
 Open access Journal Article DOI:10.1109/TPDS.2018.2883438

Towards distributed SDN: mobility management and flow scheduling in software
defined urban IoT — Source link

Di Wu, Xiang Nie, Eskindir Asmare, Dmitri I. Arkhipov ...+4 more authors

Institutions: Hunan University, Imperial College London, University of California, Irvine,
State University of New York System

Published on: 01 Jun 2020 - IEEE Transactions on Parallel and Distributed Systems (IEEE)

Topics: Heterogeneous network, Overlay network, Mobility management, Software-defined networking and
Networking hardware

Related papers:

 Software-Defined architecture for QoS-Aware IoT deployments in 5G systems

 SMDP-Based Radio Resource Allocation Scheme in Software-Defined Internet of Things Networks

 An intelligent way for optimal controller placements in software-defined–IoT networks for smart cities

 Bacteria-inspired communication mechanism based on software-defined network

Wireless Sensor Networks optimisation using Software Defined Networking concept in Cloud Based End-to-End
application

Share this paper:

View more about this paper here: https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-
2xfloru5a3

https://typeset.io/
https://www.doi.org/10.1109/TPDS.2018.2883438
https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3
https://typeset.io/authors/di-wu-4mcfmjop0k
https://typeset.io/authors/xiang-nie-yffr13unjd
https://typeset.io/authors/eskindir-asmare-sp1s6dygqb
https://typeset.io/authors/dmitri-i-arkhipov-36gjmbpk5t
https://typeset.io/institutions/hunan-university-1y4wobsr
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/institutions/university-of-california-irvine-3ptiah2u
https://typeset.io/institutions/state-university-of-new-york-system-2yahzeh8
https://typeset.io/journals/ieee-transactions-on-parallel-and-distributed-systems-1rg5f5po
https://typeset.io/topics/heterogeneous-network-fawju2q0
https://typeset.io/topics/overlay-network-2tow00dj
https://typeset.io/topics/mobility-management-99786jdx
https://typeset.io/topics/software-defined-networking-39cfrgsh
https://typeset.io/topics/networking-hardware-3kd7fqp4
https://typeset.io/papers/software-defined-architecture-for-qos-aware-iot-deployments-1xp85bxxew
https://typeset.io/papers/smdp-based-radio-resource-allocation-scheme-in-software-4nqzhnh0hq
https://typeset.io/papers/an-intelligent-way-for-optimal-controller-placements-in-50r2ypmybf
https://typeset.io/papers/bacteria-inspired-communication-mechanism-based-on-software-4nuglswtqk
https://typeset.io/papers/wireless-sensor-networks-optimisation-using-software-defined-559y8johza
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3
https://twitter.com/intent/tweet?text=Towards%20distributed%20SDN:%20mobility%20management%20and%20flow%20scheduling%20in%20software%20defined%20urban%20IoT&url=https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3
https://typeset.io/papers/towards-distributed-sdn-mobility-management-and-flow-2xfloru5a3

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX XXXX 1

Towards Distributed SDN:
Mobility Management and Flow Scheduling in

Software Defined Urban IoT

Di Wu, Member, IEEE , Xiang Nie, Eskindir Asmare, Member, IEEE , Dmitri I. Arkhipov, Zhijing Qin,

Renfa Li Senior Member, IEEE , Julie A. McCann, Member, IEEE , and Keqin Li, Fellow, IEEE

Abstract—The growth of Internet of Things (IoT) devices with multiple radio interfaces has resulted in a number of urban-scale

deployments of IoT multinetworks, where heterogeneous wireless communication solutions coexist (e.g. WiFi, Bluetooth, Cellular).

Managing the multinetworks for seamless IoT access and handover, especially in mobile environments, is a key challenge.

Software-defined networking (SDN) is emerging as a promising paradigm for quick and easy configuration of network devices, but its

application in urban-scale multinetworks requiring heterogeneous and frequent IoT access is not well studied. In this paper we present

UbiFlow, the first software-defined IoT system for combined ubiquitous flow control and mobility management in urban heterogeneous

networks. UbiFlow adopts multiple controllers to divide urban-scale SDN into different geographic partitions (assigning one controller

per partition) and achieve distributed control of IoT flows. A distributed hashing based overlay structure is proposed to maintain

network scalability and consistency. Based on this UbiFlow overlay structure, the relevant issues pertaining to mobility management

such as scalable control, fault tolerance, and load balancing have been carefully examined and studied. The UbiFlow controller

differentiates flow scheduling based on per-device requirements and whole-partition capabilities. Therefore, it can present a network

status view and optimized selection of access points in multinetworks to satisfy IoT flow requests, while guaranteeing network

performance for each partition. Simulation and realistic testbed experiments confirm that UbiFlow can successfully achieve scalable

mobility management and robust flow scheduling in IoT multinetworks; e.g. 67.21% throughput improvement, 72.99% reduced delay,

and 69.59% jitter improvements, compared with alternative SDN systems.

Index Terms—Distributed control, flow scheduling, Internet of things, mobility management, software defined networking.

✦

1 INTRODUCTION

R ECENT developments in wireless communications and em-

bedded systems have resulted in consumer devices becoming

highly ubiquitous creating a strong interest in the Internet of

Things (IoT) [1], [2] as part of smart city solutions. Real world

urban IoT applications are expected to be heterogeneous, due to

various access networks and connectivity capabilities [3], [4], re-

sulting in geographically wide-scale multinetworks [5] where there

is a coexistence of multiple wireless communication solutions

(e.g. WiFi, Bluetooth, Cellular). Given the heterogeneity of IoT

multinetworks, it is challenging to coordinate and optimize the

• D. Wu, X. Nie, and R. Li are with the Department of Computer Engineer-

ing, Hunan University, Changsha 410082, China.

E-mail: {dwu,neo,lirenfa}@hnu.edu.cn.

• D. Wu, D. I. Arkhipov, and Z. Qin are with the Department of Computer

Science, University of California, Irvine, CA 92617, USA.

E-mail: {dwu3,darkhipo,zhijingq}@ics.uci.edu.

• D. Wu, E. Asmare and J. A. McCann are with the Department of

Computing, Imperial College London, London SW7 2AZ, UK.

E-mail: {d.wu,e.asmare,j.mccann}@imperial.ac.uk.

• K. Li is with the Department of Computer Science, State University of

New York, New Paltz, NY 12561, USA, and also with the Department of

Computer Science, Hunan University, Changsha 410082, China.

E-mail: lik@newpaltz.edu.

Manuscript received 21 Feb. 2018; revised 18 Nov. 2018; accepted 20 Nov.

2018. Date of publication xx xx xxxx; date of current version xx xx xxxx.

(Corresponding author: Di Wu.)

Recommendation for acceptance by XX XX.

For information on obtaining reprints of this article, please send e-mail to:

reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. xx.xxxx/TPDS.xxxx.xxxxxxx

use of the heterogeneous resources in mobile and multi-access

edge computing environments [6], [7].

1.1 Motivations

Large-scale mobile IoT network in urban scenario generates

highly dynamic traffic flows [8], [9]. Any solution which manages

flows in the networks adaptively, stores and updates non-trivial

amounts of information regarding flow’s devices, access points,

and allows dynamic modifications in the strategies according

to which the management is performed will require significant

processing power not available on commodity networking de-

vices [10]. Software Defined Networking (SDN) [11] presents a

feasible solution which provides all of these features.

SDN is a relatively new paradigm for communication networks

which separates the control plane (that makes decisions about how

traffic is managed) from the data plane (actual mechanisms for

forwarding traffic to the desired destinations); where control is

handled by the SDN controller. This decoupling abstracts low-

level network functionalities into higher level services, therefore

allowing quick and flexible configuration for flow-based routing

and enabling rescheduling over the network components. SDN

is particularly useful when networks have to be adapted to ever

changing traffic volumes with different demands. It is for this

reason that we believe that SDN is a good approach to solving

the resource management and access control issues in wide-scale

IoT multinetworks.

OpenFlow [11] is the most prominent approach which im-

plements the SDN concept, where the controller takes charge of

Distributed

Controllers

OpenFlow
Switches

Access
Points

Smart

Phone
Smart

Mote

Tablet

Mobile IoT
Devices

LaptopActivity
Tracker

AR/VR

Glass

Versatile
Camera

Macrocell

Small cell

DSRC

Small cell
mmWave

Smart

WatchVehicle

Management

Plane

Control

Plane

Data
Plane

Net App Net App

Northbound

Interfaces

Southbound

Interfaces

East/Westbound

Interfaces

SDN
Applications

Drone

Fig. 1. Software defined IoT.

all the functions in control plane, while the OpenFlow switch

retains only the basic data forwarding functions. In the Open-

Flow centralized control model, all routes are determined by the

controller taking a global view of the network status. However, the

request processing capability of a single controller is limited; for

example NOX [12] can process about 30K requests per second.

In fact, large-scale network environments (e.g. IoT applications in

smart cities) have the potential to provide vast amounts of data

flows; according to the report from Cisco, by 2021, there will be

over 11.6 billion mobile-connected IoT devices and the monthly

global mobile data traffic will surpass 10 exabytes [13]. With

the increasing scale of IoT deployments, centralized controllers

will have serious implications for scalability and reliability. Hence

the next logical step is to build a distributed control plane with

multiple physical controllers, which can provide the scalability

and reliability of a distributed architecture and yet preserves the

simplicity of the control function.

Fig. 1 presents such a software defined IoT system with the

support of distributed controllers and partially connected Open-

Flow switches in multinetworks that have heterogeneous access

points. In this architecture built on the distributed SDN framework,

different IoT devices are associated with the heterogeneous access

points, dependent on their various needs of flow types [14], [15].

The assignment of access points to IoT devices is determined by

the coordination of distributed controllers and OpenFlow switches.

