
Received February 9, 2019, accepted February 24, 2019, date of publication March 5, 2019, date of current version March 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903126

Towards Designing Asynchronous
Microprocessors: From Specification
to Tape-Out

ZAHEER TABASSAM1, SYED RAMEEZ NAQVI 1, TALLHA AKRAM1, MUSAED ALHUSSEIN2,
KHURSHEED AURANGZEB 2, AND SAJJAD ALI HAIDER1
1Department of Electrical and Computer Engineering, COMSATS University Islamabad at Wah, Wah Cantonment 47040, Pakistan
2Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Syed Rameez Naqvi (rameeznaqvi@ciitwah.edu.pk)

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through

research group NO (RG-1438-034). This work is also supported in part by the Pakistan Science Foundation under Grant

PSF/Res/P-CIIT/Engg (159).

ABSTRACT Proceeding miniaturization in the VLSI circuits continues to pose challenges to the convention-

ally used synchronous design style in microprocessors. These include the distribution of clock in the GHz

range, robustness to delay variations, reduction in electromagnetic interference, and energy conservation,

to name a few. The asynchronous logic has been known for its ability to address the aforementioned chal-

lenges by means of the closed-loop handshake protocols, instead of notorious clock signals. Because of these

advantages, there have been numerous attempts on building general and special purpose microprocessors

during the last three decades. Still, however, the number of asynchronous processors commercially available

is scarce, mainly due to an insufficient electronic design and automation tools support, an ambiguous design

flow and testing mechanisms for asynchronous logic and, most importantly, absence of a forum to look

for relevant works, explaining the design steps and tools for such microprocessors. This paper is intended

to bridge this gap by 1) reviewing the design principles of asynchronous logic, including classification,

signaling conventions, and pipelining approaches; 2) presenting the complete design flow and available

electronic design and automation tools; 3) developing an encyclopedia of various general and special purpose

microprocessors proposed by far; and 4) presenting an evaluation of those works in terms of area on the die

and performance metrics. This paper will also serve as guidelines for the asynchronous microprocessor

design and implementation in all phases from specification to tape-out.

INDEX TERMS Asynchronous logic, electronic design and automation, microprocessor.

I. INTRODUCTION

While reduction in feature sizes has led the digital circuits

to operate at increased clock-rates, the synchronous designs,

on the other hand, face certain challenges that are difficult to

overcome in the deep submicron era [1]. These include chip

wide clock distribution, and susceptibility to delay variations.

The former may be addressed by means of a balanced clock

tree with a sufficiently low skew, however, the strong clock

drivers will still pose a threat to energy requirements [2].

The asynchronous logic, which relies upon closed-loop hand-

shakes for communication between components, naturally

The associate editor coordinating the review of this manuscript and
approving it for publication was Songwen Pei.

eliminates the need for a clock, and at the same time pro-

vides an inherent ability to adapt to uncertainties and even

dynamic changes of timing parameters. Lower power dissi-

pation, reduced electromagnetic emission, higher operating

speed, and better modularity are among a few other traits

associated with asynchronous logic designs [3], [4].

In spite of the advantages that asynchronous logic enjoys

over its synchronous counterpart, it never flourished, and

failed to catch industries’ attention. The primary reason

behind this predicament is insufficiently mature electronic

design and automation (EDA) tools support [5]. For the same

reason, the principles of asynchronous logic, the existing

asynchronous systems − be them in the industry or in aca-

demics, and their design flow along with the EDA support,

33978
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6954-926X
https://orcid.org/0000-0003-3647-8578


Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

are usually misunderstood and more often overlooked. Same

is the case with asynchronous microprocessors, which have

been developed during the past three decades using various

design flow and tools, but neither had they managed to be

among the processors of eminence, nor could they define the

standard design flow for asynchronous systems.

With proceeding miniaturization, and consequently grow-

ing number of functional units on a single chip, however,

the asynchronous logic once again is receiving attention of

the research community [6]. We believe there is a need to

comprehensively present principles of asynchronous logic, its

standard design flow and available EDA support, followed

by a thorough evaluation of various general and special pur-

pose microprocessors existing in literature. This is the main

contribution of the proposed work: while it serves as an

encyclopedia of asynchronous principles and microproces-

sors, it is intended to give direction for specifying, modeling,

synthesizing, and implementing all classes of asynchronous

circuits and systems, and to present a quantitative evaluation

of existing asynchronous microprocessors.

The rest of the manuscript is organized as follows: We

begin by presenting principles of the asynchronous logic

in Sect. II. Sect. III-A details the design flow and EDA

support for asynchronous circuits and systems. In Sect. III-

B, we present an overview of the existing processors, and

their quantitative evaluation. We conclude the manuscript in

Sect. IV.

II. FUNDAMENTALS OF ASYNCHRONOUS LOGIC

In what follows, we briefly review the fundamental principles

of asynchronous logic, knowing which is essential for under-

standing and designing asynchronous circuits and systems.

A. DATA AND CONTROL PATHS

Data path refers to a part of circuit that is responsible to

perform operations, such as, arithmetic and logic on data.

The control circuit, on the other hand, maintains the operation

sequence of data path, as well as controls the timing.

Two asynchronous circuits are connected in such away that

their data paths are directly connected to each other, while

their control paths are connected to each other by means of a

pair of signals, known as request and acknowledge− together

called the control signals. The latter indicate validity and safe

reception of data between sender and receiver on the data path

respectively. The instances at which the control signals are

asserted lead to a distinction between two delay models of

asynchronous logic; namely bounded and unbounded. In the

former, the control signals are automatically asserted once a

presumed delay, which is usually long enough for the corre-

sponding operation on the data path to complete, has elapsed.

On the other hand, in unbounded delay models, additional

steps need to be taken to know for sure the data validity

and their safe reception. Data and control paths are usually

separately synthesized to gate level netlists, because each of

them requires a different set of methodologies and tools.

FIGURE 1. (a) Push channel, (b) pull channel.

B. HANDSHAKING CONCEPT IN ASYNCHRONOUS

DESIGN

A channel is a point to point, unidirectional communication

link that connects two asynchronous circuits. Usually there

are three signals comprising a channel: request, data and

acknowledge; the request signal may be encoded into the

data bus in some cases. The sender places some data on the

data bus, and indicates their validity to the receiver using

a control signal. The receiver, on the other hand, receives

the data, consumes them, and indicates its availability for

receiving the subsequent data item, using the other control

signal. This request-acknowledge activity, to transfer a data

item, is termed as a handshake. The communication may be

initiated by the sender; in which case the channel is known

as a push channel, whereas, in a pull channel, the receiver

initiates the communication by asserting the request signal

fig. 1 depicts each type of channel with its block diagram and

corresponding waveform.

C. CLASSIFICATION OF ASYNCHRONOUS CIRCUITS

Asynchronous circuits can be classified according to their

delay models; the usual three classes are discussed next.

1) DELAY INSENSITIVE CIRCUITS

The class that is most robust against variations of process,

voltage and temperature (PVT), is called delay insensitive

(DI) [7], since it assumes arbitrary, but finite, wire and gate

delays [4], [8], [9]. The receiver, in such circuits, is bound to

properly acknowledge every transition by the sender, which

VOLUME 7, 2019 33979



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 2. (a) Delay insensitive, (b) quasi delay insensitive.

means the next transition is allowed only when the previ-

ous data are correctly accepted and/or consumed. However,

the number of asynchronous circuits that may be made DI,

is very small [10]. A DI circuit is illustrated in fig. 2(a): the

acknowledge signal is asserted once each of the two receivers

has issued its own acknowledgment; indicating its availabil-

ity for accepting the next one. The black box introduced,

is responsible for joining the two acknowledgments (waiting

for all the receivers to respond), since delay1 6=delay2, and

hence, their acknowledgments may arrive at different times

as well.

2) QUASI DELAY INSENSITIVE CIRCUITS

DI circuits with isochronic forks are said to fall in quasi delay

insensitive (QDI) class. This class of asynchronous circuits

compromises the delay insensitivity property, by assuming

that in isochronic forks, all the receivers receive the signal

at the same time, as presented in fig. 2(b). That is, the input

delay of each receiver is identical, so only one acknowl-

edgment from any of them ensures the completeness to the

sender. Isochronic forks, if not carefully implemented, may

cause a hazardous effect in the circuits [11].

3) SPEED INDEPENDENT CIRCUITS

Speed Independent (SI) class assumes arbitrary, but finite,

gate delays, and zero wire delays. This class is similar to

FIGURE 3. The 2-phase bundled data signaling.

synchronous style: it assumes that before the req signal is

asserted, the data have to be stable at the receiver side; similar

to synchronous approach, where the clock edge occurs suffi-

ciently later than the data becoming valid and stable. So to

achieve this, in asynchronous environment, there has to be

an appropriate delay, by means of a buffer or inverter chain,

in the req path. However, these circuits, by doing this, lose

their robustness against PVT variations.

D. SIGNALING CONVENTIONS

In asynchronous designs, the local controller, instead of a

global clock, governs the data movement on a channel [12].

The control signals follow some predefined pattern for accu-

rate operation, where the latter is specifically known as sig-

naling; this is discussed next.

1) 4-PHASE SIGNALING

To complete one handshake cycle, or to exchange one mes-

sage, the 4-phase signaling protocol uses four transitions,

two by each of the req and ack signals [13]. The waveforms

illustrated in fig. 1 are examples of 4-phase bundled data1

protocol. As may be seen in the waveform, the transition

to high level indicates any valid event, while the transition

to zero changes the phase that resets the communication

− giving this scheme another name, Return-to-Zero (RTZ)

protocol.

2) 2-PHASE SIGNALING

In 2-phase signaling, transition of request signal from zero to

one, as well as, from one to zero, indicate validity of the data,

as illustrated in fig. 3. Since there is no, unnecessary, resetting

phase involved, this type of signaling is also termed as Non-

Return to Zero (NRZ). Naturally, this type of signaling will

lead to faster circuits, besides being more energy efficient due

to fewer number of transitions required per data transfer.

In comparison to 2-phase signaling, the advantages that

4-phase signaling enjoys include increased robustness to

delay variations, since the RTZ phase provides sufficient

safetymargin, and the circuits are relatively simpler to design.

For instance, a level controlled latch can be directly driven

by using control signals of the 4-phase protocol: one level

switches it to opaque, while, the other makes it transparent.

The 2-phase signaling, on the other hand, requires some

additional logic to make the latch functional as required.

1II-E1

33980 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

E. DATA REPRESENTATION

The purpose of communication is to transfer meaningful

information in the form of data. The predefined suitable

representation of data is also called encoding, on which two

parties agree. Generally, in asynchronous logic, the data may

be encoded in one of the two ways: 1) single rail encoding

where one bit of data takes one line, 2) M-of-N encoding in

which single bit of data takes multiple lines. Next, we dis-

cussed these two encoding schemes.

1) SINGLE RAIL ENCODING

In single rail encoding as mentioned above, each wire carries

one bit of data [14]. The control signals use separate rails, and

are said to be bundled with the data signals − hence the name

bundled data encoding. In bundled data encoding, the control

signals may adopt either of the two signaling conventions

discussed above. In that case, the suitable prefix, 4-phase or

2-phase (whichever adopted), is placed before name of the

encoding scheme. Because of their simplicity, these schemes

are widely used, where the cost, in terms of area on the die,

is approximately the same as synchronous equivalents [15].

2) M-OF-N ENCODING

This type of encoding is used within the DI class of asyn-

chronous circuits, where N wires carry log2(N ) bits of infor-

mation (N is in a power of 2), and there is an explicit wire to

carry the acknowledgment [12]. The dual rail encoding [16]

is a special case of 1-of-N encoding, with N = 2. Each bit is

encoded using two rails: true and false. Level 0 is represented

by logic ‘1’ on the false rail, while ‘1’ on the true rail is used to

represent level 1. A ‘0’ simultaneously on both rails indicates

‘no valid data’. The two rails are mutually exclusive, so at a

time, only one is allowed to make a transition. The new data

validity at the receiver side is detected by transition, since no

explicit request signal is available. The completion detection

circuit performs this task. An example of dual rail encoding,

and completion detection logic for each type of protocol, are

illustrated in fig. 4 and 5 respectively.

Note in the completion detection mechanism, it is impor-

tant to detect the RTZ phase on all lines as well, which

cannot be handled by an AND gate. The reason behind this

deficiency in AND gates is the fact that a low on only one

input will cause a low on the output. Therefore, a component

that waits for all the inputs to go low before it could deassert

its output, should replace the AND gate. Muller C-element

(MC) [17] is one such component, which has been the prim-

itive for asynchronous logic since its inception.

From 1-of-N encoding class, one hot encoding represents n

bit data by 2n lines. It is different from the dual rail codes for

n = 2, in that it uses a 4-bit unique code to represent the 2-

bit data, unlike the dual rail codes, which would encode each

bit using two lines. This difference is presented in Table 1.

Although the area overhead for the two equivalents remains

the same, the fewer number of transitions in the 1-of-N

encoding makes it more energy efficient, and therefore the

preferred method.With 1-of-2 encoding, the 4-phase protocol

FIGURE 4. Dual rail encoding (a) 4-phase, (b) 2-phase.

FIGURE 5. Completion detection logics (a) 4-phase signaling with 1-bit
message, (b) 4-phase signaling with m-bit message, (c) 2-phase signaling
with m-bit message.

TABLE 1. 2-bit Representation using dual rail, and 1-of-4 code.

is known as Null Convention Logic (NCL) [18], [19], where

the RTZ phase is called a spacer or an empty word, used to

separate two code words. The other difference is usage of

the majority or threshold gates [20] for completion detection,

in comparison to MCs used in dual rail codes.

Level Encoded Dual Rail (LEDR) is another important

dual rail encoding scheme [21]. In these codes, the data bit is

the first bit in the codeword, followed by a 1-bit phase, which

keeps alternating between odd and even for each codeword.

Therefore, the two consecutive codewords are always differ-

ent in their phases, making it possible to distinguish identical

data items without the need of having a spacer in between −

resulting in more energy efficient codes.

F. ASYNCHRONOUS PIPELINE IMPLEMENTATIONS

Efficient asynchronous circuits are usually built as pipelines,

which increase the overall throughput by distributing the

task among several function units operating in parallel on

different data values. There are several types of asynchronous

pipelines, micropipelines [22], mousetrap [23], GasP [24],

VOLUME 7, 2019 33981



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 6. 4-phase bundled data pipeline.

