Towards Dependable Swarms
and a New Discipline of Swarm Engineering

Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

Intelligent Autonomous Systems Laboratory,
UWE Bristol, Coldharbour Lane, Bristol BS16 1QY, UK
Alan.WinfieldQuwe.ac.uk
http://www.ias.uwe.ac.uk/

Abstract. This review paper sets out to explore the question of how
future complex engineered systems based upon the swarm intelligence
paradigm could be assured for dependability. The paper introduces the
new concept of ‘swarm engineering’: a fusion of dependable systems en-
gineering and swarm intelligence. The paper reviews the disciplines and
processes conventionally employed to assure the dependability of con-
ventional complex (and safety critical) systems in the light of swarm
intelligence research and in so doing tries to map processes of analy-
sis, design and test for safety-critical systems against relevant research
in swarm intelligence. A case study of a swarm robotic system is used
to illustrate this mapping. The paper concludes that while some of the
tools needed to assure a swarm for dependability exist, many do not, and
hence much work needs to be done before dependable swarms become a
reality.

1 Vision

From an engineering standpoint the design of complex distributed systems based
upon swarm intelligence is compellingly attractive but problematical. A distin-
guishing characteristic of distributed systems based upon swarm intelligence is
that they have no hierarchical command and control structure, and hence no
common mode failure point or vulnerability. Typically, individual agents make
decisions autonomously, based upon local sensing and communications [5, 6].
Systems with these characteristics could, potentially, exhibit very high levels of
robustness, in the sense of tolerance to failure of individual agents; much higher
levels of robustness than in complex distributed systems based on traditional
design approaches. However, that robustness comes at a price. Complex sys-
tems with swarm intelligence might be very difficult to control or mediate if
they started to exhibit unexpected behaviours. Such systems would therefore
need to be designed and validated for a high level of assurance that they ex-
hibit intended behaviours and equally importantly do not exhibit unintended
behaviours. It seems reasonable to assert that future engineered systems based
on the swarm intelligence paradigm would need to be subject to processes of
design, analysis and test no less demanding that those we expect for current
complex systems.

E. Sahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 126-142, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards Dependable Swarms and a New Discipline of Swarm Engineering 127

Some might argue that a ‘dependable swarm’ is an oxymoron; that the swarm
intelligence paradigm is intrinsically unsuitable for application in engineered sys-
tems that require a high level of integrity. The idea that overall desired swarm
behaviours are not explicitly coded anywhere in the system, but are instead an
emergent consequence of the interaction of individual agents with each other and
their environment, might appear to be especially problematical from a depend-
ability perspective. This paper suggests that this is not so: that systems which
employ emergence should, in principle, be no more difficult to validate than
conventional complex systems and, indeed, that some characteristics of swarm
intelligence are highly desirable from a dependability perspective.

The aim of this paper is to explore the question of how future engineered
systems based on the swarm intelligence paradigm might be designed, analysed
and tested for dependability. The paper attempts to do this by the juxtaposition
of two hitherto disconnected disciplines: dependable systems engineering and the
design of multi-agent systems based on the swarm intelligence paradigm (which
we shall term ‘swarm engineering’). This is a big question, a complete answer to
which is well beyond the scope of this paper. The paper instead tries to set out
the important questions for the ongoing study of dependable swarms.

In order to illustrate the questions raised by this paper an example of a
robotic swarm is presented as a case study. The case study is incomplete, since
the tools and disciplines needed to fully validate the system in question do not
exist: that is of course the point of this paper. The case study does, however, help
us to think about the rather abstract issues of dependable systems engineering
with reference to a robotic swarm that could see real-world application within
the near future. This paper proceeds as follows. Section 2 introduces the case
study that will be used throughout the rest of the paper. Section 3 is a review
of current best practice in the field of dependable systems engineering. While
outlining and referencing the processes and methodologies of analysis, design and
test, this section will reflect on what these might mean in practice, for swarm
engineering, with reference to the case study. Section 4 then concludes with a
discussion and outlook, setting out a roadmap of the work that needs to be done
before real-world swarm engineering can become a reality.

2 Case Study: Swarm Containment

As a case study let us consider a swarm robotics approach to physical contain-
ment or encapsulation, as illustrated in figure 1.

Potential applications for such an approach might include a swarm of marine
robots that find and then contain oil pollution or in-vivo nano-bots that seek
and isolate harmful cells in the blood stream (a kind of artificial phagocyte). The
latter application is not so far-fetched when one considers the rate of progress
in the engineering of genetic circuits, see Yokobayashi et al [27].