Specifically, as shown in the figure, the IoT scenario in our paper is

illustrated as an urban-scale IoT multinetwork, where IoT traffic

flows are mainly from heterogeneous IoT devices composed of

various consumer devices (e.g. Smart Phone, Smart Watch, Smart

Mote, Tablet, Laptop, Drone, AR/VR Glass, Activity Tracker, Ver-

satile Camera, Robot, Vehicle) that are configured with multiple

radio access capabilities (e.g. WiFi, 3G, 4G, Bluetooth, Zigbee,

WiMax, DSRC, TV White Space, mmWave) [16], [3], [17].

In urban environment, these heterogeneous IoT devices carried

by human or vehicle keep roaming from one urban partition to

another, and the IoT traffic flows requested by these devices in

mobile scenario can be support by their multiple radio access ca-

pabilities [18], [19], [20]. Therefore we need a city-wide mobility

management to dynamically assign proper access point to these

mobile IoT devices. Also, most mobile traffic requested by these

IoT devices are driven by surrounding events (spatial domain)

and personal interests (temporal domain), therefore the urban-

scale flow scheduling across heterogeneous access points requires

analysis of spatialtemporal status of the IoT multinetworks. Dif-

ferent from existing works that mainly discuss the cognitive radio

capability within the IoT devices for being co-existent [21], in

software defined IoT system, the cognitive radio capability should

be mainly executed by the SDN controller and the controller

can enable proper radio interface in the IoT devices to access

corresponding spectrum.

However, the current implementations of SDN technologies

are still far from addressing the heterogeneous and dynamic

needs of ubiquitous IoT applications, especially in mobile en-

vironments [22], [23], [24]. The popular use of SDN technolo-

gies today is in Data Center Networks (DCNs) [25], [26], [27],

where the focus is on the optimisation of network behaviours

(e.g., bandwidth consumption) where nodes are linked via fast

interconnections within a data center. Even though Huawei have

recently launched the world’s first SDN-based Agile IoT Solu-

tion [28] as we envisioned, their applications are only restricted to

use centralized controller to manage static IoT devices (mostly

sensors) deployed in buildings, home appliances, gymnasiums,

etc., which is far from large-scale IoT multinetworks and has

not addressed the mobile IoT scenario that we have illustrated in

Fig. 1. In contrast to these SDN applications, state information in

the urban-scale IoT multinetwork setting is gathered from mobile

IoT devices distributed over a more loosely coupled ubiquitous

network. Therefore, the main issues related to the application of

software defined IoT in urban mobile environments are:

• The operation of a distributed control plane requires

scalable control combined with consistent management to

coordinate multiple controllers and switches for message

exchange, while providing data replication and maintain-

ing flow scheduling. This is especially challenging given

IoT devices roam frequently in urban environments and

each controller needs a network view about the mobility of

these IoT devices to manage their spatio-temporal access

requests and collaborate with other controllers for adaptive

handover and dynamic flow scheduling over multinet-

works. Where component failure or traffic congestion

occurs, distributed controllers are required to be fault

tolerant and able to load balance.

• The last hop links in urban IoT architecture are more het-

erogeneous than existing Wi-Fi/LTE scenario. As shown

in Fig. 1, the last-hop radio access technologies (RATs)

in urban IoT multinetworks not only incorporate the

well-known WiFi/3G/4G technologies but also potential

5G communication solutions, such as TV White Space,

mmWave and different types of small cells, due to the

emergent rich consumer IoT devices that are configured

with various interface capabilities and designed for dif-

ferent application services. In addition, there might be

several access points providing homogeneous RAT for

client to connect at the same time. Coordination and

communication in this urban IoT multinetworks is chal-

lenging because IoT device in the highly heterogeneous

networks faces additional concerns on link heterogeneity

and redundancy; it must solve this added complication and

choose not only the proper interface used in the connection

but also the best-available access point through which a

device establishes a connection, so that the basic flow QoS

can be guaranteed for its running application.

• Unlike the DCN situation, link and node capabilities in IoT

multinetworks are highly heterogeneous and application

requirements are correspondingly different. This implies

that single objective optimization techniques of typical

DCN flow scheduling are not directly applicable in IoT

multinetworks. In this sense, controllers should schedule

the access point to transmit IoT flows based on specific

per-device service requirements, while providing network

traffic balance through the interactions between controllers

and controlled devices.

• The performance metrics of interest in urban IoT multi-

networks go beyond bandwidth consumption; with more

heterogeneous and time-sensitive traffic flows from con-

sumer IoT devices; unlike DCNs, whose network require-

ments primarily focus on utilization and bandwidth, IoT

multinetworks metrics are delay, jitter, packet loss, and

throughput.

1.2 Summary of Prior Work

Two popular approaches have been used in scalable SDN man-

agement. One is to design a distributed SDN architecture, such as

Hyperflow [29] and Onix [30]. In Hyperflow, the controllers are

flatly organized where every controller has a global view of the

network. Onix controllers represent a hierarchical structure, where

the lower tier controller and its managed network are aggregated

as a logical node in upper tiers. The network view is distributed

among multiple controller instances in Onix. The alternative ap-

proach is to offload the partial workload of controllers to switches,

as DevoFlow [26]. This approach can improve scalability to some

extent, however the switch hardware is required to be modified.

Nevertheless, all of the above scalable techniques are designed

specifically for DCN, not designed for IoT multinetworks.

Our work contributes to the dynamic SDN management for

IoT communications. In previous multi-contrioller systems, Elas-

tiCon [31] was proposed as an elastic distributed controller archi-

tecture designed to dynamically reassign switches to controllers

and grow or shrink the pool of controllers assigned to an SDN as

demand grows or shrinks. Schmid et al [32] present a locality cen-

tered view of distributed SDN computing to partition distributed

system by symmetry into problem aspects, where the symmetric

aspects must be solved globally, and asymmetric aspects can be

solved locally. However, none of existing work has presented fine-

grained solution to guarantee both local and global performance

by adapting to the variance of spatial-temporal demands. As for

consistent maintenance of distributed system, Cassandra [33] is

a distributed storage system for managing very large amounts

of structured data spread out across different data centers, while

providing highly available service with no single point of failure.

Auspice [34] produces a scalable alternative to DNS which is

able to resolve resource identity more quickly than competing

alternatives under conditions where devices are highly mobile.

These literature worked on a related but not identical problem

in comparison with our research. We concentrate on consistent

scheme of distributed controllers to exchange mobility information

of IoT devices roaming across different urban partitions deployed

with heterogeneous wireless communication infrastructure.

More recently, SDN techniques are being applied to hetero-

geneous wireless networks, differently from traditional flow and

access scheduling schemes in specific networks [35], [36], [37].

OpenRadio [38] suggests the idea of decoupling the control plane

from the data plane to support ease of migration for users from one

type of network to another, in the PHY and MAC layers. The flow

scheduling between WiFi and WiMAX/Bluetooth networks when

video data is streamed has been prototyped in OpenRoads [39]

and MINA [40], using centralized controller. OpenFlow based

vertical handover is also discussed and implemented in the GENI

testbed [41]. These wireless SDN solutions provide the necessary

building blocks for managing IoT multinetworks, but they are

not sufficient. Two important functions absent in these wireless

SDN solutions are mobility management and distributed control.

Mobile IP [42] uses a tunnel between a mobile device and a

home agent to record the new IP address of the mobile device,

but its triangle routing problem adds delay and extra network

costs. SoftCell [43] and SoftMoW [44] have mechanisms in

handling mobility and handovers, however these architectures are

designed specifically for cellular networks and do not address

the device/flow heterogeneity problems. Therefore the existing

schemes cannot support heterogeneous IoT devices and dynamic

flow requirements in urban mobile scenario.

1.3 Our Approaches and Contributions

In this paper, we present UbiFlow, the first software-defined IoT

system for ubiquitous flow control and mobility management

in urban heterogeneous networks. To achieve light-weight pro-

cessing in IoT devices, in UbiFlow all jobs related to mobility

management, handover optimization, access point selection, and

flow scheduling are executed by the coordination of distributed

controllers. Specifically, UbiFlow adopts multiple controllers to

divide an urban-scale SDN into different geographic partitions

to achieve distributed control of IoT flows. A distributed hashing

based overlay structure is proposed to maintain network scalability

and consistency. Based on this UbiFlow overlay structure, relevant

issues in mobility management such as scalable control, fault

tolerance, and load balancing have been carefully examined and

studied. The UbiFlow controller differentiates flow scheduling

based on the requirements per-device as well as whole-partition

capabilities. Therefore, it can present a network status view for

the optimized selection of access points in multinetworks to satisfy

IoT flow requests, while guaranteeing the network performance in

each partition. In general, the key contributions of UbiFlow are as

follows:

• A novel overlay structure to achieve mobility management

and fault tolerance in software-defined IoT. The consis-

tency and scalability of distributed controllers are main-

tained by their individual roles under a framework using

modified distributed hashing in ubiquitous environments.

• A network calculus model based on discrete packet ag-

gregation is used in the analysis of network requirements.

Both node-level analysis and multi-hop path analysis by

association operations present a partition view for the

controller to evaluate current network status, and then

make handover decisions for IoT flow scheduling.

• Distributed controllers are able to match the best available

access points to IoT devices, by running an assignment op-

timization algorithm with current network status analysis

and incoming IoT flow requests as inputs. An adaptive

window scheme is designed for the algorithm to serve

mobile IoT devices with better output.

• Instead of static mapping between switches and con-

trollers, UbiFlow periodically load balances the controllers

by analyzing the variations in both temporal and spatial

traffic characteristics. The dynamical adaptation of the

Data
Server

Internet
Gateway

Controller 2 Controller 3Controller 1

AP1 AP2

AP3

Switch

1

Switch

2

t2

Switch

3

partition partition partition

t1

Fig. 2. UbiFlow system architecture.

switch to controller mapping is accomplished via elastic

double-hashing on the fly.

Note that UbiFlow is specifically addressed to regulate city-

wide mobility management and flow scheduling of IoT consumer

devices in urban environments, however it also can be applied

in many different kinds of IoT networks for example inventory

management across multiple warehouses and retail location, and

asset monitoring for heterogeneous construction equipment, where

flow scheduling is always needed between mobile IoT devices and

surrounding access points [45].

