
Towards Design Tools for Protocol Development

Pınar Yolum
Department of Computer Engineering

Boğaziçi University
TR-34342 Bebek, Istanbul, Turkey

pinar.yolum@boun.edu.tr

ABSTRACT
Interaction protocols enable agents to communicate with each other
effectively. Whereas several approaches exist to specify interac-
tion protocols, none of them has design tools that can help proto-
col designers catch semantical protocol errors at design time. As
research in networking protocols has shown, flawed specifications
of protocols can have disastrous consequences. Hence, it is cru-
cial to systematically analyze protocols in time to ensure correct
specification. This paper studies and formalizes important generic
properties of commitment protocols that can ease their correct de-
velopment significantly. Since these properties are formal, they can
easily be incorporated in a software tool to (semi-)automate the de-
sign and specification of commitment protocols. Where appropri-
ate we provide algorithms that can directly be used to check these
properties in such a design tool.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence;
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Verification

Keywords
Commitments, protocols, tools

1. INTRODUCTION
Multiagent systems consist of autonomous, interacting agents.

For the agents to interact effectively, their interactions should be
regulated. Multiagent interaction protocols provide a formal ground
for realizing this regulation. However, developing effective proto-
cols that will be carried out by autonomous agents is challenging
[12, 13].

Similar to the protocols in traditional systems, multiagent proto-
cols need to be specified rigorously so that the agents can interact
successfully. Some important properties of network protocols have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

been studied before, where a protocol was represented as a finite
state machine (FSM) [11, 10]. However, FSMs are not well-suited
for dynamic environments of multiagent systems [16, 3, 20]. Con-
trary to the protocols in static systems, multiagent protocols need
to be specified flexibly so that the agents can exercise their auton-
omy by making choices or by dealing with exceptions as best suits
them.

Recently, social constructs are being used to specify agent in-
teractions. These approaches advocate declarative representations
of protocols and give semantics to protocol messages in terms of
social (and thus observable) concepts. Alberti et al. specify inter-
action protocols using social integrity constraints and reason about
the expectations of agents [1]. Fornara and Colombetti base the
semantics of agent communication on commitments, such that the
meanings of messages are denoted by commitments [9]. Yolum
and Singh develop a methodology for specifying protocols wherein
protocols capture the possible interactions of the agents in terms of
the commitments to one another [20, 21].

In addition to providing flexibility, these approaches make it pos-
sible to verify compliance of agents to a given protocol. Put broadly,
commitments of the agents can be stored publicly and agents that
do not fulfill their commitments at the end of the protocol can be
identified as non-compliant. In order for these approaches to make
use of all these advantages, the protocols should be designed rigor-
ously. For example, the protocol should guarantee that, if an agent
does not fulfill its commitment, it is not because the protocol does
not specify how the fulfillment can be carried out. The aforemen-
tioned approaches all start with a manually designed, correct proto-
col. However, designing a correct protocol in the first place requires
important correctness properties to be established and applied to the
protocol. A correct protocol should define the necessary actions (or
transitions) to lead a computation to its desired state. Following a
protocol should imply that progress is being made towards realiz-
ing desired end conditions of the protocol. The followed actions
should not yield conflicting information and lead the protocol to
unrecoverable errors. That is, the protocol should at least allow a
safe execution.

This paper develops and formalizes design requirements for de-
veloping correct and consistent commitment protocols [19, 20]. How-
ever, the underlying ideas are generic and can be applied to other
social approaches as well. These requirements detect inconsisten-
cies as well as errors during design time. These requirements can
easily be automated in a design tool to help protocol designers to
develop protocols.

The rest of the paper is organized as follows. Section 2 gives
a technical background on event calculus and commitments. Sec-
tion 3 reviews commitment protocols. Sections 4 and 5 develop
correctness and consistency requirements, respectively. Section 6

99

shows how these requirements can be implemented in a design tool.
Section 7 discusses the recent literature in relation to our work.

2. TECHNICAL BACKGROUND
We first give a brief overview of event calculus, which we use

to formalize the design requirements. Next, we summarize Yolum
and Singh’s formalization of commitments and their operations.

2.1 Event Calculus
The event calculus (EC) is a formalism based on many-sorted

first order logic [14]. The three sorts of event calculus are time
points (T), events (E) and fluents (F). Fluents are properties whose
truth values can change over time. Fluents are manipulated by initi-
ation and termination of events. Table 1 supplies a list of predicates
to help reason about the events in an easier form. Below, events
are shown with a, b, . . .; fluents are shown with f, g, . . .; and time
points are shown with t, t1, and t2.