The emergent encapsulation behaviour of figure 1 is one of a number of emer-
gent properties of a class of algorithms that we have developed, which make use
of local wireless connectivity information alone to achieve swarm aggregation;
see Nembrini et al. [18]. Wireless connectivity (what Stgy termed situated com-

128 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

Fig. 1. Emergent encapsulation; (left) encapsulation in progress and (right) encapsu-
lation complete.

munication [24]) is linked to robot motion so that robots within the swarm
are wirelessly ‘glued’ together. This approach has several advantages: firstly the
robots need neither absolute or relative positional information; secondly the
swarm is able to maintain its coherence (i.e. stay together) even in unbounded
space, and thirdly, the connectivity needed for and generated by the algorithm
means that the swarm naturally forms an ad-hoc communications network. Such
a network would be a requirement in many swarm robotics applications. The al-
gorithm requires that connectivity information is transmitted only a single hop.
Each robot broadcasts its ID and the IDs of its immediate neighbours only, and
since the maximum number of neighbours a real robot can have is physically
constrained and the same for a swarm of 100 or 10,000 robots, the algorithm
scales linearly for increasing swarm size. The algorithm thus meets the criteria
for swarm robotics, articulated by Sahin [21] and Beni [3]. We have a highly
robust and scalable swarm of homogeneous and relatively incapable robots with
only local sensing and communication capabilities, in which the required swarm
behaviours are truly emergent. Furthermore we observe flexibility to its environ-
ment in that our wireless connected swarm demonstrates emergent taxis towards
a beacon (which, in this case, is the object to be contained), emergent obstacle
avoidance and emergent beacon encapsulation.

Our algorithms for coherent swarming of wireless networked mobile robots
have been tested extensively in simulation and, rather less extensively, using a
fleet of physical laboratory robots. A group of these robots (‘Linuxbots’) are
shown in figure 2. The real robot implementation does not, however, constitute
a real-world application. It is instead an ‘embodied’ simulation, whose main
purpose is to verify that algorithms tested in computer simulation will transfer
to the real world of non-ideal and noisy sensors and actuators.

3 Dependable Swarm Engineering

Current best practice in assuring the dependability of complex systems requires
that a set of processes and disciplines are transparently applied during system

Towards Dependable Swarms and a New Discipline of Swarm Engineering 129

Fig. 2. The Linuxbots, used for embodied simulations.

analysis, design and test, see Anderson et al [1]. This paper now considers the
approaches that would typically need to be applied to safety-critical systems
in the context of swarm engineering, under these three headings. Note that
best practice requires that the processes of analysis, design and test are applied
concurrently and iteratively, so the ordering of the following sections should not
be taken to imply sequence.

3.1 Analysis

From a dependability perspective, analysis is concerned with trying to establish
two properties of a system: ‘liveness’ and ‘safety’. Liveness is defined as the
property of exhibiting desirable behaviours (doing the right thing) and safety
is defined as the property of not exhibiting undesirable behaviours (not doing
the wrong thing). While these properties are clearly somewhat complementary
proof of one does not imply proof of the other, by inversion. A system that is
provably safe could, for example, do the wrong thing safely. Although it may
appear counter-intuitive, the methods needed to verify these two properties are
not the same.

Verification of Liveness. Verification of ‘liveness’ requires that we formally
prove that a system exhibits desirable behaviours. Conventionally this requires
analytical or mathematical modelling. In the safety systems community the use
of testing alone to prove liveness is now deprecated on the grounds that sys-
tems are becoming too complex to allow anything like acceptably complete test
coverage, or even to allow complete test specifications to be written. Simula-
tion is similarly regarded as unacceptable as an analysis tool (an interesting
observation given the widespread use of simulation within swarm intelligence
research!). Simulation is nevertheless accepted as a useful tool in prototyping,

! For a valuable discussion of the role of simulation in embodied systems research see
Ziemke [29].

130 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

to for instance refine the system specification and to understand the design or
parameter space.

Complete verification of the liveness of a swarm system thus requires mathe-
matical modelling at two levels: the individual agent, and the swarm as a whole.

Let Us First Consider the Individual Agent. Often, single artificial agents within
swarms are designed using the behaviour-based control paradigm [7]. Behaviour-
based control is appropriate given that such agents are typically reactive finite-
state machines with relatively few states. We have developed an approach,
based on a second order extension of Lyapunov stability theorems, proving both
marginal and asymptotic stability [11]. The significance of second order stability
is that position control in mobile agents can generally only be achieved through
actuators that generate forces which govern acceleration; the second derivative of
position. Of particular significance is that these new stability theorems provide
an explicit mathematical representation of subsumption. Based on this observa-
tion Harper has developed a design methodology called ‘Direct Lyapunov Design’
which leads from analysis directly to a colony-style behaviour based controller
which is provably stable (in the sense of Lyapunov), and exhibits the liveness
property [12]. In a fixed-priority behaviour-based architecture such as the colony-
style subsumption architecture [9], the transfer functions of behaviour modules
must be partial functions, i.e. which do not generate outputs continuously, in or-
der that lower priority behaviour modules will have a chance to drive the system.
Direct Lyapunov Design allows the construction of behaviour modules as partial
functions and hence their integration into a colony-style subsumption controller.
This approach thus advantageously encompasses both analysis and design.