The rest of this paper is organized as follows. Section 2 gives a

system overview of UbiFlow architecture. Section 3 describes the

UbiFlow overlay structure for mobility management. Section 4 ad-

dresses the ubiquitous flow control and related issues in UbiFlow.

Section 5 evaluates UbiFlow performance using simulations and

real testbed experiments. Section 6 concludes our paper.

2 SYSTEM OVERVIEW

The UbiFlow system is designed for ubiquitous access to multi-

networks and the mobility management of IoT devices in the

distributed SDN context. The system architecture is illustrated in

Fig. 2, where the data server, controllers, switches, access points

and IoT devices act as its core components.

Multiple controllers have been deployed to divide the network

into several partitions, which represent different geographical ar-

eas in our paper. All IoT devices in a single partition associate with

different types of access points (e.g. WiFi, WiMAX, Cellular),

which are connected to local switches to request various types

of data flow (e.g. text, audio, video) from the corresponding

data server. Information pertaining to service requests and flow

transmissions can be analyzed and administrated by the partition-

dependent controller. Additionally, for urban-scale SDN, mobile

IoT devices roam across different partitions at different times.

Newly joining and leaving IoT devices are also recorded in

the local controller to indicate user density and resource usage.

Therefore, each controller has a partitioned view of its local

network status.

The architecture of UbiFlow controller is illustrated in Fig. 3.

The data collection component collects network/device informa-

tion from the IoT multinetwork environment and stores it in

databases. This information is then utilized by the layered com-

ponents in the controller. The task-resource matching component

maps the task request (e.g. flow requirements) onto the existing

Io
T
M
u
lt
in
e
tw

o
rk
s Task‐resource

matching

Flow Scheduling

Communications Layer

Data Collection

Admin/Analyst

Solution Spec.

Device
DB

Service
DB

Task

DB

Network
DB

Controller Architecture

Fig. 3. UbiFlow controller architecture.

resources (e.g. available access points) in the multinetwork. Once

candidate resources are selected, the solution specification com-

ponent adds more network characteristics and constraints (e.g.

partition view) to filter resources. Finally, the flow scheduling

component takes these requirements and schedules flows that

satisfy them. For example, given a minimum throughput request

from an IoT device, the controller first lists some candidate access

points in its partition that can provide the throughput, and then

adds more constraints (e.g. delay, energy, fairness) to find the best

available access point that can both satisfy the flow request of the

IoT device and guarantee optimal network performance of whole

partition. To better perform network monitoring, the controller

is also extended by the Admin/Analyst APIs, which enable the

control processes to be governed not only by the controller itself

but also by humans or external programs.

In UbiFlow architecture, as shown in Fig. 2, switches from

different partitions are partially interconnected, so that the network

information recorded in different controllers can be exchanged

through these connected switches to achieve network consistency

and robust maintenance. In addition, connected switches can

also facilitate the inter-controller flow migration over the IoT

multinetwork for load balancing purpose. In general, there are

two types of IoT flows in the context of a distributed SDN as

shown in Fig. 2. The first one is the IoT flow between the data

server and the IoT device. This is scheduled through intra-partition

communication, with the assistance of a local access point, switch

and controller. The second one is the IoT flow between IoT devices

located within different partitions. This type of IoT flow needs

to be scheduled through inter-partition communication. Utilizing

the connected switches, controllers can coordinate to direct the

flow initiated from one partition to a different access point in

another partition. Note that IoT device to IoT device multi-hop

wireless communication (e.g. ZigBee, WiFi Direct) also exists in

the UbiFlow system. If this happens in the same partition and

the last hop is directed to an access point to connect remote

data server, then it can be classified as the first type of IoT flow.

Otherwise, if the last hop is an IoT device (not an access point)

in the same partition as the origin device, then the IoT flow is

transmitted by purely multi-hop wireless communication without

SDN support [46], [47]; it does not belong to the discussion of

this paper, since we focus on using SDN to improve the IoT

multinetwork performance.

Given the UbiFlow architecture, we will discuss its mobility

management and flow scheduling in the following sections.

C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

Point Controller

3+20 C (4)

3+21 C (6)

3+22 C (9)

Finger Table of C (3)

Point Controller

3+20 C (4)

3+21 C (6)

3+22
C (9)

C (10)
C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

Finger Table of C (3)

M1

M1t1

t2

Supervisory Controller of M1

C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

M1

User Previous Current Time

M1 C (10) C (16) t1

M1 C (16) C (3) t2

Supervised Mobility of M1 in C (10)

(a) Overlay (b) Mobility (c) Handover

Fig. 4. Mobility management in UbiFlow overlay network.

3 MOBILITY MANAGEMENT IN UBIFLOW

When IoT devices roam from one partition to another and request

efficient handover, a consistent scheme to coordinate controllers is

required for the mobility management of IoT devices. Assume a

large-scale IoT networks is composed of different regions. These

regions can correspond to a prior geographic division, for example

Zip Codes; regions are distinct and different from the UbiFlow

partitions in our scheme; a region could have multiple partitions.

For a region-scale network UbiFlow uses an overlay structure

based mobility solution to present it, as shown in Fig. 4. We will

illustrate its key functions in the following sections.

3.1 Overlay Structure

Two types of IDs are used in the mobility management, which are:

• Mobile ID: the identifier of a mobile IoT device (e.g. IP

v6 address or MAC address);

• Controller ID: the identifier of a controller in distributed

SDN.

To provide scalable and efficient mobility management, Ubi-

Flow maintains a controller network based on structured over-

lays (e.g. Chord DHT [48]), where a consistent hashing [49] is

maintained based on an ordered ring overlay, as shown in Fig. 4

(a). The purpose of using a ring structure similar to Chord in

our UbiFlow system is to locate resources which can be mapped

into the hash ring in a network rapidly and efficiently [50].

In the consistent hashing framework, distributed controllers are

configured as overlay nodes with unique integer identifiers in the

range of [0, 2m−1]. Each controller ID can be represented by m
bits. The consistent hashing also matches each mobile ID with an

m-bit integer as a “key” using a base hash function h, such as

SHA-1 [51]; therefore key = h (Mobile ID). The key can be later

used for the lookup of controllers, as explained in Section 3.3.

Each controller C(n) with ID n maintains a routing table,

namely the “finger table”, to achieve scalable key lookup in this

overlay structure. Each finger table has up to e entries. The ith
entry in the table indicates the closest controller to the correspond-

ing point, where the controller ID ≥ (n + 2i−1). A query for a

given key is forwarded to the nearest node that most immediately

precedes the key, among the e entries at the controller. Finger

tables are used for the case where there is no controller with the

exact ID as the key value. In that case, we designate the closest

successor of the key as the expected controller. For example, in

Fig. 4 (a), we represent the controller with ID n as C(n), and

there are 3 entries in the finger table of C(3). The 3rd entry of

the finger table points the successor of the key (3 + 22), which is

C(9) in reality.

Theorem 1. In an N -controller overlay network based on consis-

tent hashing, the lookup cost to find a successor is bounded by

O(logN).

Proof: The lookup cost in an N -controller overlay network

indicates the number of nodes that must be contacted to find a

successor. The above theorem has been proved in the paper [48]

that introduced Chord overlay structure, also based on consistent

hashing.

For a region-scale network, UbiFlow divides a region into mul-

tiple partitions and each partition is regulated by a controller. The

region maintains its own overly structure as shown in Fig. 4(a) to

lookup controllers in different partitions. The propagation latency

between controllers within a region is not big enough to impact the

lookup delay, due to the fact that the distance between partitions

is no very differed.

3.2 Mobility Structure

In our region-scale SDN based controller overlay architecture,

we achieve efficient mobility management through coordination

between controllers. Specifically, in an SDN with multiple con-

trollers, we have two classes of controllers:

• Associated Controller: the current controller that the mo-

bile IoT device is associated with;

• Supervisory Controller: the controller that is assigned to

a newly joined IoT device as its initially associated con-

troller. Note that each supervisory controller also functions

as an associated controller but with additional information

to record the mobility behaviour of its supervised IoT

devices. The updated mobile information of an IoT device

could be collected through information exchange with

its current associated controller, following our UbiFlow

architecture as described in Section 2

A geographical region, e.g. a city, is divided into several

network partitions; each partition has a single controller. An IoT

device that has never previously connected to the network after

entering a region assigns itself a default access point (it is chosen

arbitrarily from those available to the IoT device to connect to

the network). The default access point is used to register the IoT

device to its supervisor controller, which is determined by the hash

value of the mobile ID of the IoT device, and then connect the IoT

device to current partition’s controller as its associated controller.

After analyzing the device’s flow requests and the communication

capability of its default access point, the associated controller will

assign an optimal access point in the partition for the device

to transmit its requested flow (the optimization for making this

choice is described in Section 4.2).

Each network request will be sent to the device’s associated

controller because it is at the gateway between the Internet and the

device. The associated controller will log that it is the controller

for the mobile device in its area at the device’s supervisory

controller. Then when the device moves to another partition, its

associated controller assigned in the new partition can recover the

flow from the device’s previous associated controller (information

stored at the supervisory controller) without disrupting the flow.

After the device’s new associated controller captures the flow

state from the device’s previous associate controller the previous

associated controller is free to remove this data from its memory.

Finally, once the state information is stored at the new associated

controller, the IoT device is notified and it gracefully transitions

from the access point used to communicate with the previous

associated controller to the access point used to communicate with

the new associated controller.

Note that in overlay networks covering geographically distant

areas propagation delays become an issue and path latency can be

increased because the algorithms operating on the overlay network

do not take into account these implicit latencies between overlay

nodes. However by virtue of a relatively simple change in our

architecture and protocol in Fig. 4(a), cases where the network

covers a wide area can be accounted for. The UbiFlow architecture

presented in this paper assumes that a large-scale network can

be broken into multiple regions and each region maintains an

independent overlay structure. These regions are geographically

localized to the extent that cross-region propagation delay be-

tween their controllers in the network is within the same order

of magnitude. To account for this new complication each IoT

device will maintain a geofence [52] detecting its migration from

region to region. Each device will store both the origin region

and destination region when a region boundary is crossed. We

amend the description of a mobile ID as introduced in section 3.1

to include not only a unique device identifier, but also a unique

regional identifier specifying the coordinate of the centroid of the

region the device is in. The mobile ID is a concatenation of these

two identifier fields.