QDI [25], [26], asP* [27], wave [28], [29], surfing [30], and

RAMP [31]; all of them have a common Muller pipeline

as their backbone though. The Muller pipeline is a simple

arrangement of MCs, such that each of them forms a single

stage. The output of each stage (MC) serves two purposes:

1) it becomes the input req to the successor stage, 2) it is

sent as the inverted ack to the predecessor stage. The first

stage receives its input req from the sender, and generates

ack in return. Similarly the last stage generates the output req

to the receiver, and receives the ack in return. The Muller

pipeline is a mechanism that relays handshakes [4]. The

pipeline is said to be empty when all theMCs are initialized to

zero. At this point in time, the left-environment (also called

sender or producer) can initiate the handshake by asserting

req. While this transition ripples through the pipeline to the

right-environment (also called receiver or consumer), due to

the symmetry, each stage sends the acknowledge to the pre-

vious stage. Now in case the producer is faster than the

consumer, it may deassert its req which should traverse the

entire pipeline up to the last stage and get blocked, waiting

for the receiver to consume the token by asserting the ack.

Sooner or later, a time may come when all the stages get

blocked because of the slow nature of the receiver. A fully

filled pipeline has an interesting characteristic, i.e., alter-

nating stages will always store opposite values. Singh and

Nowick [23] made use of this feature to build the mousetrap

pipeline.

The 4-phase bundled data pipeline with datapath is illus-

trated in fig. 6. In a completely filled pipeline, one can

observe that only half of the pipeline stages store data, since

each pair of successive MCs hold alternating logic. This

pipeline configuration is just like a Master-Slave setup in

synchronous designs [4].

The 2-phase bundled data pipeline, also known as

micropipelines, was proposed by Sutherland [22]. As may be

observed in fig. 7, the control path is identical to the Muller

pipeline, with a slightly different signal interpretation, which

makes it follow the 2-phase handshaking.

III. ASYNCHRONOUS PROCESSORS, LANGUAGES AND

DESIGN TOOLS

A. TOOLS AND LANGUAGES

1) TANGRAM

Tangram [32], is a tool based on the dedicated programming

language (a CSP based VLSI programming language) with

FIGURE 7. 2-phase bundled data pipeline.

transparent silicon compiler. In a Tangram program, a pro-

grammer can define whether commands are executed concur-

rently or sequentially. The Tangram program first translates

into handshake circuits, as an intermediate state, prior to

the VLSI circuit layout. The intermediate translator, known

as tangram compiler, performs syntax-directed translation

into handshake circuits [33], where the compiler contains the

handshake circuits translation rule for each tangram program.

At the next stage, transparent silicon compile or handshake

circuit compiler performs two tasks: component substitu-

tion, and layout generation. In the former, the handshake

components are implemented into standard cell library, and

in the layout generation phase, commercial CAD tools are

used. Some asynchronous chips programmed in Tangram

are [34]–[38].

2) CHP: COMMUNICATING HARDWARE PROCESSES

CHP [39] is a programming language for fine grain dis-

tributed computation. Usually, a CHP program consists of the

parallel configuration of several concurrent processes, where

inside each process, the code is mostly sequential. These

processes do not share variables; the latter are local to each

process, but theymay be passed to other processes as commu-

nication channel messages. The procedures and functions are

also used as local variables. Integer (int), boolean (bool) and

symbol are three generic variable types. For structuring data,

two mechanisms named array and record are used, where

the latter may contain many variables, each having its own

type.

The process graph in CHP is made with a set of processes

as vertices, and communication channels as edges. Initially,

a process is declared and then instantiated. A process may be

of two types: a meta-process or a simple process, where the

former contains a number of sub-processes, and label meta

identifies this type. On the other hand, label chp identifies a

simple process.

Synthesizing a QDI system comprises few steps. At first,

the system is described as a sequential CHP program, which

is decomposed into a fine grain CHP process. This step is

known as process decomposition, after which a CHP program

is transformed into handshake expansion (HSE). Finally,

the HSE code is transformed into a productive rule set (PSR)

program. CHPsim locates and detects a deadlock, estimates

the performance, and debugs the system, as well as provides

syntactic and runtime checks, where the main and interesting

33982 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 8. Balsa design flow: reprinted from [46].

function of the CHPsim is co-simulation. Many projects have

been synthesized with CHP, including [40]–[45].

3) BALSA

Balsa [46], [47], is a language for describing asynchronous

hardware system, as well as, it is an asynchronous circuit

synthesis system that generates gate level netlists from Balsa

high-level description language. Balsa design flow, shown

in fig. 8, demonstrates the overall working.

Balsa contains a number of tools from which some of the

important ones are listed below.

• balsa-c: Balsa language compiler, intermediate lan-

guage breeze is the output of balsa-c compiler

• balsa-netlist: from a Breeze description it produces an

appropriate netlist of the target CAD/technology frame-

work.

• breeze2ps: postscript file of the handshake circuit graph

is produced by this tool.

• breeze-cost: circuit area cost estimation tool.

• balsa-md: makefiles generating tool.

• balsa-mgr: for balsa-md, a graphical front-end with

project management facilities.

• blasa-make-test: for a Balsa description it automatically

generates test harness.

• breeze-sim: at the handshake component level the pre-

ferred simulator.

• breeze-sim-control: for the simulation and visualization

environment a graphical front-end.

Balsa adopts a syntax directed translation method to yield

communicating handshake components, where the compila-

tion approach is transparent and similar to Philips Tangram

FIGURE 9. Tiempo asynchronous/synchronous circuit design flow:
reprinted from [48].

system [32]. The set of≈45 handshake components are listed

in [47], which are connected by channels, on which the com-

munications take place.

4) ASYNCHRONOUS CIRCUIT COMPILER

Asynchronous Circuit Compiler (ACC) is the first fully auto-

mated synthesis tool for asynchronous and delay-insensitive

circuits. It is used in Tiempo [48] asynchronous circuit design

flow [49] as shown in the fig. 9. The input of ACC is a

description written in Transaction Level Modeling (TLM)

using SystemVerilog [50] description language. Such a for-

mat gives logical integration of Tiempo clockless technol-

ogy into verification platforms such as Mentor Graphics

QuestaTM, Cadence NCsimTM and Synopsys VCSTM. It pro-

duces output at gate level netlist in Verilog description lan-

guage. In addition to standard cell libraries, ACCuses Tiempo

asynchronous cells for circuit mapping. The gate-level netlist

representation generated using standard back-end and electri-

cal simulation tools can be placed-and-routed and simulated

respectively. As ACC is made interoperable and compliant

to standard design flows, it can be integrated/used with any

tool based on industry standard. As an example, TAM16 [51]

IP core is designed by using Tiempo fully asynchronous and

delay insensitive technology.

5) PETRIFY

Petrify [52], [53] is a tool for synthesis of Petri Nets (PN)

and asynchronous circuits. It manipulates concurrent speci-

fication as well as optimized asynchronous control circuits.

Petrify generates bi-similar and simpler PNs or a Signal

Transition Graph (STG) from the originally described PN

or STG (fig. 10). Furthermore, it transforms a specification

using token flow analysis of the initial PNwhich in turn yields

a Transition System (TS). In an initial TS, the same label

transitions are counted as one event. The condition required

to obtain pure. unique, free and non-redundant PN is that

the TS is transition re-labeled and transformed. By using

design gate library, Petrify generates asynchronous controller

net list while the input-output behavior remains unchanged.

VOLUME 7, 2019 33983



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 10. Petrify framework: reprinted from [52].

By solving complete state problem, it performs state assign-

ment when asynchronous circuits are synthesized, and gener-

ates speed independent circuits [54].

6) OTHER TOOLS

In the literature, there are a number of other simi-

lar tools including Teak [55], Occam [56], LARD [57],

DESI [58], VSTGL [59], Workcraft [60], VERISYN [61],

Pipefitter [62], CHAINworks [63] and TiDE [64].

B. PROCESSORS

Processors that are dependent on a global clock are syn-

chronous where the clock regulates processing. The global

clock in such processors may become problematic, in par-

ticular, when the processing environment is more complex.

The main issues faced in a synchronous processor are the

clock skew and the clock circuit itself. The later can dis-

sipate an enormous amount of power because it’s always

running. A alternative choice among the research community

is to consider asynchronous designs. In an asynchronous

design. each functional unit communicates with other by

using a local clock or more technically using handshak-

ing. Such a design choice delivers simplified interfacing

and average case performance as compared to the worst

case performance in synchronous design. In asynchronous

designs, the clock delay is larger than the delay of slowest

component. Asynchronous processors are efficient in power

dissipation as only the required part of the circuit is alive.

In this section, different asynchronous processor designs are

explored.

1) CALTECH ASYNCHRONOUS MICROPROCESSOR

Caltech Asynchronous Microprocessor (CAM) [40] is a

16-bit RISC type architecture with 16 general purpose regis-

ters, an ALU, four buses, and two adders. The two adders are

used for memory addresses calculation and program counter

calculation, respectively. The CAM use 4-phase handshaking

protocols with dual rail-data transfer. The estimated perfor-

mance of the CAM processor was approximately 15 MIPS

at 7V when realized with 2µm Scalable CMOS version at

room temperature and 30MIPS at 12V when a chip is cooled

with liquid nitrogen. The performance was estimated to be

26MIPS at 10V@105mA when realized with HP 1.6µm

SCMOS. The processor is realized usingHarvard architecture

and its chip consists of 2000 transistors.

2) FULLY ASYNCHRONOUS MICROPROCESSOR

Fully Asynchronous Microprocessor (FAM) [65] is a 32-bit

RISC like architecture with 4-stage pipeline. Its data path

includes 32-bit ALU, 32 registers (each 32-bit wide), 32-bit

barrel shifter, multiplier and an adder. The 4-stage pipeline

uses ALU and register file and includes operations instruc-

tion fetch, memory access, instruction decode and instruction

execute. It consists of two types of blocks: a computation

block and an interconnection block. The computation block

includes adder, shifter and register while the interconnection

block includes combinational logic, pipeline register and a

data latch. The instruction set of FAM microprocessor has

18 instructions, uses 4-phase handshaking protocol with dual

rail-data transfer and is based on CMOS technology with

approximately 71000 transistors. Its design is based on Dif-

ferential Cascade Voltage-Switch-Logic (DCVSL) for com-

pletion detection of combinational logic with performance

measured 300MIPS in 0.5 micron CMOS.

3) NON-SYNCHRONOUS RISC PROCESSOR

Non-Synchronous RISC (NSR) [66] is a 16-bit load/store

architecture with 16 general purpose registers and contains

5-state pipeline. The 5-stage pipeline include units for

instruction fetch, instruction decode, execute unit, memory

interface and register file. In NSR, stalling caused by a

slower instruction is covered by adding self-timed FIFO

queues between concurrent units. Each block accepts data

from other blocks for processing and sends the result by

means of FIFO queues. An instruction that does not need a

particular pipeline stage is never passed through that stage.

For example, if an instruction does not use the memory, it is

never passed through the memory interface pipeline stage.

The self-timed concurrent blocks in NSR design communi-

cates using 2-phase bundled data protocol. For a prototype

NSR, seven Actel Field Programmable Gate Arrays (FPGAs)

are used. To test any unit of NSR processor, each unit request

is blocked by using a switch to hide the request and acknowl-

edge signals from other units. The best case performance of

NSR is estimated to be 1.3MIPS.

4) COUNTERFLOW PIPELINE PROCESSOR ARCHITECTURE

Counterflow Pipeline Processor (CFPP) [67] architecture

(fig. 11) is realized using SPARC instruction set and is based

on the idea that instruction flows in one direction and its

result on other within a pipeline. The CFPP have multi-stage

pipeline design in which program counter is at the bottom

33984 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 11. Counter flow pipeline processor: reprinted from [67].

while the register file is placed at top (of pipeline). An instruc-

tion flows up for execution and stalls when the upper pipeline

stage cannot accept a new instruction. An instruction may

also stall if it reaches execution stage while at the same time

the upper stage include a stalled instruction. Such situation

may be avoided if there is a gap of arbitrary size in a pipeline

which leaves some stages empty (without any instruction).

An instruction include opcode, source and destination

bindings as shown in the fig. 11. Each binding contain three

fields register name, validity bit and a value.When an instruc-

tion reaches execution stage, the new data value is loaded to

a destination binding and marked valid after the execution.

Similarly, when an instruction reaches top pipeline stage,

the data value from destination binding is loaded to a spec-

ified location of a register file. Afterwords, the destination

binding flows downward in the pipeline on the result of a

subsequent instruction.

There are two bindings in a result pipeline. If a subse-

quent instruction needs source binding with its register name

matching the register name of result binding, it garner the

value from register pipeline to instruction pipeline, just like

bypassing or forwarding. On the other hand, if the executed

instruction destination binding matches with the result bind-

ing, then the result binding garner the value from destination

binding. With any register that match, the new instruction

source binding updates with most recent values. Another

situation arises when an instruction yet to execute with result

binding match with destination binding, the result in binding

is killed. As the result binding is not valid for later instruc-

tions, all the rules just described guarantee the correct result

binding for instructions. A multi-result binding on different

stages of a pipeline at the same is similar to register renaming.

Issues like trap and incorrect branch predictions are

resolved by the architecture effectively. Trap caused by any

instruction on any stage generates trap-result bound to a result

pipeline (not to a destination binding). The instruction that

causes a trap is set to invalid that may proceed to next pipeline

stage but will have no effect on register file or result pipeline.

The trap-result is interpreted by stage responsible for program

counter control which changes program counter to a suitable

trap handler. The incorrect branch predictions are similarly

(to traps) handled while the program counter control starts

execution from the proper path.

In CFPP architecture, non-identical stages perform differ-

ent processing: one stage, for example, performs multipli-

cation while the other performs addition. This architecture

may use siding which performs execution of long compu-

tation delays instruction. This implies, when multiplication

instruction reaches multi-launch, it stalls till all operands

required become valid before launch.Multiplication is shifted

to siding multiplier and execution result is recovered in later

multi-recover stage. Other sidings such as adder and memory

sidings are also available in this architecture.

