
Towards DevOps in the Embedded Systems Domain: Why is It so Hard?

Lucy Ellen Lwakatare1, Teemu Karvonen1, Tanja Sauvola1, Pasi Kuvaja1, Helena Holmström Olsson2, Jan Bosch3

and Markku Oivo1

1University of Oulu, {lucy.lwakatare, teemu.3.karvonen, tanja.sauvola, pasi.kuvaja, markku.oivo}@oulu.fi
2 Malmö University, helena.holmstrom.olsson@mah.se

3 Chalmers University of Technology, jan.bosch@chalmers.se

Abstract
DevOps is a predominant phenomenon in the web

domain. Its two core principles emphasize

collaboration between software development and

operations, and the use of agile principles to manage

deployment environments and their configurations.

DevOps techniques, such as collaboration and

behaviour-driven monitoring, have been used by web

companies to facilitate continuous deployment of new

functionality to customers. The techniques may also

offer opportunities for continuous product

improvement when adopted in the embedded systems

domain. However, certain characteristics of

embedded software development present obstacles

for DevOps adoption, and as yet, there is no

empirical evidence of its adoption in the embedded

systems domain. In this study, we present the

challenges for DevOps adoption in embedded

systems using a multiple-case study approach with

four companies. The contribution of this paper is to

introduce the concept of DevOps adoption in the

embedded systems domain and then to identify key

challenges for the DevOps adoption.

1. Introduction

DevOps is a new phenomenon in software

engineering, emphasizing collaboration, automation,

virtualization and new tools that bridge software

development and operations activities [1]. A blend of

the words ‘development’ and ‘operations’, DevOps

constitutes both technical and non-technical practices

that help software-intensive companies to increase

responsiveness to customer needs through frequent

and automated software releases. Having frequent

releases helps to reduce the risks that are associated

with deployment, and leads to faster feedback

regarding any changes to software application and its

configurations (including environments). Generally,

providing feedback as quickly as possible is essential

to facilitating new information that influences

subsequent choices in the software development

process.

Today, the ability to frequently deploy new

software features to the production environment,

from multiple times a month to even multiple times a

day, has become a competitive advantage for most

companies operating in the web domain, especially

those providing software applications on demand

over the internet through software as a service (SaaS)

delivery model [2], [3], [4]. This paradigm change

towards continuous deployment gives companies the

opportunity to quickly verify whether their new

software features are useful to customers and

adopting practices such as A/B testing to conduct

feature experimentation [5]. A/B testing is a practice

where users are randomly assigned to one of the two

variants of the system for experimentation e.g.

feature usage experimentation [6].

As Humble and Farley [1] have noted, the ability

to frequently deploy new software features requires

effective coordination of activities in the software

development process, as well as collaborative work

among developers, testers, build and operations

personnel. DevOps recognizes the need for a

continuous bridge between software development and

its operational deployment [7].

In the literature, DevOps is predominantly a

phenomenon of SaaS applications but not yet a

practice in the embedded systems domain. DevOps is

easy to adopt in the web domain, because

virtualization helps software developers to abstract

the infrastructure. Moreover, tool support for

configuration management helps them to set up

development, testing and staging environments that

reflect the production environment. When

configuration management software is used in

combination with automated verification and

validation, it increases the level of confidence for

correct deployment the first time new features are

deployed to production [1]. By using DevOps

practices, software development teams can deploy

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.671

5436

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.671

5437

new software features directly to production while

operations personnel help to support the

infrastructure development and performance [2], [4].

Software development in the web domain differs

substantially from the embedded systems domain. In

embedded systems, software is only one part, though

an increasingly important one, in addition to

mechanics, optics, electronics, and so on [8]. The

characteristics of embedded systems development,

such as hardware dependency, present challenges to

adoption of DevOps. Moreover, embedded systems

are typically sold as products in ‘boxes’ which upon

purchase are solely the customer’s property [8]. In

many cases, the customer may purchase optional

maintenance services that commission the software

supplier to offer after-sales updates and support for

the product. This is contrary to the model of SaaS

applications, in which customers typically purchase

services for which they pay subscription fees or

freely have rights to use the service only via web

browser or other thin-client applications [2], [3].