Case Study: Figure 3 shows the colony-style subsumption controller for a sin-
gle robot in the coherent swarm described in section 2. For simplicity only the
bottom three layers are shown; the beacon-taxis layer is omitted. Notice that
the local neighbourhood connectivity information can be treated as, in effect,
sensory input to the coherence layer. In fact, the coherence layer makes use of
memory to store neighbourhood connectivity, but in modelling the controller as
a subsumption architecture we can treat the memory as part of the connectiv-

h J

Random Turn
Local | l

Connectivity
o U-Turn Coherence
Layer
Collision . . . Avoidance
Sensors Collision Avoidance — Layer

Fig. 3. Case study: single robot control architecture.

Towards Dependable Swarms and a New Discipline of Swarm Engineering 131

ity ‘sensor’. The two behaviours in the coherence layer are ‘U-turn’, executed

when the connectivity-sensor estimates that the robot is leaving the swarm; and
‘Random turn’, executed when the connectivity-sensor estimates that the robot
has regained the swarm (for a description of how these estimates are made refer
o [18]).

As a demonstration of the application of the second order stability theorems
consider the analysis of the avoidance layer module. If we describe the state-space
vector for the avoidance layer as x 4(t), and assume the existence of a candidate
Lyapunov function? V4 (z), then the value of that Lyapunov function along the
state trajectories of the avoidance behaviour can be defined as function Wy (t)
where

Wal(t) =V(zalt)) (1)

The principle of the method is based on the observation that the first order
asymptotic stability theorem subsumes the second order theorem whenever the
system motion is stable in the first order sense, i.e. whenever the motion is
naturally convergent on the desired goal and Wa(t) < 0. The second order
asymptotic stability theorem can be used to design stable behaviour even if
WA() > 0 within limits, as long as the second derivative WA() is negative and
the motion is decelerating, i.e.

0 < Wa(t) < Winaz A Wal(t) < Winaz < 0 (2)

In order to achieve stable collision avoidance behaviour the transfer function
of the collision avoidance behaviour module needs only to be defined for states
where W4 (t) > 0, generating outputs (actions) which ensure that W4 (t) < 0 and
therefore it is a partial function over the state space of the collision avoidance
behavioural domain. Since it is a partial function it can be included within
a fixed-priority subsumption architecture. The same argument would apply to
the coherence layer and the value of the Lyapunov function along the state
trajectory for the coherence behaviour, We(z). Thus, we are able to move toward
verification of the liveness property for a single robot within our case study.

Now Consider the Mathematical Modelling of the Whole Swarm. There has been
relatively little work in this direction, but one very promising approach is the
probabilistic model developed by Martinoli et al. [19]. In this approach the in-
teractions of agents with each other and their environment are modelled as a
series of stochastic events, with probabilities determined by simple geometrical
analysis. By modelling several series together, one for each agent, the overall
behaviour of the swarm can be studied. The approach of Martinoli et al may be
thought of as bottom up (or microscopic as they describe it). A top down (or
macroscopic) approach has been developed by Lerman and Galystan [14]. Like
Martinoli, Lerman and Galystan regard the behaviour of each agent as inher-
ently probabilistic and Markovian, because their next state is a function only of

2 Which could be as straightforward as the Euclidian distance between z(#) and the
goal state z, ().

132 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

their current state. However, they develop an overall model of the system using
the stochastic Master Equation (from stochastic dynamical systems), then derive
rate (differential) equations from it, which describe how the average macroscopic
system properties change over time. A review of modelling and analysis methods
for swarm robotic systems is given in Lerman et al. [15].

Case Study: Analysis suggests that mathematical modelling of our swarm con-
tainment case will not yield to the method proposed by Martinoli, et al [19]. We
are able to model the single robot controller as a state transition diagram (see
figure 4), however, because our swarm operates in an unbounded space then ge-
ometrical analysis cannot be used to develop expressions for the state transition
probabilities. In particular transitions between the forward state and the U-
turn or Random-turn states in the coherence behaviour depend on local network
topology. Similarly, we are unable to use the macroscopic approach of Lerman
et al [14] because the individual agents in our case cannot be modelled as simple
Markovian processes; they have memory and their next state may depend on
the recent history of the local network topology.