As an IoT device transitions from region to region and si-

multaneously from partition to partition (as we assume that no

partition spans more than one region) it will migrate its supervisor

controller from a controller mapped to with the hash of an

identifier representing its origin region to a hash entry representing

its destination region. In addition, it is necessary to ensure that

the log(N) communications necessary to recover the supervisor

controller do not obscure asymmetric latencies; to do so we

employ the family of locality preserving hash functions discovered

by Indyk et al [53]. As our hash function for UbiFlow overlay, we

define the distance metric in the domain of our function to be the

spherical distance between the regional centroid components of

the identifiers. With these modifications we can ensure first that

the supervisor controller for any device will always be identified

by an identifier encoding the centroid of the same region as the

location in which the device is located. Second, we ensure that

hash-lookups of the device’s identifier (including the identifier of

the residing region) will map into the neighborhood of controllers

located geographically near it, thus the log(N) communications

will take place within a region where latency between nodes is

similar.

Fig. 5 shows five regions from the US state of Texas, the

regional division coincides with the actual division of the land

in the state into separate zip codes. Suppose that each such

Associated
Controller

Supervisory
Controller

Supervisory
Controller

Associated
Controller

(a) Overlay structure for cross-region case.

Region IDDevice ID

Bit 0 Bit m Bit m+n

(b) Mobile ID for cross-region case.

Fig. 5. Mobility management in large-scale IoT network.

region is administered by a network implementing UbiFlow, that

is internally each cloud in Fig. 5 (a) which represents a UbiFlow

deployment as described in Fig. 2. Then if an IoT device is moving

across the zip-code boundary between the top-left and bottom-

right regions as described above, the geofence at the mobile device

will send a request for the supervisory controller and associated

controller managing the device in the UbiFlow deployment at

the top-left region to transfer mobility and flow information to

its new supervisory and associated controllers at the bottom-

right region. The bottom-right region will assign these controllers

based on a new mobile ID that the mobile device will assign

itself at the time it enters the bottom-right region. We show the

changes to the mobile ID needed for this transitioning to work in

Fig. 5 (b). When the device transitions to the bottom-right region

and associates with the new mobile ID, its previous supervisory

controller (located as before by hashing previous mobile ID)

will transfer previous mobility and flow information to its new

supervisory controller that can be hashed by the new mobile ID.

For consistency in following sections, we will mainly describe

UbiFlow for the region-scale overlay network. However, by the

above modifications, UbiFlow can be easily extended to support

large-scale IoT networks that are composed of multiple regions.

3.3 Mobile Handover

In the urban mobile scenario, when an IoT device is assigned

to one controller, the controller will store its flow information.

However, the IoT device may frequently change its associated

controller. To achieve seamless mobile handover, when an IoT

device enters a new partition, the corresponding controller requires

a fast lookup of the device’s previous associated controller to

fetch the uncompleted session data so that it can quickly reroute

flows to the newly joined IoT devices via the APs in its partition.

Therefore the mobile IoT device can obtain a continuous data

service without data loss or handover delay. In the SDN based

mobility management, we achieve efficient handover through the

coordination between controllers.

When a new IoT device joins the distributed SDN network, as

a bootstrapping step, it will be assigned to a supervisory controller

as its initially associated controller, based on the hash result of its

mobile ID. In the mobility scenario, for each IoT device with its

mobile ID as the original value, the UbiFlow overlay structure

can hash the mobile ID to get an integer key, and use this to

localize its supervisory controller. Both the controller ID and the

hashed key of the mobile user are required to be placed in the

same ID space ranging [0, 2m−1]. Specifically, to localize the

supervisory controller, we follow the rule to assign a hashed key

to the controller that has the closest ID, namely the immediate

successor of the key.

Since every controller can use consistent hashing to localize an

IoT device’s supervisory controller, the supervisory controller is

used in UbiFlow to record the previous and current associated

controllers of the mobile IoT device. Using this scheme for

distributed SDN, the new associated controller can localize the

previous associated controller of the IoT device by fetching this

information from the supervisory controller assigned to the IoT

device.

As shown in Fig. 4 (b), mobile IoT device 1, denoted as

M1, was previously associated with controller C(16) at time

t1, and its supervisory controller is C(10). When M1 moves

to the geographical partition of C(3) at time t2, C(3) needs to

localize its previous associated controller and reroute flows to

its current partition. To do this, C(3) first tries to localize the

supervisory controller according to the hashed key of M1. Based

on the finger table, C(3) can forward the lookup request to the

furthest controller C(9) that is closer to the supervisory controller.

Then C(9) can help to localize C(10) as the expected supervisory

controller. As shown in Fig. 4 (c), once C(3) localizes C(10)
from the traceback route, as C(10) → C(9) → C(3), it can

later directly communicate with C(10) to learn that the previous

associated controller of M1 is C(16) at t1. After this, C(3) can

directly communicate with C(16) to fetch the previous session

between M1 and C(16) and reroute flows to current partitions.

As for C(10), it will also update the current associated controller

of M1 to be C(3) at t2, and notify C(16) to end the previous

session for M1.

Note that as a mobile IoT device in the urban scenario,

M1 may leave the partition of C(3) and re-enter again with

unpredictable mobility, therefore in the UbiFlow overlay structure,

there is an extra entry in the finger table of each controller to

label all the supervisory controllers of its current and previously

associated IoT devices with a TTL (time-to-live). Hence, when

previously associated IoT device enters its partition again, the

controller does not need to initiate another multi-hop request

to localize the supervisory controller. Instead, the controller can

localize the supervisory controller using fast lookup in its finger

table, which will further save the communication cost and improve

the efficiency of handover.

Theorem 2. The mobile lookup cost to find the previous associated

controller for an IoT device in UbiFlow could be either

O(logN) or O(2).

Proof: Mobility management of UbiFlow is organized

by a consistent hashing based overlay structure. Theorem 1 has

proven that the usually lookup cost in this kind of structure

is bounded to O(logN). Since supervisory controller records

previous association of supervised devices, the normal mobile

lookup cost to find the previous associated controller for an IoT

device is O(logN) + 1, by localizing supervisory controller first

and then requesting local lookup in the supervisory controller,

which is still bounded to O(logN). If the supervisory controller

was found before and has been recorded in the local finger table as

the additional information, the lookup cost for the corresponding

mobile device is then just a local lookup as O(2), with one step

to reach the supervisory controller and one step to request local

lookup in the supervisory controller.

3.4 Scalable Control

To achieve scalable mobility management by multiple controllers

in distributed SDN, we focus on the Join and Leave operations of

controllers, as follows:

• Join: When a new controller with ID n joins an existing

SDN with multiple controllers, it first identifies its succes-

sor by performing a lookup in the SDN according to its ID.

Once it localizes the successor, it selects the successor’s

keys that the new controller is responsible for. After this,

the new controller sets its predecessor to its successor’s

former predecessor, and sets its successor’s predecessor to

itself. Meanwhile, an initial finger table will be built in the

joined controller by performing lookup points (n+2i−1),
for i = 1, 2, . . . , e, where e is the number of finger print

entries.

• Leave: When a controller with ID n wants to leave an

existing SDN, it first moves all keys that the controller

is responsible for to its successor. After this, it sets its

successor’s predecessor to its predecessor, and sets its

predecessor’s successor to its successor. For consistency

purposes, before the controller leaves the distributed net-

work, the SDN related control information (e.g. network

status and flow status) in the controller will be copied to

its successor by default, and other controllers can later

update their finger tables by replacing controller n with

its successor in the corresponding entry. If the controller

also performs as the supervisory controller for some IoT

devices, its successor will be also designated as the new

supervisory controller for these IoT devices, and it records

the existing mobility information from the leaving con-

troller.

3.5 Fault Tolerance

To handle failure in the distributed SDN, we tackle failures of

different components in UbiFlow. As for controller level failure,

we adopt data replication to achieve robust control. That is, we

copy the finger tables and data-bases from local controller n to its

r live successors in the UbiFlow overlay structure, by searching

key (n+2i−1), for i = 1, 2, . . . , r. These r successors also update

these replications periodically. Therefore, if the local controller

fails, we can find a new successor that still can provide the control

service.

As for finger-table level failure, we adaptively choose alternate

paths while routing. That is, if a finger does not respond, we take

the previous fingers in the local table, or the finger-table replicas

from one of the r successors. In addition, the local finger table also

A1(t)
S1(t) S2(t)

D1(t)=A2(t) D2(t)

A1(t)
S(t)

D2(t)

video

audio

(a) Association (b) Scenario

40000

50000

60000

70000

80000

90000

100000

110000

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5

Sim_Delay
Model_Delay
Sim_Jitter
Model_Jitter
Sim_TP
Model_TP

Throughput (bps)

De
la
y
&
 Ji
tt
er
 (s
)

(b)

(c) Result

Fig. 6. Network calculus based partition view in UbiFlow.

performs self-check to refresh all fingers by periodically looking-

up the key (n + 2i−1) for a random finger entry i. The periodic

cost is O(logN) per controller due to the finger refresh.

As for access-point failure, we designate an associated con-

troller to detect the failure and redirect flows going through failed

access points to others in its partition. We address the assignment

of the best available access point to the IoT device in Section 4.

4 FLOW SCHEDULING IN UBIFLOW

Given flow requirements (e.g. delay, throughput, jitter) from an

IoT device, the UbiFlow controller needs to find the best available

access point that can both satisfy the flow request of the IoT device

and guarantee optimal network performance of the whole partition.

The relevant UbiFlow design to achieve robust flow scheduling is

described in this section.