Despite the challenges, adopting the underlying

concepts of DevOps—such as fast feedback to

development regarding environmental configuration

changes [1], as well as the use of post-deployment

data for continuous product improvements [9]—

would offer opportunities to shorten the development

cycle in the embedded systems domain. In this paper,

we investigate what stands in the way of DevOps

adoption in embedded systems. Based on a multiple-

case study, we identify key obstacles for the adoption

of DevOps in four Finnish companies operating in

embedded systems domain. The research question of

the study is: What are the key challenges for DevOps

adoption in the embedded systems domain? The main

contribution of this paper is twofold. First, it presents

the concept of DevOps adoption in the embedded

systems domain; and second, it identifies specific

challenges for the DevOps adoption.

The paper is organised as follows. The next

section presents background and related work on

DevOps. Section 3 describes the research approach

used in this study. The findings of the study are set

out in section 4. Section 5 presents discussion,

followed by conclusions in section 6.

2. Background and related works

2.1. The DevOps concept

According to Humble and Farley [1], the DevOps

movement has two core principles. First, it

emphasizes collaboration between development and

operations activities [7]. Second, it uses agile

principles and automation to manage deployment

environments and their configurations. The main goal

is to shorten feedback loops and the development

cycle through collaboration, automation and frequent

software releases [1], [10]. Collaboration in DevOps

seeks to bridge the silos of software development and

operations functions, which exist as separate

functions in most companies. Collaboration is

particularly essential when new software features are

developed and released to the customer frequently

and quickly on a continuous basis [10].

The origins of development and operations

existing as distinct and phased activities can be traced

from systems engineering, which influenced the

traditional ‘waterfall model’ of software development

[11]. In systems engineering, development is

described as an activity involving requirement

definition, design, implementation and system

integration and testing. On the other hand, operations

processes typically occur in parallel with

maintenance activities, mainly focusing on system

installation and its practical use [11].

In many companies, the split between

development and operations in separate departments

is one obstacle towards the transition to continuous

deployment. The latter is mostly due to different

goals and incentives that are owned by the two

separate organisational units or groups. For instance,

developers want to push changes into production as

fast as possible, whereas operations personnel’s want

to keep production environment stable [1]. Herbsleb

[12] had shown that there is typically a substantial

delay or loss of information when tasks that are

mutually interdependent are split, which prolongs

development time as a result. DevOps addresses

communication gaps between development and

operations during the software development process.

As such, information about system performance and

feature usage in production can be communicated to

the development team early to be used as a basis for

making continuous improvements to existing and

new products, not only in the web domain but also in

the embedded systems domain [9],[13].

DevOps practices rely on the foundations of agile

and lean software development including continuous

integration (CI) practices [5], [14]. Previous

empirical studies have shown how agile and lean

methods helped to address collaboration challenges

within the traditional ‘waterfall’ development activity

and helped improve its performance [15]. However,

in most cases, the improvements did not extend

beyond the development teams, because the

deployment of software features to customers

occurred infrequently [3]. Although several factors

contribute to the infrequency, poor communication

54375438

between developers and infrastructure owners is one

factor [16]. That issue is being addressed by DevOps

and other studies on the need to scale agile methods

across the entire company [16], [4].

Despite the emphasis on the importance of

DevOps by practitioners, there is limited knowledge

and evidence about it in the software engineering

literature [10]. Most studies on DevOps have focused

on the web domain, though the practice is

acknowledged as suitable for other domains, such as

the embedded systems domain, for example [17].

2.2. DevOps in the cloud environment

DevOps has mostly been adopted by companies

delivering software applications from a cloud

computing environment, such as Facebook, Jira, and

Spotify [2], [3], [4]. DevOps has proven to be most

conducive to SaaS applications, because companies

maintain full control and ownership of the

infrastructure and have fast mechanisms for rolling

back new software releases whenever there are

problems [2]. Additionally, computing models

offered by cloud vendors—e.g., platform as a service

(PaaS) and infrastructure as a service (IaaS)—have

tremendous effects on how web applications are

developed and deployed to production.

Web companies that have adopted DevOps use

several approaches to ensure collaboration between

software development and operation activities,

including shifting some responsibilities from

operations to development [10]. The culture of

collaboration in DevOps impacts the team structures

and task coordination both within software

development and between software development and

operations [10]. In DevOps, new software features

are developed and deployed directly to the production

environment by cross-functional feature teams [4].

Chief architects and governance architects play a

crucial role in ensuring high-level architectural

designs and decisions and in supporting and

coordinating groups of feature teams [4]. Individual

software development engineers can also deploy

features directly to production [2], [18], although

additional oversight can be added in areas with legal

restrictions by adding the role of release engineer, for

example [2].

 A major principle of DevOps is to automate

development and operations activities as much as

possible [6]. The greatest emphasis has been on

automating aspects of the operations process, such as

deployment and configuration management of

applications and deployment environments [1], [19].