Verification of Safety. To verify ‘safety’ we need to prove that a system does
not exhibit undesirable behaviours. In order to attempt such a proof first requires
that we identify and articulate all possible undesirable behaviours. This is called
‘hazard analysis’ and is problematical with conventional complex systems; and
there is no reason to suppose that identifying the hazards in swarm engineered
systems will be any different. Hazards analysis is problematical because there are
no formal methods for identifying hazards. It simply has to be done by inspection
(typically by ‘extreme brainstorming’ to try and list all possible hazards no
matter how seemingly implausible or improbable).

Given a reasonably well understood operational environment there are two
reasons for undesirable behaviours: random errors, or systematic (design) errors.
Random errors are those due to hardware or component faults, and these are
typically analysed using techniques such as Failure Mode and Effects Analysis

> U-turn
{ Swarm Lost]—C)
Random turn
1

Coherence Behaviour

Forward
Avoidance Béhavioyr — [T T T T T - T 7 °
All paths D Fwd blocked Obstacle left D
blocked rear path clear or right front
Y
Halt Reverse > Avoid

Fig. 4. Case study: single robot state transition diagram.

Towards Dependable Swarms and a New Discipline of Swarm Engineering 133

(FMEA). The likelihood that random errors cause undesirable behaviours can
be reduced, in the first instance, by employing high reliability components. But
systems that require high dependability will typically also need to be fault tol-
erant, through redundancy for example. This is an important point since swarm
engineered systems should, in this respect, offer significant advantages over con-
ventional complex systems. Two characteristics of swarms work in our favour
here. Firstly, simple agents with relatively few rules lend themselves to FMEA,
and their simplicity facilitates design for reliability. Secondly, swarms consist of
multiple agents and hence, by definition, exhibit high levels of redundancy and
tolerance to failure of individual agents. Indeed, swarms may go far beyond con-
ventional notions of fault tolerance by exhibiting tolerance to individuals who
actively thwart the overall desired swarm behaviour.

Systematic errors are those aspects of the design that could allow the system
to exhibit undesirable behaviours. For swarm engineered systems analysis of sys-
tematic errors clearly needs to take place at two levels: in the individual agent
and for the swarm as a whole. Analysis of systematic errors in the individual
agent should be helped by the relative simplicity of the agents, but is not trivial.
In general terms we would need to prove that an agent’s state-space trajectory
is always ‘away from’ the hazard states. Following the discussion of section 3.1
we conjecture that the 2nd order Lyapunov approach could be extended to cover
the analysis of hazard states as well as goal states, thus offering the possibility
of verifying liveness and safety with a single analysis, see Appendix A. Analysis
of systematic errors for the swarm as a whole is much more problematical, par-
ticularly if the desired behaviours are emergent. Proof of safety for the overall
swarm would appear to require that we prove that there are no undesired emer-
gent behaviours. How to prove this to an acceptable level of confidence is by no
means clear.

Case Study: A valuable measure of the ‘coherence’ of our swarm is network
connectivity. Within the coherence layer of our single robot controller comparison
of local network connectivity against a threshold determines the estimate of
‘swarm lost” and hence triggers the U-turn behaviour. Adjusting this threshold
value for the whole swarm controls the network connectivity, and hence area
coverage; a low value of threshold generates a low density swarm with relatively
few wireless connections between individual robots, whereas a high threshold
value generates a dense and highly connected swarm. We have developed, from
graph theory, upper and lower bounds on the area coverage of the swarm, for
given threshold values and swarm sizes. While these bounds are rather loose,
they nevertheless provide valuable confidence that the swarm will not exceed a
given area coverage. Of course, the swarm exceeding a given area is only one
possible ‘hazard’, so our upper bounds analysis provides proof of swarm safety
for just this one identified hazard.

3.2 Design

The design of systems based on the swarm intelligence paradigm is challenging,
not least because there are no principled design approaches for determining the

134 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

behaviours required of the individual agents in order to give the desired emergent
overall swarm behaviour. Indeed, some would argue that a principled approach
to the design of emergence is impossible. This paper is however concerned with
dependability, and there is no reason to suppose that emergent behaviours cannot
form part of a dependable system.

Most complex systems are designed top-down from an overall functional de-
sign specification (FDS), by functional decomposition: breaking down the overall
system into smaller and smaller components, then defining each of those compo-
nents and the interfaces between them. What differentiates design for depend-
able, or safety critical, systems is that it will typically use a structured design
methodology to provide a framework for capturing and documenting the de-
sign as it progresses, top down. The Yourdon structured design methodology,
for instance, is based upon the dataflow paradigm. It starts at the top level by
describing the overall system and its interfaces with its operational environment
as a ‘context diagram’: this is level 0. The context diagram is then decomposed
into level 1 ‘processes’ and the dataflows between them, expressed in a data flow
diagram (DFD). Each process in level 1 is then further decomposed into lower
level DFDs, and so on, see Yourdon [28]. The structured design may well be
applied within the discipline of a document driven approach [13], together with
code inspection [10].