Non-identical stages weakens the performance of archi-

tecture: if a store instruction, for example, is dependent on

multiplication instruction then the compiler must reschedule

independent instructions between them. This way, when the

multiplication instruction propagates to eight stage, the store

instruction would propagate to fourth stage. When the mul-

tiplication stores the result in 10th stage, there will be

five empty stages between multi-recover and the mem-

ory launch. The result from multiplication enters pipeline

and propagates through five stages to reach awaiting store

VOLUME 7, 2019 33985



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 12. AMULET1 organization: reprinted from [68].

instruction which affects the throughput. It had long stage

pipeline which requires an excessive amount of area. This

version was not implemented on hardware.

5) AMULET1

AMULET1 [68] is an asynchronous version of ARM proces-

sor and is object code compatible with ARM6 (32-bit) proces-

sor. It consists of functional units address interface, register

bank (with 30 general purpose registers each 32-bit wide),

execution unit and data interface (fig. 12). Each functional

unit in AMULET1 works concurrently and independently.

To avoid control hazards, coloring mechanism is used [69].

In this mechanism, a color bit is used to represent the state

of the processor as well as the same color bit is allocated

to an instruction fetch at a particular moment. Whenever the

instruction and processor color bits mismatches, the instruc-

tion is discarded. The processor color bit changes on the

termination of the instruction stream. This architecture uses

register locking mechanism, 2-phase single rail protocol for

communication and bounded delay timing model and operate

on fundamental mode of operation.

The AMULET1 processor is fabricated using two CMOS

processes where 1µm process at ES2 gives the performance

of 20.5K Dhrystone (@5V and 152mW, 77MIPS/W) while

0.7 µm process at GEC Plessey Semiconductor gives the per-

formance of 40K Dhrystone @ 5V [69]. It does not give best

performance compare to its synchronous version ARM6 but

gives a clear way for asynchronous implementation.

6) TITAC: DESIGN OF A QUASI-DELAY-INSENSITIVE

MICROPROCESSOR

TITAC [70] is a non-pipelined asynchronous implementation

of 8-bit Von Neumannmicroprocessor. The processor is orga-

nized as a control section and data path section. The con-

trol section contains two independent controllers (controller

1 and controller 2) where the first controller is hard wired

controlled. The other controller is microprogrammed which

controls outside chip storage. Either controller can be selected

to control data path section. TITAC microprocessor is based

on quasi-delay insensitive timing model and uses 4-phase

communication protocol. It is realized using 1µmCMOS and

uses≈22068 transistors with the estimated performancemea-

sured 11.2MIPS and 1.8MIPS, respectively, for controller

1 and controller 2.

7) THE GALLIUM ARSENIDE ASYNCHRONOUS

MICROPROCESSOR

The Gallium Arsenide (GaAs) Asynchronous Micropro-

cessor [71] with a 16-bit RISC pipeline architecture is

the modified implementation of Caltech Asynchronous

Microprocessor using GaAs Technology. The processor data

path includes program counter, 16 general purpose registers,

an ALU and memory unit for load/store operation execution.

All data path gates, completion detection circuit and buffers,

except NAND gates, are Direct Coupled-FET Logic (DCFL).

The performance of the processor measured is 50MIPS/W.

8) FRED ARCHITECTURE

Fred [72] is a self-timed decoupled pipeline computer archi-

tecture based on micro-pipelining and roughly based on

NSR III-B3. It uses most of the Motorola 88100 instruc-

tion set. Fred organization include dispatch unit, register file

(32 general purpose registers) and execution unit as shown in

the fig. 13. Dispatch unit is the main control unit that controls

program counter, instruction fetch and sends instructions to

other functional units. It issues instructions and monitors data

hazards after satisfying data dependencies by resolving reg-

ister destination conflict. Execution unit has five functional

units (arithmetic, logic, control, memory and branch unit)

where a distributor is responsible for sending an instruction to

appropriate unit. The result of each functional unit is written

back to register directly or by a register (R1) queue. In Fred

architecture, direct result forward to other functional units is

not allowed due to complexity.

Many decoupled independent processes of Fred architec-

ture are connected via FIFO queues (dedicated paths) of

arbitrary length to process various instructions at a time.

As each pipeline stage passes data by communicating locally

with the neighbor stage, no extra control circuitry is used for

33986 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 13. Fred block diagram: reprinted from [72].

adding additional pipeline stages. Fred prototype is described

in hardware description language VHDL and is fully func-

tional. For performance measurement, different benchmark

programswere run through Fred and the average performance

measured was 149.67 MIPS.

9) HADES ARCHITECTURE

Hatfield Asynchronous DESign (HADES) [73], [74] is a

superscalar RISC type processor with Harvard architecture.

HADES is a step towards the design of an asynchronous

superscalar processor. It includes four pipeline stages namely

instruction fetch (fetches in groups), instruction decode

(twofold operation), execution (independent functional units)

and write-back stage. In the write-back stage, two register

files integer and boolean are used. The condition generated by

integers comparison is stored in the boolean register file for

resolving branches. It addresses read-after-write and write-

after-write hazards using register locking mechanism and

decoupled operand forwarding. To resolve such hazards, each

functional unit in execution stage have separate forwarding

register. This architecture is capable of issuing single and

multiple instructions: instructions are issued in order but

allows their out of order completion. Furthermore, it uses

4-phase protocol for communication. A formal specification

language, Communication Sequential Processes (CSP) [75],

is used for designing baseline of HADES processor in which

all concurrent processes communicate asynchronously. The

specification language CSP and description language VHDL

allows the designer to check correctness of the design and

simulate them easily.

10) ASYNCHRONOUS PROCESSOR BASED ON PETRI NETS

The processor in [76] is based on Holton’s [77] 3-bit sim-

ple synchronous processor design where the asynchronous

version employed the same instruction set specified in

synchronous implementation. It performs the operations

load general register (LdGR), load accumulator (LdAcc),

FIGURE 14. Asynchronous microprocessor high level specification with
Petrinets: Reprinted from [76].

arithmetic operation (Arth) and store. At first stage, labeled

petri nets are produced (as shown in fig. 14) where places

are represented by circles and transitions are represented

by bars. An abstract labeled petri net includes two places

and two transitions for instruction fetch and execute mode.

An instruction and word fetch results program counter (PC)

increment while an instruction execute transition produces

complex structure. An instruction can be one or two-word

wide: on the completion of one word instruction, the pro-

cessor executes next instruction while on the completion of

two-word instruction, the instruction (first) word remains in

the instruction register as the second word fetched contains

data.

Instruction execution completes as follows: the load

instruction is decomposed into decoding of instruction LdAcc

and fetching the second word Accdta. Arithmetic instruction

execution is completed using ALU and latching result to the

accumulator. Store instruction is completed after memory

address register write (loading address) and memory write.

After the completion of labeled petri nets, the designer

derives the temporal relation between the transitions. The

analysis shows the increment of PC is concurrent with all

execution transitions. The designwas improved (from version

1) by refining using decoupling ALU as arithmetic instruc-

tions do not require data from memory. In this refinement,

the acknowledge is sent to Memory Address Register (MAR)

after decoding. In this improved version (version 2), the ALU

VOLUME 7, 2019 33987



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 15. Pipelined processor model with two latches: reprinted
from [76].

and Accres (latching result to accumulator) are concurrent

to MARr and Memr (memory read) that produces reduction

in arithmetic operation execution time. In this later version,

modules are decoupled further because of low concurrency.

Furthermore, instruction register is concurrent with ALU

and Accres where instruction decode work concurrent with

MARr and Memr. This, however, introduces deadlock and

stall signal. With further refinement (version 3), the deadlock

was removed by adding new register for storing fetched word

and allow MAR to accept request from this transition. The

stall signal allows new PC value to MAR only when previous

instruction start to decode.

Further improvement was brought in version 3 (of the

processor) after analyzing the temporal relation of modules

in the processor. Extra latch was introduced for decoupling

memory and instruction registers. The instruction register

is now concurrent with MARr and Memr (version 4 of

the processor). This include 4-stage micro-pipeline with

extra feedback as shown in fig. 15. The performance of

the designs was measured using UltraSAN. In version 4,

PC-cycle takes 109.0ns and execution of Arithmetic opera-

tion takes 100.0ns. At the second stage, the labeled petri nets

are translated to asynchronous circuits where the translation

method employed was inspired from Patil’s work [78].

FIGURE 16. Execution pipeline of Amulet1 (left) and Amulet2 (right):
Reprinted from [79].

11) Amulet2e: AN ASYNCHRONOUS EMBEDDED

CONTROLLER

Amulet2e [79] is an asynchronous embedded controller pow-

ered by asynchronous ARM core. Amulet2e has asyn-

chronous ARM core, RAM/cache of 4Kbyte and memory

interface to connect with external memory. For performance

gain, amulet1 was modified to amulet2 where the main

change in execution pipeline is reduction of pipeline stages

as shown in fig. 16. In amulet2, stall due to register lock-

ing is resolved with forwarding mechanism using the last

result register (LRR) and last loaded value (LLV) techniques

to bypass the register read as shown in fig. 17. To pre-

dict branches, amulet2 introduced Branch Target Cache as

shown in fig. 18. Branch prediction is another performance

edge compare to amulet1. In amulet1, issues raised due to

sequentially pre-fetch instructions from program counter are

corrected by execution pipeline.

In amulet2, HALT is introduced for power efficiencywhere

the system resumes full performance on interrupt. The range

of chip select lines, address bus and bidirectional data bus in

the memory interface of amulet2e makes it more convenient

than amulet1. Furthermore, amulet2e uses 4-phase bundled

data protocol for communication. When all performance fea-

tures are turned on, the performance measured is 42MIPS

(Dhrystone 2.1 benchmark). On the downside, amulet2e is

only used as a research prototype and is not suitable for

commercial use.

12) ASYNCHRONOUS MIPS R3000 MICROPROCESSOR

The asynchronous version of MIPS R3000 microprocessor

is known as MiniMIPS [41]. The microprocessor MiniMIPS

has a 32-bit RISC CPU, memory management unit and two

4Kbyte on-chip caches (instruction cache and data cache).

33988 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 17. Organization of register forwarding: reprinted from [79].

FIGURE 18. Organization of branch target cache: reprinted from [79].

It contains 32 general purpose registers (each 32-bit wide),

two special purpose registers for division and multiplication

and a program counter. The pipeline structure in MiniMIPS

includes fetch loop and execution pipeline. The fetch loop

has program counter, fetch and decode unit. The execution

pipeline, on the other hand, includes execution, register and

write back units. All execution units (e.g., adder and multi-

plier) are parallel and works concurrently. This means, mul-

tiplier’s result is directly written to register and is not passed

to any other execution unit or write back unit.

The MIPS R3000 microprocessor is a 3-stage pipeline

architecture where as MiniMIPS is very carefully pipelined

to gain performance. The main design goals are to achieve,

without sacrificing low power advantage of the asyn-

chronous design, high throughput, address the architec-

ture issues missed in CAM, precise exception, branch

delay slot, branch prediction, register bypassing and caches.

MiniMIPS microprocessor operates on two modes: user and

kernel mode. The design uses 4-phase handshaking protocol

(dual rail or 1 of N code) and quasi-delay insensitive timing

model. The performance of MiniMIPS measured is 180MIPS

@ (4W and 3.3V @ 25◦).

13) TITAC-2

TITAC-2 [80], an asynchronous implementation of MIPS

R2000, is a 32-bit microprocessor based on scalable-delay

insensitive model. It has a modified version of instruction set

and include multiply/divide, delay slot of branch and privi-

lege instructions. As the instructions encoding of TITAC-2

and MIPS R2000 are different, they are not object-code com-

patible. They, however, are similar in pipeline stages (both

have five pipeline stages), precision exception handling,

external interruption, memory protection and chip cache. The

pipeline stages include instruction fetch, instruction decode,

execution, memory access and write back.

TITAC-2 introduced new timing model based on scalable-

delay-insensitive (SDI) model. In short circuit functions,

the delay becomes K times larger than estimated delay, where

K is the maximum variation ratio. The SDI model is faster

than delay-insensitive (DI) or quasi-delay-insensitive. This

model is used for subsystems where global interconnec-

tion uses DI model. By using Dhrystone V2.1 benchmark,

the measured performance of TITAC-2 is 52.3VAXMIPS

(@ 2.11W and 3.3V).

14) ASYNMPU

ASYNMPU [81], fully asynchronous CISC microprocessor,

is the first implementation of CISC microprocessor that is

pin-to-pin compatible with Intel 8/16-bit microprocessor. The

functional units of ASYNMPU include pre-fetch, decode,

control, execute unit, three ports (one read and two write

ports) and its register bank has 26 registers. The execute

unit includes bus interface, arithmetic logic unit, mov unit

and a miscellaneous unit for handling microinstructions.

As ASYNMPU is pin-to-pin compatible with Intel 8/16-bit

microprocessor, the bus interface unit makes it possible to

interface the external synchronous system with asynchronous

processor. In Von Neuman architecture, the control (read,

write data) and pre-fetch (for instruction fetch) unit may

access bus interface at same time, result metastable state.

In ASYNMPU, the bus interface unit has arbiter [82], [83]

block for avoiding such metastable state.

The design of ASYNMPU addresses the complex feature

of CISCmicroprocessor using asynchronous processing tech-

niques. Among its major features are instruction set compat-

ibility, controller-sequencer and variable instruction length

handling. The ASYNMPU uses 2-phase bundled data hand-

shake protocol and its instruction size varies from 1-6 bytes.

Its performance is equivalent to an Intel 8/16-bit microproces-

sor (uses a 33MHz clock) and the average power dissipation

calculated is 110mW. Bus interface of ASYNMPU unit in the

busy state uses 11mW where as it uses 0.73mW in idle state:

a distinctive feature of asynchronous implementation.

VOLUME 7, 2019 33989



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

15) ECSTAC

Event Controlled Systems Temporally specified Asyn-

chronous CPU (ECSTAC) [84], [85], is a fast asynchronous

microprocessor based on event controlled system design

methodology. It is a linear pipeline Harvard architecture and

uses RISC like ISA with 8-bit data path and 24-bit address

path. This mismatch results in a performance trade-off.

ECSTAC architecture includes program counter, instruction

and data cache, instruction decode FIFO, operand fetch, ACS

(24-bit adder, comparator, and stack processing), ALU, order

unit, register and scoreboard. The instruction decode unit is

heavily pipelined to accommodate the data received from

instruction cache. After instruction decode stage, the operand

fetch stage fetches the operands which requires registers.

The output is formed with immediate value (if any) and sent

to ACS unit which performs 24-bit address offset addition.