Virtualization achieved through cloud computing

models has helped web companies to abstract

different layers of environments, thus simplifying the

management of infrastructure. The latter, together

with emerging configuration management and

deployment automation tools (e.g., Puppet and

Docker), makes it possible to provide environments

that are similar to production. The automatic

provision of production-like environments serves a

dual purpose for testing production deployment and

as a backup [1].

Typically, monitoring is performed during

operational use of the system. Data gathered from

operational usage can serve as feedback to developers

to help them assess the quality of the software design

and identify areas for refactoring [13]. Although

monitoring has often been done for fault diagnostic

purposes, web companies are using it as an

opportunity to learn about feature usage [2].

Generally, data from different sources can be

consolidated and used with analytical tools to provide

informative feedback as a basis for continuous

product improvements and infrastructure.

2.3. DevOps in the embedded systems domain

To the best of our knowledge, there is no

literature available to date regarding the adoption of

DevOps in the embedded systems domain. In this

domain, factors such as system reliability, cost and

time to market mostly drive product development

decisions, rather than the need to constantly add new

functionality [8], [20]. Additionally, operations

activities, such as installing new software features,

are performed by customer support technicians who

are distributed and typically allocated close to each

user’s local environment [21].

Empirical evidence on embedded software

development shows that product development in

embedded systems is mostly hardware driven [8].

Development of products is slow due to long lead

times for hardware development [8], [20]. Also, the

separation of hardware and software development

further prolongs the development cycle time since

high levels of domain expertise requirements and

distribution of work seldom allows teams to have

end-to-end visibility to a complete R&D value

stream. This means that development teams often

need to communicate and coordinate better. On the

other hand, a considerable amount of time has to be

spent in architectural design to describe and compose

functionality of the complete system rather than

focusing only on the immediate needs [8]. It has also

been observed that in industry, non-functional

requirements (e.g., system performance and use of

memory and power) are often specified based on

developers’ experience during product development

54385439

[8]. This is because technologies used by software

engineers lack special features for dealing with such

requirements [8]. Furthermore, the majority of

software engineering technologies are not adopted,

because they need to be compatible with legacy code,

as many products are not started from scratch and

tend to contain legacy code [8].

3. Research approach

This study uses a multi-case study with an

interpretive approach [22]. Data was collected from

four Finnish companies developing embedded

systems. An explorative case study approach was

chosen because it gives a deep understanding of a

phenomenon under study in its natural setting. The

companies are designated as companies A, B, C and

D owing to a confidentiality agreement.

3.1. Data collection and analysis

Data was collected primarily through semi-

structured interviews using open-ended questions

with representatives of the four companies. The

companies were selected using convenience sampling

from a group of companies participating in a large

national research program, Need for Speed (N4S)1,

aimed at enhancing Finnish ICT companies’

capability to deliver value in real time. Prior to data

collection, a case study protocol with an interview

guide was developed and used as a basis for

discussion during the data collection process.

Five employees with varying roles (Table 1) were

interviewed from each of the selected companies.

Altogether, 20 interviews were conducted, each

lasting approximately two hours. Data was collected

over the course of three months (November 2014–

January 2015). The interview guide had parts, which

inquired about the:

1) Current ways-of-working in software

development, deployment and post-deployment;

2) Strengths and weaknesses in ways of working;

3) Barriers experienced when moving towards

frequent and continuous short releases.

During each interview, three researchers shared

rotating responsibilities, with one researcher mainly

asking the questions and the other two taking notes.

All interviews were recorded with the permission

of the interviewees and later transcribed for analysis.

All collected data, including interview audio,

transcripts and notes, were stored in NVivo (a

qualitative data analysis software) for analysis. After

1 Need for Speed (N4S): http://www.n4s.fi/en/

the initial reading of the transcript, we used the

grounded theory coding technique to identify and

code various insights and perceived challenges

pertaining to product development and deployment

activities.

3.3. Threats to validity

The design of our study was carefully planned to

take into account validity concerns throughout the

study. Threats to validity can be sorted into three

categories: construct validity, reliability and external

validity [22].

 To ensure that the data collected during

interviews was appropriate to answer the research

question, an interview guide was developed by

working with a fifth company not included in the

study, which helped to refine research design and

interview questions. Appropriate companies were

selected for the study interviews, and materials

describing the purpose and goal of the research were

provided to each interviewee prior to data collection.