Table 1: Event calculus predicates
Initiates(a, f, t) f holds after event a at time t.
Terminates(a, f, t) f does not hold after event a at time t.
InitiallyP (f) f holds at time 0.
InitiallyN(f) f does not hold at time 0.
Happens(a, t1, t2) event a starts at time t1 and ends at t2.
Happens(a, t) event a starts and ends at time t.
HoldsAt(f, t) f holds at time t.
Clipped(t1, f, t2) f is terminated between t1 and t2.
Declipped(t1, f, t2) f is initiated between t1 and t2.

We introduce the subset of the EC axioms that are used here;
the rest can be found elsewhere [17]. The variables that are not
explicitly quantified are assumed to be universally quantified. The
standard operators apply (i.e., ← denotes implication and ∧ de-
notes conjunction). The time points are ordered by the < relation,
which is defined to be transitive and asymmetric.

1. HoldsAt(f, t3) ← Happens(a, t1, t2) ∧ Initiates(a, f, t1) ∧
(t2 < t3) ∧ ¬ Clipped(t1, f, t3)

2. Clipped(t1, f, t4) ↔ ∃a, t2, t3 [Happens(a, t2, t3) ∧ (t1 <
t2) ∧ (t3 < t4) ∧ Terminates(a, f, t2)]

3. ¬HoldsAt(f, t) ← InitiallyN (f) ∧ ¬Declipped(0, f, t)

4. ¬HoldsAt(f, t3)← Happens(a, t1, t2)∧ Terminates(a, f, t1)
∧ (t2 < t3) ∧ ¬Declipped(t1, f, t3)

2.2 Commitments
Commitments are obligations from one party to another to bring

about a certain condition [4]. A base-level commitment C(x, y, p)
binds a debtor x to a creditor y to bring about a condition p [18].
When a base-level commitment is created, x becomes responsible
to y for satisfying p, i.e., p should hold sometime in the future. The
condition p does not involve other conditions or commitments.

A conditional commitment CC(x, y, p, q) denotes that if the con-
dition p is satisfied, x will be committed to bring about condition q.
Conditional commitments are useful when a party wants to commit
only if a certain condition holds or only if the other party is also
willing to make a commitment. It is easy to see that a base-level
commitment is a special case of a conditional commitment, where
the condition is set to true. That is, C(x, y, p) is an abbreviation
for CC(x, y, true, p). Commitments are represented as fluents in
the event calculus. Hence, the creation and the manipulation of the

commitments are shown with the Initiates and Terminates predi-
cates.

Compared to the traditional definitions of obligations, commit-
ments can be carried out more flexibly [18]. By performing oper-
ations on an existing commitment, a commitment can be manip-
ulated (e.g., delegated to a third-party). We summarize the oper-
ations to create and manipulate commitments [18, 20]. In the fol-
lowing discussion, x, y, z denote agents, c, c′ denote commitments,
and e denotes an event.

1. Create(e, x, C(x, y, p): When x performs the event e, the
commitment c is created.

{Happens(e, t) ∧ Initiates(e,C(x, y, p), t)}
2. Discharge(e, x, C(x, y, p)): When x performs the event e,

the commitment c is resolved.

{Happens(e, t) ∧ Initiates(e, p, t)}
3. Cancel(e, x, C(x, y, p)): When x performs the event e, the

commitment c is canceled. Usually, the cancellation of a
commitment is followed by the creation of another commit-
ment to compensate for the former one.

{Happens(e, t) ∧ Terminates(e,C(x, y, p), t)}
4. Release(e, y, C(x, y, p)): When y performs the event e, x no

longer need to carry out the commitment c.

{Happens(e, t) ∧ Terminates(e,C(x, y, p), t)}
5. Assign(e, y, z, C(x, y, p): When y performs the event e, com-

mitment c is eliminated, and a new commitment c′ is created
where z is appointed as the new creditor.

{Happens(e, t) ∧ Terminates(e,C(x, y, p), t) ∧
Initiates(e,C(x, z, p), t)}

6. Delegate(e, x, z, C(x, y, p): When x performs the event e,
commitment c is eliminated but a new commitment c′ is cre-
ated where z is the new debtor.

{Happens(e, t) ∧ Terminates(e,C(x, y, p), t) ∧
Initiates(e,C(z, y, p), t)}

The following rules operationalize the commitments. Axiom 1
states that a commitment is no longer in force if the condition com-
mitted to holds. In Axiom 1, when the event e occurs at time t, it
initiates the fluent p, thereby discharging the commitment C(x, y, p).

COMMITMENT AXIOM 1. Discharge(e, x, C(x, y, p)) ← Hold-
sAt(C(x, y, p), t) ∧ Happens(e, t) ∧ Initiates(e, p, t)

The following axiom captures how a conditional commitment
is resolved based on the temporal ordering of the commitments it
refers to. When the conditional commitment CC(x, y, p, q) holds,
if p becomes true, then the original commitment is terminated but
a new commitment is created, since the debtor x is now committed
to bring about q.