It checks the jump condition: if it is true, a signal is sent to

all preceding units to invalidate instruction within it due to

branch.

The instruction decode unit includes stack pointer that

provides address for reading and writing from data memory.

Order unit maintains instruction order of ACS and records

the unit (ALU or data memory) used by the instruction. Fur-

thermore, the order unit multiplex data bus of ALU and data

memory to register bank (8-bit 16 general purpose register

and flag register). It returns events from register bank to ALU

and data memory. The scoreboard scheme, on the other hand,

is used to prevent data hazards. It is based on a transition

signaling operating under fundamental mode. Processor gives

peak performance of 28MIPS while fabricated in ES2 0.7µm

DLM CMOS process.

16) TinyRISC TR4101 MICROPROCESSOR CORE

ARISC [86] is an asynchronous implementation of TR4101

embedded microprocessor core based on Harvard architec-

ture. Its pipeline structure includes fetch, decode, flush,

register read, register write, issue and execution units.

The PC register holds address of token (32-bit instruc-

tion word) that is used by the fetch unit to provide a

token to decode unit. After the instruction is decoded, it is

sent to flush unit which checks branch condition. If the

branch condition is true, the instruction pipeline is flushed.

The issue unit issues instruction to relevant execution unit

when the operands are ready and issues new PC value for

PC-ALU.

Opaque latch controller is used on the input of each par-

allel execution unit for faster and power efficient instruction

execution. The register locking mechanism ensures the cor-

rect register write and read which avoids data hazards. The

ARISCmicroprocessor operates onMIPS-II/MIPS16modes,

where all units, except fetch and decode units, operate inde-

pendently. The data path is designed and verified using

Verilog hardware description language and Synopsys synthe-

sis tool, respectively. The speed independent control logic

design is accomplished partly by hand and using Petrify

tool. Its design was simulated (can be used as well) with

three different configurations: 1) separate instruction and

data cache, 2) shared cache, and 3) synchronize bus inter-

face and synchronous shared memory module @83MHz.

The 4-phase bundled data protocol and normally opaque

latch controller (where needed) are used for communica-

tion. High MIPS are achieved by using asynchronous con-

figuration as configuration 1) gives performance of 74MIPS

and 635MIPS/W(Stanford benchmark) and 123MIPS(Peak

benchmark) with Vdd = 3.3V .

17) ASPRO-216

ASPRO [87] is a standard-cell QDI 16-Bit RISC asyn-

chronous microprocessor based on A. Martin’s method

specifically design for an embedded application. It is a scalar

processor where instruction issues in order and completes out

of order. The fetch-decode loop includes PC-unit which sends

addresses to program memory interface. The program mem-

ory interface fetches instructions either from on-chip memory

or external memory. The external and program memory is

48K and 16K words each, respectively, and the instruction

words are 24-bit wide. The external and program mem-

ory together with instruction decoder work in fetch-decode

loop. The decoder sends information to data-path loop and

acknowledge to PC-unit. At this point, if branch or uncon-

ditional branch is taken, the PC-unit sends target address,

otherwise, the incremented address is sent to fetch-decode

loop.

The data-path loop includes register file (16 general pur-

pose register), bus interface and the processing units. The pro-

cessing unit includes ALU, branch unit, load/store unit and

custom unit (for future enhancement). The ALU has ‘‘Min’’

and ‘‘Max’’ instructions that are used for image processing,

bit reversing used in FFT computation and ‘‘Slt’’ for carry

and overflow testing. This architecture also has data mem-

ories (64Kbytes, byte/word addressable) where 256-word

area is reserved for peripherals (accessed with dedicated

instructions). ASPRO design is completed using standard

cell library of 0.25µm 5 metal layer CMOS technology

with automatically generated RAM and gives a performance

of 140(peak)MIPS [42].

18) 80C51 MICROCONTROLLER

The microcontroller 80C51 [36] is an asynchronous imple-

mentation of 8-bit CISC type microcontroller for achieving

power effectiveness. The 80C51 asynchronous microcon-

troller is fully bit and timing compatible with synchronous

80C51. Asynchronous 80C51 is based on the latch with

latch enable signals as well as demand-driven peripher-

als. Its design has been described in description language

Tangram [88]. Standard cell gate-level netlist is achieved

from Tangram description after intermediate handshake cir-

cuit level. The handshake circuit uses 4-phase bundled data

protocol. The design is processed in 0.5µm 3 metal layer

CMOS which contain data RAM of 256bytes and pro-

gram ROM of 16Kb. Gate level simulation of asynchronous

33990 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

80C51 results 2.10MIPS(943MIPS/W) when memories are

excluded, and worst-case condition is assumed.

19) AMULET3

AMULET3 [89], successor of AMULET1 and AMULET2e,

is a 100 MIPS asynchronous embedded processor based Har-

vard architecture. It is a viable asynchronous processor for

commercial use as it supports 4T version of ARM architec-

ture and 16-bit Thumb compressed instruction set2 for more

detail on Thumb please check [90]. The AMULET3 pro-

cessor has six pipeline stages that include instruction pre-

fetch, instruction decode, execute, data memory reference,

record buffer, and register result write-back stage as shown

in fig. 19. Branch prediction unit in instruction pre-fetch stage

supports thumb code. The decode and register read stages

include logic, such as ARM and Thumb decode, and mecha-

nisms such as register read and forwarding. It either decodes

thumb critical control signals directly with thumb instruction

decoder, or it first converts them to ARM equivalent instruc-

tion and then uses ARM instruction decoder. Register read

and forwarding stage traces operand in the register file and

search the reorder buffer if the operand is not available. The

forwarding process stalls till the value become valid, where

three read ports are available for AMULET3 register file.

Execution stage has adder with carry arbitrary scheme,

multiplier (computes 32x32 product in approximately 20ns)

and shifter. The program status register is fit logically into the

execution stage. Reorder buffer stage stores result from exe-

cution pipeline stage and data memory interface. The results

in reorder buffer may be orderly written-back to register file

as well as used for forwarding purpose. The AMULET3 uses

4-phase communication protocol, gain high performance as

compared to its predecessor and operates up to 120MIPS

(Dhrystone 2.1).

20) A8051

A8051v1 [91] is a novel asynchronous pipeline architec-

ture for CISC type embedded controller and is compatible

with Intel 8051. It proposes optimized instruction execution

scheme by skipping the redundancy and bubble states and

uses only required stages. The A8051v1 is a multi-looping

pipeline architecture and handles variable length instructions

(1 to 3 bytes) for CISC type machine. It has 5-stages pipeline

which include instruction fetch (pre-decode with branch pre-

dictor unit), instruction decode, operands fetch, microinstruc-

tion execution and write back unit. The instruction decode

unit checks data dependency for the previous instructions.

The microcontroller uses 4-phase handshake protocol, dual

rail encoding and delay insensitive timing model. It was

realized using 0.35µm CMOS technology while the perfor-

mancemeasured by the designers was 75.5MIPSwith 5-stage

pipeline. Without the pipeline, the A8051v1 delivers with

performance of 35.8MIPS.

2Effect on the processor is same as 32-bit ARM instruction.

FIGURE 19. AMULET3 organization: reprinted from [89].

21) THE LUTONIUM MICROCONTROLLER

Lutonium [92] is an asynchronous implementation of 8-bit

CISC type 8051 microcontroller for low ET 2 where E is

average energy per instruction and T is the cycle time. Based

on Harvard architecture, the 8051 microcontroller supports

255 variable length instructions, with each instruction varies

from one to three bytes. Lutonium architecture, as shown in

the fig. 20, includes fetch/IMem, decode, execute, branch and

register units. Fetch/IMem includes fetch uni, program mem-

ory (holding code up to maximum 8kB) and switch box. Two

bytes can be fetched from program memory and the switch

box route the instruction to decode unit. Optimization of the

fetch loop gives the average throughput of 1.37bytes/cycle.

The decode unit is decomposed into many processes

(control0 and control1) which consumes dynamic energy as

per requirement. Control0 decode the first byte of instruc-

tion opcode and the next two byes (if any) are decoded

by control1. The decoded bytes are sent to an appropriate

execution unit. Lutonium stops all switching activities in

deep sleep mode and wakes up without any delay from

the deep sleep mode. In the deep sleep mode, only coun-

ters operate. Lutonium uses 4-phase handshake protocol and

VOLUME 7, 2019 33991



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 20. Block diagram of Lutonium: reprinted from [92].

Quasi-delay-insensitive timing model. The performance of

Lutonium prototype implementation using TSMC SCN018

0.18 µm CMOS process by MOSIS at 1.8V was estimated

200MIPS (1800MIPS/W).

22) MODELLING SAMIPS

SAMIPS [93], [94], a synthesizable asynchronousMIPS pro-

cessor, is based on the MIPS application architecture. The

main purpose of the design was to use it as a test case

in an integrated formal verification and distributed simula-

tion environment [95]. The pipeline in SAMIPS consist of

five stages: instruction fetch, instruction decode, execution,

memory, and a write-back stage. In instruction decode stage,

the read/write register operation is performed. The instruction

decode unit, based on asynchronous design, checks six MSB

and five LSB (in R-type only) to generate control signals

bundled with data. The processor handles data hazards using

forwarding mechanismwhich is based on history information

recorded in DHdetection unit inside the register bank.

The execution unit includes ALU (without multiplication

and division operation), a functional unit for branch test,

a shifter, color matching mechanism and ForWarding mecha-

nism (FW) unit. For control hazards, SAMIPS uses coloring

mechanism that is first used in AMULET1 [69]. In this mech-

anism, one bit is used to represent the state of the processor

as well as instructions at a particular moment. When the

instruction and processor color bit mismatch, the instruc-

tion is discarded. The processor color bit changes on the

termination of instruction stream. The model of SAMIPS

is described in Balsa: a CSP based asynchronous hardware

description language and synthesis tool with LARD [57] is

used for behavioral simulation.

23) SENSOR NETWORK ASYNCHRONOUS PROCESSOR

Sensor Network Asynchronous Processor/Low Energy

(SNAP/LE) [96] is an ultra low-power processor for sensor

networks. It is a 16-bit data-driven RISC core processor based

on ISA of SNAP [97] (MIPS architecture) and optimized

for data monitoring in sensor network. It has extremely low

power idle state and very fast wake-up response. The target

sensor node remains idle most of the time which makes the

asynchronous technique as the best choice for processors for

that types of nodes. The asynchronous processor design has

hardware support for commonly-occurring sensor network

operations. The low power consumption of the processor

maximizes the network lifetime. The SNAP core includes

event queue, instruction fetch, decode, execute units, buses,

register file, message FIFO’s and memories (two on-chip

4KB memory banks).

The execution units include adder, logic unit, load-store

unit (for memory), timer unit (for timer coprocessor inter-

facing), jump branch unit, a linear-feedback shift register

and a shifter. Two types of buses are commonly used: a fast

and a slow bus. The execution units in sensor networks are

placed on a fast bus. The SNAP architecture is completely

event-driven and remains idle until external event hit event

queue. After completion of an event, the DONE instruction

halts the processor until the next event appears on an event

queue. A 4-phase protocol and Quasi-delay insensitive timing

model was adopted for asynchronous circuits. The processor

shows the performance of 200MIPS @ 1.8V consuming ≈

218pJ/instruction while using 0.18µm TSMC process.

24) BITSNAP

BitSNAP [98] is a dynamic significance compression for a

low-energy sensor network asynchronous processor based

on SNAP ISA [97], [96]. It uses bit-serial data-path with

dynamic significance compression for achieving low energy

consumption. The processor is proposed as a logical exten-

sion of SNAP/LE [96] processor. On a bit-serial data stream,

BitSNAP employed dynamic adaptive compression known

as length adaptive, making the processor a length adaptive

data path processor. For each word, the delimiter bit and bits

prior it are only sent instead of 16-bit word which reduces

switching activity. The architecture of BitSNAP is similar

to SNAP/LE with some modification: dynamic significance

compression and parallel bit data path conversion to serial bit

data path. All execution units, register file and all data path

bus split andmerge units are bit-serial units operating on LAD

digits. The memories, ShareI (shares input word with decode

unit or data path) and fetch unit are bit parallel circuits. The

BitSNAP processor uses special hardware for interfacing bit

parallel data to bit serial units and interfacing LAD data to

bit parallel units. In 0.18µm CMOS process, the expected

speed of BitSNAP presented by designer was 6 and 54MIPS

while consuming 17pJ/ins at 0.6V and 152pJ/ins at 1.8V

respectively.

25) HT80C51

HT80C51 microcontroller [99], an asynchronous implemen-

tation of 80C51, is a commercial product by Handshake

Solutions (Philips). It is functionally compatible with the

33992 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

instruction set and peripherals of 80C51 with some unique

features. These features include extremely low power, low

electromagnetic emission, low supply-current peaks, zero

standby power with immediately wake-up, asynchronous and

optional synchronous mode. Single process HT80C51 exe-

cute an instruction in sequential phases fetch, decode,

read, execute and the write phase. The structure of the

microcontroller is based on Harvard architecture and the

instructions are variable length (one, two or three bytes).

The high-level programming language Haste, by Hand-

shake Technology design flow (technology independent),

was used for designing microcontroller and its peripherals.

The HT80C51 non-pipelined asynchronous microcontroller

was realized in 0.14µm CMOS where transistor count was

30820 with performance (worst case) of 8.9 MIPS @ 1.8V,

0.7mW [100].

26) ASYNCHRONOUS 8051 MICROCONTROLLER CORE

A8051 [101] is an asynchronous implementation of Intel

8051 microcontroller for low voltage and low energy

applications (hearing aid). The designers of the micro-

controller used a number of techniques for yielding low

power dissipation. To minimize system activity, they used

two-stage asynchronous pipeline including instruction fetch

and decode-execute stages that operate independently. The

design they offer is without predictive approach and include

indirect RAM access. Using partial decoding algorithm,

the most significant nibble of instruction is decoded to iden-

tify type of operation and the least significant nibble identifies

the addressing mode. As is common in microcontrollers,

A8051 is comprised of registers, latches and decoder based

memory altogether contribute to larger area. To reduce area of

proposed A8051 and enhance the performance, the designer

proposed methodology for interfacing asynchronous system

synchronous IP memory blocks (RAM and ROM) [102].

The proposed 8-bit asynchronous microcontroller contains

4K×8 ROM as an instruction memory and 128×8 RAM

as a data memory with Harvard architecture. Its design was

completed in Balsa as an electronic design automation tool.