If we consider the applicability, and utility, of the Yourdon structured design
methodology to swarm engineered systems it is clear that, at the top level, we
can express the single swarm and its interfaces with the environment as a context
diagram (level 0). Equally well, we could describe the internal processes of an
individual agent with a data flow diagram (level 2). What is interesting, however,
is how we might express the intermediate level 1 as a DFD. If we assume that
single agents are (a) mobile, and (b) able to sense only their immediate neigh-
bours [18,25], then the level 1 DFD will reflect the instantaneous topography of
the swarm. After the mobile agents have moved, the DFD must change to reflect
the new swarm topography. This interestingly suggests an extension of the DFD
which we could term the ‘dynamic data flow diagram’.

Case Study: As discussed above we can express the design of our case study
swarm robotic system graphically, as a hierarchy of data flow diagrams. Figure
5 shows the level 1 DFD but, in a departure from standard DFD notation, the
data flows between level 1 processes - which happen to be robots - will change
dynamically as the robots move. The DFD in figure 5 is thus a snapshot of the
relationship between processes, rather than a static map. However, since every
level 1 process (robot) and every dataflow between level 1 processes is identical
then the DFD in figure 5 is simpler than it appears. The value of this approach
is that we can make use of the full structured formalism of Yourdon to capture
the design at both swarm and single robot level.

Figure 6 shows the DFD for a single level 1 process (robot), and its decom-
position into level 2 processes. The ‘behaviour-based control process’ shown in
figure 6 is described as a subsumption architecture in figure 3, and a state tran-
sition diagram in figure 4. When we add specifications for interfaces between

Towards Dependable Swarms and a New Discipline of Swarm Engineering 135

Robot 5

\ Data (Me’ééég_e} Flows
Y Between neighbours

[Robot 4
| Wireless
Range

Fig. 5. Case study: swarm dynamic data flow diagram.

Messages to
/" Neighbours

~_
Messages from

Behaviour- Neighbours

based
Control
Process

Message

\\\ Neighbourhood Server /
\ Connectivity Q\
Level 1 process
Level 2 process
\\\\ ~

Fig. 6. Case study: single robot data flow diagram.

processes (dataflows) and data structures then we have a complete description
of the design specification for the swarm and its robots. The Direct Lyapunov
Design methodology [12] introduced in section 3.1 provides a design procedure
for formally deriving implementations of individual robot behaviours, as ‘mo-
tor schema’, from the 2nd order Lyapunov stability analysis. The advantage of
motor schema [2] is that they are simple piecewise mapping functions relating
sensor inputs to actuator outputs which could be realised as gate arrays for very
reliable controller hardware.

136 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

3.3 Test

Within the safety critical systems community there is general agreement that
testing, whilst essential, can only provide a limited measure of confidence in the
liveness and safety properties of a system [8]. There are two problems. Firstly,
to write a complete test specification for a complex system is very difficult, and
secondly to achieve 100% test coverage (which means exercising every possible
execution path through control code or state machines under controlled condi-
tions), whilst not technically impossible, is infeasibly time consuming for even
moderately complex systems. Thus even the most safety critical systems in use
today, such as aircraft flight management systems, will have been put through
demanding but ultimately incomplete testing [16]. This is the reason that test-
ing needs to go hand in hand with mathematical modelling, as discussed in 3.1
above.

Typically, a test regime for safety critical systems is split into two parts:
system level functional testing and component level testing. System level testing
is primarily concerned with liveness, and treats the overall system as a black box,
testing only for correct behaviour of the system as a complete entity against a
system test specification. Component level testing breaks the system into its
sub-systems and tests each one individually. Thus component level testing is the
equivalent of system level white box testing.

At component level, sub-systems need to be tested functionally. This nor-
mally requires that test harnesses are created to enable components to be tested
in isolation from the rest of the system. A test harness will set up input con-
ditions for a component that might be extremely difficult to create by treating
the system as an integrated whole. Test coverage can be measured directly in a
process called dynamic analysis, which ‘instruments’ code such that each time it
is executed a tally is kept of the number of times every possible execution path
has been exercised. Dynamic analysis is an iterative (and cumulative) process
in which ever more ingenious new tests are devised (typically by inspection of
the code), in order to exercise those parts of the code revealed to have been not
executed by the testing so far. The process continues until the target level of test
coverage has been achieved. Needless to say dynamic analysis is a difficult and
time consuming process. For completeness static analysis should also be men-
tioned since it often goes hand in hand with dynamic analysis. Static analysis
measures code without actually executing it against coding standards includ-
ing, typically, the McCabe complexity measure to assess the ‘spaghetti-ness’ of
code [20].