4.1 Network Calculus based Partition View

The UbiFlow controller of each partition needs a partition view

to obtain current network status for flow scheduling. To guaran-

tee the performance of software defined IoT with various flow

requirements, UbiFlow controller uses Network Calculus [54] to

model the arrival traffic A(t), served traffic S(t), and departure

traffic D(t) on a network node during the time interval [0,t) as

the partition view in its partition. We assume that each node

has a constant capacity R and can provide a service curve

S(t) = R[t − T]+, where R is the capacity (transmission rate),

[x]+ = max{0, x}, and T is the transmission delay, which is

the time between the first bit of the packet entering a queue and

the last bit leaving the transmitter. T depends on R, the length

of this packet, and the amount of data currently in the queue.

We can use min-plus convolution on arrival and service curves, to

generate a departure curve: as D(t) = A(t)⊗S(t), which means:

D(t) ≥ inf
s≤t

(A(s) + S(t− s)).

If there is more than one flow going through a node, all

flows share the same transmission service. Here we assume each

intermediate node has a FIFO scheduler, in which packets are

served in the sequence as they arrived. Flow i will have a leftover

service curve:

Si =
θi

∑

j 6=i θ
j
R[t− T]+ (1)

where R is the capacity of the downlink of this node (transmission

rate), and θ is the weight of each flow; In a multi-hop path, the

departure curve of the current hop is the arrival curve of the next

hop as shown in Fig. 6 (a), and a combination service curve

along the path S(t) can be obtained by iteratively adding each

node’s service curve using the associative operation in min-plus

convolution, as follow:

S(t) = S1 ⊗ S2 ⊗ . . .⊗ Sn (2)

In order to provide a fine grained partition view of the traffic,

UbiFlow models the traffic as a set of discrete points (each point

represents a packet) in Network Calculus. It assumes that the

profile of each flow (e.g., packet length and sending time) is

known at each sender, and each packet is served by the service

curve S(t) with a constant capacity R and a delay T . At packet

arrival time, we examine the current queue state in terms of how

many packets are in the queue and their lengths. The delay T
is the transmission time of all packets that are already in the

queue. Hence the total delay of a packet consists of two parts:

one is T and the other is the transmission (service) time of the

packet itself. In this way, we can get an approximate end-to-end

delay for each packet. To verify this model, we examine three

QoS parameters: delay, throughput, and jitter. For each flow, we

profile it with points at the sender side to plot the curve. Once

we get the arrival curve D(t) of flow i at the destination node by

the modified Network Calculus model, we compare it with flow

i’s initial arrival curve A(t). Each point (packet) will suffer from

a delay and the final arrival time is recorded. The average delay,

average jitter, and total throughput for each flow can be calculated

by UbiFlow controller accordingly. As shown by the test in Fig. 6

(b) for a two-hop network consisting of one video server and one

audio server, one router and 5 clients, each server connects to the

router via a 100Mbps Ethernet link while each client connects to

the router via a 2Mbps 802.11b wireless link. Each server provides

either a video streaming service [55] or a Skype voice service [56]

to one of the clients. The corresponding test results in Fig. 6 (c)

show consistent performance with our Network Calculus based

model: the average error rate of the delay, jitter, and throughput

(i.e. TP) are 5%, 8%, and 3% respectively. Therefore, the fine

grained model can be used by UbiFlow controller to obtain the

partition view.

4.2 IoT Multinetworks Matching

After obtaining the partition view of the current network status

from the network calculus model, the UbiFlow controller can

manage handover between heterogeneous access networks by

assigning newly joined mobile IoT devices to the best access

point, based on the current multinetwork capacity in the controlled

partition, the supported radio access technologies and the types of

services the mobile devices are requesting.

We formulate the assignment of a set of newly joined mobile

IoT devices MD to a set of access points AP as a generalized

assignment problem (GAP). Each access point j is characterized

by a residual bandwidth capacity function B(j), and each mobile

device i is characterized by a bandwidth demand function d(i, j)
that describes the bandwidth demand of device i when assigned

to access point j. A utility function u(i, j) measures the benefit

obtained by the system as a result of assigning a mobile device i
to access point j. The assignment problem is formulated as:

maximize
∑

j∈AP

∑

i∈MD

u(i, j)x(i, j)

subject to
∑

i∈MD

d(i, j)x(i, j) ≤ B(j), ∀j ∈ AP

∑

j∈AP

x(i, j) ≤ 1, ∀i ∈ MD

x(i, j) = 0 or 1, ∀i ∈ MD, ∀j ∈ AP

(3)

where x(i, j) = 1 if device i is assigned to access point j or 0
otherwise.

Note that the optimization takes place per partition and no

global variables are shared between partitioned optimizations,

the optimizations at each partitions are thus independent and

performance of the optimization per partition does not degrade as

the number of partitions grows larger. As the set of access points

and especially the set of mobile devices changes dynamically, the

assignment is done in an adaptive time-window based manner.

The assignment is performed at the end of each window using (1)

the capacity, demand and utility functions evaluated at that time,

(2) the set of newly joined mobile devices within the window of

time, and (3) the set of active access points at that time. Algorithm

1 is an adaptation of the GAP approximation in [57] combined

with a greedy heuristics for the Knapsack problem that sorts items

based on their utility-to-demand ratio and tries to pack as much

high-ratio items as possible. It takes the sets of access points

and devices, a matrix of utilities and demands, and a vector of

capacities as an input. It starts by checking the residual capacity

(capacity at the end of the time window) of the set of access points

(AP) against the demand vector (D∗[ap]) of mobile devices with

respect to that access point type, and creating a feasible set of

access points (APf) by selecting those that can at least satisfy

the minimum demand. It then initializes the assignment vector

(X) and iteratively computes the assignment as follows. For each

access point, it creates a utility vector from the utility matrix

using either the original utility value or the difference in utility

depending on whether the mobile device is assigned to an access

point in the previous iteration. The utility-to-demand ratio is then

computed using the utility vector, and the set of mobile devices

(MD) is sorted in non-decreasing order based on this ratio. Using

this ratio and a greedy Knapsack packing scheme, the mobile

devices are assigned to the current access point. This is repeated

until all access points are exhausted. The vector X is the result of

the assignment where X[md] indicates that mobile device md is

assigned to access point X[md] if X[md] is not -1.

The UbiFlow controller determines each mobile device’s com-

patibility (i.e. support for the radio access technology used by

the access point) with access points and requirement with respect

to quality of service such as bandwidth demand (d) and the

maximum tolerable latency (lt) based on the types of services

the device is trying to access. The demands of IoT devices can

be obtained during their request processes, and the partition status

can be derived from the network calculus model, as described

in Section 4.1. If there is compatibility between a device and

an access point, the degree of satisfaction of a mobile device,

if assigned to the access point, with respect to these requirements

is modeled by utility functions namely ud and ul respectively.

In addition, a utility function ua that measures the load (i.e. the

number of mobile devices) on an access point is used in order to

take the degree of distribution of load into consideration so that

one capable access point will not be overloaded. Given an access

point with latency l and N number of mobile devices already

assigned to it, the utility functions are as follows:

ud(i, j) = log

(

1 +
B(j)

d(i, j)

)

, d(i, j) > 0

ul(i, j) = log
(

1 +
lt
l

)

, l > 0

ua(j) = log

(

1 +
|MD|

N + |MD|

)

,MD 6= ∅

(4)

Using these utility functions, the controller computes the

utilities for each potential assignment, normalizes them and then

computes the total system utility using predefined positive weights

that capture the significance of each type of utility as:

u(i, j) =

{

wdûd(i, j) + wlûl(i, j) + waua(j) compatible

0 otherwise

(5)

where ûd and ûl are the normalized utilities and wd+wl+wa =
1. It then performs assignments that would maximize the overall

system utility.

Algorithm 1 Mobile Device to Access Point Assignment

Input: AP, MD, U, D, C
Output: X

1: for ap ∈ AP do
2: if C[ap] ≥ min{D∗[ap]} then
3: Add ap to APf

4: end if
5: end for
6: for r = 1 to |MD| do
7: X[r]← −1
8: end for
9: for ap ∈ APf do

10: for md ∈ MD do
11: if X[md] == −1 then
12: Uap[md]← U [md][ap]
13: else
14: Uap[md]← U [md][ap]− U [md][X[md]]
15: end if
16: Compute utility-to-demand ratio vector: Rap[md] ←

Uap[md]

D[md][ap]
17: end for
18: Sort MD such that Rap[md] is in non-increasing order

19: b← min{q ∈ {1, ..., |MD|} :

q∑

r=1

Dap[r] > C[ap]}

20: for q = 1 to b− 1 do
21: X[q]← ap
22: end for
23: end for

Theorem 3. The time complexity for the assignment of

|MD| mobile devices to |AP| access points using Algo-

rithm 1 is bounded by O(|AP||MD| log(|MD|)) when an

O(|MD| log(|MD|)) algorithm is used to sort the utility-to-

demand ratio vector.

Proof: The running times of the first and second loops

are proportional to |MD||AP| and |MD| respectively. Suppose

the running time of the sorting algorithm used to sort the

utility-to-demand ratio vector is f(|MD|). Consequently, the

running time of the third loop is proportional to |AP|(|MD| +

f(|MD|) + |MD| + |MD|). Hence, the time complexity of

the algorithm is O(|AP|f(|MD|) + |AP||MD|). Thus, when

an O(|MD| log(|MD|)) algorithm is used to sort the utility-

to-demand ratio vector the time complexity of Algorithm 1 is

O(|AP||MD| log(|MD|)).

Note that above optimized IoT multinetwork matching scheme

also works for mobile handover in the same partition (but with

a different access point). When a IoT device moves out of the

communication range of its associated access point or the quality

of flow service is degrading obviously with the access point, these

mobile information can be collected by our Network Calculus

model as partition view. Once the controller in the partition obtains

the new partition view after at the end of a time window, it will

perform above optimization to choose a new access point for the

IoT device in the partition.