The microcontroller 8051 was fabricated within the dual core

microcontroller systemDC8051 [103], [104] with twomodes

of operation: synchronous operation is based on Synopsys

DW8051 IP core whereas asynchronous mode is based on

A8051. The cores share 1kbyte ROM and 128byte RAM

as well as 1kbyte external RAM. The DC8051 system was

implemented using 130nm CMOS and the measured perfor-

mance of A8051 using Dhrystone v2.1 benchmark reported

as 7.4MIPS consuming 349 pJ/I.

27) VORTEX PROCESSOR

The Vortex [105] processor is based on a superscalar asyn-

chronous processor design. Vortex CPU supports 32-bit inte-

ger data path and execute up to nine instruction per cycle. The

Vortex architecture prototype is shown in fig. 21. It includes

dispatcher (instruction decoder and control signal generator),

a crossbar (input/output router) and functional units. All the

FIGURE 21. Vortex prototype: reprinted from [105].

parallel functional units communicate through central cross-

bar, instead of a register file. Each instruction consists of

two parts: prefix and body. The prefix of instruction is used

by the dispatcher for choosing a destination of the instruc-

tion: a specific functional unit or crossbar. The asynchronous

low-level circuitry is based on the ‘‘integrated pipelining’’

templates [25]. It was fabricated as a part of Testchip2 real-

ized using 0.15 µmG process by TSMC.

28) ARM996HS PROCESSOR

ARM996HS [106], the first licensable and clockless proces-

sor core, is a 32-bit RISC type asynchronous processor core

implemented using Harvard architecture. The processor is

fully compatible with ARMv5TE (ISA), debug architecture

and supports 16-bit Thumb instruction set. The ARM996HS

processor has 5-stage integer pipeline that includes fetch,

decode, execute, memory and write-back stages. All these

stages are connected with pipeline control unit. It has a 32-bit

fast multiply-accumulate (MAC) block, divide coprocessor

and tightly coupled memory. The memory protection unit

and non-maskable interrupts provision are used for specific

security enhancement.

Factors such as low electromagnetic emission, ultralow

power and high robustness converge are the principals of

design that were successfully achieved. The compiled code

VOLUME 7, 2019 33993



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 22. AsynRISC processor microarchitecture: reprinted from [107].

for ARM9E CPUs family can be run on ARM996HS. The

Processor was implemented using handshake technology,

Timeless Design Environment (TiDE) design flow, based on

Haste high-level design entry language (formerly known as

Tangram). The TiDE design flow is a frontend to synchronous

EDA tools. The Tiempo handshake interface is used to adapt

changes in environmental conditions such as supply current,

voltage and temperature. The performance measured under

worst condition was 54 DMIPS (1.08V, 125◦C) and with

nominal condition (1.2V, 25◦C) was 83 Dhrystone MIPS.

These statistics are based on netlist simulation (post layout)

by using the Artisan Sage-X library for the 0.13µm TSMC

process.

29) TAM16 MICROCONTROLLER

TAM16 [51] is a 16-bit clockless microcontroller IP core

by Tiempo. It had complete and power efficient instruction

set along with adapted software development kit for ultra-low

power application. The software development kit include

a linker, assembler, instruction set debugger and simulator.

To make its instruction set binary compatible with other cus-

tomers’ microcontroller, the instruction set can be customized

easily. Two memory interfaces, 1 UART, 3 cascadable timers,

16-bit Programmable Input/Output (PIO), interrupt controller

and boot configurations pins are embedded peripherals in

TAM16.

In Tiempo technology, the IP is designed for ultra low

noise, ultra low power consumption and ultra-low EMI.

These features make Tiempo, the fully asynchronous and

DI processor, robust against fault injections. It is a com-

mercial product for ultra-low power embedded electron-

ics chips. TAM16, for example, is used in RFID tags,

sensor networks, smart cards, e-metering devices and for

low electromagnetic emission chips. The low electromag-

netic emission chips are used in medical, aeronautics and

automotive industries. TAM16 is available as a place and

route silicon proven Verilog-netlist. By using CMOS 130nm

technology, the TAM16 is designed and processed as test

chip. It shows the performance of 7.1 and 15.5MIPS at 0.7V

and 1.2V, respectively. The consumption of core is 33.4 and

49µA/MIPS at 0.7V and 1.2V, respectively.

30) AsynRISC

AsynRISC [107] is an asynchronous pipelined processor with

instruction set similar to MIPS R2000. It has five pipeline

stages as shown in fig. 22. The pipeline stages include instruc-

tion fetch, instruction decode and register fetch, instruction

execution or memory address calculation, memory access

and register write back. Control hazards are solved using

two one-bit registers instcolor (in instruction fetch stage) and

syscolor (in execution stage). As all control transfer takes

place in execution stage, in IF stage, every new instruc-

tion proceeds to next stages after attaching color bit of the

instcolor register. The color bit is later checked by execution

stage by matching the color bit with syscolor register. If the

color bits match, the instruction is executed normally, other-

wise, it is discarded.

Data hazards are resolved by adding two extra fields in

every general purpose register. A pending bit indicates reg-

ister is up-to-date or waiting for new contents. Two bits,

known as pending instruction index, records the instruction

which produces the new contents for a register. At IF stage,

the 2-bit instruction index register provides an index to every

new instruction. As at most four instruction reside in data-

path, two bits are enough for this register. It was designed

and verified using Balsa asynchronous hardware description

language and Balsa simulation system respectively. The per-

formance was measured by executing a particular program

having 500 dynamic instruction taking 21256799 unit3 exe-

cution time.

31) A8051v2

A8051v2 [108], the second version of asynchronous

8051 [91], is a low-power implementation of asynchronous

3As unit is not mentioned, the assumed unit is ns.

33994 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

8051 employing adaptive pipeline structure. While there are

many dissimilarities in system architecture and instruction

execution scheme, the instruction set architecture of the

proposed design is fully compatible with Intel 8051 [109].

Among the major changes are inclusion of additional features

for multi-cycle instruction. These features are multi-looping

control, branch prediction (for unconditional branches) and

single threading (in the execution stage). It was realized

using adaptive micropipeline for skipping and combining

pipeline stages for gaining power efficiency and performance.

Stage skipping and combining mechanisms are controlled by

adding extra inputs i.e ELN for latch controller and ECN for

pipeline stage bundled with the latched data. The decision,

whether or not to skip the operation of Nth pipeline stage,

is taken by an ECN signal. Furthermore, the decision if theNth

latch is transparent or not, is determined by an ELN signal.

The A8051v2 was simulated with NanoSim tool and mapped

into Hynix 0.35 µm CMOS technology with a nominal

voltage of 3.3V. A8051v2 @ 3.3V shows the performance of

84.2MIPS (2316MIPS/W)measured by executingDhrystone

V2.1 benchmark.

32) PA8051

PA8051 [110] is a pipelined asynchronous 8051 soft-core

microcontroller implemented in description language Balsa.

Its design consists of 5-stage pipeline as shown in fig. 23. The

pipeline stages include instruction fetch, instruction decode,

operand fetch, execution stage and write back stages. The

design also include a memory unit which is not part of the

pipeline. The instruction fetch stage contains ROM interface,

fetch controller and two buffers (as instruction cache to the

program memory).

The memory unit provides the memory interface to

RAM − READ − ARBITOR where the arbiter [111] is

used to read/write data and read instructions from/to fetch

and instruction decode units, respectively. The memory

exchange with write back unit is likewise arbitrated by

the MEM − INTERFACE as shown in the fig. 23. The

PA8051 microcontorller uses 4-phase bundled data commu-

nication protocol to reduce the area cost. The design of the

microcontroller is described in the CSP based asynchronous

HDL language Balsa and synthesized into Xilinx netlist. The

synthesis was completed with Xilinx ISE for the target device

Spartan-IIE 300 ft256 FPGA.

33) NCTUAC18

NCTUAC18 [112] is a quasi-delay-insensitive microproces-

sor core implementation for microcontrollers. It is an 8-bit

asynchronous microprocessor core with an instruction set of

PIC18. The 4-stage pipeline of NCTUAC18 include instruc-

tion fetch, instruction decode, operand fetch and execu-

tion/write back stages. The instruction decode stage includes

instruction decode block, branch control block, stall control

and NPC control. The instruction decode block generates the

control signal for the whole processor and checks whether or

not the instruction is a conditional branch. If it is a conditional

FIGURE 23. PA8051 architecture overview: reprinted from [110].

branch, the instruction decode block requests the branch con-

trol block to take over, otherwise, it requests NPC (for next

PC value). On conditional branch instruction, the stall control

generates request signal to NPC for generating the same PC

value to retrieve the instruction. The NPC control is responsi-

ble for the correct generation of the PC value. In NCTUAC18,

the execution and write back stages are combined in one

stage.

The design uses Muller pipeline with 4-phase protocol,

dual-rail encoding, quasi-delay insensitive timing model.

The proposed design was verified by using ModelSim

6.0 and its gate level design was synthesized using Altera

Quartus II software for the target FPGA Altera Cyclone

EP1C20F400C8. The maximum path delay in the instruc-

tion decode stage, the critical stage of the design, was

≈455ns. The designer admitted that the design deals with

branch instruction inefficiently and the quasi-delay insen-

sitive model makes the circuit design difficult. Later on,

the NCTUAC18S [113] was introduced with new stall mech-

anism which handled branch instructions effectively. Fur-

thermore, an acknowledge wire was added to the instruction

decode and write back stages. The wire is used to generate

an acknowledgement, by the write back stage, on completion

of previous instruction. With this modification, the branch

instruction is stalled in the instruction decode stage until the

acknowledgement is received. The NCTUAC18S was imple-

mented with dual-rail Muller pipeline and 5-stage pipeline

with separate execution andwrite back stages. In themodified

design, it is possible to write and read data at the same time.

The design was gate-level modeled in hardware description

language Verilog, verified with ModelSim 6.0 and synthe-

sized using design compiler with TSMC 0.13µm process

library.

34) DRAP

The Dynamically Reconfigurable Asynchronous Proces-

sor (DRAP) [114], [115], is a processor based on novel

clocked architecture called RICA [116]. The design main

goal was to make an architecture that fulfill the demand of

VOLUME 7, 2019 33995



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 2. Operational cells in sample array. Reprinted from [114].

high-throughput mobile applications for energy efficiency

and programmability using high-level languages. The DRAP

processor consists of a heterogeneous array of course-grain

asynchronous cells that are implemented using a reconfig-

urable data-path architecture. An abstract and comprehensive

architecture view is presented in [114] and [117]. The design

is based on operational cells where each interconnection of

operational cells performs limited operations such as logic

operation, addition and multiplication. The interconnection

design for sample array is based on island-style structure

as set-up in standard FPGA’s [118]. Configurable routing

switches are assembled around the operation cells to allow

each cell to interface with its nearest four neighbors. Assem-

bling routing switches, in addition, assist handshake signals

and execute conditional acknowledge synchronization using

technique presented in [119]. The sample array in DRAP

contains 18-bit 400 asynchronous operational cells as listed

in Table 2. These cells are interconnected using switches that

are based on multiplexer.

Different blocks of instructions are executed by changing

the operational cells and interconnects configuration similar

to the architecture of CPU. For general application, an ade-

quate mixture of the cells is selected manually while for a

specified application other specific cells can be selected. Inte-

grated circuits and the interconnect switches are controlled by

the configuration bits stored in the program memory. A total

of 9260 configuration bits are required for the reconfigurable

core with the selected type of operational cells and intercon-

nects. The program and data memories are interconnected to

each other by using special cells of the core. The 4-phase

single rail handshake protocol was adopted for the design of

operational cells. A network of programmable switches plays

a role of interconnection for data-path creation.

Using a UMC 0.13µm technology, the sample array was

realized and compared with the architectures Custom RICA

400 [116] (0.13µm), ASIC (0.13µm), ARM7TDMI-S [120]

(0.13µm) and TIC64x 8-way VLIW [121]. The algorithms

bilinear demosaicing [122], 8K-point radix-2 1-D FFT [123]

and 2-D DCT [124] are the benchmarks for the evaluation

of the design. For the same throughput, the power con-

sumption of each design was calculated for each bench-

mark. The power and area rating of the Custom RICA

400, sample DRAP and ASIC design were originated using

PrimePower (from Synopsys) post-layout simulation. The

ratings for ARM7TDMI-S core and TIC64x are provided

in [120] and [125], respectively. All these ratings are mea-

sured @1.2V where the energy ratings are measured only for

data-path without a memory. Comparison results are listed

in Table 3.

TABLE 3. Comparison of DRAP. Reprinted from [114].

FIGURE 24. Block diagram of asynchronous neural signal processor.
Reprinted from [126].

35) ASYNCHRONOUS NEURAL SIGNAL PROCESSOR

Asynchronous neural signal processor [126] is a 0.25V

460nW processor with inherent leakage suppression design

for spike-sorting function. The spike sorting function was

completed in three steps in this processor: spike detection,

alignment and feature extraction. The algorithm employed

for spike sorting in this design exhibits best suitable

power-density characteristic for wireless neural signal pro-

cessing in real-time [127]. The processor receives 8-bit dig-

ital data from a neural signal acquisition front-end running

at 20kHz. The synchronous-asynchronous interface converts

the synchronous input into 4-phase dual-rail data. All mod-

ules communicate using 4-phase dual-rail handshaking proto-

col. The asynchronous neural signal processor block diagram

is represented in fig. 24. Both versions of the processor, syn-

chronous and asynchronous, were realized in a 65nm CMOS

for performance comparison. The asynchronous version pro-

totype shows the 2.3x reduction in power.

36) uaMIPS

The Micro-Watt Asynchronous MIPS (uaMIPS) [128],

a sub-threshold ultra-low power processor, is an asyn-

chronous implementation of 8-bit 5-stage conventional

synchronous MIPS processor. Designed for a benchmark

purpose, the instruction and data memories are based on

flip-flop to simplify its design. Using a pipeline oriented

de-synchronization tool [129], the synchronous version was

converted to 4-phase bundled data asynchronous version.

The unavailable asynchronous elements in the standard cell

library were manually inserted using different techniques.

The asynchronous design flow is shown in fig. 25. Quasi-

Delay-Insensitive (QDI) implementation was created in Sys-

tem Verilog CSP and proteus backend flow [130]. The QDI

is not much attractive approach towards ultra-low-power

design because of its performance/power ratio. The proposed

33996 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 4. Evaluation of available asynchronous processors.