Threats to the reliability of the study findings were

mitigated by having at least three researchers

involved in all phases of the research process,

particularly during data collection and analysis. This

practice helped to minimize research biases. In

addition, the interview transcripts used for data

analysis were sent to the interviewees for their

review. External validity is mostly concerned with

whether a study’s findings can be generalised. The

findings of this study cannot be generalised to the

entire population; rather, they are meant specifically

to provide insight into the challenges of DevOps

adoption in embedded software development.

4. Findings

This section presents software development and

deployment practices in the four case companies

operating in the embedded systems domain. The

challenges for adopting DevOps within embedded

systems are also presented.

4.1. Development and deployment practices

In this section we present a summary of how the

case companies develop and release new features to

customers. Table 1 gives a summary of the products

developed by the companies with the corresponding

release cycle times.

54395440

4.1.1. Company A. Company A develops embedded

software solutions for specialised markets in the

wireless and automotive industries. The company

also provides R&D services to companies operating

in these sectors. Company A has an adaptable

product development process with important

milestones to signify different phases of end product

(both hardware and software) development. The

frequency of software releases depends on the

milestone phase—more frequent during development

and less frequent during maintenance. The operations

unit is responsible for serial production of devices,

together with the customer and other external

manufacturing companies, after the customer

acceptance stage. In projects involving device

manufacturing, the operations team is involved in the

early phases to make cost estimates to be specified in

contracts agreed upon with the customer. During

development, new software features are released to

customers in a two-week release cycle; however,

production releases (hardware, mechanics and

software) typically have a longer cycle, ranging from

ten months to three years depending on the product

(e.g., handset, base station, etc.). For the two-week

major releases, customers typically have a targeted

hardware device to run the new software features.

Depending on the project, the release (build) manager

makes available the new releases and corresponding

documentation to customers. The releases can be

deployed to customers through over-the-air or by

pushing files to customers’ repositories. In some

R&D projects, data is collected from the devices and

testing is conducted with internal (alpha and beta)

user groups.

At the end of development but prior to product

launch, acceptance testing is conducted with the

customer to validate product functionality in a

production environment.

4.1.2. Company B. Company B is a

telecommunications equipment manufacturer that

also provides solutions and services for managing

network operations. Within company B, we studied

the development of a compact mobile broadband

solution. Different product development milestones

are used to signify product development efforts over

time. The company has been introducing cross-

functional software development teams, but module

development teams still exist in the company. The

company has two major releases each year and

several (small) maintenance releases between the

major releases.

Typically, a few months before a product is made

available for global use, it is verified and validated

with a lead customer. System verification with the

customer is first done in the customer’s testing lab,

taking two to six weeks to complete. After that, the

products are taken to a real field environment for

verification and validation. There, the product is

tested and monitored for how it works and behaves.

When the lead customer accepts the product, it is

granted acceptance for global use. For the rest of the

Company

ID

Domain Product/service Interim releases Cycle time to

production

Interviewees’ roles

A Wireless

embedde

d systems

1) Special device

platform product

2) R&D services

New software

functionality (two-week

release cycle during
development)

Maintenance releases

(after product launch)

10 mos.–3 yrs. 1) Special device senior manager, 2)

Special device product owner, 3)

Sales and account manager, 4) Senior

specialist in software, 5) Quality

manager in wireless segment

B Telecom

network

Compact mobile

broadband

solution

Maintenance releases

(two-week release
cycle)

6 mos. 1) Test automation manager, 2) Senior

developer, 3) Program manager, 4)

Operations manager of the local site,

5) Technical coordinator

C Industrial

automati

on

Factory

automation

platform solution

None (newly initiated
program)

First release

scheduled in

2016 (typically

1 yr.)

1) Project manager, 2) Program

manager, 3) User experience (UX)

designer, 4) Product manager, 5)

Developer

D Telecom

network

Network-

monitoring

solution

Maintenance releases

Releases for Customer-

specific projects

6 mos. 1) System verification engineer, 2)

Program manager, 3) Software

architect, 4) Product line manager, 5)

Software engineer

Table 1. Summary of case companies and roles of interviewees

54405441

customer base, customer units and service personnel

in local environments across the globe are

responsible for product deployment at the customers’

sites.

4.1.3. Company C. Company C develops factory

automation solutions for a variety of customers in the

mining, construction, oil and gas industries.

Interviews were conducted with people involved in a

large companywide R&D program that is developing

a factory automation platform solution. Company C

has an operations function that is mostly responsible

for customer delivery projects in which products are

installed and specifically configured for each

customer.