COMMITMENT AXIOM 2. Initiates(e, C(x, y, q), t) ∧ Termi-
nates(e, CC(x, y, p, q), t) ←
HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t) ∧ Initiates(e, p, t)

3. COMMITMENT PROTOCOLS
A commitment protocol is a set of actions such that each action

is either an operation on commitments or brings about a proposi-
tion. Agents create and manipulate commitments they are involved
in through the protocol they follow. An agent can start a protocol

100

by performing any of the actions that is allowed by the role it is
playing. The transitions of the protocol are computed by applying
the effect of the action on the current state. In most cases this corre-
spond to the application of commitment operations. Figure 1 gives
an overview of the possible transitions. Given a protocol specifi-
cation, actions of the protocol can be executed from an arbitrary
initial state to a desired final state. A protocol run can be viewed as
a series of actions; each action happening at a distinct time point.

EXAMPLE 1. We consider the Contract Net Protocol (CNP) as
our running example [8]. CNP starts with a manager requesting
proposals for a particular task. Each participant either sends a
proposal or a reject message. The manager accepts one proposal
among the submitted proposals and (explicitly) rejects the rest. The
participant with the accepted proposal informs the manager with
the proposal result or the failure of the proposal.

Figure 1: Commitment transitions

EXAMPLE 2. By sending a proposal to the manager, a partic-
ipant creates a conditional commitment such that if the manager
accepts the proposal, then the participant will deliver the result of
the proposal (e.g., CC(participant, manager, accepted, result). If
the manager then sends an accept message, this conditional com-
mitment will cease to exist but the following base-level commitment
will hold: C(participant, manager, result). Since the commitments
can be easily manipulated, the participant can manipulate its com-
mitment in the following ways: (1) it can discharge its commitment
by sending the result as in the original CNP (discharge), (2) it
can delegate its commitment to another participant, who carries
out the proposal (delegate), or (3) it can send a failure notice as
in the original protocol (cancel). Meanwhile, if for some reason,
the manager no longer has a need for the proposed task, (1) it can
let go of the participant (release) or (2) let another agent benefit
from the proposal (assign).

4. PROTOCOL CORRECTNESS
Analysis of commitment protocols poses two major challenges.

One, the states of a commitment protocol are not given a priori as
is the case with FSMs. Two, the transitions are computed at run
time to enable flexible execution. To study a commitment protocol,
we study the possible protocol runs that can result. A protocol run
specifies the actions that happen at certain time points. We base

the definition of a protocol state on these time points. More specif-
ically, a state of the protocol corresponds to the set of propositions
and commitments that hold at a particular time point in a particular
run.

To ease the explanation, we introduce the following notation. Let
F be the set of fluents in the protocol. F is CS ∪CCS ∪PS such
that CS is the set of base-level commitments, CCS is the set of
conditional commitments and PS is the set of propositions in the
protocol. Let c be a commitment such that c ∈ CS then O(c) is
the set of operations allowed on the commitment c in the protocol
and O = {O(c) : c ∈ CS}. Since a commitment cannot be part
of a protocol if it cannot be created, we omit the create operation
from the set. Hence, O(c) can contain five types of operations
in Section 2.2, namely, discharge, cancel, release, delegate,
and assign. We assume that all the propositions referred by the
commitments in CS and CCS are in PS.

DEFINITION 1. A protocol state s(t) captures the content of the
protocol with respect to a particular time point t. A protocol state
s(t) is a conjunction of HoldsAt(f, t) predicates with a fixed t but
possibly varying f . Formally, s(t) ≡ Vf∈F ′ HoldsAt(f, t) such
that F ′ ⊆ F .

Two states are equivalent if the same fluents hold in both states.
Although the two states are equivalent, they are not strictly the same
state since they can come about at different time points.

DEFINITION 2. The≡ operator defines an equivalence relation
between two states s(t) and s(t′) such that s(t) ≡ s(t′) if and only
if ∀f ∈ F : (HoldsAt(f, t) ⇐⇒ HoldsAt(f, t′)).

Protocol execution captures a series of operations for making and
fulfilling of commitments. Intuitively, if the protocol executes suc-
cessfully, then there should not be any open base-level commit-
ments; i.e., no participant should still have commitments to others.
This motivates the following definition of an end-state.

DEFINITION 3. A protocol state s(t) is a proper end-state if no
base-level commitments exist. Formally, ∀f ∈ F : HoldsAt(f, t) ⇒
f �∈ CS.