VOLUME 7, 2019 33997



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 4. (Continued.) Evaluation of available asynchronous processors.

33998 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 25. Asynchronous design flow. Reprinted from [128].

FIGURE 26. Comparison between uaMIPS and other ultra-low-power
processor. Reprinted from [128].

uaMIPS asynchronous (bundled data) processor in 28nm

HKMG, HVT(VT=0.6V) shows better power efficiency as

shown in fig. 26.

37) ANSYNCHRONOUS MSP430

Asynchronous MSP430 [131] design is a low power and

relative timing-based asynchronousMSP430microprocessor.

It is asynchronous implementation of openMSP430 [132]

16-bit processor with RISC type ISA. The design of

MSP430 had two directly connected finite state machines:

decode and execute. In an asynchronous implementation,

the data-path is nearly identical to its parent design. A new

conjunctive stateful communication method is employed

between the asynchronous finite state machines.

The MSP430 microprocessor uses 4-phase bundled data

protocol with relative timing methodology as described

in [131]. Both designs, asynchronous and synchronous, are

designed in the same computer-aided design (CAD) tool

and synthesized using the same IBM 65nm 10SF node with

same EDA tools and scripts. A comparison shows that the

synchronous design consumes 5% more area than asyn-

chronous design. The asynchronous design is on the aver-

age 33% slower, consumes less than one-tenth the power

and consumes one-seventh the energy per operation as com-

pared to the synchronous. These statistics are concluded

after executing different benchmark programs. Furthermore,

asynchronous implementation of openMSP430 shows an

improvement in power dissipation.

C. DISCUSSION

Starting with Martin’s [40], we have investigated a number

of asynchronous microprocessors on abstract level, and com-

piled their summaries into one document. During this work,

we have observed that most of the designers implemented

an equivalent asynchronous version of one of the available

synchronous benchmark processors, such as MIPS and ARM

etc, and they had adopted various specification methods, and

tools. Following are some observations that we have made;

this may be considered as conclusion of conducting this work.

1) Most of the proposed asynchronous microprocessors

are pipelined architectures.

2) Specifically talking of the pipelined processors, most of

the designers used a different number of pipeline stages

to resolve data and control hazards. Some proposed

their novel schemes by claiming that the synchronous

methods were not directly applicable to asynchronous

logic − mainly due to its distributed control nature.

3) From Table 4, one can observe that pipeline stages,

technology, and voltage directly affect the perfor-

mance.

4) AMULET3 [89], Lutonium [92] and SNAP/LE [96]

showed better performance and power ratio, in com-

parison to others. This is evident in Table 4.

IV. CONCLUSION

We have elaborated on asynchronous logic design principles,

along with their available electronic design and automation

tools support for specifying, modeling, synthesizing, and

implementing asynchronous circuits and systems. The main

objective of the work, beside collecting most of the con-

tributions towards designing asynchronous microprocessors,

is defining the asynchronous design flow and summarizing

the available tools, which, to the best of our knowledge,

have been misunderstood or mostly overlooked. We have

presented an entire encyclopedia of general, as well as, spe-

cial purpose asynchronous microprocessors ever developed,

irrespective of their classification, signaling mechanisms,

architectures, and process. We have presented a thorough

evaluation of those processors in terms of performance and

area utilization.

REFERENCES

[1] S. R. Naqvi, ‘‘A non-blocking fault-tolerant asynchronous networks-

on-chip router,’’ Ph.D. dissertation, Inst. Comput. Eng., Vienna Univ.

Technol., Vienna, Austria, 2013.
[2] S. Naqvi, ‘‘An asynchronous router architecture using four-phase bundled

handshake protocol,’’ in Proc. Int. Multi-Conf. Comput. Global Inf. Tech-

nol. (IARIA), 2012, pp. 200–205.
[3] S. R. Naqvi, V. S. Veeravalli, and A. Steininger, ‘‘Protecting an asyn-

chronous NoC against transient channel faults,’’ in Proc. IEEE 15th

Euromicro Conf. Digit. Syst. Design (DSD), Sep. 2012, pp. 264–271.
[4] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design:

A Systems Perspective. Norwell, MA, USA: Kluwer, 2001.
[5] A. Kondratyev and K. Lwin, ‘‘Design of asynchronous circuits by syn-

chronous CAD tools,’’ in Proc. ACM 39th Annu. Design Autom. Conf.,

2002, pp. 411–414.

VOLUME 7, 2019 33999



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[6] B. Rahbaran and A. Steininger, ‘‘Is asynchronous logic more robust than

synchronous logic?’’ IEEE Trans. Dependable Secure Comput., vol. 6,

no. 4, pp. 282–294, Oct. 2009.
[7] S. R. Naqvi, R. Najvirt, and A. Steininger, ‘‘A multi-credit flow

control scheme for asynchronous NoCs,’’ in Proc. IEEE 16th Int.

Symp. Design Diag. Electron. Circuits Syst. (DDECS), Apr. 2013,

pp. 153–158.
[8] W. A. Clark, ‘‘Macromodular computer systems,’’ in Proc. ACM Spring

Joint Comput. Conf., Apr. 1967, pp. 335–336.
[9] M. J. Stucki, S. M. Ornstein, and W. A. Clark, ‘‘Logical design of

macromodules,’’ in Proc. ACM Spring Joint Comput. Conf., Apr. 1967,

pp. 357–364.
[10] A. J. Martin, ‘‘The limitations to delay-insensitivity in asynchronous

circuits,’’ inBeauty is Our Business. NewYork, NY,USA: Springer, 1990,

pp. 302–311.
[11] K. van Berkel, ‘‘Beware the isochronic fork,’’ Integr., VLSI J., vol. 13,

no. 2, pp. 103–128, 1992.
[12] N. Toosizadeh, ‘‘Enhanced synchronous design using asynchronous tech-

niques,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,

Toronto, ON, Canada, 2010.
[13] R. Najvirt, S. R. Naqvi, and A. Steininger, ‘‘Classifying virtual chan-

nel access control schemes for asynchronous NoCs,’’ in Proc. IEEE

19th Int. Symp. Asynchronous Circuits Syst. (ASYNC), May 2013,

pp. 115–123.
[14] A. Peeters and K. van Berkel, ‘‘Single-rail handshake circuits,’’ in Proc.

IEEE 2ndWork. Conf. Asynchronous Design Methodol., 1995, pp. 53–62.
[15] J. Bainbridge, Asynchronous System-on-Chip Interconnect. London,

U.K.: Springer, 2013.
[16] T. Verhoeff, A Theory of Delay-Insensitive Systems. Eindhoven,

The Netherlands: Eindhoven Univ. Technology, 1994.
[17] D. E. Muller, ‘‘A theory of asynchronous circuits,’’ in Proc. Int. Symp.

Theory Switching, Apr. 1959, pp. 204–243.
[18] K. M. Fant and S. A. Brandt. Null Convention

Logic. Accessed: Jan. 10, 2019. [Online]. Available:

http://www.theseusresearch.com/NCLPaper01.htm
[19] K. M. Fant and S. A. Brandt, ‘‘Null convention logic: A complete and

consistent logic for asynchronous digital circuit synthesis,’’ in Proc. IEEE

Int. Conf. Appl. Specific Syst., Archit. Processors (ASAP), Aug. 1996,

pp. 261–273.
[20] G. E. Sobelman and K. Fant, ‘‘CMOS circuit design of threshold gates

with hysteresis,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2,

May/Jun. 1998, pp. 61–64.
[21] M. E. Dean, T. Williams, and D. Dill, ‘‘Efficient self-timing with level-

encoded 2-phase dual-rail (LEDR),’’ in Proc. Adv. Res. VLSI, 1991,

pp. 55–70.
[22] I. E. Sutherland, ‘‘Micropipelines,’’ Commun. ACM, vol. 32, no. 6,

pp. 720–738, Jun. 1989.
[23] M. Singh and S. M. Nowick, ‘‘MOUSETRAP: Ultra-high-speed

transition-signaling asynchronous pipelines,’’ in Proc. IEEE ICCD,

Sep. 2001, p. 0009.
[24] I. Sutherland and S. Fairbanks, ‘‘GasP: Aminimal FIFO control,’’ inProc.

IEEE ASYNC, Mar. 2001, pp. 46–53.
[25] A. M. Lines, Pipelined Asynchronous Circuits. Pasadena, CA, USA:

California Inst. Technol., 1998.
[26] R. O. Ozdag and P. A. Beerel, ‘‘High-speed QDI asynchronous

pipelines,’’ in Proc. IEEE 8th Int. Symp. Asynchronous Circuits Syst.,

2002, pp. 13–22.
[27] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks,

and I. E. Sutherland, ‘‘Two FIFO ring performance experiments,’’ Proc.

IEEE, vol. 87, no. 2, pp. 297–307, Feb. 1999.
[28] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, ‘‘Wave-

pipelining: A tutorial and research survey,’’ IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 6, no. 3, pp. 464–474,

Sep. 1998.
[29] O. Hauck and S. A. Huss, ‘‘Asynchronous wave pipelines for high

throughput datapaths,’’ in Proc. IEEE Int. Conf. Electron., Circuits Syst.,

vol. 1, Sep. 1998, pp. 283–286.
[30] B. D. Winters and M. R. Greenstreet, ‘‘A negative-overhead, self-timed

pipeline,’’ inProc. IEEE 8th Int. Symp. Asynchronous Circuits Syst., 2002,

pp. 37–46.
[31] S. R. Naqvi, J. Lechner, and A. Steininger, ‘‘Protection of Muller–

Pipelines from transient faults,’’ in Proc. IEEE 15th Int. Symp. Qual.

Electron. Design (ISQED), Mar. 2014, pp. 123–131.
[32] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for

VLSI Programming, vol. 5. Cambridge, U.K.: Cambridge Univ. Press,

1993.

[33] A. Peeters, ‘‘Single-rail handshake circuits,’’ Ph.D. dissertation, Dept.

Math. Comput. Sci., Eindhoven Univ. Technol., Eindhoven, The Nether-

lands, 1996.
[34] K. van Berkel, R. Burgess, J. Kessels, A. Peelers, M. Roncken, and

F. Schalij, ‘‘A fully asynchronous low-power error corrector for the DCC

player,’’ IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1429–1439,

Dec. 1994.
[35] K. van Berkel et al., ‘‘A single-rail re-implementation of a DCC error

detector using a generic standard-cell library,’’ in Proc. IEEE 2nd Work.

Conf. Asynchronous Design Methodol., May 1995, pp. 72–79.
[36] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor,

andG. Stegmann, ‘‘An asynchronous low-power 80C51microcontroller,’’

in Proc. IEEE 4th Int. Symp. Adv. Res. Asynchronous Circuits Syst.,

Mar./Apr. 1998, pp. 96–107.
[37] J. Kessels, T. Kramer, G. den Besten, A. Peeters, and V. Timm, ‘‘Applying

asynchronous circuits in contactless smart cards,’’ in Proc. IEEE 6th

Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC), Apr. 2000,

pp. 36–44.
[38] J. Kessels, T. Kramer, A. Peeters, and V. Timm, ‘‘DESCALE: A design

experiment for a smart card application consuming low energy,’’ in Proc.

Eur. Low Power Initiative Electron. Syst. Design, 2001, pp. 247–262.
[39] A. J. Martin and C. D. Moore, ‘‘CHP and CHPsim: A language and

simulator for fine-grain distributed computation,’’ Dept. Comput. Sci.,

California Inst. Technol., Pasadena, CA,USA, Tech. Rep. CS-TR-1-2011,

2011.
[40] A. J. Martin, S. M. Burns, T. Lee, D. Borkovic, and P. J. Hazewin-

dus, ‘‘The design and implementation of an asynchronous microproces-

sor,’’ Ph.D. dissertation, Dept. Comput. Sci., California Inst. Technol.,

Pasadena, CA, USA, 1989.
[41] A. J. Martin et al., ‘‘The design of an asynchronous MIPS R3000

microprocessor,’’ in Proc. IEEE 17th Conf. Adv. Res. VLSI, Sep. 1997,

pp. 164–181.
[42] M. Renaudin, P. Vivet, and F. Robin, ‘‘ASPRO: An asynchronous 16-bit

RISC microprocessor with DSP capabilities,’’ in Proc. Proc. IEEE 25th

Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 1999, pp. 428–431.
[43] R. Manohar and C. Kelly, ‘‘Network on a chip: Modeling wireless net-

works with asynchronous VLSI,’’ IEEE Commun. Mag., vol. 39, no. 11,

pp. 149–155, Nov. 2001.
[44] K. A. Boahen, ‘‘A burst-mode word-serial address-event link-I: Trans-

mitter design,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 7,

pp. 1269–1280, Jul. 2004.
[45] G. N. Patel, M. S. Reid, D. E. Schimmel, and S. P. DeWeerth, ‘‘An asyn-

chronous architecture for modeling intersegmental neural communica-

tion,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 2,

pp. 97–110, Feb. 2006.
[46] D. Edwards and A. Bardsley, ‘‘Balsa: An asynchronous hardware synthe-

sis language,’’ Comput. J., vol. 45, no. 1, pp. 12–18, 2002.
[47] D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, ‘‘Balsa:

A tutorial guide, version V3.5,’’ School Comput. Sci., Univ. Manchester,

Manchester, U.K., Tech. Rep., 2006.
[48] Tiempo Secure. ACC: Asynchronous Circuit Compiler. Accessed:

Dec. 23, 2018. [Online]. Available: http://www.tiempo-

ic.com/products/sw-tools/acc.html
[49] A. Yakovlev, P. Vivet, and M. Renaudin, ‘‘Advances in asynchronous

logic: From principles to GALS&NoC, recent industry applications, and

commercial CAD tools,’’ in Proc. Conf. Design, Autom. Test Eur., 2013,

pp. 1715–1724.
[50] C. Spear, SystemVerilog for Verification: A Guide to Learning the Test-

bench Language Features. New York, NY, USA: Springer, 2008.
[51] Tiempo Secure. TAM16: 16-Bit Microcontroller IP Core.