Within the new R&D program, development

teams develop new functionality in two-week sprint

cycles. New functionality is released internally

through demonstrations to other teams and internal

customers (i.e., other product lines and operations)

during increment reviews after every six weeks and

at the end of each six-month program phase.

Synchronisation of work and management of

dependencies is mostly done during increment

reviews and at the end of the program phase. Prior to

launch, products are tested for factory acceptance,

which many times takes several months. As the R&D

program is new, there have been no releases of the

factory automation platform solution to customers.

Typically, release managers are responsible for

preparing releases, which are then delivered to

operations for yearly releases. Prior to customer

installations, the R&D team trains the operations and

support team and supplies user manuals and

documentation on how to do the installations.

4.1.4. Company D. Company D is a

telecommunication equipment manufacturer. We

studied how the company is developing a network-

monitoring solution used by network operators to

track network traffic in real time.

The software development teams in company D

are fully responsible to implement main user stories

(software features), including verification. The

company has two main releases annually, even

though it is possible to deliver new features of the

monitoring tool more frequently (e.g., monthly). The

semi-annual schedule was chosen to follow an

internal company policy that is applied to all product

development teams across different products. Parallel

to the development of the main monitoring tool,

development teams also work on customer projects

according to customer priority. In customer-specific

projects, releases to the customer are more frequent.

Prior to product launch, pilot tests are conducted with

a pilot customer. Upon customer acceptance, the

product is ready for global use and the product is

placed online on company’s download site to be

downloaded and used by the customer. However,

there is typically some planning involved between the

customer and a customer technical support unit—one

of several available globally—regarding how the

customer will put the product into use.

4.2. Challenges of DevOps in the embedded

systems domain

This section introduces the challenges for DevOps

adoption in the embedded systems domain. The

challenges are identified by comparing DevOps

practices in the web domain with interviewees’

responses about the barriers of moving towards

frequent and continuous short releases and challenges

inherent in the current ways of developing, releasing

and maintaining software features. The findings are

presented in figure 1.

4.2.1. Culture of continuous improvement.
Web companies that have adopted DevOps tend to

have self-organising agile development feature teams

with the skills and tools to design, test and release to

production new software features [12]. On the other

hand, in the embedded systems domain, new product

features are developed in silos of module teams. In

companies B and C, software development is a

combination of feature and module development

teams. Feature teams are cross functional, mostly

working at the end user interface level to develop a

set of features that cover the entire system stack.

Module teams tend to require some level of

specialisation to develop software modules for the

lower layers of the system stack, particularly closer to

the hardware. Development of new features in silos

of modules requires effective communication and

underscores the importance of agile software

development in a large scale context and CI practices

as coordination mechanisms both within the team and

across the team when building an end-to-end product

(C1 in figure 1). ‘People working for a certain

module don’t know enough what’s happening outside

their modules. I would prefer that we would have

only cross-functional teams that will work in end-to-

end solution in the bigger picture. … There’s too

little interaction between the different modules.

Cross-functional teams with more responsibility on

the end-to-end aspect of the feature for each team

would be a great benefit.’ (Senior developer,

Company B).

54415442

As embedded systems are very complex, there is

oftentimes no mechanism to propagate rapid changes

made by one team to other teams across the company

on a continuous basis. To enable fast feedback loops,

systems development needs to encompass new ways

of working whereby teams bear the responsibility for

accepting a continuous flow of rapid changes and

also propagating their changes rapidly to other teams.

This is similar to a DevOps culture of personal

responsibility, in which all software developers are

responsible for code changes they make and, when

necessary, code changes that they did not make but

that are affecting other developers or users [2].

However, cultural and mind-set change in terms of

collaboration is often accompanied by difficulties and

resistance. ‘We now have one guy from the

operations in our R&D team. That hasn’t helped as

much as I hoped earlier, because I think it’s a

personality question that—he’s very like a scientist,

more like a scientist, the personality of the guy, and it

doesn’t help. But somehow I—earlier, I thought that

getting this customer experience to the team would

help a lot. But now, it hasn’t been so successful so

far.’ (Project manager, company C)

4.2.2. Configuration management of test

environments. Acceptance is an important stage that

takes development teams beyond CI practices to

validate whether new software features are valuable

to the customer [1]. In SaaS applications with

DevOps practices, virtualization and tool support for

configuration management are used to provide

production-like environments for acceptance test [1].