4.3 Adaptive Matching Window

The window of time the controller waits before performing the

next assignment plays a significant role in achieving optimal

assignments. If the controller performs instantaneous assignments,

devices that would maximize the system’s profit would be assigned

to a less suitable access point or left unassigned if there is not

enough capacity left. Conversely, a longer window would result

in discovering more devices and thereby facilitating better assign-

ments provided that the residual capacity of the access points is

not exceeded by the demand of the newly discovered devices.

However, the choice of the exact length requires consideration of

the residual capacity of the access points; the rate of arrival of

mobile devices to the network and their associated demand; and

the waiting period mobile devices can tolerate before they are

assigned to an access point. If the arrival of devices to the network

is characterized by a mean rate λ and the expected demand of the

devices by a mean demand µ, the upper bound for the best (with

respect to achieving optimal assignment) window length can be

estimated as

∑

j∈AP
B(j)/µ

λ
. This bound could be dynamically

estimated by choosing appropriate models for the arrival rate of

mobile devices to the network and their demands, and learning the

parameters of these models using a maximum likelihood estima-

tion. The actual window length can then be decided by taking this

bound and the waiting period mobile devices can tolerate before

they are assigned to an access point into consideration (e.g. the

minimum of the two values).

We propose that in a real-world situation the length of the

time window t + 1 is calculated after the time window t elapses,

and the calculation will take into account flow data calculated

during the window t. Data on the arrival of devices within the

window t is used to calculate the expected mean device arrival

rate λ. Demand data within the window t is used to calculate the

expected demand of devices (µ) within the next window. µ and

λ are then used to calculate the length of the optimal window

according to above upper bound formula. The length of window

t + 1 is then set to be the minimum value between the optimal

time window length calculated by the controller, and the tolerant

waiting period of mobile devices to associate with an access point

in the corresponding partition. Above operations for the controller

to select an adaptive matching window of time are described in

Algorithm 2.

Algorithm 2 Adaptive Matching Window

Input: The arrival rate sample set R and demand sample set D in the
time window t− 1

The set of active access points AP
Output: The length T of time window t

1: for sample ri in R do
2: l(λ)∗ = p(ri|λ)
3: end for
4: for sample di in D do
5: l(µ)∗ = p(di|µ)
6: end for
7: Solving maximum likelihood function l(λ) =

∏

i∈R

p(ri|λ) as λ̂ =

argmax
λ

∑

i∈R

ln p(ri|λ)

8: Solving maximum likelihood function l(µ) =
∏

i∈D

p(di|µ) as µ̂ =

argmax
µ

∑

i∈D

ln p(di|µ)

9: if
∑

j∈AP

B(j)is not exceeded by the demand of a device then

10: t =

∑
j∈AP

B(j)

λ̂µ̂
11: Minimum tolerate time of devices is t

′

12: return T = min{t, t′}
13: else
14: The capacity of access points is not enough
15: end if

4.4 Load Balancing

One key limitation of existing SDN systems is that the mapping

between a switch and a controller is statically configured, making

it difficult for the control plane to adapt to temporal and spatial

traffic load variations. If the switch to controller mapping is static,

a controller may become overloaded if the switches mapped to

this controller suddenly observe a large number of flows, while

other controllers remain underutilized. Furthermore, the load may

shift across controllers over time, depending on the temporal and

spatial variations in traffic conditions. As load imbalance occurs,

it is desirable to migrate a switch from a heavily-loaded controller

to a lightly-loaded one. However, such a migration operation is

not supported natively in current de faco SDN OpenFlow stan-

dards. Following our architecture as illustrated in Fig. 2, UbiFlow

consists of a cluster of autonomous controllers that coordinate

amongst themselves to provide a consistent control logic for the

entire network. We can design a robust load balancing scheme

based on the UbiFlow architecture to dynamically shift the load

across switches and controllers.

Given a controller n, if new flow requests, collected from local

IoT devices, cause traffic imbalance (e.g. over maximum capacity,

longer process delay) controller n needs to switch the flow to

a lightly-loaded controller. However, the usual linear balancing

scheme that relays the flow request to one of its r successors is

not robust enough in the mobile SDN scenario, because the r
successors have locally loaded flows and these may be heavily-

loaded as well. Furthermore, the fault tolerant scheme presented

in Section 3.5 will generate redundant data in the r successors,

so additional flow requests from other partitions tend to cluster

the requests of the flows into contiguous runs, which may even

overlap in our circular overlay structure. In addition, because of

the importance of the supervisory controller, if the supervisory

controller is heavily-loaded and cannot accept other newly joined

IoT devices, we also need a scheme to mitigate the traffic flow

on this supervisory controller by directing the flows for new IoT

devices to other controllers as a backup supervisory controller.

Meanwhile, we need a consistent scheme for other controllers to

be able to localize these backup supervisory controllers.

To avoid the linear clustering of heavily-loaded controllers

and guarantee system consistency in the UbiFlow overlay, we use

double hashing to balance a large number of flow requests and

distribute them fairly in the overlay structure. The load balancing

using our double hashing solution is realized in Algorithm 3.

Specifically, different from the hash function h used in the finger

key search, we choose a secondary hash function, h′ for collision

handling. If h maps some finger key k to a controller C[i],
with k = h (Mobile ID), that is already heavily-loaded, then

we iteratively try the controllers C[(i + f(j)) mod P] next,

for j = 1, 2, 3, . . ., where f(j) = jh′(k). In this scheme, the

secondary hash function is not allowed to evaluate to zero; a

common choice is h′(k) = q − (k mod q), for some prime

number q < P . Also, P should be a prime number.

Algorithm 3 Load Balancing using Double Hashing

Input: The Mobile ID set of IoT devices MD

Output: The controller ID
1: for Mobile ID in MD do
2: k = h(Mobile ID)
3: k is mapped to C[i] which is a supervisory controller
4: if C[i] is already heavily-loaded then
5: for j = 1 to n do
6: f(j) = j(q − (k mod q))
7: The backup supervisory controller of k is C[(i+ f(j))

mod P]
8: if C[(i+ f(j)) mod P] is not heavily-loaded then
9: The C[i] records that k is mapped to controller

C[(i+ f(j)) mod P]
10: return The ID of controller C[(i+ f(j)) mod P]
11: end if
12: end for
13: end if
14: return The ID of controller C[i]
15: end for

Theorem 4. The time complexity of using double hashing to

avoid linear of heavily-loaded controllers is O(1) or O(n)
in UbiFlow.

Proof: The bound of a successful search for a finger key k
to a controller follows a probe sequences formed by the secondary

hash function when it was first inserted. so if k is the (i+1)th key

to insert into the UbiFlow overlay network, the average cost of

a successful search is:
1

S

S−1
∑

i=0

1

1− i/T
=

T

S

S−1
∑

i=0

1

1− i/T

1

T
≈

T

S

S
∑

i=0

1

1− i/T

1

T
, where T is the size of the overlay network,

and S is the number of keys that have been inserted in the

overlay network, and α = S/T is the load factor meaning

a measure on the load of finger keys in the overlay network.

We can convert the summation process to following calculus

process:
T

S

S
∑

i=0

1

1− i/T

1

T
=

1

α

∫ α

0

1

1− x
dx =

1

α
ln(

1

1− α
).

According to this, the average search cost is independent of T

when α is less than 1, and its time complexity follows the constant

order O(1). However, the average search cost is bounded only by

T when α is close to 1, and its time complexity follows the linear

order as O(n).

Note that, for supervisory controller, the heavy load status may

cause local failure, but its mobility records for IoT devices are

important for the mobility management. When UbiFlow observes

the load imbalance in a supervisory controller, it also uses the

double-hashing scheme to copy the mobility information to other

controllers as a backup. By this way, UbiFlow can effectively

protect the mobility information, in case consecutive failures

happen and the redundancy scheme in Section 3.5 fails.

5 PERFORMANCE EVALUATIONS

We have implemented a prototype of UbiFlow, and evaluated its

performance on flow scheduling and mobility management by

both simulation and real testbed experiments. The simulation is

performed by the OMNeT++ network simulator [58], and the real

testbed is built based on the Orbit wireless testbed [59], both with

OpenFlow support.

5.1 Implementation Methodology

The specific implementation methods and details of our UbiFlow

prototype are explained as follows.

5.1.1 Compatibility with Heterogeneous Access Technolo-

gies

In traditional SDN, the SDN controller or OpenFlow switch itself

does not support heterogeneous networks with different radio

access technologies. In our UbiFlow system, we use encapsulation

to mark the category of radio access on packet level, and make

SDN work in compatibility with heterogeneous networks after

decapsulation. Specifically, when an AP receives new packets,

the corresponding AP attributes, such as its access category and

spectrum information will be encapsulated into these packets and

then forwarded to the OpenFlow switch. Since the SDN controller

can obtain a copy of these packets from the switch through the

OpenFlow protocol, it then parses the radio access information

from these packets by decapsulation process. On one hand, the

information can assist the controller to recognize current category

of AP used by a specific IoT device, and direct control message

or service flow to the corresponding AP. On the other hand, the

information can be used by the controller to run statistical analysis

on the usage status of heterogeneous APs through our Network

Calculus approach as explained in Section 4.1, and update the

partition view to obtain whole-partition capabilities and perform

optimal assignment of heterogeneous APs to IoT devices.

5.1.2 Co-existence of Heterogeneous Spectrum Access

The cognitive radio capability is mainly executed by the SDN

controller and the controller can enable proper radio interface in

the IoT devices to access corresponding spectrum. Specifically,

a newly joined IoT device will first choose a default radio

access to connect an AP by customized setting and send out its

flow requests. As explained above, once the AP receives and

encapsulates packets from the IoT device, the controller can

decapsulate these packets for statistical analysis on the residual

capability of corresponding AP, and summarize current spectrum

usage of heterogeneous APs in its partition. Then, the controller

can differentiate flow scheduling based on the requirements per-

device as well as whole-partition capabilities, and later obtain the

optimized selection of access points in multinetworks to satisfy

IoT flow requests, while guaranteeing the network performance

5 10 15 20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

600

Flow ID
T

hr
ou

gh
pu

t (
K

bp
s)

UbiFlow
DevoFlow
Hedera

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

Flow ID

D
el

ay
 (

s)

UbiFlow
DevoFlow
Hedera

5 10 15 20 25 30 35 40 45 50 55 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Flow ID

Ji
tte

r
(s

)

UbiFlow
DevoFlow
Hedera

(a) Urban Scenario (b) End-to-End Throughput (c) End-to-End Delay (d) End-to-End Jitter

Fig. 7. Mobile flow scheduling in UbiFlow.

in each partition. If the initial AP connected by the IoT device

is overloaded, the controller will assign another AP with specific

spectrum in its partition to the IoT device. Once the IoT device

receives the AP update message from the controller, it will discon-

nect the initial AP by closing current radio interface, and switch

to connect the assigned AP in designated spectrum by opening a

new radio interface.