Accessed: Dec. 23, 2018. [Online]. Available: http://www.tiempo-

ic.com/products/ip-cores/TAM16.html
[52] U. P. de Catalunya. Petrify: A Tool for Synthesis of Petri Nets and

Asynchronous Circuits. Accessed: Dec. 24, 2018. [Online]. Available:

http://www.cs.upc.edu/~jordicf/petrify/
[53] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev, ‘‘Petrify: A tool for manipulating concurrent specifications

and synthesis of asynchronous controllers,’’ IEICE Trans. Inf. Syst.,

vol. E80-D, no. 3, pp. 315–325, 1997.
[54] T. Akram, S. R. Naqvi, S. A. Haider, and M. Kamran, ‘‘Towards

real-time crops surveillance for disease classification: Exploiting paral-

lelism in computer vision,’’ Comput. Electr. Eng., vol. 59, pp. 15–26,

Apr. 2017.
[55] A. Bardsley, L. Tarazona, and D. Edwards, ‘‘Teak: A token-flow imple-

mentation for the balsa language,’’ in Proc. IEEE 9th Int. Conf. Appl.

Concurrency Syst. Design (ACSD), Jul. 2009, pp. 23–31.

34000 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[56] G. K. Theodoropoulos, G. K. Tsakogiannis, and J. V. Woods, ‘‘Occam:

An asynchronous hardware description language?’’ in Proc. IEEE

23rd EUROMICRO Conf. New Frontiers Inf. Technol. (EUROMICRO),

Sep. 1997, pp. 249–256.
[57] P. Endecott and S. B. Furber, ‘‘Modelling and simulation of asynchronous

systems using the LARD hardware description language,’’ in Proc. ESM,

1998, pp. 39–43.
[58] B. Kangsah, R. Wollowski, W. Vogler, and J. Beister, ‘‘DESI: A tool for

decomposing signal transition graphs,’’ inProc. 3rd ACiD-WGWorkshop,

2003, pp. 1–2.
[59] S. Frankild and H. Palbÿl. Visual STG Lab. Accessed: Dec. 24, 2018.

[Online]. Available: http://vstgl.sourceforge.net/
[60] WorkCraft. Accessed: Dec. 24, 2018. [Online]. Available:

https://workcraft.org/
[61] Electrical Engineering and NUS Engineering. Asynchronous High Level

Synthesis Tool (VERISYN). Accessed: Dec. 24, 2018. [Online]. Available:

http://async.org.uk/besst/verisyn/
[62] I. Blunno and L. Lavagno, ‘‘Automated synthesis of micro-pipelines

from behavioral Verilog HDL,’’ in Proc. IEEE 6th Int. Symp. Adv. Res.

Asynchronous Circuits Syst. (ASYNC), Apr. 2000, pp. 84–92.
[63] DEMO Session. Accessed: Jan. 2, 2019. [Online]. Available:

http://conferences.computer.org/async2007
[64] Handshake-Solution. Tide—Timeless Design Environment. Accessed:

Jan. 2, 2019. [Online]. Available: http://www.handshakesolutions.com
[65] K.-R. Cho, K. Okura, and K. Asada, ‘‘Design of a 32-bit fully asyn-

chronous microprocessor (FAM),’’ in Proc. IEEE 35th Midwest Symp.

Circuits Syst., Aug. 1992, pp. 1500–1503.
[66] E. Brunvand, ‘‘The NSR processor,’’ in Proc. 26th Hawaii Int. Conf. Syst.

Sci., vol. 1, Jan. 1993, pp. 428–435.
[67] C. E. Molnar, R. F. Sproull, and I. E. Sutherland, ‘‘Counterflow pipeline

processor architecture,’’ IEEE Design Test Comput., vol. 11, no. 3, p. 48,

Jul. 1994.
[68] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods,

‘‘AMULET1: A micropipelined ARM,’’ in IEEE Compcon Spring Dig.

Papers, Feb./Mar. 1994, pp. 476–485.
[69] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and

S. Temple, ‘‘AMULET1: An asynchronous ARMmicroprocessor,’’ IEEE

Trans. Comput., vol. 46, no. 4, pp. 385–398, Apr. 1997.
[70] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura, ‘‘TITAC:

Design of a quasi-delay-insensitive microprocessor,’’ IEEE Design Test

Comput., vol. 11, no. 2, pp. 50–63, Jun. 1994.
[71] J. A. Tierno, A. J.Martin, D. Borkovic, and T. K. Lee, ‘‘A 100-MIPSGaAs

asynchronousmicroprocessor,’’ IEEEDesign Test Comput., vol. 11, no. 2,

pp. 43–49, Jun. 1994.
[72] W. F. Richardson and E. Brunvand, ‘‘Fred: An architecture for a self-

timed decoupled computer,’’ in Proc. IEEE 2nd Int. Symp. Adv. Res.

Asynchronous Circuits Syst., Mar. 1996, pp. 60–68.
[73] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven, ‘‘Hades-

towards the design of an asynchronous superscalar processor,’’ in Proc.

IEEE 2nd Work. Conf. Asynchronous Design Methodol., May 1995,

pp. 200–209.
[74] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven,

‘‘HADES—An asynchronous superscalar processor,’’ in Proc. IEE Col-

loq. Design Test Asynchronous Syst., 1996, p. 10.
[75] C. A. R. Hoare, ‘‘Communicating sequential processes,’’Commun. ACM,

vol. 21, no. 8, pp. 666–677, 1978.
[76] A. Semenov, A. M. Koelmans, L. Lloyd, and A. Yakovlev, ‘‘Designing

an asynchronous processor using Petri nets,’’ IEEE Micro, vol. 17, no. 2,

pp. 54–64, Mar. 1997.
[77] W. C. Holton, ‘‘The large-scale integration of microelectronic circuits,’’

Sci. Amer., vol. 237, no. 3, pp. 82–95, 1977.
[78] S. S. Patil, ‘‘Cellular arrays for asynchronous control,’’ in Proc. ACM

Conf. Rec. 7th Annu. Workshop Microprogram., 1974, pp. 178–185.
[79] S. B. Furber et al., ‘‘AMULET2e: An asynchronous embedded con-

troller,’’ Proc. IEEE, vol. 87, no. 2, pp. 243–256, Feb. 1999.
[80] A. Takamura et al., ‘‘TITAC-2: An asynchronous 32-bit micropro-

cessor based on scalable-delay-insensitive model,’’ in Proc. IEEE Int.

Conf. Comput. Design, VLSI Comput. Processors (ICCD), Oct. 1997,

pp. 288–294.
[81] J. M. C. Tse and D. P. K. Lun, ‘‘ASYNMPU: A fully asynchronous CISC

microprocessor,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 3,

Jun. 1997, pp. 1816–1819.
[82] S. R. Naqvi, A. Steininger, and J. Lechner, ‘‘An SET tolerant tree

arbiter cell,’’ in Proc. IEEE 19th Int. Symp. Asynchronous Circuits

Syst. (ASYNC), May 2013, pp. 31–39.

[83] S. R. Naqvi, T. Akram, S. A. Haider, and M. Kamran, ‘‘Artificial

neural networks based dynamic priority arbitration for asynchronous

flow control,’’ Neural Comput. Appl., vol. 29, no. 7, pp. 627–637,

2018.
[84] S. V. Morton, S. S. Appleton, and M. J. Liebelt, ‘‘ECSTAC: A fast asyn-

chronous microprocessor,’’ in Proc. IEEE 2nd Work. Conf. Asynchronous

Design Methodol., May 1995, pp. 180–189.
[85] S. V. Morton, ‘‘Fast asynchronous VSLI circuit design techniques

and their application to microprocessor design,’’ Ph.D. dissertation,

Dept. Elect. Electron. Eng., Univ. Adelaide, Adelaide, SA, Australia,

1997.
[86] K. T. Christensen, P. Jensen, P. Korger, and J. Sparso, ‘‘The design of an

asynchronous TinyRISC TR4101 microprocessor core,’’ in Proc. IEEE

4th Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar./Apr. 1998,

pp. 108–119.
[87] M. Renaudin, P. Vivet, and F. Robin, ‘‘ASPRO-216: A standard-cell

Q.D.I. 16-bit RISC asynchronous microprocessor,’’ in Proc. IEEE 4th Int.

Symp. Adv. Res. Asynchronous Circuits Syst., Mar./Apr. 1998, pp. 22–31.
[88] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,

‘‘The VLSI-programming language Tangram and its translation into

handshake circuits,’’ in Proc. Conf. Eur. Design Autom., Feb. 1991,

pp. 384–389.
[89] S. B. Furber, D. A. Edwards, and J. D. Garside, ‘‘AMULET3: A 100MIPS

asynchronous embedded processor,’’ in Proc. IEEE Int. Conf. Comput.

Design, Sep. 2000, pp. 329–334.
[90] ARM. The THUMB Instruction SET. Accessed:

Jan. 14, 2019. [Online]. Available: http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html
[91] J.-H. Lee, W.-C. Lee, and K.-R. Cho, ‘‘A novel asynchronous pipeline

architecture for CISC type embedded controller, A8051,’’ in Proc.

IEEE 45th Midwest Symp. Circuits Syst. (MWSCAS), vol. 2, Aug 2002,

pp. II-675–II-678.
[92] A. J. Martin et al., ‘‘The Lutonium: A sub-nanojoule asynchronous 8051

microcontroller,’’ in Proc. IEEE 9th Int. Symp. Asynchronous Circuits

Syst., May 2003, pp. 14–23.
[93] Q. Zhang and G. Theodoropoulos, ‘‘Towards an asynchronous MIPS

processor,’’ in Advances in Computer Systems Architecture (Lec-

ture Notes in Computer Science). Berlin, Germany: Springer, 2003,

pp. 137–150.
[94] Q. Zhang and G. Theodoropoulos, ‘‘Modelling SAMIPS: A synthesisable

asynchronous MIPS processor,’’ in Proc. 37th Annu. Symp. Simulation,

2004, pp. 205–212.
[95] D. Edwards. An Integrated Framework for Formal Verification and Dis-

tributed Simulation of Asynchronous Hardware. Accessed: Jan. 2, 2019.

[Online]. Available: http://www.cs.bham.ac.uk/research/projects/parlard/
[96] V. Ekanayake, C. Kelly, IV, and R.Manohar, ‘‘An ultra low-power proces-

sor for sensor networks,’’ ACM SIGOPS Oper. Syst. Rev., vol. 38, no. 5,

pp. 27–36, 2004.
[97] C. Kelly, IV, V. Ekanayake, and R. Manohar, ‘‘SNAP: A sensor-network

asynchronous processor,’’ in Proc. IEEE 9th Int. Symp. Asynchronous

Circuits Syst., Jun. 2003, pp. 24–33.
[98] V. N. Ekanayake, C. Kelly, and R. Manohar, ‘‘BitSNAP: Dynamic sig-

nificance compression for a low-energy sensor network asynchronous

processor,’’ in Proc. 11th IEEE Int. Symp. Asynchronous Circuits

Syst. (ASYNC), Mar. 2005, pp. 144–154.
[99] Handshakesolution. Handshake Solutions HT80C51. Accessed:

Jan. 3, 2019. [Online]. Available: http://www.keil.com/dd/chip/3931.htm
[100] T. van Hoek, ‘‘Designing a high-speed asynchronous 80C51 microcon-

troller,’’ M.S. thesis, Fac. Elect. Eng., Eindhoven Univ. Technol., Eind-

hoven, The Netherlands, 2008.
[101] K.-L. Chang and B.-H. Gwee, ‘‘A low-energy low-voltage asynchronous

8051 microcontroller core,’’ in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2006, pp. 3181–3184.
[102] K.-L. Chang, B.-H. Gwee, andY. Zheng, ‘‘A semi-custommemory design

for an asynchronous 8051 microcontroller,’’ in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), May 2008, pp. 3398–3401.
[103] K.-L. Chang, T. Lin, W.-G. Ho, K.-S. Chong, B.-H. Gwee, and

J. S. Chang, ‘‘A dual-core 8051 microcontroller system based on

synchronous-logic and asynchronous-logic,’’ in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), May 2013, pp. 3022–3025.
[104] K.-L. Chang, B.-H. Gwee, J. S. Chang, and K.-S. Chong, ‘‘Synchronous-

logic and asynchronous-logic 8051microcontroller cores for realizing the

Internet of Things: A comparative study on dynamic voltage scaling and

variation effects,’’ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 1,

pp. 23–34, Mar. 2013.

VOLUME 7, 2019 34001



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[105] A. Lines, ‘‘The Vortex: A superscalar asynchronous processor,’’ in Proc.

13th IEEE Int. Symp. Asynchronous Circuits Syst. (ASYNC), Mar. 2007,

pp. 39–48.
[106] A. Bink and R. York, ‘‘ARM996HS: The first licensable, clockless 32-bit

processor core,’’ IEEE Micro, vol. 27, no. 2, pp. 58–68, Mar./Apr. 2007.
[107] M.-C. Chang and D.-S. Shiau, ‘‘Design of an asynchronous pipelined

processor,’’ in Proc. IEEE Int. Conf. Commun., Circuits Syst. (ICCCAS),

May 2008, pp. 1093–1096.
[108] J. H. Lee, Y. H. Kim, and K. R. Cho, ‘‘A low-power implementation of

asynchronous 8051 employing adaptive pipeline structure,’’ IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 55, no. 7, pp. 673–677, Jul. 2008.
[109] Intel Corporation, Intel Microprocessor and Peripheral Handbook:

Microprocessor, vol. 1. Santa Clara, CA, USA: Intel Corporation, 1987.
[110] C.-J. Chen, W.-M. Cheng, R.-F. Tsai, H.-Y. Tsai, and T.-C. Wang,

‘‘A pipelined asynchronous 8051 soft-core implemented with balsa,’’ in

Proc. IEEE Asia–Pacific Conf. Circuits Syst. (APCCAS), Nov./Dec. 2008,

pp. 976–979.
[111] S. R. Naqvi and A. Steininger, ‘‘A tree arbiter cell for high speed resource

sharing in asynchronous environments,’’ in Proc. Conf. Design, Autom.

Test Eur., 2014, p. 295.
[112] C.-J. Chen et al., ‘‘A quasi-delay-insensitive microprocessor core imple-

mentation for microcontrollers,’’ J. Inf. Sci. Eng., vol. 25, no. 2,

pp. 543–557, 2009.
[113] T. Hung-Yue, W.-M. Cheng, Y.-T. Chang, C.-J. Chen, and

F.-C. Cheng, ‘‘A self-timed dual-rail processor core implementation

for microcontrollers,’’ in Proc. IEEE Int. Conf. Electron. Devices, Syst.