Together with automated regression and acceptance

tests, this allows for an automated process for every

software version that has passed CI [1]. In the

embedded systems domain, customer/factory

acceptance tests are executed in a controlled

environment; for instance, in company C, a factory

acceptance test takes several months after start-up

after the completion of system development. The

acceptance stage is also important for gaining

information about how the customer environment is

configured, because companies such as companies B

and C have a limited view of how customer

environments are configured (C2 in figure 1). For

these companies, each customer environment has its

own configuration, with several elements provided

and configured by other vendors. That creates

complexity and makes it difficult for companies to

repeatedly and reliably construct test environments

that are also representative of a wide range of

possible customer configurations. As a result,

company B and others like it tend to discover many

Figure 1. Distinguishing characteristics of DevOps in the web domain and obstacles in the
embedded systems domain

54425443

faults in the system during customer acceptance tests

in the field. This is due to having a variety of tests

performed in a similarly configured test environment.

Moreover, companies lack fully automated

acceptance test coverage, requiring a lot of time to be

spent on manual acceptance and regression testing.

‘The setup is sometimes extremely complex in

customer networks, and we don’t have detailed

information about that. ... The problem is that there

are quite many features and each of those has quite

many different setups or configurations, and if we

include all, it gets quite complex.’ (Senior developer,

company B)

4.2.3. Deployment process automation. In

DevOps, automation of the deployment process is

achieved through tool support that helps to

automatically manage application and infrastructure

configurations [1]. In the embedded systems domain,

deploying new software functionality to customer

sites involves numerous activities that also require

gaining consent from customers. In most cases, the

complex systems cannot be updated easily because

specific versions of software need to be updated in

multiple places (C1 in figure 1). Also, product

installations and new software upgrades often involve

making customer-specific configurations.

Embedded systems also have a long lifecycle with

large amounts of legacy code that cannot be updated

easily. Very often, customers acquire new product

features for their existing systems, which may have

old software versions from releases made several

years earlier. Customers with old software versions

of existing products were found in all the studied

companies, because the companies often provided

maintenance support to existing products or were

legally required to support products for long periods

after terminating development. For instance, some of

company C’s products have to be supported for a

minimum of ten years after end-of-life notification is

given to customers. The long lifecycle of products

requires companies to ensure high compatibility

between new software features and the existing

software features at customer sites. Ensuring system

compatibility is a challenging task. ‘If we deliver fast,

that means that we deliver different versions to

different customers, and we have to maintain all the

versions for a very long time. They have to be

compatible with the new deliveries. That’s really a

tough thing to do.’ (Project manager, company C)

We also found that customer processes may

prevent automatic deployment of new software

features on a continuous basis. It was often stated by

the interviewees that customers do not like to

upgrade existing systems if they are working

correctly, and as a common rule, ‘you don’t fix what

is not broken’. All the companies in our study have

customers running critical processes that require high

reliability of systems. In company C, the systems at

customer sites are required to run with no production

downtime or at most a few shutdowns in a year. In

such contexts, software updates for new product

features or hardware replacements are infrequent and

done mostly to ensure the high reliability of the

system. Specifically, we observed a lack of

technology to automatically deploy new features

repeatedly and reliably without downtime in complex

and critical embedded systems (C3 in figure 1). For

some products, such as mobile devices, it is easy to

make software updates using over the air (OTA), as

in an R&D service project implemented by company

A. According to interviewees, automatic deployment

would theoretically be possible even in critical

systems by using the redundant systems that are often

present for backup; however, this approach increases

risk for the customer. ‘You don’t stop the turbine or

paper machine for a software update. ... Upgrade of

certain components is something that I don’t think we

have a technological solution for that, even as simple

a thing as process control… For embedded devices,

not even mission-critical ones, we still need

technology solutions for guaranteeing reliable

updateability, so whether this will be best on

virtualization and things like that, but all of those

pieces are not in place yet.’ (Program manager,

company C)

4.2.4. Monitoring in the production

environment. In the embedded systems domain,

every component of a system (both software and

hardware) needs to meet certain operational

performance criteria. In nearly all cases, the devices

are equipped with mechanisms for logging traced

operational data for the entire system. Data is stored

and analysed later for a variety of purposes, including

fault diagnostics and to monitor product reliability

and performance. In most cases, monitoring of

software feature usage information (e.g., usage-

behaviour monitoring for software functionality) is

rarely performed (C4 in figure 1). Some instances of

software feature usage can be identified by

developers who are doing maintenance work on a

fault reported by the customer.