Generally, if the protocol ends in an unexpected state, i.e., not
a proper end-state, one of the participants is not conforming to the
protocol. However, to claim this, the protocol has to ensure that
participants have the choice to execute actions that will terminate
their commitments. The following analysis derives the require-
ments for correct commitment protocols.

Holzmann labels states of a protocol in terms of their capabil-
ity of allowing progress [11]. Broadly put, a protocol state can be
labeled as a progressing state if it is possible to move to another
state. For a protocol to function correctly, all states excluding the
proper end-states should be progressing states. Otherwise, the pro-
tocol can move to a state where no actions are possible, and hence
the protocol will not progress and immaturely end.

DEFINITION 4. A protocol state s(t) is progressing if both of
the following hold:

• s(t) is not a proper end-state (e.g., s(t) ⇒
∃f ∈ CS : HoldsAt(f, t)).

• there exists an action that if executed creates a transition to
a different state. (e.g., s(t) ⇒ ∃t′ : t < t′ ∧ s(t) �≡ s(t′))

At every state in the protocol, either the execution should have
successfully completed (i.e., proper end-state) or should be moving
to a different state (i.e., progressing state).

101

DEFINITION 5. A protocol P is progressive if and only if each
possible state in the protocol is either a proper end-state or a pro-
gressing state.

This follows intuitively from the explanation of making progress.
Lemma 1 formalizes a sufficient condition for ensuring that a com-
mitment protocol is progressive,

LEMMA 1. Let P be a commitment protocol and c be a base-
level commitment. If ∀c ∈ CS : O(c) �= ∅, then P is progressive.
Proof. By Definition 5, every state in P should be a proper end-
state or a progressing state. If a state does not contain open com-
mitments then it is a proper end-state (Definition 3). If the state
does contain a base-level commitment, then since at least one op-
eration exists to manipulate it, the protocol will allow a transition
to a new state. Thus, the state is a progressing state (Definition 4).

Ensuring a progressing protocol is the first step in ensuring cor-
rectness. If a protocol is not progressing, then the participants can
get stuck in an unexpected state and not transition to another state.
However, progress by itself does not guarantee that the interactions
will always lead to a proper end-state. This is similar in principle
to livelocks in network protocols, where the protocol can transition
between states but never reach a final state [11, p.120].

create(x, C(x, y, p)) delegate(x, z, C(x, y, p))

delegate(z, x, C(z, y, p))

1 2 3

Figure 2: Infinitely delegating a commitment

EXAMPLE 3. Consider a participant x whose proposal has been
accepted (hence, C(x, manager, result). Next, the participant del-
egates its commitment to another participant z (hence, C(z, man-
ager, result)). Next, participant z delegates the commitment back
to participant x and thus the protocol moves back to the previous
state (C(x, manager, result)). Participants x and z delegate the
commitment back and forth infinitely.

Obviously, the situation explained in Example 3 is is not desirable.
It is necessary to ensure progress but this is not sufficient to con-
clude that the protocol is making effective progress.

DEFINITION 6. A cycle in a protocol refers to a non-empty se-
quence of states that start and end at equivalent states. A cycle can
be formalized by the content of the beginning and ending states.
That is, an execution sequence is a cycle if: ∃t, t′, t′′ ∈ T : (s(t) ≡
s(t′)) ∧ (t < t′′ < t′) ∧ (s(t) �≡ s(t′′)).

DEFINITION 7. An infinitely repeating cycle is a cycle with pro-
gressing states such that if the protocol gets on to one of the states
then the only possible next transition is to move to a state in the
cycle [11].

In Example 3, the two delegate actions form an infinitely repeating
cycle. Once the protocol gets into either state 2 or state 3, it will
always remain in one of these two states.

LEMMA 2. An infinitely repeating cycle does not contain any
proper end-states.
Proof. By Definition 7 an infinitely repeating cycle only contains
progressing states and by Definition 4, a progressing state cannot
be an end-state.

Given a cycle, it is easy to check if it is infinitely repeating. In-
formally, for each state in the cycle, we need to check if there is a
possible transition that can cause a state outside the cycle. This can
be achieved by applying all allowed operations (by the proposition)
to the commitments that exist in that state. As soon as applying a
commitment operation to a state in the cycle yields a state not in-
cluded in the cycle, the procedure stops, concluding that the cycle
is not infinitely repeating.

LEMMA 3. Let l be a cycle. Let c ∈ CS be a commitment that
holds at a state s(t) on this cycle at any time t. If discharge, can-
cel or release ∈ O(c) then cycle l is not infinitely repeating.
Proof. A cycle is not infinitely repeating if there is a path from a
state in the cycle to a state outside the cycle. Discharging, can-
celing, or releasing a commitment will lead the protocol to go to
a proper end-state. Since no proper end-state is on an infinitely
repeating cycle, the cycle will not repeat (Lemma 2).

