caused by the

layers number increase but not the BVA mechanism. Note that the planar NoC

size is always 4 × 4. This proves that the BVA is not the system performance

bottleneck.

7.4.4 PARSEC Benchmarks

In this subsection, we evaluate our proposal with PARSEC benchmarks [9]

traffic traces, which are recorded with the Netrace [43] tool on the M5 full sys-

tem simulator [10]. We replay the traffic traces according to each packet time

flag while maintaining the packets dependencies. The average packet trans-

mission latencies for different benchmarks are illustrated in Fig. 7.10. The

results indicate that when vertical WS is enabled, all 3D NoC-Bus hybrid sys-

tems provide similar packet transmission latency with the 3D symmetric NoC

system, even when CMIT is implemented. Without BVA, the latencies in the

HIBS and dTDMA bus based systems are on average 18% and 13% longer,

respectively.

128

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

1 2 3 4 5 6 7 8 9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a) Packet lengths (number of flits);

fl
it
/n

o
d

e
/c

y
c
le

pip_BVA_Localized

pip_BVA_Random

symmetric_Localized

symmetric_Random

(a) Saturation throughput VS packet length;

1 2 3 4 5 6 7 8
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(b) Number of layers (8−flit packet length).

fl
it
/n

o
d

e
/c

y
c
le

pip_BVA_Localized

pip_BVA_Random

symmetric_Localized

symmetric_Random

(b) Saturation throughput VS layers number

Figure 7.9: The system saturation throughput at different packet length and layers

number. The packet length is 8-flits.

7.4. EVALUATION 129

7.4.5 Area and Power

The area cost and power consumption of routers and buses are presented in

Table 7.1. The bus power consumption is derived when buses and routers

work at the same frequency. Note that the routers are implemented in the same

way in different NoC-Bus hybrid systems.

In each UPDOWN buffer, 4 VCs are implemented in our experiments. For

HIBS and dTDMA bus based system, integration packets need to be reassem-

bled in the UPDOWN buffer before they are injected into the bus. While when

vertical WS is enabled, such requirement is released and the buffer depth can

be reduced to, for example, 4-flits. Consequently the area and power cost of

the UPDOWN buffer is reduced by 47% and 43%, respectively. For each data

0

10

20

30

40

50

60

blackscholes

lL
te

n
cy

 (
cy

cl
e

s)

0

10

20

30

40

50

60

bodytrack

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

canneal

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

dedup

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

ferret

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

fluidanimate

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

swap!ons

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

vips

L
a

te
n

cy
 (

cy
cl

e
s)

0

10

20

30

40

50

60

x264

L
a

te
n

cy
 (

cy
cl

e
s)

symmetric HIBS pip_BVA

dTDMA TDMA_BVA HIBS_CMIT

pip_BVA_CMIT dTDMA_CMIT TDMA_BVA_CMIT

Figure 7.10: Average packet transmission latency of PARSEC benchmarks. The

buses work at the same frequency with the routers.

130

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

Table 7.1: Area and power of router and bus stage in different 3D NoC systems.

Power (mW) Logic area (µm2) TSV#/area

Router 43.18 / 100% 68207 / 100% –

UPDOWN PS 10.28 / 24% 13701 / 20% –

buffer WS 5.48 / 13% 7854 / 12% –

Bus stage

HIBS 13.06 / 30% 15740 / 23% 76 / 1900

pip BVA 2.86 / 7% 3644 / 5% 91 / 2275

dTDMA – – 86 / 2150

TDMA BVA – – 97 / 2425

flow direction, the HIBS bus stage is required to register at least 2 packets to

partially solve the HOL blocking issue. While when BVA is implemented, the

bus stage FIFO just need to register several flits, e.g., 4 flits in our case, and the

HOL blocking is completely removed. Thus the implementation cost is also

significantly reduced.

When the bus is not shared on each silicon layer, enabling vertical WS requires

15 and 11 more TSVs than the original HIBS and dTDMA based design in each

pillar, respectively. However, the area overhead induced by the TSVs is still

negligible even they are much bigger than planar wires.

7.5 Fault Tolerance in 3D NoCs Vertical Links

At a certain fault rate, reducing TSVs amount can efficiently diminish the

amount of faults in the vertical links, and thus reduce the fault tolerance capa-

bility requirements to the 3D NoC system. However, transient and permanent

faults can still happen and should be tolerated to avoid severe system perfor-

mance degradation. In the 3D NoCs where a 2D NoC is implemented on each

silicon layer, the previously proposed fault tolerant strategies can be easily ap-

plied with small adjustment which takes the vertical links into consideration.

7.5.1 Transient Faults

Transient faults in the data path may flip data bits. Such soft errors can be

easily detected and corrected with Error Correcting Codes (ECCs). In the case

of uncorrectable errors, the contaminated flits or packets are retransmitted. It is

even proved that only implementing the soft error resilience techniques at the

7.5. FAULT TOLERANCE IN 3D NOCS VERTICAL LINKS 131

BVA_result

errorAllocated VCs

Figure 7.11: Structure to detect erroneous BVA results.

inter-die level with interleaved Hamming codes is enough to achieve highly

reliable communication in the 3D NoC systems [77].

In 2D NoCs, the Error Detection and Correction (EDC) is usually performed

Hop-By-Hop (HBH), which generally requires 3 cycles to start a flit retrans-

mission, i.e., the flit is transmitted to the downstream router in the first cycle,

the uncorrectable error is detected in the second cycle, and the retransmission

request is sent back to the upstream router in the third cycle. In 3D symmet-

ric NoCs, EDC can be implemented in the same way because vertical links

are identically utilized as planar links. In 3D NoC-Bus hybrid systems, when

TDMA buses are implemented, each bus needs one extra TSV to broadcast

the retransmission requests, and the relative source and destination pair can be

determined by register the bus arbitration results for 3 cycles. When the buses

are pipelined, the EDC should be implemented at each bus stage but not just in

the UPDOWN input ports because a flit may need multiple cycles to traverse

the vertical bus.

Transient faults can also happen in the control plane, i.e., Routing Computation

(RC), VA, Switch Allocation (SA), BVA, and Bus Arbitration (BA). In a router,

RC, SA, and VA are related with physical ports in the same layer and thus the

errors in their results can be detected and recovered with the method proposed

in Chapter 3. When vertical WS is implemented, the BA is only utilized to

decide which flit can be transmitted, thus an erroneous BA result only assigns

the bus to another bus access request without cause any failure.

Similar with VA results, when soft errors happen in BVA results, the output

VC can become (1) a wrong output VC, which does not exist or is not an

eligible VC according to the RC results, or (2) an eligible output VC which is

already assigned to another packet. In Chapter 3, we have proposed an I-IVAD

method to detect type (1) errors, an O-DVAD method to detect type (2) errors,

and relative mechanism to recover from the errors. The type (1) BVA errors

can still be detected by means of the I-IVAD method and be recovered in the

same cycle. However, although type (2) BVA errors can be detected by means

of the O-DVAD method, they are hard to be recovered because a head flit in the

132

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

UPDOWN output ports may arrive at the target router several cycles after an

output VC is granted to it, during which period more BVA errors can happen

and the error recovery becomes more complicated.

Alternatively, we propose to check the correctness of the BVA results with the

structure illustrated in Fig. 7.11 in the target router before the assigned VCID is

sent back to the request initiator. Similar with the I-IVAD method, we maintain

a list of allocated VCs in each UPDOWN input port. By simply check if the

VC provided by the BVA is already allocated to an packet, duplicated VC

allocation can be avoided. The drawback of this method is that the soft errors

happen on the BVA result bus cannot be detected. As a compensation, the

BVA results can be transmitted together with a parity check bit, so that a one-

bit error can be detected at both the BVA request’s source and target routers.

Upon the detection of BVA errors, the BVA result is discarded and the request

is asserted again to apply for another valid free output VC.

7.5.2 Partially Defected Vertical Buses

Although the absolute number of broken TSVs can be reduced by sharing each

vertical link with multiple routers on each silicon layer or even implement

serial vertical interconnects [78, 94], TSVs can still be defected and must be

tolerated to maintain the functionality of the 3D NoC system.