It is impossible to monitor customer systems,

especially after product launches, unless the customer

sends direct reports to the company. The four

companies in the study rarely had access to

monitored data from customer systems, except during

customer trial tests or when doing fault diagnostics

during maintenance. It is also a challenge for

54435444

suppliers to monitor systems for a variety of often-

inaccessible customers. Generally, in the embedded

systems domain, it would be a great benefit for the

companies to have access to monitored data to get

feedback about device performance and product

feature usage patterns. ‘Most cases, it is mandated by

laws and regulations that logging and tracing of

everything is a very important feature of everything

that we do. ... Here the focus of the monitoring is in

technical monitoring, so like load scenarios. There is

less emphasis on monitoring user behaviour’

(Program manager, company C)

5. Discussion

The aim of this paper is to present the challenges

for DevOps adoption in the embedded systems

domain, in contrast to the web domain, where

DevOps practices are becoming increasingly easy to

adopt in most SaaS applications because of

virtualization and tool support.

The key challenges for DevOps adoption within

embedded systems are identified in four categories.

The first of these is hardware dependency and

compatibility with multiple versions. Hardware

dependency has resulted in companies having silos of

software development teams in different modules.

Despite short software development cycles, new

feature releases to customers are delayed due to long

hardware development cycles. Previous studies have

also reported similar findings of prolonged

development cycles resulting from hardware

dependency [8].

The second category of challenges is the limited

visibility of customer environments with regard to

configuring test environments. The DevOps concept

emphasizes testing new software features in a

production-like environment. Tool support in

DevOps enables web companies to automatically

provide production-like test environments repeatedly

and reliably. However, the companies developing

embedded systems in our study have a limited view

of their customers’ production environments.

Customer-specific configurations further complicate

the construction of representative test environments

for system and acceptance testing. Liu et al. [20]

made a similar observation that in the embedded

systems, development environments are inconsistent

with runtime environments. These environments are

further complicated by the heterogeneity of hardware

platforms [20].

The third set of challenges involves a scarcity of

tools. DevOps in the web domain is supported by a

variety of open-source tools to automate the

deployment process. Much research has been focused

on testing these tools for repeatability and

idempotence [19]. In the embedded systems domain,

especially in critical systems, there is a lack of

technology that would allow new software features to

be automatically deployed repeatedly and reliably on

a continuous basis. The lack of suitable tools for

embedded software development is a common issue

in the embedded systems domain [20]. Currently,

based on the study findings, frequent automatic

deployment of new software features is less preferred

in safety and business critical embedded systems

domain. However, more likely to be implemented in

the presence of suitable tools which would also

guarantee the repeatability, reliability and operability

of existing products and services.

The fourth category of challenges is the absence

of feature usage data in system performance data

collected by embedded systems companies. Post-

deployment data presents an opportunity for

continuous product improvement [9]. Web

companies with DevOps practices not only monitor

the performance of infrastructure but also conduct

experiments regarding feature usage through A/B

testing and canary releases [1], [2].

In this study, the DevOps concept underscores the

importance of agile software development and CI

practices as foundational for the transition towards

continuous deployment of software functionality

[14]. Additionally, it presents the importance of

having technology to automate the deployment

process, as well as effective management of systems

configurations. Therefore, from our study it is evident

that DevOps practices originating from the web

domain are applicable also in the embedded systems

domain. However, further adaptation and

contextualization of the practices is needed in order

for the embedded systems domain to fully reap the

benefits of DevOps as presented in this paper.

6. Conclusion and future work

This study identified and presented the challenges

of adopting DevOps practices in the embedded

systems domain. The key challenges were found to

be (1) hardware dependency and compatibility with

multiple software versions; (2) limited visibility of

customer environments when configuring test

environments; (3) lack of technology to

automatically, reliably and repeatedly deploy new

features in customer-specific environments; and (4)

absence of feature usage data in systems performance

data.

54445445

We found that the application of DevOps

concepts to the embedded systems domain

underscored the importance of agile software

development, specifically cross-functional teams and

CI practices that still need improvement in the

studied companies. Improvements to the mechanisms

used to facilitate deployment are also necessary, such

that it becomes repeatable and reliable. Future

research that provides evidence on how to tackle the

identified challenges would be of great benefit to

academia and practitioners.

Acknowledgment
This work was supported by TEKES as part of the

Need for Speed project (http://www.n4s.fi/) of

DIGILE (Finnish Strategic Centre for Science,

Technology and Innovation in the field of ICT and

digital business).

6. References

[1] J. Humble and D. Farley, Continuous Delivery:

Reliable Software Releases through Build, Test,

and Deployment Automation, 1st ed. Boston:

Addison-Wesley Professional, 2010.

[2] D. G. Feitelson, E. Frachtenberg, and K. L. Beck,

“Development and Deployment at Facebook,”

IEEE Internet Computing, vol. 17, no. 4, pp. 8–17,

2013.