EXAMPLE 4. In Example 3, if either participant could discharge
the commitment or could have been released from the commitment,
then there need not have been an infinitely repeating cycle.

DEFINITION 8. A protocol P is effectively progressive if and
only if and only if (1) P is progressive and (2) P does not have
infinitely repeating cycles.

THEOREM 1. P is an effectively progressive protocol if for any
commitment c ∈ CS either (1) discharge ∈ O(c) or cancel ∈
O(c) or release ∈ O(c) or (2) by applying finite number of opera-
tions a commitment c′ is reached for which discharge ∈ O(c′) or
cancel ∈ O(c′) or release ∈ O(c′) .
Proof. In both cases, for all commitments in P , there is at least
one operation defined. Hence, by Lemma 1, P is progressive. As-
sume that P has an infinite cycle. By Lemma 3, there has to be a
commitment c′′ holding in some state on the cycle for which none
of the operations lead to a state with discharge, cancel, or re-
lease operators. Since P does not allow such a state, P does not
contain an infinitely repeating cycles.

EXAMPLE 5. The protocol P contains three actions: accept a
proposal (create(acceptProposal, participant, C(participant, man-
ager, proposal))), authorize a subcontractor to carry out the pro-
posal (delegate(authorize, participant, subcontractor,
C(participant, manager, proposal))), and carry out the proposal
(discharge(carryOut, subcontractor, C(subcontractor, manager, pro-
posal))).

The protocol in Example 5 is effectively progressive since the com-
mitment C(participant, manager, proposal) can be delegated to some-
one who can apply one of the discharge, cancel, or release op-
erations. An algorithm that checks for an effectively progressive
protocol is given in Section 6.

5. PROTOCOL CONSISTENCY
In Section 4 we have defined the requirements to guarantee that

a protocol can effectively progress. However, in addition to effec-
tive progress, a protocol should always preserve a consistent com-
putation. In other words, a protocol that functions correctly does
not allow creation of conflicting information. Following the CNP
example, a participant cannot both refuse to send a proposal and
send a proposal at the same time. That is, the available informa-
tion that is created by the protocol should be consistent at every
time point of the protocol. To explain the consistency requirements
for a commitment protocol, we again start with studying individual

102

states. Since each state is defined in terms of holding commitments
and propositions, we start by defining when the commitments and
propositions are inconsistent.

DEFINITION 9. Let p and r be two propositions such that p, r ∈
PS. If p entails the negation of r, that is, false← HoldsAt(p, t)∧
HoldsAt(r, t) then p and r are conflicting. A protocol state s(t)
is consistent if s(t) �≡ false.

Obviously, the protocol should never enter an inconsistent state.
The set of operations defined for a commitment should ensure that
only consistent states are realized. Notice that we allow two base-
level commitments to exist together even if the propositions that
need to be brought out by these commitments are conflicting. That
is, a state could contain two commitments C(x, y, p) and C(x, y, r)
such that p and r are conflicting. Obviously, both commitments
cannot be satisfied simultaneously. Hence, discharging one com-
mitment restricts the discharging of the second commitment.

DEFINITION 10. A protocol P is consistent if and only if P is
progressive and each possible state in the protocol is consistent.

LEMMA 4. Let P be a commitment protocol and c and c′ be
two base-level commitments in CS such that c and c′ have con-
flicting propositions. If O(c) = O(c′) = {discharge}, then P is
not consistent.
Proof. Let C(x, y, p) and C(x, y, r) be any two commitments
in CS with conflicting propositions. If either of them is not dis-
charged, then the protocol state will contain a base-level commit-
ment. By Definition 3, it will not be a proper end-state. If both of
them discharge, the protocol will move to the false state. Thus, by
Definition 10, it will not be consistent.

THEOREM 2. Let P be an effectively progressive commitment
protocol, and c and c′ be two base-level commitments in CS with
conflicting propositions. If either release∈ O(c′) or cancel∈
O(c′) then P is consistent.
Proof. If discharge �∈ O(c), then P can never move into the
false state and hence will be consistent. If discharge ∈ O(c), by
Lemma 4, c′ needs to define an operation other that discharge to
avoid the false state. By Theorem 1, commitment c′ should define
at least one of discharge, release, or cancel. Since discharge is
eliminated by Lemma 4, at least release, or cancel should be de-
fined.

EXAMPLE 6. Assume that a participant commits to send a pro-
posal and at the same time refuses to send a proposal (commits not
to send a proposal). Then the participant will not be able to dis-
charge both of its commitments. On the other hand, if the partici-
pant can cancel one of its commitment or if the manager releases
the participant from one of them, then the protocol can continue
consistently.