Prefabricated spare TSVs can be utilized to replace broken TSVs during the

manufacturing process [40, 63, 69] or at run time [60, 61]. The packet rebuild-

ing/restoring method proposed by Yu et al. [114] and the Configurable Fault-

Tolerant Serial Link (CSL) method proposed by Pasca et al. [76] do not rely

one spare TSVs but they are actually different practice of the spare wire re-

placement method. The drawback of such solutions are that they induce com-

plicated control logic and thus large area overhead. Our Flit Serialization (FS)

method and other Partially Faulty Link Utilization strategies proposed for 2D

NoC systems, e.g., [72,100], can all be utilized as low cost alternative methods

to tolerate broken TSVs with the penalty of reduced vertical link bandwidth.

However, the FS methods cannot be directly applied to 3D NoC-Bus hybrid

systems in which the routers access to the buses are interleaved. When vertical

WS is implemented, a TDMA bus is allocated to flits from different routers

in different cycles, and a pipelined bus stage is shared by flits from the previ-

ous bus stage and the local router in the round-robin sequence. For the other

partially faulty link utilization methods, e.g., [72, 100], the flit transmission

latency on a link is merely decided by the link fault level. While for the FS

7.5. FAULT TOLERANCE IN 3D NOCS VERTICAL LINKS 133

method, the flit transmission latency is also affected by the number of contin-

uously transmitted flits (refer to Equation 4.1). For example, when the link is

divided into 4 sections and 1 section is broken, the average flit transmission

latency is 1.67 and 1.33 cycles if 2 and 3 flits are continuously transmitted,

respectively. Thus to improve the link bandwidth utilization efficiency, the bus

arbiter should allow the granted request initiator to hold the bus until multiple

integral flits are transmitted. For example, if 1 out of the 4 link sections is bro-

ken and 2 flits are waiting to be transmitted in an UPDOWN output port, the

output port should hold the bus until both flits are transmitted; while if more

than 3 flits are waiting to be transmitted, the output port should release the bus

after 3 flits are transmitted to enable fair bus access among the routers in the

same pillar.

7.5.3 Fault Tolerant Routing

Similar with planar links, a vertical link has to be abandoned when it con-

tains too many broken TSVs. Moreover, when an UPDOWN input/output port

is broken, the router cannot receive/transmit packets from/to another silicon

layer. In both cases, the packets have to be detoured to reach the destination.

It is obvious that Fault Tolerant Routing Algorithms (FTRAs) that are proposed

for 2D NoC can be applied to each 3D NoC silicon layer. Thus the challenge

is to find the optimal cross layer misrouting path in awareness of the broken

vertical links. Targeting at different fault patterns, numerous FTRAs for 3D

NoCs have been proposed, e.g., [2, 79, 83, 86, 117].

When routers in the same pillar are connected by a pair of unidirectional links,

i.e., upward and downward packets are transmitted via physically indepen-

dent links, it is possible that the upward link is broken while the downward

one is still functional, or vice versa. Similar with partially broken planar in-

terconnects, the broken vertical links should be tolerated while the unpaired

functional ones should be utilized. In such case, we propose to combine our

UnPaired Functional link aware FTRA with the adaptive inter-layer message

routing algorithm proposed by Rusu et al. [86]. In their proposal, each router

is attached to two Vertical Node Trees (VNTs) which are rooted in the near-

est routers that have upward and downward output links, respectively. Packets

that are destined for other layers are first transmitted to the VNT root nodes

and then be transmitted to the target layers. Their routing algorithm makes no

assumption about the topology of the 2D layers and thus can be easily inte-

grated with any other planar routing algorithms. As unpaired functional planar

and vertical unidirectional links are efficiently utilized, the 3D NoC system’s

134

CHAPTER 7. ENABLING WORMHOLE SWITCHING AND TOLERATING

FAULTS IN 3D NOC VERTICAL LINKS

performance can be degraded more gracefully.

7.6 Conclusion

In this chapter, we proposed a Bus Virtual Channel (VC) Allocation (BVA)

mechanism to enable vertical Wormhole Switching (WS) in 3D NoC-Bus hy-

brid systems. Because the VC allocation is performed only once per packet

per hop, the possibility that multiple BVA requests are asserted along the same

bus in each cycle is low. Thus in each cycle, the BVA mechanism forwards

at most one request to its target router and picks a free input VC there. In

this way, a routing path is reserved by the head flit, and the next flits in the

package can be transmitted with the WS technique on the buses. We evaluate

our proposal with both synthetic and PARSEC benchmarks. The experimental

results indicate that when compared with conventional pipelined bus or Time

Division Multiple Access (TDMA) bus based systems, implementing vertical

WS can reduce the bus critical path length by at least 31%, diminish the av-

erage packet transmission latency by at least 22%, and save the area cost and

power consumption of the output buffers incident to the bus by 47% and 43%,

respectively. To deal with potential transient and permanent faults in 3D NoCs,

in this chapter we also discussed the application of our aforementioned fault

tolerant techniques to detect and correct soft errors in bus VC allocators, to uti-

lize partially faulty vertical buses, and to tolerate deactivated or totally broken

vertical buses.

When multiple silicon layers are stacked to construct 3D ICs, thermal dissipa-

tion becomes a critical issue that affects the chips’ and the 3D NoCs’ depend-

ability and thus should be extensively studied in our future research work.

Note. The contents of this chapter is based on the the following paper:

C. Chen, M. Enachescu, S. D. Cotofana, Enabling Vertical Wormhole

Switching in 3D NoC-Bus Hybrid Systems, Design Automation and Test

in Europe (DATE), pp. 507-512, 2015.

8
Conclusions and Future Work

In this dissertation, we have presented several designs to improve the depend-

ability of Networks-on-Chip (NoC) at the architectural level by tolerating tran-

sient and permanent faults as well as efficiently utilizing still functional NoC

components. We first introduced a low cost method to allow for correct flit

transmission even when soft errors are occurring in the router control plane.

Then we proposed a Flit Serialization (FS) strategy to tolerate broken link

wires and to efficiently utilize the remaining link bandwidth. Within the FS

framework heavily defected links whose fault levels exceed a certain thresh-

old value are deactivated to diminish the congestion in their upstream routers.

Moreover, we designed a distributed logic based routing algorithm able to tol-

erate totally broken links as well as to efficiently utilize UnPaired Functional

(UPF) Links in partially defected interconnects. We also introduced a link

bandwidth aware run-time task mapping algorithm to improve the mapping

quality for newly injected applications in the MPSoCs. Last but not least, we

discussed the application of aforementioned strategies in 3D NoC systems and

proposed a Bus Virtual channel Allocation (BVA) mechanism to enable ver-

tical wormhole switching to improve the performance of 3D NoC-Bus hybrid

systems. All proposals are evaluated in our mixed language NoC simulation

platform and their advantage over state of the art counterparts are proved by

means of experimental results.

8.1 Summary

The contents and contributions of this dissertation are summarized as follows:

In Chapter 1, we discussed the necessity to implement NoC based MPSoCs in

modern Ultra Large Scale Integration (ULSI) systems, state of the art ICs de-

pendability issues and their corresponding NoC design challenges, highlighted

135

136 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the dissertation contributions, and introduced the dissertation organization. We

pointed out that efficiently utilizing still functional NoC components is as im-

portant as tolerating faults to enable graceful system performance degradation

and improve the system dependability.

In Chapter 2, we introduced the essential NoC background knowledge by

covering the aspects as NoC topology, routing algorithm, switching policy,

and router architectures. We also present the mixed language NoC simulation

platform we utilize to evaluate and validate the contribution described in this

thesis, the strategies to inject synthetic traffic and real application traces into

the NoC, and the NoC performance evaluation metrics.