If we now consider swarm engineered systems in the light of the discussion
above, it is clear that system level testing needs to apply to the swarm as a
whole, operating in its intended environment, and component level testing ap-
plies, in effect, to an individual agent. The fact that individual agents are often
identical in swarm systems, and relatively simple in functional terms, suggests
that component level testing should not be intractable. This view is, however,
probably illusory, since the ‘environment’ for a single agent is the sum total
of the other (presumably) neighbouring agents and the environment. Complete

Towards Dependable Swarms and a New Discipline of Swarm Engineering 137

testing of a single agent would require that every possible configuration of neigh-
bours and environment is specified, and repeatable tests devised (the neighbours
plus environment becomes in effect the test harness). There has been little work
in mobile robotics to quantitatively assess the effect of its environment on an
individual robot, but see Schoner et al. [22]; Smithers [23]. The recent paper of
Nehmzow and Walker [17] suggests methods based on dynamical systems theory,
time series analysis and deterministic chaos theory.

The question of how to write a swarm test specification (STS) for the swarm
as a whole might appear to be problematical given that the internal structure
of the swarm is typically highly dynamic and chaotic. However, if we discipline
ourselves to treating the swarm as a single entity then it should be possible to
develop tests for the desired swarm behaviours. These will almost certainly be
statistical, measuring for instance the frequency with which a given behaviour
reaches a quantitative threshold condition of achievement within a given time
frame, over repeated test runs. Thus, developing an STS for a swarm engineered
system is likely to require careful attention to defining criteria for the achieve-
ment of swarm behaviours, including metrics for swarm properties such as mean
swarm velocity, or mean area coverage.

Case Study: Providing the means to repeatably test a real robotic swarm could
well, depending upon the size and form of the robots, present a significant en-
gineering challenge. This requires, in the first instance, an instrumented test
arena in which a representative operational environment can be created so that
the performance of the swarm in achieving its desired behaviours can be observed
and measured. This is itself not straightforward. Of course ultimately the swarm
would also need to be tested in its real operational environment and that could
be an even greater challenge, so let us confine ourselves here to thinking about
the controlled test environment. Figure 7 shows two successive frames from a
test run of our case study swarm. It must be stressed that these robots are not
the real robots of a real-world application of our case study; the setup shown
here is an embodied simulation aimed at providing proof-of-concept confirma-
tion of the basic algorithms. Nevertheless, it will serve to illustrate the tools and
techniques that will be required to test the real swarm.

Figure 7 shows a test of our embodied simulation in progress. Here we are
trying to experimentally verify that the swarm maintains coherence, i.e. stays
together. Note that the seven robots in figure 7 are grouped together by virtue
of their wireless connectivity, not the physical bounds of the experimental arena;
it follows that in our case the arena needs to be large enough with respect to the
coherent swarm to provide it with an effectively unbounded space. The tests of
figure 7 are concerned with, firstly, testing when, how and with what probability
robots become detached from the swarm and, secondly, measuring the swarm
area coverage. Area coverage is indicated by the bounded polygon of figure 7.
The swarm test arena needs to provide the means to (a) motion capture test runs,
(b) track and label individual robots and (c¢) process the captured test sequences
to identify lost robot events and measure area coverage. The fact that our robots
are equipped with wireless LAN [26] is a distinct advantage here, since it provides

138 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

Fig. 7. Case study: two successive frames from a system level test run (captured by
the overhead camera in the laboratory test arena).

us with, firstly, the ability to be able to command the robots to a given starting
position to initialise each test run and, secondly, the means to obtain continuous
telemetry on each robot’s internal state, connectivity, and odometry. Recording
and time synchronising this data against the motion capture is important since
it provides us with the information to be able to conduct deep analysis of the
progress of test runs. In fact, a test script which automatically initialises each
test run then, at the end of the run, halts the robots and re-initialises them for
the next run, allows us to automate the whole of the swarm test sequence, from
the STS to plots of swarm performance metrics.

If we now consider the problem of conducting component level tests, i.e. tests
on a single robot, we can see that the experimental test environment described
here provides us with the means to verify the correct operation of a single robot
under a very wide range of ‘environmental’ conditions (recall that the test en-
vironment for a single robot is the sum total of its neighbouring robots plus
the external (to the swarm) environment). By collecting data on internal state,
connectivity and odometry for every robot, we can track the progress of a single
robot through the swarm and - for a wide range of local conditions (proximity
and connectivity) - confirm that the control action actually taken by the robot is
the action that would be expected for those particular conditions. The dynamic-
ity of the swarm provides us naturally with a very wide range of ‘test’ conditions
for an individual robot, and by running a simple simulation of a single robot con-
troller we can automate the process of verifying actual against expected control
actions. Thus, in a sense, the single Robot Test Specification (RTS) does not
need to be written (in that every possible test condition does not need to be
written down), nor does it need to be manually executed. The system level test
provides both the tests, and test environment, for the single robot.