6. ALGORITHMS
The results of the previous sections can be implemented in a de-

sign tool. This section provides algorithms to compute the derived
correctness and consistency requirements of Theorems 1 and 2.

A commitment graph G = (V, E) consists of a set of nodes V
and a set of edges E. Each node denotes a single possible base-
level commitment in a given protocol. A directed edge between
node u to v denotes an operation applied on the commitment at
node u, yielding node v. A commitment graph contains two des-
ignated nodes, namely RC and D. These nodes do not contain
any commitments. RC is used as a sink node for all commitments

for which a release or a cancel operation is defined. In other
words, if a node u is connected to node RC then the operation on
edge (u, RC) could only be a release or a cancel operation (since
these operations resolve the commitment, and do not create other
commitments). Similarly, node D is a sink node for commitments
for which discharge is defined. If a node u is connected to node
D then the operation on edge (u, D) could only be a discharge.
If there is an edge (u, v) such that v is not the RC or the D node,
then the operation associated with the edge is either a delegate or
an assign.

Algorithm 1 Build-commitment-graph(CS: Set of base-level com-
mitments; O: Set of operations on base-level commitments)

1: Create a new node RC {RC stands for a sink node for release
and cancel}

2: Create a new node D {D stands for a sink node for discharge}
3: possible-commitments = CS
4: while (possible-commitments ! = ∅) do
5: Remove a commitment c
6: Add a new node c to V
7: for i = 1 to |O(c)| do
8: if (O(c)[i] == delegate) then
9: Add a new node c.delegate to V

10: Add (c, c.delegate) to E
11: Add c.delegate to possible-commitments
12: else if (O(c)[i] == assign) then
13: Add a new node c.assign to V
14: Add (c, c.assign) to E
15: Add c.assign to possible-commitments
16: else if (O(c)[i] == release) || (O(c)[i] == cancel) then
17: Add (c, RC) to E
18: else if (O(c)[i] == discharge) then
19: Add (c, D) to E
20: end if
21: end for
22: end while

Algorithm 1 takes as input the base-level commitment set CS
and operations set O and builds a commitment graph. The algo-
rithm starts by creating the RC and the D nodes. Then, the al-
gorithm iterates over the set of possible commitments that can be
created by the protocols (possible − commitments) and adds a
new node for each commitment. After adding a node for a com-
mitment, it goes through the operations set of the commitment and
adds an edge between the node and the RC state for cancel and
release operations and an edge between the node and the D state
for discharge operation. If there is an assign or a delegate oper-
ation, the algorithm applies the operation on the commitment and
creates a new node with the resulting commitment. The resulting
commitment corresponds to the initiated commitment as explained
in Section 2.2. The new commitment is added to the set of possible
commitments.

We assume that the graph contains a standard adjacency matrix
that can determine if a node has an edge to another node. In the
commitment graph, this shows whether applying a single action
can transform the commitment either to another commitment or
lead it to one of the discharge, cancel, or release states. The
adjacentTo method serves this purpose. If a commitment node
has at least one outgoing edge, then the commitment is said to have
a neighbor (i.e., hasNeighbors() method is true).

Algorithm 2 checks if all the commitments in the commitment
graph can be resolved. To do this, it functions like a search algo-
rithm. Algorithm 2 takes as input a commitment graph and visits

103

Algorithm 2 Color-graph(G:Commitment Graph)

1: visited = ∅
2: whiteList = ∅
3: blackList = ∅
4: for i = 1 to |V| do
5: if (V(i) �∈ visited) then
6: visit(V(i))
7: end if
8: end for

each node (with Algorithm 3) to color each node. If a node satisfies
the properties in Theorem 1, then it is colored white, if not black.
The algorithm terminates when all nodes are colored.

Algorithm 3 takes as input the node u that will be visited, goes
through the nodes as in depth first search (DFS), and assigns a color.
White nodes are stored in the whiteList and the black nodes are
stored in the blackList. All visited nodes are stored in the visited
set. Initially, nodes do not have any color. The node u is first added
to the visited set.