In Chapter 3, We proposed a low cost method to tolerate soft errors poten-

tially occurring in router control plane functional units, i.e., routing units, Vir-

tual Channel (VC) allocators, and switch allocators. Rather than relying on

a Triple Modular Redundancy based implementation of each functional unit,

we chose to exploit the intrinsic redundancy available in the router hardware

structures and signals. In essence we detect Routing Computation (RC) er-

rors by comparing RC results from the local Routing Unit (RU) and idle RUs

available at neighboring input ports. The RC results are recalculated in case

errors are detected or neighboring RUs are not available. We detect errors in

the VC Allocation (VA) and Switch Allocation (SA) results by checking if

they are consistent with the correct RC results, each NoC resource is exclu-

sively assigned to one request initiator, and each request initiator is allocated

only one NoC resource. VA/SA errors are corrected by redoing the failed pro-

cedures and retransmitting the flits. Experimental results on an 8×8 2D NoC

indicate that: (i) in the routing units, the proposed method requires 38% more

silicon real estate than the Σ & Branch method when the XY routing algo-

rithm is utilized, but it is more general and can be utilized in conjunction with

other routing algorithms; and (ii) in the combined VA/SA units, the proposed

method is simpler and more effective than state of the art counterparts. When

compared with the Triple Modular Redundancy strategy, for similar error de-

tection and correction capabilities, the proposed method can reduce the area

and power overhead in routing units by 53% and 38%, respectively, and in

combined VA/SA units by 45% and 46%, respectively. The average packet

transmission latency is less than 5% higher than the one of the baseline router

with no soft error detection/correction mechanisms even if the soft error rate is

as high as 0.1 errors/router/cycle.

In Chapter 4, We proposed a Flit Serialization (FS) method to tolerate broken

link wires and to effectively utilize the remained link bandwidth. The FS ap-

8.1. SUMMARY 137

proach divides the links and flits into several sections, and serializes sections

of adjacent flits to transmit them on all available fault-free link sections to

avoid the complete waste of partially defective links. The proposed transmitter

and receiver are transparent to the router such that their utilization is not con-

strained by the router architecture and implementation or network topology.

Experimental results obtained on synthetic traffic and PARSEC benchmarks

indicate that FS reduces the latency overhead significantly and enables grace-

ful performance degradation when compared with related partially faulty link

utilization proposals. It reduces area cost and power consumption by up to 29%

and 43.1%, respectively, when compared with spare wire replacement meth-

ods, and can achieve lower area*power/saturation throughput values than all

state of the art link fault tolerant strategies. We also propose the link augmen-

tation with one redundant section as a low cost mechanism to further increase

the link dependability. Experimental results indicate that when 10% of the

NoC wires are broken, adding a redundant section to each link can improve

the NoC saturation throughput by 18%.

In Chapter 5, We introduced a strategy to differently treat partially faulty links

that have different fault levels as follows: (i) links whose fault level is lower

than a threshold are still utilized by means of the FS method, while (ii) Heav-

ily Defected (HD) links whose fault levels exceed the threshold are deactivated

and tolerated by means of a Fault Tolerate Routing Algorithm (FTRA). To this

purpose, we determined the optimal link deactivation threshold by compar-

ing the zero load packet transmission latency on the HD links and that on

the shortest alternative path, and proposed a distributed logic based FTRA to

tolerate broken links as well as to efficiently utilize the UnPaired Functional

(UPF) links in partially defected interconnects. The basic fault pattern tol-

erated by the UPF link aware FTRA (UPF-FTRA) is a fault wall, which is

composed of adjacent broken links with the same outgoing direction. Mes-

sages are routed around the fault walls along the misrouting contours of the

broken links. The proposed Routing Algorithm (RA) requires at least 3 Vir-

tual Channels (VCs) and dynamically reserve them to the detoured messages

to avoid deadlock. Our experiments indicate that, for random and localized

traffic patterns, we achieve an average saturation throughput 20% higher than

the Solid Fault Region Tolerant (SFRT) RA, and 22% and 14% higher than the

Ariadne routing table based RA, respectively. Simulation results with PAR-

SEC benchmarks also suggest that UPF-FTRA provides much lower packet

transmission latency than SFRT and Ariadne. Synthesis results with Synopsis

Design Compiler and TSMC 65nm technology indicate that, embedding the

proposed RA into a baseline router results in 9% area overhead, which is only

138 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

1% higher than that of SFRT and does not increase for NoCs with bigger size.

Simulation results we obtained at various wire broken rate configurations indi-

cate that we achieve the highest saturation throughput if 4- or 8-section links

with a flit transmission latency longer than 4 cycles are deactivated.

In Chapter 6, We proposed a run-time task mapping algorithm, which takes

both the path traffic load and link bandwidth variation into consideration and

maps applications onto contiguous near convex NoC regions to reduce the in-

ternal and external congestion. We relied on a backtracking strategy to guar-

anty that the maximum link traffic load does not exceed a given limit deter-

mined by the link bandwidth and a loose factor. Note that the loose factor is

employed to adjust the maximum percentage of link bandwidth that can be uti-

lized. To evaluate our proposal we mapped synthetic and real video processing

applications on partially defective 8 × 8 NoCs. The experiments indicate that

our approach substantially outperforms equivalent state of the art task map-

ping heuristics when NoC defects are present, e.g., for 5% broken wires, we

achieve at least 16% communication cost reduction and 45% shorter average

packet transmission latency.

In Chapter 7, We proposed a Bus Virtual Channel (VC) Allocation (BVA)

mechanism to enable vertical Wormhole Switching (WS) in 3D NoC-Bus hy-

brid systems. The BVA mechanism address this issue by assigning in each

layer to at most one cross layer packet a free input VC in its target router be-

fore injecting the packet into the bus. In this way, a routing path is reserved

by the head flit, and the rest of the packet flits can be WS transmitted through

the vertical buses. Given that VC allocation is performed only once per packet

per hop BVA can be implemented in such a way that it does not become a

system bottleneck. We evaluate our proposal with both synthetic and PARSEC

benchmarks. The experimental results indicate that when compared with con-

ventional pipelined bus or Time Division Multiple Access (TDMA) bus based

systems, implementing vertical WS can reduce the bus critical path length by

at least 31%, diminish the average packet transmission latency by at least 22%,

and save the area cost and power consumption of the output buffers incident

to the bus by 47% and 43%, respectively. To deal with potential transient and

permanent faults in 3D NoCs, in this chapter we also discussed the application

of our aforementioned fault tolerant techniques to detect and correct soft errors

in bus VC allocators, to utilize partially faulty vertical buses, and to tolerate

deactivated or totally broken vertical buses.

8.2. FUTURE RESEARCH DIRECTIONS 139

8.2 Future Research Directions

Although numerous strategies have been proposed to improve the NoC de-

pendability from the architectural aspects, a lot of work still need to be done to

produce NoC based MPSoCs that can meet the requirements of various kind

of applications. In the following, we list several important research directions

to further complete and improve the work presented in this dissertation.

• Sophistic trade off strategies that can select proper NoC structures ac-

cording to the applications’ requirements are required. For each de-

pendability issue, numerous methods have been proposed to address it.

According to the definition, the dependability of a system is its ability

to avoid service failures that are more frequent and more severe than

acceptable [6]. If the selected methods are too conservative, they uti-

lize still functional NoC resources inefficiently and cause high area and

power cost. Conversely, if the methods are overoptimistic, the corre-

sponding NoC systems end up with low dependability. Thus sophistic

trade off strategies should be able to determine the most appreciate NoC

structures for specific applications.

• Accurate traffic models that can prototype the existing and emerging

NoC workloads are expected. After the NoC architecture is determined,

its performance and overall dependability need to be evaluated with

proper benchmarks. However, due to the complicity of the applications

that are suitable for NoC platforms and the dynamic behavior of the

system, it is hard to obtain the prototype of the applications [66]. Con-

sequently most researchers and designers still rely on synthetic traffic

patterns which have high simulation speed but lack of accuracy. Al-

though some general-purpose chip multiprocessor benchmarks such as

SPLASH [108] and PARSEC [9] can be utilized, they may not be able

to effectively stress the NoCs [66].

• Simulation software or platform that can take advantage of the paral-

lelism of the multi-core processors are needed. Even though the com-

mercial multi-core processors are already widely utilized in nowadays

computers, most simulation software products still cannot efficiently uti-

lize multiple cores to speedup the simulation. As a result, the simula-

tion time is usually quite long, especially when real applications from

benchmarks like PARSEC [9] are injected. Moreover, the simulation

software should also be able to inject transient and permanent faults into

140 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the NoCs to evaluate the influence of different dependability issues to

the NoC performance.

• Power dissipation must be thoroughly considered in future NoC design.