Towards Dependable Swarms and a New Discipline of Swarm Engineering 139

4 Discussion and Outlook

This paper has proposed a framework for a new discipline of ‘Swarm Engineer-
ing’. The paper has attempted a juxtaposition of dependable systems engineering
with swarm intelligence and in so doing has tried to map processes of analysis,
design and test for safety-critical systems against relevant work in swarm intel-
ligence research. Perhaps not surprisingly, there is not a great deal of overlap
between the two fields. To the authors’ knowledge there has not been, to date,
a single real-world application of swarm engineering with real physical agents.
Thus no-one has yet had to face the challenge of assuring the dependability of
such a system.

In respect of analysis, this paper has shown that promising mathematical
modelling approaches are emerging for establishing the liveness property, for
both the overall swarm and its constituent robots. These approaches are at
present limited; for the overall swarm, to swarms in which individual robots can
be treated as stochastic Markov processes; and for individual robots in which
the controller can be modelled as a colony-style subsumption architecture. The
more serious weakness, from a dependability perspective, is that no tools exist
for establishing the safety property, that is to determine that a robotic swarm
cannot exhibit undesirable behaviours. How to do this is by no means clear,
although this paper has suggested two possible approaches: an extension of the
Lyapunov stability approach for the individual robot, and a ‘bounding’ approach
for the overall swarm.

From a design perspective, this paper has shown that the Yourdon struc-
tured design methodology might be usefully employed to describe the design of
a robotic swarm; the approach has the merit of consistency when moving from
the description of the overall swarm to its constituent robots. However, this
approach is largely a description tool. Ideally, we require a formal, provable ap-
proach to the design of individuals within the swarm, and to the design of overall
swarm behaviours. This paper has indicated one possible approach to the for-
mer with the technique we term Direct Lyapunov Design. Overall swarm design
is problematical because there are at present no principled approaches to the
design of emergent behaviours: finding the set of ‘atomic’ behaviours for the in-
dividuals in the swarm that will result in the overall desired emergent behaviour
is at present more a process of discovery than design. This paper has, however,
argued that this is not necessarily a problem for dependability providing that
the emergent swarm behaviours can be assured for liveness and safety.

Finally, in respect of test, this paper has highlighted the need to establish
robust measures for determining when and how desired swarm behaviours have
been achieved, then define (statistical) tests for these measures. The paper has
argued that testing, while certainly challenging, is feasible if an appropriate
test environment can be created. A surprising conclusion of this paper is that an
instrumented test environment for the whole swarm also provides an environment
for rigorously testing the swarm at component (i.e. robot) level - for free.

140 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

To summarise, from a dependability perspective, future work is needed:

— to extend methods for the mathematical modelling of swarm robotic systems;

— to extend and strengthen formal approaches to provably stable single robot
control;

— to start work on ‘safety’ analysis at both swarm and individual robot levels;

— to develop, if possible, a principled approach to the design of emergence;

— to extend the Direct Lyapunov Design approach to a wider class of behaviour-
based controllers, and

— to develop methodologies and practices for the testing of swarm engineered
systems.

It is clear that a great deal of work needs to be done before dependable robotic
swarms can become an engineering reality.

Acknowledgments

The authors gratefully acknowledge discussions with Chris Melhuish during early
preparation of this paper. We are also grateful to the referees for helpful and
constructive criticism.

Appendix A

The work of Harper [12], shows that if we have a behaviour-based controller in
which behaviours are implemented as motor schema, then we can prove that the
Euclidian distance ||z —z, || is a Lyapunov function for that schema and therefore
that its behaviour is stable with respect to the goal states z . This represents a
formal proof of ‘liveness’.

Conjecture: that there is a Lyapunov function V (z) defined as the ratio of
the Euclidian distance of the goal states z, and the hazard states z;,,

e =zl

V(z)

(3)

Tz — x|

and if the trajectory of V (z) is negative, i.e. V (z) < 0 then the agent will both
seeks its goals and avoid its hazards at the same time. In other words the liveness
and safety properties are stable over state space.