If u does not have any outgoing edges, then it is a singleton in
the graph and is not connected to the rest of the graph. Hence,
the commitment has no operations defined and thus cannot be re-
solved. Such nodes are labeled as black and put into blackList. If
the commitment at node u has one of the discharge, cancel, or
release operations defined (there is an edge between u and RC
or u and D), then the color of the node u becomes white. This
means that the protocol allows commitment node u to be resolved.
Otherwise, the neighbors of the node u are analyzed. If any one

Algorithm 3 visit(u: node)
1: Add u to visited
2: if (u.adjacentTo(D OR CR)) then
3: Add u to whiteList
4: else if (u.hasNeighbors()) then
5: while (u �∈ whiteList) AND (∃ E(u, v): v �∈ visited) do
6: if (v �∈ visited) then
7: visit(v)
8: end if
9: if (v ∈ whitelist) then

10: Add u to whiteList
11: else
12: Add u to blackList
13: end if
14: end while
15: else
16: Add u to blackList
17: end if

neighbor node v is already white, then u is also labeled as white.
The intuition is that if the commitment at v can be resolved and if
the commitment at u can be transformed (by delegate or assign)
to v, then v can be resolved, too. If no neighbor node is already
white, then the algorithm visits neighbor nodes that are not already
visited. The aim is to find a directed path from the current node to a
white node. When a white node is found, then all nodes on the path
become white and are inserted into whiteList. If a white node
cannot be reached by a directed path, then all nodes on the path
become black and are added to the blackList. Algorithms 2 and
3 are a variant of DFS and thus computes the set of unresolvable
commitments in O(|E|) [5]. The protocol designer can modify the
protocol until the blackList computed by this algorithm is empty.

Algorithm 4 checks the protocol consistency (Theorem 2). The

Algorithm 4 Check-consistency(G: Commitment Graph)

1: inconsistentList=∅
2: for i = 1 to |V |-1 do
3: for j = i + 1 to |V | do
4: Determine if V (i) and V (j) are conflicting
5: if conflicting(V (i) and V (j)) then
6: if (� E(V (i), RC)) AND (� E(V (j), RC)) then
7: Add V (i) and V (j) to inconsistentList
8: end if
9: end if

10: end for
11: end for

algorithm compares all commitments to each other to see if they
have conflicting propositions. If so, the algorithm checks if either
of the commitments can be released or canceled.
The inconsistentList keeps the pairs of commitments that fail the
test. Algorithm 4 computes the set of inconsistent commitments in
O(|V |2). After this set is computed, a protocol designer can modify
the protocol until the set of inconsistent commitments is empty.

7. DISCUSSION
This work derives some design-time requirements for commit-

ment protocols. These requirements are concerned with allowing
sufficient actions for agents to carry out their actions. However note
that we are not concerned about the choices of the agents in terms
of which actions to take. Looking back at Example 3, assume that
agent x could also execute an action that could discharge its com-
mitment (to carry out the proposal), but choose instead to delegate
it to agent z. The protocol then would still loop infinitely. How-
ever, our purpose here is to make sure that agent x has the choice
of discharging. The protocol should allow an agent to terminate its
commitment by providing at least one appropriate action. It is then
up to the agent to either terminate it or delegate it as

The algorithms given in Section 6 can be implemented in a de-
sign tool. The design tool should be fed with a description of the
protocol, which contains the actions and the commitment operation
each action corresponds to as specified in Section 3. The commit-
ment and operation set of the protocol can then be easily formed
and fed into Algorithm 1 for creating a commitment graph. Once,
there is a commitment graph both Algorithms 2 and 4 can be ap-
plied to check correctness and consistency, respectively.

We review the recent literature with respect to our work. Fornara
and Colombetti develop a method for agent communication, where
the meanings of messages denote commitments [9]. In addition to
base-level and conditional commitments, Fornara and Colombetti
use precommitments to represent a request for a commitment from
a second party. They model the life cycle of commitments in the
system through update rules. However, they do not provide design
requirements on correctness or consistency as we have done here.
The requirements and algorithms developed here can easily be ap-
plied to their framework.

Artikis et al. develop a framework to specify and animate com-
putational societies [2]. The specification of a society defines the
social constraints, social roles, and social states. Social constraints
define types of actions and the enforcement policies for these ac-
tions. A social state denotes the global state of a society based
on the state of the environment, observable states of the involved
agents, and states of the institutions. Our definition of a protocol
state is similar to the global state of Artikis et al.. The framework
of Artikis et al. does not specify any design rules to establish the

104

correctness of the executed societies. It would be interesting to ap-
ply the design ideas here to their setting where in addition there are
social constraints.

Dignum et al. formalize interaction protocols within an organi-
zation through contracts [6]. They develop a language for specify-
ing contracts that can capture various contracts and their deadlines.
They use the interaction protocols to realize the objectives of the
organization that the agents are situated in. However, they do not
provide a methodology for analyzing contracts defined in that lan-
guage as we have done here.

Alberti et al. specify interaction protocols using social integrity
constraints [1]. Given a partial set of events that have happened,
each agent computes a set of expectations based on the social in-
tegrity constraints; e.g., events that are expected to happen based
on the given constraints. If an agent executes an event that does
not respect an expectation, then it is assumed to have violated one
of the social integrity constraints. We have studied the violating of
commitments in richer time structure elsewhere [15]. Alberti et al.
does not provide any design rules to ensure the correctness of their
interaction protocols. Since the commitments and their operations
are more flexible than the expectations defined by Alberti et al., our
requirements can also be applied to their framework.