[3] G. G. Claps, R. Berntsson Svensson, and A.

Aurum, “On the Journey to Continuous

Deployment: Technical and Social Challenges

Along the Way,” Information and Software

Technology, vol. 57, pp. 21–31, Jan. 2015.

[4] A. Kniberg, H; Ivarsson, “Scaling Agile @

Spotify,” 2012. [Online]. Available:

https://dl.dropboxusercontent.com/u/1018963/Arti

cles/SpotifyScaling.pdf. [Accessed: 30-Apr-2015].

[5] H. Olsson, H. Alahyari, and J. Bosch, “Climbing

the‘ Stairway to Heaven’--A Mulitiple-Case Study

Exploring Barriers in the Transition from Agile

Development towards Continuous Deployment of

Software,” In Software Engineering and Advanced

Applications (SEAA), 2012.

[6] R. Kohavi, R. Longbotham, D. Sommerfield, and

R. M. Henne, “Controlled experiments on the web:

survey and practical guide,” Data Mining and

Knowledge Discovery, vol. 18, no. 1, pp. 140–181,

2008.

[7] B. Fitzgerald and K.-J. Stol, “Continuous Software

Engineering and Beyond: Trends and Challenges,”

in 1st International Workshop on Rapid

Continuous Software Engineering, pp. 1–9, 2014.

[8] B. Graaf, M. Lormans, and H. Toetenel,

“Embedded software engineering: The state of the

practice,” IEEE Software, vol. 20, no. 6, pp. 61–

69, 2003.

[9] H. Olsson and J. Bosch, “Towards Data-Driven

Product Development: A Multiple Case Study on

Post-deployment Data Usage in Software-

Intensive Embedded Systems,” Lean Enterprise

Software and Systems, 2013.

[10] LE. Lwakatare, P. Kuvaja, M. Oivo, “Dimensions

of DevOps,” in 16th International Conference on

Agile Software Development, pp. 212–217, 2015.

[11] I. Sommerville, Software Engineering, 9th ed.

New York: Pearson, 2011.

[12] J. Herbsleb and J. Roberts, “Collaboration In

Software Engineering Projects: A Theory Of

Coordination,” 27th International Conference on

Information Systems. AIS Electronic Library

(AISeL), pp. 553–568, 2006.

[13] J. F. Perez, W. Wang, and G. Casale, “Towards a

DevOps Approach for Software Quality

Engineering,” in Workshop on Challenges in

Performance Methods for Software Development,

pp. 5–10, 2015.

[14] D. Nightingale and J. Srinivasan, Beyond the Lean

Revolution: Achieving Successful and Sustainable

Enterprise Transformation. New York, American

Management Association, 2011.

[15] P. Rodríguez, J. Markkula, M. Oivo, and K.

Turula, “Survey on agile and lean usage in Finnish

software industry,” in ACM-IEEE International

symposium on Empirical software engineering and

measurement, 2012, pp. 139–148.

[16] O. Gotel and D. Leip, “Agile software

development meets corporate deployment

procedures: stretching the agile envelope,” in 8th

International Conference on Agile Software

Development, pp.21-24, 2007.

[17] E. Skoglund, “Why DevOps is relevant when there

is no Ops….Or what is Ops for embedded

systems?,” 2015. [Online]. Available:

http://blogs.windriver.com/wind_river_blog/2015/

04/why-devops-is-relevant-when-there-is-no-ops-

or-what-is-ops-for-embedded-systems.html.

[Accessed: 20-May-2015].

[18] D. Cukier, “DevOps patterns to scale web

applications using cloud services,” Conference on

Systems, programming, & applications: software

for humanity, 2013.

[19] W. Hummer, F. Rosenberg, F. Oliveira, and T.

Eilam, “Testing idempotence for infrastructure as

code,” Middleware, 2013.

[20] G. Rong, T. Liu, M. Xie, J. Chen, C. Ma, and D.

Shao, “Processes for embedded systems

development: preliminary results from a

systematic review,” in International Conference

on Software and System Process, 2014, pp. 94–98.

[21] J. Roche, “Adopting DevOps Practices in Quality

Assurance,” in Communications of the ACM, vol.

56, no. 11, pp. 38–43, 2013.

[22] P. Runeson and M. Höst, “Guidelines for

Conducting and Reporting Case Study Research in

Software Engineering,” Empirical Software

Engineering, vol. 14, no. 2, pp. 131–164, 2008.

54455446