Appl. (ICEDSA), Apr. 2011, pp. 39–44.
[114] K. A. Fawaz et al., ‘‘A dynamically reconfigurable asynchronous proces-

sor for low power applications,’’ in Proc. IEEE 8th Symp. Appl. Specific

Processors (SASP), Oct. 2010, pp. 93–96.
[115] K. A. Fawaz et al., ‘‘A dynamically reconfigurable asynchronous pro-

cessor for low power applications,’’ in Proc. IEEE Conf. Design Archit.

Signal Image Process. (DASIP), Oct. 2010, pp. 76–83.
[116] S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T. Arslan,

‘‘The reconfigurable instruction cell array,’’ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 16, no. 1, pp. 75–85, Jan. 2008.
[117] K. A. Fawaz, ‘‘A dynamically reconfigurable asynchronous processor,’’

Ph.D. dissertation, School Eng., Univ. Edinburgh, Edinburgh, U.K., 2012.

[Online]. Available: https://www.era.lib.ed.ac.uk/bitstream/handle/1842/

9442/Fawaz2012.pdf
[118] J. Rose and S. Brown, ‘‘Flexibility of interconnection structures for field-

programmable gate arrays,’’ IEEE J. Solid-State Circuits, vol. 26, no. 3,

pp. 277–282, Mar. 1991.
[119] K. Fawaz, T. Arslan, and I. Lindsay, ‘‘Conditional acknowledge syn-

chronisation in asynchronous interconnect switch design,’’ in Proc.

IEEE NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), Jul./Aug. 2009,

pp. 126–131.
[120] ARM7 Thumb Family Datasheet, document 0035-3/02.02, ARM, 2002.
[121] S. Agarwala et al., ‘‘A 600-MHz VLIW DSP,’’ IEEE J. Solid-State

Circuits, vol. 37, no. 11, pp. 1532–1544, Nov. 2002.
[122] X. Li, B. Gunturk, and L. Zhang, ‘‘Image demosaicing: A systematic

survey,’’ Proc. SPIE, vol. 6822, p. 68221J, Jan. 2008.
[123] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation

of complex Fourier series,’’Math. Comput., vol. 19, no. 90, pp. 297–301,

1965.
[124] D. W. Trainor, J. P. Heron, and R. F. Woods, ‘‘Implementation of the 2D

DCT using a Xilinx XC6264 FPGA,’’ in Proc. IEEE Workshop Signal

Process. Syst., SIPS Design Implement., Nov. 1997, pp. 541–550.
[125] G. Martinez, ‘‘TMS320VC5501/02 power consumption summary,’’

Appl. Rep. TI SPRAA48, Texas Instrum. Incorporated, Dallas, TX, USA,

2004.
[126] T.-T. Liu and J. M. Rabaey, ‘‘A 0.25 V 460 nW asynchronous neural

signal processor with inherent leakage suppression,’’ IEEE J. Solid-State

Circuits, vol. 48, no. 4, pp. 897–906, Apr. 2013.
[127] V. Karkare, S. Gibson, and D. Markovic, ‘‘A 130-µW, 64-channel neural

spike-sorting DSP chip,’’ IEEE J. Solid-State Circuits, vol. 46, no. 5,

pp. 1214–1222, May 2011.
[128] R. Diamant, R. Ginosar, and C. Sotiriou, ‘‘Asynchronous sub-threshold

ultra-low power processor,’’ in Proc. IEEE 25th Int. Workshop

Power Timing Modeling, Optim. Simulation (PATMOS), Sep. 2015,

pp. 89–96.
[129] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, ‘‘Desynchro-

nization: Synthesis of Asynchronous Circuits From Synchronous Speci-

fications,’’ IEEE Trans. Comput.-Aided Design Integr., vol. 25, no. 10,

pp. 1904–1921, Oct. 2006.

[130] P. A. Beerel, G. D. Dimou, and A. M. Lines, ‘‘Proteus: An ASIC flow for

GHz asynchronous designs,’’ IEEE Design Test Comput., vol. 28, no. 5,

pp. 36–51, Sep./Oct. 2011.
[131] D. Bhadra and K. S. Stevens, ‘‘Design of a low power, relative timing

based asynchronous msp430 microprocessor,’’ in Proc. Conf. Design,

Autom. Test Europe, 2017, pp. 794–799.
[132] O. Girard. OpenMSP430. Accessed: Jan. 3, 2019. [Online]. Available:

https://opencores.org/project/openmsp430
[133] A. Bardsley and D. A. Edwards, Balsa: An Asynchronous Circuit Synthe-

sis System. Manchester, U.K.: Univ. Manchester, 1998.
[134] L. Necchi, L. Lavagno, D. Pandini, and L. Vanzago, ‘‘An ultra-low energy

asynchronous processor for wireless sensor networks,’’ in Proc. 12th

IEEE Int. Symp. Asynchronous Circuits Syst., Mar. 2006, p. 85.
[135] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin,

and C. Sotiriou, ‘‘Handshake protocols for de-synchronization,’’ in

Proc. IEEE 10th Int. Symp. Asynchronous Circuits Syst., Apr. 2004,

pp. 149–158.
[136] Y. Liu, G. Xie, P. Chen, J. Chen, and Z. Li, ‘‘Designing an asynchronous

fpga processor for low-power sensor networks,’’ in Proc. IEEE Int. Symp.

Signals, Circuits Syst. (ISSCS), Jul. 2009, pp. 1–6.
[137] S. Ghosh, J. Tessier, and M. A. Bayoumi, ‘‘ASPEN: An asynchronous

signal processor for energy efficient sensor nodes,’’ in Proc. 17th IEEE

Int. Conf. Electron., Circuits, Syst. (ICECS), Dec. 2010, pp. 268–272.
[138] M. Laurence, ‘‘Introduction to Octasic asynchronous processor tech-

nology,’’ in Proc. IEEE 18th Int. Symp. Asynchronous Circuits Syst.

(ASYNC), May 2012, pp. 113–117.
[139] M. Herrera and F. Viveros, ‘‘Asynchronous 8-bit processor mapped

into an FPGA device,’’ in Proc. IEEE Colombian Conf. Commun.

Comput. (COLCOM), Jun. 2014, pp. 1–7.
[140] S. Keller, A. J. Martin, and C. Moore, ‘‘DD1: A QDI, radiation-hard-

by-design, near-threshold 18uW/MIPS microcontroller in 40 nm Bulk

CMOS,’’ in Proc. 21st IEEE Int. Symp. Asynchronous Circuits Syst.

(ASYNC), May 2015, pp. 37–44.
[141] A. Przybylski, K. Haque, and P. Beckett, ‘‘The Bel array: An asyn-

chronous fine-grained co-processor for DSP,’’ in Proc. IEEE 10th Int.

Conf. Signal Process. Commun. Syst. (ICSPCS), Dec. 2016, pp. 1–7.
[142] M. Fiorentino, Y. Savaria, C. Thibeault, and P. Gervais, ‘‘A practical

design method for prototyping self-timed processors using FPGAs,’’ in

Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1754–1757.
[143] M. Fiorentino, Y. Savaria, and C. Thibeault, ‘‘FPGA implementation of

token-based self-timed processors: A case study,’’ in Proc. 15th IEEE Int.

New Circuits Syst. Conf. (NEWCAS), Jun. 2017, pp. 313–316.

ZAHEER TABASSAM was born in Haripur,

Pakistan, in 1994. He received the B.S. degree

in electronics from The University of Haripur,

Haripur, in 2016, and the M.S. degree in electri-

cal engineering from the COMSATS University

Islamabad at Wah, Pakistan, in 2019, where he

has been a Research Associate with the Depart-

ment of Electrical and Computer Engineering,

since 2017. His current research interests include

asynchronous processors and logic, neuromorphic

computing, brain-inspired computing, and electronic systems.

SYED RAMEEZ NAQVI was born in Islamabad,

Pakistan, in 1983. He received the B.Sc. degree

in computer engineering from the COMSATS

Institute of Information Technology, Islamabad,

in 2005, and the M.Sc. degree in electronic

engineering from The University of Sheffield,

Sheffield, U.K., in 2007. He was awarded a fully

funded scholarship for the Ph.D. degree by The

PhD School of Informatics, Vienna University of

Technology, Vienna, Austria, from 2009 to 2013,

where he worked on fault-tolerant asynchronous logic with the Embedded

Computing Systems Group, Institute of Computer Engineering. Since 2014,

he has been an Assistant Professor with the Department of Electrical and

Computer Engineering, COMSATSUniversity Islamabad,WahCantonment,

Pakistan, where he is teaching at both undergraduate and postgraduate

levels and leading a research group on digital systems design and VLSI.

He has published 30 research articles in various international conferences and

journals.

34002 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TALLHA AKRAM received the B.S. degree

in computer engineering from the COMSATS

University Islamabad at Abbottabad, Pakistan,

in 2006, the M.S. degree in embedded systems

and control engineering from Leicester University,

U.K., in 2008, and the Ph.D. degree in computer

vision and pattern recognition from Chongqing

University, China, in 2014. He is currently an

Assistant Professor with the Electrical and Com-

puter Engineering Department, COMSATS Uni-

versity Islamabad at Wah, Pakistan. He is the author of number of

peer-reviewed journals and conferences. His research interests include com-

puter vision, pattern recognition andmachine learning, artificial intelligence,

and applied optimization.

MUSAED ALHUSSEIN was born in Riyadh,

Saudi Arabia. He received the B.S. degree in

computer engineering from King Saud University,

Riyadh, in 1988, and the M.S. and Ph.D. degrees

in computer science and engineering from the

University of South Florida, Tampa, FL, USA,

in 1992 and 1997, respectively. Since 1997, he has

been on the Faculty of the Computer Engineering

Department, College of Computer and Information

Science, King Saud University. He is currently the

Founder and the Director of Embedded Computing and Signal Processing

Research Laboratory. His research interests include the typical topics of

computer architecture and signal processing and with an emphasis on VLSI

testing and verification, embedded and pervasive computing, cyber-physical

systems, mobile cloud computing, big data, eHealthcare, and body area

networks.

KHURSHEED AURANGZEB received the

B.S. degree in computer engineering from the

COMSATS Institute of Information Technology

at Abbottabad, Pakistan, in 2006, the M.S. degree

in electrical engineering (System-on-Chip) from

Linköping University, Sweden, in 2009, and

the Ph.D. degree from Mid Sweden University,

Sundsvall, Sweden, in 2013. From 2013 to 2016,

he was an Assistant Professor/HoD with the Elec-

trical Engineering Department, Abasyn university,

Peshawar, Pakistan. He is currently an Assistant Professor with the College

of Computer and Information Science, King Saud University, Riyadh, Saudi

Arabia. His research interests includewireless visual sensor networks, design

methods and implementation of embedded systems, applied image/signal

processing, image compression, traffic monitoring, cloud computing, edge

computing, the Internet of Things, smart grids, smart buildings, machine

learning, and deep learning.

SAJJAD ALI HAIDER received the B.S. degree

in computer engineering from the COMSATS

University Islamabad (CUI) at Wah, Pakistan,

in 2005, the M.S. degree in embedded systems

and control engineering from Leicester Univer-

sity, U.K., in 2007, and the Ph.D. degree from

ChongqingUniversity, China, in 2014. Since 2005,

he has been with the Department of Electrical

Engineering, CUI Wah, where he is currently an

Assistant Professor. His research interests include

embedded systems, control systems, and machine learning.

VOLUME 7, 2019 34003


	INTRODUCTION
	FUNDAMENTALS OF ASYNCHRONOUS LOGIC
	DATA AND CONTROL PATHS
	HANDSHAKING CONCEPT IN ASYNCHRONOUS DESIGN
	CLASSIFICATION OF ASYNCHRONOUS CIRCUITS
	DELAY INSENSITIVE CIRCUITS
	QUASI DELAY INSENSITIVE CIRCUITS
	SPEED INDEPENDENT CIRCUITS

	SIGNALING CONVENTIONS
	4-PHASE SIGNALING
	2-PHASE SIGNALING

	DATA REPRESENTATION
	SINGLE RAIL ENCODING
	M-OF-N ENCODING

	ASYNCHRONOUS PIPELINE IMPLEMENTATIONS

	ASYNCHRONOUS PROCESSORS, LANGUAGES AND DESIGN TOOLS
	TOOLS AND LANGUAGES
	TANGRAM
	CHP: COMMUNICATING HARDWARE PROCESSES
	BALSA
	ASYNCHRONOUS CIRCUIT COMPILER
	PETRIFY
	OTHER TOOLS

	PROCESSORS
	CALTECH ASYNCHRONOUS MICROPROCESSOR
	FULLY ASYNCHRONOUS MICROPROCESSOR
	NON-SYNCHRONOUS RISC PROCESSOR
	COUNTERFLOW PIPELINE PROCESSOR ARCHITECTURE
	AMULET1
	TITAC: DESIGN OF A QUASI-DELAY-INSENSITIVE MICROPROCESSOR
	THE GALLIUM ARSENIDE ASYNCHRONOUS MICROPROCESSOR
	FRED ARCHITECTURE
	HADES ARCHITECTURE
	ASYNCHRONOUS PROCESSOR BASED ON PETRI NETS
	Amulet2e: AN ASYNCHRONOUS EMBEDDED CONTROLLER
	ASYNCHRONOUS MIPS R3000 MICROPROCESSOR
	TITAC-2
	ASYNMPU
	ECSTAC
	TinyRISC TR4101 MICROPROCESSOR CORE
	ASPRO-216
	80C51 MICROCONTROLLER
	AMULET3
	A8051
	THE LUTONIUM MICROCONTROLLER
	MODELLING SAMIPS
	SENSOR NETWORK ASYNCHRONOUS PROCESSOR
	BITSNAP
	HT80C51
	ASYNCHRONOUS 8051 MICROCONTROLLER CORE
	VORTEX PROCESSOR
	ARM996HS PROCESSOR
	TAM16 MICROCONTROLLER
	AsynRISC
	A8051v2
	PA8051
	NCTUAC18
	DRAP
	ASYNCHRONOUS NEURAL SIGNAL PROCESSOR
	uaMIPS
	ANSYNCHRONOUS MSP430

	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	ZAHEER TABASSAM
	SYED RAMEEZ NAQVI
	TALLHA AKRAM
	MUSAED ALHUSSEIN
	KHURSHEED AURANGZEB
	SAJJAD ALI HAIDER