Endriss et al. study protocol conformance for interaction proto-
cols that are defined as deterministic finite automaton (DFA) [7].
The set of transitions of a DFA are known a priori. If an agent
always follows the transitions of the protocol, then it is compli-
ant to the given protocol. Hence, the compliance checking can be
viewed as verifying that the transitions of the protocol are followed
correctly.

McBurney and Parsons propose posit spaces protocol to handle
e-commerce transactions of agents [16]. The protocol consists of
five locutions: propose, accept, delete, suggest revoke, and rat-
ify revoke. The usage of propose and accept locution resembles
the conditional commitments in commitment protocols. The delete
locution corresponds to the release, or discharge operation. Sug-
gest revoke and ratify revoke enable canceling of posits. McBur-
ney and Parsons do not provide any design rules to develop posit
space protocols as we have done here. The analysis constructed in
this paper may be applied in the posit space framework.

In our future work, we plan to work on other design criteria for
commitment protocols, such as requirements for avoiding possible
deadlocks as well as requirements for conditional commitments.

8. ACKNOWLEDGMENTS
This paper extends an earlier version that appeared in the 19th

International Symposium on Computer and Information Sciences
(ISCIS-04).

This research has been supported by Boğaziçi University Re-
search Fund under grant BAP05A104. I thank the reviewers whose
suggestions have improved the paper considerably.

9. REFERENCES
[1] M. Alberti, D. Daolio, and P. Torroni. Specification and

verification of agent interaction protocols in a logic-based
system. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 72–78. ACM Press, Mar. 2004.

[2] A. Artikis, J. Pitt, and M. Sergot. Animated specifications of
computational societies. In Proceedings of the 1st
International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 1053–1061. 2002.

[3] J. Bentahar, B. Moulin, J.-J. C. Meyer, and B. Chaib-draa. A
logical model for commitment and argument network for

agent communication. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 792–799. 2004.

[4] C. Castelfranchi. Commitments: From individual intentions
to groups and organizations. In Proc. of the Intl Conf. on
Multiagent Systems, pages 41–48, 1995.

[5] T. H. Cormen, C. E. Leiserson, and R. Rivest. Design and
Analysis of Algorithms. MIT Press, 1990.

[6] V. Dignum, J.-J. Meyer, F. Dignum, and H. Weigand. Formal
specification of interaction in agent societies. In 2nd
Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS), Maryland, Oct 2002.

[7] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol
conformance for logic-based agents. In Proc. of Intl. Joint
Conf. on AI (IJCAI), pages 679–684. 2003.

[8] FIPA. Contract net interaction protocol specification, 2002.
Number 00029.

[9] N. Fornara and M. Colombetti. Operational specification of a
commitment-based agent communication language. In Proc.
of 1st Intl. Joint Conf. on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 535–542. 2002.

[10] M. G. Gouda. Protocol verification made simple: a tutorial.
Computer Networks and ISDN Systems, 25:969–980, 1993.

[11] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, New Jersey, 1991.

[12] M.-P. Huget and J.-L. Koning. Requirement analysis for
interaction protocols. In Proc. of the Central and Eastern
European Conf. on Multiagent Systems (CEEMAS), LNAI
2691, pages 404–412. Springer-Verlag, 2003.

[13] N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 177(2):277–296, 2000.

[14] R. Kowalski and M. J. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–95, 1986.

[15] A. U. Mallya, P. Yolum, and M. P. Singh. Resolving
commitments among autonomous agents. In M.-P. Huget and
F. Dignum, editors, Proceedings of the AAMAS Workshop on
Agent Communication Languages and Conversation
Policies, LNAI 2922, pages 166–182. Springer Verlag, 2003.

[16] P. McBurney and S. Parsons. Posit spaces: A performative
model of e-commerce. In Proceedings of the 2nd
International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 624–631. 2003.

[17] M. Shanahan. Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia. MIT
Press, Cambridge, 1997.

[18] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7:97–113, 1999.

[19] M. Venkatraman and M. P. Singh. Verifying compliance with
commitment protocols: Enabling open Web-based
multiagent systems. Autonomous Agents and Multi-Agent
Systems, 2(3):217–236, Sept. 1999.

[20] P. Yolum and M. P. Singh. Flexible protocol specification and
execution: Applying event calculus planning using
commitments. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 527–534. ACM Press, July 2002.

[21] P. Yolum and M. P. Singh. Reasoning about commitments in
the event calculus: An approach for specifying and executing
protocols. Annals of Mathematics and Artificial Intelligence,
42(1-3):227–253, 2004.

105