The future MPSoCs may contain thousands of cores, but in practice not

all cores are active at the same time. It is economically more efficient to

power on cores on demands and to shut down idle cores to save power

[96]. An NoC, as the MPSoCs backbone communication infrastructure,

should be able to support this feature from the communication point of

view. Moreover, as the semiconductor industry enters the 3D era, power

supply and dissipation is becoming increasingly serious concerns [89].

This issue must be thoroughly considered in the design of task mapping

heuristics and NoC routing protocols.

We note that many other research directions exist. In addition, the dependabil-

ity of the software running on the NoC based MPSoCs is also an important

issue to define the overall system performance. Thus software/hardware co-

design should be one of the disciplines in the practice to create dependable

NoC based systems.

Bibliography

[1] AISOPOS, K., DEORIO, A., PEH, L., AND BERTACCO, V. Ariadne: Agnostic reconfig-

uration in a disconnected network environment. In Proc. Interconnection Conference on

Parallel Architectures and Compilation Techniques (PACT) (Oct. 2011), pp. 298–309.

[2] AKBARI, S., SHAFIEE, A., FATHY, M., AND BERANGI, R. Afra: A low cost high

performance reliable routing for 3d mesh nocs. In Proc. Design, Automation and Test in

Europe Conference and Exhibition (DATE) (Mar. 2012), pp. 332–337.

[3] ARTERIS. A comparison of network-on-chip and busses. White Paper, 2005.

[4] ASCIA, G., CATANIA, V., PALESI, M., AND PATTI, D. Implementation and analy-

sis of a new selection strategy for adaptive routing in networks-on-chip. IEEE Trans.

Computers 57, 6 (June 2008), 809–820.

[5] AVIRNENI, N., AND SOMANI, A. Low overhead soft error mitigation techniques for

high-performance and aggressive designs. In Proc. International Conferences on De-

pendable Systems and Networks (DSN) (June 2009), pp. 185–194.

[6] AVIZIENIS, A., LAPRIE, J., RANDELL, B., AND LANDWEHR, C. Basic concepts

and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure

Comput. 1, 1 (Jan./Mar. 2004), 11–33.

[7] BERNSTEIN, K., AND ET AL. Interconnects in the third dimension: Design challenges

for 3d ics. In Proc. Design Automation Conference (DAC) (June 2007), pp. 562–567.

[8] BERTOZZI, D., JALABERT, A., MURALI, S., TAMHANKAR, T., STERGIOU, S.,

BENINI, L., AND MICHELI, G. Noc synthesis flow for customized domain specific

multiprocessor systems-on-chip. IEEE Trans. Parallel Distrib. Syst. 16, 2 (Feb. 2009),

1–14.

[9] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,

Jan. 2011.

[10] BINKERT, N., DRESLINSKI, R., HSU, L., LIM, K., SAIDI, A., AND REINHARDT, S.

The m5 simulator: Modeling networked systems. IEEE Micro 26, 4 (June/Aug. 2006),

52–60.

[11] BJERREGAARD, T., AND MAHADEVAN, S. A survey of research and practices of

network-on-chip. ACM Computing Surveys 38, 1 (Mar. 2006), 1–51.

[12] BLAKE, G., DRESLINSKI, R., AND MUDGE, T. A survey of multicore processors.

IEEE Signal Processing Magazine 26, 6 (Nov. 2009), 26–37.

[13] BOGDAN, P., DUMITRAS, T., AND MARCULESCU, R. Stochastic communication: A

new paradigm for fault-tolerant networks-on-chip. Journal of VLSI Design 2007 (Feb.

2007), 1–17.

[14] BORKAR, S. Designing reliable systems from unreliable components: The challenges

of transistor variability and degradation. IEEE Micro 25, 6 (Nov./Dec. 2005), 10–16.

[15] CARVALHO, E., CALAZANS, N., AND MORAES, F. Dynamic task mapping for mpsocs.

IEEE Design and Test of Computers 27, 5 (Sept-Oct 2010), 26–35.

[16] CHAIX, F., AVRESKY, D., ZERGAINOH, N., AND NICOLAIDIS, M. Fault-tolerant

deadlock-free adaptive routing for any set of link and node failures in multi-cores sys-

tems. In Proc. Interconnection Symposium on Network Computing and Applications

(NCA) (June 2010), pp. 52–59.

141

142 BIBLIOGRAPHY

[17] CHALASANI, S., AND BOPPANA, R. V. Communication in multicomputers with non-

convex faults. IEEE Trans. Comput. 46, 5 (May 1997), 616–622.

[18] CHAPIRO, D. Globally-asynchronous locally-synchronous systems. PhD thesis, Stan-

ford Univerisyt, California, Oct. 1984.

[19] CHEN, C., AND CHIU, G. A fault-tolerant routing scheme for meshes with nonconvex

faults. IEEE Trans. Parallel Distrib. Syst. 12, 5 (May 2001), 467–475.

[20] CHOU, C., AND MARCULESCU, R. Run-time task allocation considering user behav-

ior in embedded multiprocessor networks-on-chip. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst. 29, 1 (Jan 2010), 78–91.

[21] CHOU, C., OGRAS, U., AND MARCULESCU, R. Energy- and performance-aware incre-

mental mapping for networks on chip with multiple voltage levels. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst. 27, 10 (Oct 2008), 1866–1879.

[22] CONSTANTINIDES, K., PLAZA, S., BLOME, J., ZHANG, B., BERTACCO, V.,

MAHLKE, S., AUSTIN, T., AND ORSHANSKY, M. Bulletproof: A defect-tolerant cmp

switch architecture. In Proc. International Symposium on High-Performance Computer

Architecture (HPCA) (Feb. 2006), pp. 5–16.

[23] DALLY, W., AND TOWLES, B. Route packets, not wires: On-chip interconnection net-

works. In Proc. Design Automation Conference (DAC) (June 2001), pp. 684–689.

[24] DALLY, W., AND TOWLES, B. Principles and Practices of Interconnection Networks,

2004th ed. Morgan Kaufmann, San Francisco, CA, 2004.

[25] DHILLON, Y., DIRIL, A., CHATTERJEE, A., AND SINGH, A. Analysis and optimiza-

tion of nanometer cmos circuits for soft-error tolerance. IEEE Trans. VLSI Syst. 14, 5

(May 2006), 514–524.

[26] DICK, R., RHODES, D., AND WOLF, W. Tgff: task graphs for free. In Proc. Interna-

tional Workshop on Hardware/Software Codesign (Mar. 1998), pp. 97–101.

[27] DUATO, J., YALAMANCHILI, S., AND NI, L. Interconnection Networks: An Engineer-

ing Approach, 2003th ed. Morgan Kaufmann, San Francisco, CA, 2003.

[28] EBRAHIMI, M., DANESHTALAB, M., LILJEBERG, P., PLOSILA, J., AND TENHUNEN,

H. Cluster-based topologies for 3d networks-on-chip using advanced inter-layer bus

architecture. Journal of Computer and System Sciences 79, 4 (June 2013), 475–491.

[29] EBRAHIMI, M., DANESHTALAB, M., PLOSILA, J., AND TENHUNEN, H. Minimal-

path fault-tolerant approach using connection-retaining structure in networks-on-chip.

In Proc. IEEE/ACM International Symposium on Networks on Chip (NoCS) (Apr. 2013),

pp. 1–8.

[30] EBRAHIMI, M., ET AL. Haraq: Congestion-aware learning model for highly adaptive

routing algorithm in on-chip networks. In Proc. IEEE/ACM International Symposium on

Networks on Chip (May 2012), pp. 19–26.

[31] FARAHNAKIAN, F., EBRAHIMI, M., DANESHTALAB, M., PLOSILA, J., AND LILJE-

BERG, P. Optimized q-learning model for distributing traffic in on-chip networks. In

Proc. IEEE International Conference on Networked Embedded Systems for Every Appli-

cation (Dec. 2012), pp. 1–8.

[32] FARUQUE, M., KRIST, R., AND HENKEL, J. Adam: Run-time agent-based distributed

application mapping for on-chip communication. In Proc. Design Automation Confer-

ence (DAC) (June 2008), pp. 760–765.

BIBLIOGRAPHY 143

[33] FATTAH, M., DANESHTALAB, M., LILJEBERG, P., AND PLOSILA, J. Smart hill climb-

ing for agile dynamic mapping in many-core systems. In Proc. Design Automation Con-

ference (DAC) (May-Jun 2013), pp. 1–6.