References

1. Anderson T, Avizienis A and Carter WC: Dependability: Basic Concepts and Ter-
minology, Series: Dependable Computing and Fault-Tolerant Systems Volume 5,
Laprie, J-C (ed), Springer-Verlag, New York (1992)

2. Arkin RC: Motor Schema based Navigation for a Mobile Robot, Proc. IEEE Conf.
Robotics and Automation, Raleigh NC (1987) 264271

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Towards Dependable Swarms and a New Discipline of Swarm Engineering 141

Beni G: From swarm intelligence to swarm robotics, Proceedings of the SAB’04
Swarm Robotics Workshop, Santa Monica (2004)

Bennett P: Software Development for the Channel Tunnel: A Summary, Journal
of High Integrity Systems, 1(2) (1994) 213-220

Bonabeau E, Dorigo M, and Theraulaz G: Swarm Intelligence: from natural to
artificial systems, Oxford University Press (1999)

Bonabeau E and Theraulaz G: Swarm Smarts, Scientific American, March (2000)
72-79

Brooks RA: Cambrian Intelligence: the Early History of the New AI, MIT Press
(2000)

Butler RW and Finelli GB: The infeasibility of quantifying the reliability of life-
critical real-time software, IEEE Trans. Software Engineering, 19(1) (1993) 3-12
Connell JH: Minimalist mobile robotics: a colony-style architecture for an artificial
creature, Academic Press Professional, San Diego (1990)

Fagan ME: Design and Code Inspections to Reduce Errors in Program Develop-
ment, IBM Systems Journal, 15(3) (1976)

Harper C and Winfield A: Direct Lyapunov Design — A Synthesis Procedure for Mo-
tor Schema Using a Second-Order Lyapunov Stability Theorem, Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, Lausanne, October
(2002)

Harper C: A Rational Methodology for Designing Behaviour Based Systems for
Safety Related Applications, PhD Thesis, University of the West of England, Bris-
tol (2004)

Institution of Electrical Engineers: Guidelines for the documentation of computer
software for real time and interactive systems, IEE London, 2nd Edition (1990)
Lerman K and Galstyan A: A General Methodology for Mathematical Analysis
of Multi-Agent Systems, USC Information Sciences Technical Report ISI-TR-529,
(2001)

Lerman K, Martinoli A and Galystan A: A Review of Modeling Methods for Swarm
Robotic Systems, Proceedings of the SAB’04 Swarm Robotics Workshop, Santa
Monica (2004)

Littlewood B and Thomas M: Reasons why Safety-Critical Avionics Software can-
not be Adequately Validated, Proc. 1st UK Safety Systems Symposium, Springer-
Verlag (1993)

Nehmzow U and Walker K: The Behaviour of a Robot is Chaotic, AISB Journal
1(4) (2003) 373-388

Nembrini J, Winfield A and Melhuish C: Minimalist Coherent Swarming of Wire-
less Connected Autonomous Mobile Robots, Proc. Simulation of Artificial Be-
haviour 02, Edinburgh, August (2002)

Martinoli A, Ijspeert AJ and Gambardella LM: A Probabilistic model for under-
standing and comparing collective aggregation mechanisms, In Floreano D, Nicoud
JD and Mondada F (eds), Proc. 5th European Conference on Advances in Artificial
Life (ECAL-99), Vol 1674 of LNAI, Berlin (1999) 575-584

McCabe TA: A Cyclomatic Complexity Measure, IEEE Trans. on Software Engi-
neering, 2(4) (1976)

Sahin, E: Swarm Robotics: From Sources of Inspiration to Domains of Application
In Sahin, E., Spears, W., eds.: Swarm Robotics: State-of-the-art Survey. Lecture
Notes in Computer Science 3342, Springer-Verlag (2005) 10-20

Schoner G, Dose M and Engels C: Dynamics of behavior: theory and applications
for autonomous robot architectures, Robotics and Autonomous Systems, 16 (1995)

142

23.

24.

25.

26.

27.

28.
29.

Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

Smithers T: On quantitative performance measures of robot architectures, Robotics
and Autonomous Systems, 15 (1995) 107-133

Stgy K: Using situated communication in distributed autonomous robotics, Proc.
7th Scandinavian Conference on Artificial Intelligence (2001)

Winfield AFT: Distributed sensing and data collection via broken ad hoc wireless
connected networks of mobile robots, in Parker LE, Bekey G and Barhen J (eds)
Distributed Autonomous Robotic Systems 4, Springer-Verlag (2000) 273-282
Winfield AFT and Holland OE: The application of wireless local area network
technology to the control of mobile robots, Microprocessors and Microsystems,
23(10) (2000) 597-607

Yokobayashi Y, Collins CH, Leadbetter JR, Arnold FH and Weiss R: Evolutionary
Design of Genetic Circuits and Cell-Cell Communications, Advances in Complex
Systems, 6(1) (2003) 37-45

Yourdon E: Modern Structured Analysis, Prentice-Hall (1989)

Ziemke T: On the role of Robot Simulations in Embodied Computer Science, AISB
Journal 1(4) (2003) 389-399

	1 Vision
	2 Case Study: Swarm Containment
	3 Dependable Swarm Engineering
	3.1 Analysis
	3.2 Design
	3.3 Test

	4 Discussion and Outlook
	Acknowledgments
	Appendix A
	References