5.1.3 Communications between SDN Controller and IoT

Devices

Several control traffic have been specifically added between SDN

controller and IoT devices for distributed control, which are

mainly composed of following types of control messages. The

first one is the AP request message initiated by the IoT device

to request AP assignment from the controller. The second one is

the AP response message from the controller to assigns optimal

AP to the IoT device. The third one is the AP update message

when IoT devices roaming in different SDN partitions, so that the

SDN controller can detect the mobility behavior and update the

connections of IoT devices with APs. The fourth one is the flow

request message sent from the IoT device to the SDN controller

to request different types of data flow, so that the controller can

localize proper server with corresponding data service and provide

flow path to the server, and later the server directly transmits the

data flow to the IoT device.

The detailed process of managing control traffic varies in each

transmission phase between SDN controller and IoT devices. Dur-

ing the communication phase from SDN controller to OpenFlow

switch, all types of control messages are loaded into the Packet-

Out message which is a message type of the default southbound

OpenFlow protocol, and the control traffic share the same channel

with the data traffic. During the phase from OpenFlow switch

to APs, these control messages are forwarded to different APs

through the corresponding AP identifier encapsulated in each

control message, and these messages share the same channel

too. After the control messages arrive at an AP, the AP uses

multiple control channels to transmit the control messages to IoT

devices through corresponding types of communication spectrums

according to the spectrum information encapsulated in the control

message.

5.1.4 Interactions between SDN Controller and APs

As for the SDN controller to interact with the AP, the SDN

controller employs the Network Calculus to obtain the partition

view, and execute AP assignment optimization algorithm. After

this, it sends the AP update message to the AP through the

OpenFlow switch. As for the AP to interact with the SDN con-

troller, the AP encapsulates radio access and spectrum information

into the packet received from the connected IoT devices, and

forward these packets to the SDN controller through the OpenFlow

switch for the statistical analysis on partition view. At the same

time, the AP waits the AP update message come from the SDN

controller. If the optimal assignment is the AP itself, it continues to

maintain connection with the IoT devices. Otherwise, the AP will

disconnect the IoT devices and update the IoT devices to connect

the newly assigned AP. Therefore, the SDN controller interacts

with the APs through OpenFlow switch, and these interactions are

mainly driven by the access events and flow requests from IoT

devices.

5.2 Simulation Results

Recently, OMNeT++ has incorporated an OpenFlow extension

implemented in the INET framework for SDN simulation [60].

However, its controller only supports the wired data center net-

works and lacks mobility management. We have changed its

data plane to incorporate the inherent advantages of OMNeT++

on setting heterogeneous wireless networks, and extended its

control plane to support multiple SDN controllers. The UbiFlow

framework has been implemented in these controllers to support

mobility management, flow processing and flow forwarding under

distributed environments.

To verify the performance of UbiFlow in urban scenario, our

simulation is based on a popular area in the city of London, which

consists of several parks, universities, and museums, as shown in

Fig. 7 (a). This area is usually crowded by high density of tourists,

students and workers, with large number of IoT devices and vari-

ous types of flow requests. Therefore, in our first set of evaluation,

three controllers have been deployed in park partition, university

partition and museum partition, respectively, for flow scheduling

and mobility management. The backbone topology consists of 3

data servers (each of the three data servers provides either file

sharing, audio, or video streaming services), 3 switches (each

switch has a 1Gbps Ethernet link to one server; each controller

directly controls one switch), and 20 access points (each access

point has one 100Mbps Ethernet link to every switch). There

are three types of access points: WiMAX, WiFi and Femtocell,

with data rates 30Mbps, 10Mbps, and 2Mbps respectively. Each

IoT device has three network interfaces to directly connect with

corresponding access points, and at each time instance only one

interface can be used.

5.2.1 Handover in UbiFlow

In our first set of simulation, as shown in Fig. 7 (a), there are 5

access points (orange dots) in the park partition, 9 access points

(green dots) in the university partition, and 6 access points (blue

dots) in the museum partition. Some of these access points are

already under heavy traffic load, and others still have enough

capacity. Assume there are 60 IoT devices sending new flow

requests at a time, and they are moving along the red path. 10

of them request file sharing services, 20 of them request audio

services, and 30 of them request video streaming services. In our

evaluation, file sharing flows are modeled by sending Constant

Bit Rate with packet length uniformly distributed in [100, 1000]

bytes with period T, the latter uniformly distributed in [0.01, 0.1]

seconds. Audio and video streaming flows are from real traffic

traces [55], [56]. For practical applications, the file sharing service

requires large throughput, the audio service requires low delay,

while the video streaming service requires low jitter. We evaluate

our UbiFlow scheduling and compare it with other two common

scheduling algorithms used in SDN world: DevoFlow [26] and

Hedera [25]. The former tries to accommodate as many flows as

possible into a single link to maximize the link utilization. Instead,

the latter assigns flows into a link so that the total amount of the

flows are proportional to the capacity of the link.

As shown in Fig. 7, we have totally 60 flows (each of 60

end devices has one flow): flows 1-10 are file sharing, flows 11-

30 are audio, and flows 31-60 are video streaming. Fig. 7 (b)

shows the comparison of flow throughput. For file sharing flows,

UbiFlow outperforms DevoFlow by an average of 67.21%, while

it has an average of 15.91% throughput increase if compared with

Hedera. The reason is that in wireless links when link utilization

exceeds a threshold, the packet drop rate increases dramatically.

The load balancing scheme in UbiFlow uses the controller to

schedule flows according to the utilization status of each access

point; therefore it can achieve comparably fair allocation of flow

traffic to decrease packet drop rate. Fig. 7 (c) shows that for

audio flows, our proposed algorithm can improve the end-to-

end delay performance by 72.99% and 66.79%, compared to

DevoFlow and Hedera respectively. Audio flows have bursty traffic

patterns; it might not have big data volume, but if two flows are

scheduled with similar bursty patterns in the same link, a large

delay occurs. Due to the traffic-aware dynamic flow scheduling

scheme, UbiFlow can schedule flows both by the consideration of

partition load and device requirement; therefore it can reduce the

impact of flow interference. Fig. 7 (d) shows that video streaming

flows have an average 69.59% and 49.72% less jitter with UbiFlow

than DevoFlow and Hedera. Because of the holistic solution in

flow scheduling and mobility management, distributed controllers

in UbiFlow can provide more stable video flow for IoT devices.

5.2.2 Scalability in UbiFlow

In the implementation of OpenFlow, the Packet-In message is

a way for the OpenFlow switch to send a captured packet to

the controller. A flow arrival resulting in sending a Packet-In

message to the controller. In the second set of simulation, we use

Packet-In message to evaluate the scalability of flow scheduling by

UbiFlow. For better scalability evaluation, we add more controllers

in the above urban scenario. In addition, for every controller in its

partition, the controller is directly connected with 3 to 5 switches,

and controls 20 to 50 access points with various heterogeneous

interfaces. For each controller, we send 10000 consecutive Packet-

In messages to it and plot the throughput of UbiFlow with varying

1 2 4 8
0

50

100

150

Number of Controllers

T
hr

ou
gh

pu
t (

x1
03 fl

ow
s/

se
co

nd
s)

1 Controller
2 Controllers
4 Controllers
8 Controllers

500 1000 1500 2000 2500
0

20

40

60

80

Packet Arrival Rate

R
es

po
ns

e
T

im
e

(m
s)

2 Controllers
4 Controllers
8 Controllers

(a) Flow Throughput (b) Flow Delay

Fig. 8. Scalability in UbiFlow.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Failed Controllers (%)

F
a
ile

d
 M

o
b
ile

 L
o
o
k
u
p
 (

%
)

UbiFlow

Chord

Fig. 9. Fault tolerance in UbiFlow.

number of controllers, as shown in Fig. 8 (a). We observe that

adding controller nodes increases the throughput almost linearly.

This is because in the architecture of UbiFlow, as shown in

Fig. 2, each controller mainly controls the traffic flows in its own

partition. However, if there is an imbalance in one controller, other

controllers with light-weight traffic also can help to migrate the

flows to their partitions by physically partial connected switch and

the UbiFlow overlay structure. To further illustrate the scalability

of UbiFlow, we also plot the response time behaviour for Packet-

In messages with changing flow arrival rate, as shown in Fig. 8 (b).

We repeat the experiment while changing the number of controller

nodes. As expected, we observe that response time increases

marginally up to a certain point. Once the packet generation rate

exceeds the capacity of the processor, queuing causes response

time to shoot up. This point is reached at a higher packet-

generation rate when UbiFlow has more number of nodes.