[34] FATTAH, M., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. Ajustable contiguity

of run-time task allocation in networked many-core systems. In Proc. Asia and South

Pacific Design Automation Conference (ASP-DAC) (2014), pp. 349–354.

[35] FATTAH, M., PALESI, M., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. Shifa:

System-level hierarchy in run-time fault-aware management of many-core systems. In

Proc. Design Automation Conference (DAC) (June 2014), pp. 1–6.

[36] FATTAH, M., RAMIREZ, M., DANESHTALAB, M., LILJEBERG, P., AND PLOSILA, J.

Cona: Dynamic application mapping for congestion reduction in many-core systems. In

Proc. International Conference on Computer Design (ICCD) (Sep-Oct 2012), pp. 364–

370.

[37] FEERO, B., AND PANDE, P. Networks-on-chip in a three-dimensional environment: A

performance evaluation. IEEE Transactions on Computers 58, 1 (Jan. 2009), 32–45.

[38] FIORIN, L., AND SAMI, M. Fault-tolerant network interfaces for networks-on-chip.

IEEE Trans. Dependable Secure Comput. 11, 1 (July 2013), 16–29.

[39] GLASS, C., AND NI, L. Fault-tolerant wormhole routing in meshes without virtual

channels. IEEE Trans. Parallel Distrib. Syst. 7, 8 (June 1996), 620–636.

[40] GRECU, C., IVANOV, A., SALEH, R., AND PANDE, P. P. Noc interconnect yield im-

provement using crosspoint redundancy. In Proc. IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT) (Oct. 2006), pp. 457–465.

[41] GRECU, C., IVANOV, A., SALEH, R., AND PANDE, P. P. Testing network-on-chip

communication fabrics. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 26, 12

(Dec. 2007), 2201–2213.

[42] HERNANDEZ, C., SILLA, F., SANTONJA, V., AND DUATO, J. A new mechanism to

deal with process variability in noc links. In Proc. IEEE International Symposium on

Parallel and Distributed Processing (IPDPS) (May 2009), pp. 1–11.

[43] HESTNESS, J., AND KECKLER, S. W. Netrace: Dependency-tracking traces for effi-

cient network-on-chip experimentation. Tech. Rep. TR-10-11, Department of Computer

Science, The University of Texas at Austin, Austin, Texas, May 2010.

[44] HU, J., AND MARCULESCU, R. Energy- and performance-aware mapping for regular

noc architectures. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 24, 4 (Apr

2005), 551–562.

[45] HWANG, Y., LEE, J., AND HAN, T. 3d network-on-chip system communication us-

ing minimum number of tsvs. In Proc. International Conference on ICT Convergence

(ICTC) (Sept. 2011), pp. 517–522.

[46] INSTRUMENTS, T. The Chip that Jack Built. url=http://www.ti.com/corp/
docs/kilbyctr/jackbuilt.shtml#top, 2008.

[47] ITRS. International Technology Roadmap for Semiconductors – Interconnect.

url=http://www.itrs.net/Links/2005ITRS/Interconnect2005.
pdf, 2005.

[48] ITRS. International Technology Roadmap for Semiconductors – System Drivers.

url=http://www.itrs.net/Links/2011ITRS/Home2011.htm, 2011.

url=http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml#top
url=http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml#top
url=http://www.itrs.net/Links/2005ITRS/Interconnect2005.pdf
url=http://www.itrs.net/Links/2005ITRS/Interconnect2005.pdf
url=http://www.itrs.net/Links/2011ITRS/Home2011.htm

144 BIBLIOGRAPHY

[49] ITRS. International Technology Roadmap for Semiconductors – Test and Test Equip-

ment. url=http://www.itrs.net/Links/2011ITRS/2011Chapters/
2011Test.pdf, 2011.

[50] IWAI, H. Roadmap for 22nm and beyond. Journal Microelectronic Engineering 86, 7-9

(July/Sept. 2009), 1520–1528.

[51] KANG, Y., KOWN, T., AND DRAPER, J. Fault-tolerant flow control in on-chip net-

works. In Proc. ACM/IEEE International Symposium on Networks-on-Chip (NOCS)

(2010), pp. 79–86.

[52] KARNIK, T., HAZUCHA, P., AND PATEL, J. Characterization of soft errors caused by

single event upsets in cmos processes. IEEE Trans. Dependable Secure Comput. 1, 2

(Apr./June 2004), 128–143.

[53] KIM, J., AND ET AL. A novel dimensionally-decomposed router for on-chip communi-

cation in 3d architectures. In Proc. International Symposium on Computer Architecture

(ISCA) (May 2007), pp. 138–149.

[54] KIM, J., NICOPOULOS, C., AND PARK, D. A gracefully degrading and energy-efficient

modular router architecture for on-chip networks. In Proc. International Symposium on

Computer Architecture (ISCA) (2006), pp. 4–5.

[55] KIM, J., PARK, D., NICOPOULOS, C., VIJAYKRISHNAN, N., AND DAS, C. Design and

analysis of an noc architecture from performance, reliability and energy perspective. In

Proc. Symposium on Architecture for networking and communications systems (ANCS)

(Oct. 2005), pp. 173–182.

[56] KIM, S., AND HAN, T. Fault-tolerant wormhole routing in mesh with overlapped solid

fault regions. Journal of Parallel Computing 23, 13 (Dec. 1997), 1937–1962.

[57] KOBBE, S., BAUER, L., LOHMANN, D., SCHRODER-PREIKSCHAT, W., AND

HENKEL, J. Distrm: Distributed resource management for on-chip many-core systems.

In Proc. IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis (CODES+ISSS) (Oct 2011), pp. 119–128.

[58] LAURENCIU, N., WANG, Y., AND COTOFANA, S. A direct measurement scheme of

amalgamated aging effects with novel on-chip sensor. In Proc. 21st IFIP/IEEE Interna-

tional Conference on Very Large Scale Integration (VLSI-SoC) (Istanbul, Turkey, Octo-

ber 2013), pp. 246–251.

[59] LAURENCIU, N. C., AND COTOFANA, S. Critical transistors nexus based circuit-level

aging assessment and prediction. Journal of Parallel and Distributed Computing (August

2013).

[60] LEHTONEN, T., LILJEBERG, P., AND PLOSILA, J. Online reconfigurable self-timed

links for fault tolerant noc. Journal of VLSI Design 2007 (Feb. 2007), 1–13.

[61] LEHTONEN, T., WOLPERT, D., LILJEBERG, P., PLOSILA, J., AND AMPADU, P. Self-

adaptive system for addressing permanent errors in on-chip interconnects. IEEE Trans.

VLSI Syst. 18, 4 (Apr. 2010), 527–540.

[62] LI, F., NICOPOULOS, C., RICHARDSON, T., AND XIE, Y. Design and management of

3d chip multiprocessors using network-in-memory. In Proc. International Symposium

on Computer Architecture (ISCA) (2006), pp. 130–141.

[63] LOI, I., ANGIOLINI, F., FUJITA, S., MITRA, S., AND BENINI, L. Characterization and

implementation of fault-tolerant vertical links for 3-d networks-on-chip. IEEE Trans.

Comput. Aided Design Integr. Circuits Syst. 30, 1 (Jan. 2011), 124–134.

url=http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Test.pdf
url=http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Test.pdf

BIBLIOGRAPHY 145

[64] LU, R., CAO, A., AND KOH, C. Samba-bus: A high performance bus architecture for

system-on-chips. IEEE Trans. VLSI syst. 15, 1 (Jan. 2007), 69–79.

[65] LU, Y., MCCANNY, J., AND SEZER, S. Exploring virtual-channel architecture in

fpga based networks-on-chip. In Proc. International SOC (System on Chip) Conference

(SOCC) (Sept. 2011), pp. 302–307.

[66] MARCULESCU, R., OGRAS, U., PEH, L., JERGER, M., AND HOSKOTE, Y. Outstand-

ing research problems in noc design: System, microarchitecture, and circuit perspectives.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 28, 1 (Jan. 2009), 3–21.

[67] MATSUTANI, H., KOIBUCHI, M., AND AMANO, H. Tightly-coupled multi-layer

topologies for 3-d nocs. In Proc. International Conference on Parallel Processing

(ICPP) (Sept. 2007), pp. 1–10.

[68] MURALI, S., BENINI, L., THEOCHARIDES, T., VIJAYKRISHNAN, N., IRWIN, M.,

AND MICHELI, G. Analysis of error recovery schemes for networks on chips. IEEE

Design and Test of Computers 22, 5 (Sept. 2005), 432–442.

[69] NICOLAIDIS, M., PASCA, V., AND ANGHEL, L. Through-silicon-via built-in self-

repair for aggressive 3d integration. In Proc. IEEE International On-Line Testing Sym-

posium (IOLTS) (June 2012), pp. 91–96.

[70] NOLLET, V., AVASARE, P., EECKHAUT, H., DIEDERIK, AND CORPORAAL, H. Run-

time management of a mpsoc containing fpga fabric tiles. IEEE Trans. VLSI Syst. 16, 1

(Jan 2008), 24–33.

[71] PALESI, M., KUMAR, S., AND CATANIA, V. Bandwidth-aware routing algorithms for

networks-on-chip platforms. IET Computers and Digital Techniques 3, 5 (Sept. 2009),

413–429.

[72] PALESI, M., KUMAR, S., AND CATANIA, V. Leveraging partially faulty links usage

for enhancing yield and performance in network-on-chip. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst. 29, 3 (Mar. 2010), 426–440.

[73] PARK, D., EACHEMPATI, S., DAS, R., MISHRA, A., XIE, Y., VIJAYKRISHNAN, N.,

AND DAS, C. Mira: A multi-layered on-chip interconnect router architecture. In Proc.

International Symposium on Computer Architecture (ISCA) (June 2008), pp. 251–261.

[74] PARK, D., NICOPOULOS, C., KIM, J., VIJAYKRISHNAN, N., AND DAS, C. Explor-

ing fault-tolerant network-on-chip architectures. In Proc. International Conferences on

Dependable Systems and Networks (DSN) (June 2006), pp. 93–104.

[75] PARKHURST, J., DARRINGER, J., AND GRUNDMANN, B. From single core to multi-

core: Preparing for a new exponential. In Proc. IEEE/ACM international conference on

Computer-aided design (ICCAD) (Nov. 2006), pp. 67–72.

[76] PASCA, V., ANGHEL, L., RUSU, C., AND BENABDENBI, M. Configurable serial fault-

tolerant link for communication in 3d integrated systems. In Proc. IEEE International

On-Line Testing Symposium (IOLTS) (July 2010), pp. 115–120.

[77] PASCA, V., REHMAN, S., ANGHEL, L., AND BENABDENBI, M. Efficient link-level

error resilience in 3d nocs. In Proc. International Symposium on Design and Diagnostics

of Electronic Circuits and Systems (DDECS) (Apr. 2012), pp. 127–132.

[78] PASRICHA, S. Exploring serial vertical interconnects for 3d ics. In Proc. Design Au-

tomation Conference (DAC) (July 2009), pp. 581–586.

146 BIBLIOGRAPHY

[79] PASRICHA, S., AND ZOU, Y. A low overhead fault tolerant routing scheme for 3d

networks-on-chip. In Proc. International Symposium on Quality Electronic Design

(ISQED) (Mar. 2011), pp. 1–8.

[80] PETERSON, W., AND WELDON, E. Error-correcting Codes, 1972th ed. MIT Press,

1972.

[81] PUENTE, V., GREGORIO, J., VALLEJO, F., AND BEIVIDE, R. Immunet: Dependable

routing for interconnection networks with arbitrary topology. IEEE Trans. Comput. 57,

12 (Dec. 2008), 1676–1689.

[82] RAHMANI, A., LATIF, K., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. Inter-

connects in the third dimension: Design challenges for 3d ics. In Proc. NORCHIP (Nov.

2010), pp. 1–6.

[83] RAHMANI, A., LATIF, K., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. A

stacked mesh 3d noc architecture enabling congestion-aware and reliable inter-layer

communication. In Proc. International Euromicro Conference on Parallel, Distributed

and Network-based Processing (PDP) (Feb. 2011), pp. 423–430.

[84] RANTALA, V., LEHTONEN, T., LILJEBERG, P., AND PLOSILA, J. Multi network inter-

face architectures for fault tolerant network-on-chip. In Proc. International Symposium

on Signals, Circuits and Systems (ISSCS) (July 2009), pp. 1–4.

[85] REED, D., AND GRUNWALD, D. The performance of multiprocessor interconnection

networks. IEEE Trans. Comput. 20, 6 (June 1987), 63–73.

[86] RUSU, C., ANGHEL, L., AND AVRESKY, D. Adaptive inter-layer message routing in

3d networks-on-chip. Journal of Microprocessors and Microsystems 35, 7 (Oct. 2011),

613–631.

[87] SALMINEN, E., KULMALA, A., AND HAMALAINEN, T. Survey of network-on-chip

proposals. White Paper, 2008.

[88] SCHWIEBERT, L., AND JAYASIMHA, D. N. Optimal fully adaptive wormhole routing

for meshes. In Proc. Supercomputing (DAC) (Nov. 1993), pp. 782–791.

[89] SEPULVEDA, J., GOGNIAT, G., PIRES, R., CHAU, W., AND STRUM, M. An evolutive

approach for designing thermal and performance-aware heterogeneous 3d-nocs. In Proc.

Symposium on Integrated Circuits and Systems Design (SBCCI) (Sept. 2013), pp. 1–6.

[90] SHIRINZADEH, S., AND R.ASLI. A novel soft error hardened latch design in 90nm

cmos. In Proc. CSI International Symposium on Computer Architecture and Digital

Systems (CADS) (May 2012), pp. 60–63.

[91] SHIVAKUMAR, P., KISTLER, M., KECKLER, S., BURGER, D., AND ALVISI, L. Mod-

eling the effect to technology trends on the soft error rate of combinational logic. In

Proc. International Conferences on Dependable Systems and Networks (DSN) (2002),

pp. 389–398.

[92] SINGH, A., SHAFIQUE, M., KUMAR, A., AND HENKEL, J. Mapping on multi/many-

core systems: Survey of current and emerging trends. In Proc. Design Automation Con-

ference (DAC) (June 2013), pp. 1–10.

[93] STRANO, A., HERNANDEZ, C., SILLA, F., AND BERTOZZI, D. Process variation and

layout mismatch tolerant design of source synchronous links for gals networks-on-chip.

In Proc. IEEE International Symposium on System on Chip (SoC) (Sept. 2010), pp. 43–

48.

BIBLIOGRAPHY 147

[94] SUN, F., CEVRERO, A., ATHANASOPOULOS, P., AND LEBLEBICI, Y. Design and fera-

sibility of multi-gb/s quasi-serial vertical interconnects based on tsvs for 3d ics. In Proc.

IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC) (Sept.

2010), pp. 149–154.

[95] TAMHANKAR, R., MURALI, S., STERGIOU, S., PULLINI, A., ANGIOLINI, F.,

BENINI, L., AND MICHELI, G. Timing-error-tolerant network-on-chip design method-

ology. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 26, 7 (July 2007), 1297–

1310.

[96] TAYLOR, M. A landscape of the new dark silicon design regime. IEEE Micro 33, 5

(Aug. 2013), 8–19.

[97] TSAI, W., ZHEN, D., CHEN, S., AND HU, Y. A fault-tolerant noc scheme using bidi-

rectional channel. In Proc. Design Automation Conference (DAC) (June 2011), pp. 918–

923.

[98] UNSAL, O., TSCHANZ, J., BOWMAN, K., DE, V., VERA, X., GONZALEZ, A., AND

ERGIN, O. Impact of parameter variations on circuits and microarchitecture. IEEE

Micro 26, 6 (Nov./Dec. 2006), 30–39.

[99] VAJDA, A. Programming Many-Core Chips, 2011th ed. Springer, New York, NY, 2011.

[100] VITKOVSKIY, A., SOTERIOU, V., AND NICOPOULOS, C. A fine-grained link-level

fault-tolerant mechanism for networks-on-chip. In Proc. International Conference on

Computer Design (ICCD) (Oct. 2010), pp. 447–454.

[101] VITKOVSKIY, A., SOTERIOU, V., AND NICOPOULOS, C. A highly robust distributed

fault-tolerant routing algorithm for nocs with localized rerouting. In Proc. Interconnec-

tion Network Architecture: On-Chip, Multi-Chip Workshop (INA-OCMC) (Jan. 2012),

pp. 29–32.

[102] WANG, Y., COTOFANA, S., AND FANG, L. A unified aging model of nbti and hci

degradation towards lifetime reliability management for nanoscale mosfet circuits. In

Proc. IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

(June 2011), pp. 175–180.

[103] WANG, Y., COTOFANA, S., AND FANG, L. Lifetime reliability assessment with aging

information from low-level sensors. In Proc. ACM international conference on Great

lakes symposium on VLSI (GLSVLSI) (May 2013), pp. 339–340.

[104] WIKIPEDIA. Ambric. url=http://en.wikipedia.org/wiki/Ambric, 2014.

[105] WIKIPEDIA. Moore’s law. url=http://en.wikipedia.org/wiki/Moore
%27s_law, 2014.

[106] WIKIPEDIA. Teraflops Research Chip. url=http://en.wikipedia.org/
wiki/Teraflops_Research_Chip, 2014.

[107] WIKIPEDIA. Network on a Chip. url=http://en.wikipedia.org/wiki/
Network_on_a_chip, 2015.

[108] WOO, S., OHARA, M., TORRIE, E., SINGH, J., AND GUPTA, A. The splash-2 pro-

grams: characterization and methodological considerations. In Proc. IEEE/IFIP Inter-

national Symposium on Computer Architecture (ISCA) (May 1995), pp. 24–36.

[109] WU, K., AND MARCULESCU, D. A low-cost, systematic methodology for soft error

robustness of logic circuits. IEEE Trans. VLSI Syst. 21, 2 (Feb. 2013), 367–379.

url=http://en.wikipedia.org/wiki/Ambric
url=http://en.wikipedia.org/wiki/Moore%27s_law
url=http://en.wikipedia.org/wiki/Moore%27s_law
url=http://en.wikipedia.org/wiki/Teraflops_Research_Chip
url=http://en.wikipedia.org/wiki/Teraflops_Research_Chip
url=http://en.wikipedia.org/wiki/Network_on_a_chip
url=http://en.wikipedia.org/wiki/Network_on_a_chip

148 BIBLIOGRAPHY

[110] XIE, Y., CONG, J., , AND SAPATNEKAR, S. Three-Dimensional Integrated Circuit

Design: EDA, Design and Microarchitectures. Springer, New York, NY, 2010.

[111] XIE, Y., LOH, G., BLACK, B., AND BERNSTEIN, K. Design space exploration for 3d

architectures. ACM Journal on Emerging Technologies in Computing Systems 2, 2 (Apr.

2006), 65–103.

[112] YIN, A., XU, C., LILJEBERG, P., AND TENHUNEN, H. Explorations of honeycomb

topologies for network-on-chip. In Proc. International Conference on Network and Par-

allel Computing (NPC) (Oct. 2009), pp. 73–79.

[113] YU, Q., AND AMPADU, P. Adaptive error control for noc switch-to-switch links in a

variable noise environment. In Proc. IEEE International Symposium on Defect and Fault

Tolerance of VLSI Systems (DFT) (Oct. 2008), pp. 352–360.

[114] YU, Q., AND AMPADU, P. Transient and permanent error co-management method for

reliable networks-on-chip. In Proc. IEEE/ACM International Symposium on Networks

on Chip (July 2010), pp. 52–59.

[115] YU, Q., ZHANG, M., AND AMPADU, P. Exploiting inherent information redundancy

to manage transient errors in noc routing arbitration. In Proc. IEEE/ACM International

Symposium on Networks on Chip (NoCS) (May 2011), pp. 105–112.

[116] ZHANG, Z., GREINER, A., AND TAKTAK, S. A reconfigurabel routing algorithm for a

fault tolerant 2d-mesh network-on-chip. In Proc. Design Automation Conference (DAC)

(June 2008), pp. 441–446.

[117] ZHU, M., LEE, J., AND CHOI, K. An adaptive routing algorithm for 3d mesh noc with

limited vertical bandwidth. In Proc. IEEE/IFIP International Conference on VLSI and

System-on-Chip (VLSI-SoC) (Oct. 2012), pp. 18–23.

List of Publications

International Journals

1. C. Chen, Y. Fu, and S. D. Cotofana, Toward Maximum Utilization of

Remained Bandwidth in Defected NoC Links, submitted.

International Conference/Workshop Proceedings

1. C. Chen, M. Enachescu, S. D. Cotofana, Enabling Vertical Wormhole

Switching in 3D NoC-Bus Hybrid Systems, Proc. Design Automation

and Test in Europe (DATE), pp. 507-512, Grenoble, France, Mar. 2015.

2. C. Chen, S. D. Cotofana, Link Bandwidth Aware Backtracking

Based Dynamic Task Mapping in NoC based MPSoCs, Proc. In-

ternational Workshop on Network on Chip Architectures (NoCArc), pp.

5-10, Cambridge, UK, Dec. 2014.

3. C. Chen, S. D. Cotofana, Towards an Effective Utilization of Partially

Defected Interconnections in 2D Mesh NoCs, Proc. IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), pp. 492-497, Tampa,

Florida, Jul. 2014.

4. C. Chen, S. D. Cotofana, A Low Cost Method to Tolerate Soft Er-

rors in the NoC Router Control Plane, Proceedings of International

IEEE SoC (System-on-Chip) Conference (SOCC), Erlangen, Germany,

pp. 374–379, Sep. 2013.

5. C. Chen, S. D. Cotofana, An Effective Routing Algorithm to Avoid

Unnecessary Link Abandon in 2D Mesh NoCs, Proc. Euromicro

Conference on Digital System Design (DSD), pp. 311–318, Santander,

Spain, Sep. 2013.

6. Y. Lu, C. Chen, J. McCanny, and S. Sezer, Design of interlock-free

combined allocators for Networks-on-Chip, 2012 IEEE International

SOC Conference (SOCC), pp. 358-363, Niagara Falls, New York, Sep.

2012.

7. C. Chen, Y. Lu, and S. D. Cotofana, A Novel Flit Serialization Strat-

egy to Utilize Partially Faulty Links in Networks-on-Chip, Proc.

IEEE/ACM International Symposium on Networks on Chip (NoCS),

pp.124-131, Lyngby, Denmark, May 2012.

149

Samenvatting

A
gressieve schaling van halfgeleidertechnologie verschaft

de middelen voor het verdubbelen van het aantal transistors op een

enkele chip elke 18 maanden. Om efficiënt gebruik te maken van

deze enorme chip resources zijn Multi-Processor Systems on Chip (MPSoCs),

geı̈ntegreerd met een Netwerk-on-Chip (NoC) communicatie-infrastructuur,

op grote schaal onderzocht. Echter verhoogt de transistor miniaturisatie

aanzienlijk de mogelijkheid van transient en permanente fouten, in het

bijzonder voor NoCs aangezien ze geometrisch zijn verspreid over de chip.

Om een betrouwbare communicatie service te leveren, moet de NOC zijn

functionaliteit behouden en zijn prestaties verlagen in de aanwezigheid van

fouten. In dit proefschrift stellen we verschillende nieuwe afgestemde NoC

mechanismen voor om fouten te tolereren die veroorzaakt worden door

bijvoorbeeld variability agents, ageing, agressieve omgevingsfactoren en het

efficiënt gebruik van nog steeds functionele NoC componenten. We

introduceren eerst een methode met lage kosten om correcte flit transmissie

mogelijk te maken zelfs wanneer soft errors in de router control voor komen.

Daarna stellen we een Flit Serialization (FS) strategie voor om defecte

verbindingen te tolereren en om de resterende bandbreedte te gebruiken.

Binnen het FS kader worden zwaar beschadigde verbindingen waarvan de

fout niveau boven een bepaalde drempelwaarde overschrijden gedeactiveerd

om congestie in hun upstream routers te verminderen. Bovendien ontwerpen

wij een routing algoritme gebaseerd op gedistribueerde logica die in staat is

om volledig gebroken verbindingen te toleren en daarnaast efficiënt gebruik

maakt van UnPaired Functional (UPF) verbindingen in gedeeltelijk defecte

verbindingen. We introduceren ook een run-time taak mapping algoritme die

op de hoogte van de verbindingsbandbreedte is, om de mapping kwaliteit van

nieuwe geı̈njecteerde toepassingen in MPSoCs te verbeteren. Tot slot

bespreken we de toepassing van de bovengenoemde strategieën in 3D NoC

systemen en stellen we een Bus Virtual channel Allocation (BVA)

mechanisme voor om verticaal wormhole switching mogelijk te maken om de

prestaties van 3D NoC-Bus hybride systemen te verbeteren. Alle voorstellen

zijn gevalueerd in onze gemengde NoC simulatie platform en hun voordeel

ten opzichte van state of the art tegenhangers is bewezen door middel van

experimentele resultaten.

151

Propositions
accompanying the PhD Dissertation

Towards Dependable Network-on-Chip Architectures

by Changlin Chen

1. A Network-on-Chip is a scalable and reliable communication infrastruc-

ture replacement of buses and crossbars in Multi-Processor Systems on

Chip. [This thesis]

2. A partially defective link usually contains only a small number of broken

wires, thus most of its bandwidth still can be utilized. [This thesis]

3. Efficiently utilizing still functional resources is as important as tolerating

faults to improve the system dependability. [This thesis]

4. The most practicable strategy to provide a dependable service is not to

use undependable devices.

5. Interest is the best motivation.

6. When you look around and find out that everybody can be better than

you, you should think about changing your career.

7. The ability to find the questions is more important than that to answer

the questions for PhD candidates.

8. If your method is becoming more and more complicated, most probably

you are going in the wrong direction.

9. Incremental should never be a reason to reject a paper, as every contri-

bution is based on previously published ones.

10. I can accept failure, everyone fails at something. But I cannot accept not

trying. – Michael Jordan

11. Every choice has pros and cons, you will occasionally regret your choice

no matter what you chose.

12. Happy wife, happy life. – Deborah Carr, professor of sociology at Rut-

gers University.

These propositions are regarded as opposable and defendable, and have been

approved as such by the promotor, Prof. dr. K.L.M. Bertels.

Stellingen
behorende bij het proefschrift

Towards Dependable Network-on-Chip Architectures

door Changlin Chen

1. Een Netwerk-on-Chip is een schaalbare en betrouwbare communicatie-

infrastructuur vervanger van bussen en crossbars in Multi-Processor

Systems on Chip. [Dit proefschrift]

2. Een gedeeltelijk defecte verbinding bevat meestal slechts een klein aan-

tal kapotte draden, waardoor het merendeel van de bandbreedte nog

steeds kan worden gebruikt. [Dit proefschrift]

3. Het efficiënter gebruik van nog steeds functionerende middelen is even

belangrijk als het tolereren van fouten om de systeem betrouwbaarheid

te verbeteren. [Dit proefschrift]

4. De meest uitvoerbare strategie om een betrouwbare service te verlenen

is om onbetrouwbaar componenten niet te gebruiken.

5. Interesse is de beste motivatie.

6. Als je om je heen kijkt en je komt er achter dat iedereen beter dan jou

kan zijn, dan moet je nadenken over het veranderen van je carrière.

7. In staat zijn om vragen te vinden is voor promovendi belangrijker dan

de vragen te beantwoorden.

8. Als je methode steeds ingewikkelder wordt ga je waarschijnlijk de ver-

keerde kant op.

9. “Incrementele bijdrage” mag nooit een reden zijn om een publicaties te

verwerpen, omdat elke bijdrage gebaseerd is op eerder publicaties.

10. Ik kan mislukkingen accepteren, iedereen faalt wel eens. Maar ik kan

het niet proberen niet aanvaarden. - Michael Jordan

11. Elke keuze heeft voor en nadelen, af en toe zal je spijt krijgen van je

keuze ongeacht wat je gekozen hebt.

12. Een gelukkige vrouw leidt tot een gelukkig leven. - Deborah Carr,

hoogleraar sociologie aan de Rutgers University.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als

zodanig goedgekeurd door de promotor, Prof. dr. K.L.M. Bertels.

Curriculum Vitae

Changlin Chen was born on June 1st ,

1986 in Taian, Shandong Province, China. From

September 2003 to July 2005 he studied at the

School of Medicine, Shandong University (SDU)

in Jinan, China. In September 2005, he changed

his major from Clinical Medicine to Electronic

Information Science and Technology and

continued his study at the School of Information

Science and Engineering, SDU. He received

Bachelor’s degree in Electronic Information

Science and Technology in 2008. Subsequently,

he graduated with Master’s degree in Information

and Communication Engineering in 2010, from

National University of Defense Technology (NUDT) in Changsha, China.

In 2010 he was awarded a government scholarship from Chinese Scholarship

Council (CSC), to pursue his PhD studies in the Netherlands. In December

2010, he joined the Computer Engineering laboratory of Delft University of

Technology in the Netherlands, under the supervision of Associate Professor

Dr. Sorin Cotofana. The major focus of his PhD studies are on dependable

Network on Chip architectures. The results of this work are presented in the

current dissertation.

His research interests include Network on Chip, Multi-Processor Systems on

Chip, parallel computation, high speed signal processing, fault tolerance,

circuit system design, etc.

155

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms and Symbols
	Introduction
	Network-on-Chip
	From Single Processor to Multi-Processor SoCs
	From Bus and Crossbar to Network-on-Chip

	Research Challenges
	Dissertation Contributions
	Dissertation Organization

	NoC Background Knowledge
	An NoC Example
	NoC Architecture
	NoC Topology
	Routing Algorithm
	Switching Policy

	Router Architecture
	Router Pipeline
	Virtual Channel States
	Speculative Virtual Channel and Switch Allocation

	Simulation Platform
	Synthetic Traffic
	Real Application Traces
	Task Mapping Benchmarks
	Evaluation Metrics

	Conclusions

	Soft Error Tolerance in Router Control Plane
	Introduction
	Soft Errors in Links and Router Datapath
	Soft Errors in The Control Plane – Related Work
	Soft Errors Detection
	Errors in Routing Units
	Errors in VC Allocators
	Errors in Switch Allocators

	Soft Error Correction
	Evaluation
	Reliability
	Area and Power Overhead
	System Performance

	Conclusion

	Effective Utilization of Partially Faulty Links
	Introduction
	Related Work
	Partially Faulty Link Utilization
	Link Diagnosis
	Flit Serialization and Deserialization
	Flit Transmission Process
	Redundant Link Section
	Link Latency and Reliability

	Evaluation
	FS Performance on Synthetic Traffic
	FS Performance on PARSEC Benchmarks
	Area and Power

	Conclusion

	Heavily Defected Link Deactivation and Fault Tolerant Routing
	Introduction
	Related Work
	Link Bandwidth Aware Routing
	Fault Tolerant Routing Algorithms

	Heavily Defected Links Deactivation Threshold
	Unpaired Functional Link Aware Fault Tolerant Routing Algorithm
	Fault Pattern Validation
	Turn Rules
	VC utilization Constraints
	Deadlock Freeness

	Evaluation
	UPF-FTRA Performance on Synthetic Traffic
	UPF-FTRA performance on PARSEC Benchmarks
	The Effectiveness of the Link Deactivation Threshold
	Area and Power

	Conclusion

	Link Bandwidth Aware Task Mapping
	Introduction
	Related Work
	Problem Description
	The Mapping Algorithm
	Region Selection
	Task Mapping

	Evaluation
	Mapping Quality
	Loose Factor
	Real Applications

	Conclusion

	Enabling Wormhole Switching and Tolerating Faults in 3D NoC Vertical Links
	Introduction
	Related Work
	VC Allocation Along Vertical Buses
	Problem Description
	Bus VC Allocation Mechanism
	Bus Data Transmission Policy

	Evaluation
	Critical Path Length
	Synthetic Traffic
	BVA Efficiency
	PARSEC Benchmarks
	Area and Power

	Fault Tolerance in 3D NoCs Vertical Links
	Transient Faults
	Partially Defected Vertical Buses
	Fault Tolerant Routing

	Conclusion

	Conclusions and Future Work
	Summary
	Future Research Directions

	Bibliography
	List of Publications
	Samenvatting
	Propostions
	Stellingen
	Curriculum Vitae