5.2.3 Fault Tolerance in UbiFlow

When the number of controllers increase, we also care about the

performance of UbiFlow on fault tolerance, especially in mobility

management. In the third set of simulation, we evaluate the ability

of UbiFlow on lookup of mobile nodes after a large percentage

of controllers fail simultaneously. We consider a 103 controller

network that stores 105 keys, and randomly select a fraction p of

controllers that fail. Note that in mobility management, UbiFlow

classifies controllers into supervisory controllers and associated

controllers, where supervisory controllers record the updated mo-

bility information of IoT devices. To obtain this information, asso-

ciated controllers need to first localize the supervisory controllers

for mobile lookup. In our setting, the failed controllers could

be supervisory controllers and associated controllers. A correct

mobile lookup of a key is one that finds the supervisory controller

0

100

200

300

400
T
h
ro
u
g
h
p
u
t (
K
b
p
s)

Device to Device Flows

A‐>B A‐>C

0

0.2

0.4

0.6

D
e
la
y

 (s
)

Device to Device Flows

A‐>B A‐>C

(a) Flow Throughput (b) Flow Delay

Fig. 10. Device to device flow scheduling.

that is responsible for the key. Fig. 9 compares UbiFlow with

Chord, by the mean lookup failure rate and the confidence interval

as a function of p. In Chord, the lookup failure rate is almost

exactly p. Since this is just the fraction of keys expected to be lost

due to the failure of the responsible nodes. UbiFlow can further

improve the performance of Chord on mobile lookup both in mean

lookup failure rate and the confidence interval, because of its

consistent overlay scheme on mobility management. UbiFlow uses

redundancy to resist failure, by coping the mobility information

from local controller to its live successors in the overlay structure.

Meanwhile, when a supervisory controller fails because of load

imbalance, UbiFlow can use double-hashing scheme to localize

the backup supervisory controller for effective lookup of mobility

information.

5.2.4 Flow Scheduling between IoT Devices

Though we consider device to server flows primarily in this paper

since it is the more common case of SDN-based communications,

as discussed in Section 2 another type of IoT flow potentially ex-

isted in software-defined IoT is the data flow between IoT devices

located within different partitions. This type of IoT flow needs to

be scheduled through inter-partition communication. Utilizing the

connected switches, controllers can coordinate to direct the flow

initiated from one partition to a different access point in another

partition. Following the same settings of our evaluation in Fig. 7,

we choose one device A in the university partition as sender, one

device B in the university partition as receiver, and one device C
in the park partition as another receiver. All the three IoT devices

are assigned with WiFi access points and the data flows sent from

A to B, and A to C are the same video streaming. The average

performance collected in one minute is presented in Fig. 10.

Fig. 10 (a) compares the end-to-end flow throughput between

A → B and A → C transmissions from the receiver aspect.

Fig. 10 (b) shows the difference of end-to-end delay performance

between the two device to device data flows. It is interesting

that in this set of evaluation intra-partition (A → B) has worse

performance than inter-partition (A → C) flow scheduling both

on throughput and delay metrics, even though the flow path

from A → C is longer than A → B. This is due to the

fact that there are more IoT devices crowded in the university

partition than the park partition in our settings. The density of

IoT devices in the university partition results in higher demand

of communication resources and heavier processing status in its

corresponding controller, therefore generating lower throughput

and higher delay along the path from controller to receiver in the

same partition, in comparison with the path from controller to

0

0.1

0.2

0.3

0.4

0.5

La
ta

n
cy

 (
s)

Geographic Region

Top-left Region Bottom-right Region

Fig. 11. Flow latency of cross-region scheduling in UbiFlow.

receiver in the park partition that has more communication and

controller resources available to use.

5.2.5 Cross-region Flow Scheduling

We have also verified the impact of UbiFlow overlay network on

large-scale urban network scheduling across different geographic

regions. Specifically we evaluate how the overlay network of the

controller system would impose latency in the mobile IoT device

to server communication. Our simulation is based on the mobile

scenario, as shown in Fig. 5, where the top-left region has 400 IoT

devices and 100 access points, and the bottom-right region has 200

access points and 600 IoT devices (the limitation of OMNeT++

is that it supports up to nearly 2000 nodes in simulations). A

mobile IoT device associated with video streaming service is

frequently roaming across the two regions and their partition

areas. The average flow latency and its standard deviation in each

region is presented in Fig. 11. We observe that the scheduled flow

latency for this device in the bottom-right region does not change

a lot in comparison with that in the top-left region. The stable

performance is achieved by our specific design for large-scale

mobility in UbiFlow, where controllers is geographically localized

to the extent that propagation delay between them is within the

same order of magnitude. In addition, when an IoT device enters

a new region, a new supervisory controller will be assigned in the

region to manage its mobility, so that the device can avoid too

much cross-region long-distance information exchanges with old

supervisory controller. Therefore, in case that a mobile IoT device

frequently roams inside a region (with multiple partitions) and

across different regions (separated by long distance), the latency

from distributed UbiFlow overlay can still maintain within the

same order of magnitude.

5.3 Testbed Experiment Results

In our real testbed experiments, we use ORBIT as the wireless

network testbed to evaluate UbiFlow. ORBIT is composed of 400

radio nodes, where a number of experimental “sandboxes” can

be accessed via its management framework. Available sandboxes

include WiFi, WiMAX, USRP2, etc. ORBIT supports Flood-

light [61] based OpenFlow controller to switch access between the

WiFi and WiMAX interfaces, and uses Open vSwitch (OVS) [62]

to allow a network interface to be OpenFlow-enabled.

The deployment of ORBIT testbed follows a grid topology,

and we choose an ORBIT sandbox with 1 WiMAX node and 7

WiFi nodes in our experiments. UDP is used as our transmission

protocol. The delay is measured per packet and its performance

is averaged using the fine grained network calculus model. We

are aware that real mobile access pattern of IoT devices in urban

scenario does not follow the random waypoint model. Actually,

3 6 9 12 15 18 21 24 27 30
0

3

6

9

12

15

Flow ID

T
hr

ou
gh

pu
t (

M
bp

s)

UbiFlow
GENI

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Flow ID

D
el

ay
 (

s)

UbiFlow
GENI

(a) End-to-End Throughput (b) End-to-End Delay

Fig. 12. Mobile flow scheduling in real testbed.

the urban-scale access of multinetworks is more like event or

motivation driven behaviour. To better evaluate UbiFlow in this

kind of mobile scenario, we collected a campus-wide mobile trace

driven by class events, and use it in our evaluation. Specifically,

the trace is collected during a period (10 minutes) between two

consecutive classes around a lecture building by three types of IoT

devices: smart phone, tablet and laptop. During that period, some

students leave the building after previous class, some students

come to the building for incoming class, and some students still

stay in the building. Therefore, the wireless access of their IoT

devices can be classified as “leaving”, “joining”, and “staying”.

We use the trace file to generate the mobile scenario in our ORBIT

testbed, and verify the performance of IoT devices supporting

two types of ORBIT access points: WiFi and WiMAX under

the mobile scenario. That is, we match the 8 OpenFlow-enabled

ORBIT nodes as corresponding access points in the building,

and use two Floodlight based OpenFlow controller to scheduling

different service requests from around 300 IoT devices during that

period, according to the mobile trace file.

We compare UbiFlow with an OpenFlow-based handover

scheme proposed by GENI [63] (namely GENI). The GENI

handover [41] is a vanilla implementation of SDN in wireless

environment, without ubiquitous flow scheduling and mobility

management. As shown in Fig. 12, we select 30 flows from the

hundreds of active IoT devices, where flows 1-5 are file sharing,

flows 6-15 are audio, and flows 16-30 are video streaming. The

performance shows the similar results as previous simulation

results with various flow types. Generally, UbiFlow outperforms

GENI handover both on end-to-end throughput and delay evalua-

tion. For the 30 flows, UbiFlow can achieve an average throughput

as 7.24 Mbps, while GENI only can provide 5.09 Mbps; UbiFlow

improves the average throughput performance by 42.24%. The

average delay in UbiFlow is around 0.11 s, while the delay in

GENI is 0.29 s; UbiFlow reduces the average delay by 62.07%. In

comparison with GENI, UbiFlow adopts dynamic flow scheduling

scheme from the views of partition and device aspects, therefore

can achieve better assignment of access points to satisify different

flow requirements of IoT devices. In addition, the overlay structure

based load balancing can effectively allocate flows in UbiFlow, by

the coordination of controllers and switches. It also can help to

improve the throughput and reduce the delay.

To test the mobility management of UbiFlow in real testbed,

we choose one mobile device and evaluate the change of its

multinetwork access in a period of one minute, while associat-

ing with different types of access points. The performance of

throughput and delay of its access is shown in Fig. 13 (a) and

Fig. 13 (b) respectively. As we can see, since there is only one

10 20 30 40 50 60
0

5

10

15

Time (s)

M
ob

ile
 T

hr
ou

gh
pu

t (
M

bp
s)

WiFiWiMAXWiFi

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time (s)

M
ob

ile
 D

el
ay

 (
s)

WiMAX WiFiWiFi

(a) Mobile Throughput (b) Mobile Delay

Fig. 13. Mobility management in real testbed.

0

5

10

15

20

25

30

35

40

T
h

ro
u

g
h

p
u

t
(x

1
0

3
fl

o
w

s/
se

co
n

d
s)

Number of Controllers

1 Controller

2 Controllers

3 Controllers

0

5000

10000

15000

20000

25000

30000

35000

N
u

m
b

e
r

o
f

C
o

n
tr

o
l

M
e

ss
a

g
e

s

Number of Controllers

1 Controller

2 Controllers

3 Controllers

(a) Throughput (b) Overhead

Fig. 14. Scalability in real testbed.

WiMAX node in our testbed, and it is crowded by other mobile

users, the throughput provided by WiMAX is much lower than

WiFi nodes. According to this situation, the SDN controller only

assigns the mobile device to access WiMAX when there is no

available WiFi access points providing higher data rate. Once the

controller finds a WiFi access point with better capacity and the

mobile device sends flow request in its range, it will assign the

mobile device to access the WiFi node. In mobile scenario, we

notice that the average flow transmission delay for this mobile

device is below 0.4s, which presents stable performance of our

mobility management, considering there are hundreds of active

IoT devices and only 8 working access points. Mobile delay only

increases obviously when UbiFlow runs handover steps to assign

new access point to the mobile device, which happens at the 25th

second and 40th second of this period. Usually, when a mobile

device requests an access point, it will initially send the request to

the controller, and then controller sends the assignment decision

back. This process results in the extra delay for message exchange

and computation, which cannot be avoided if we use the controller

to match access points with mobile devices. However, in these

special cases, UbiFlow still can achieve a handover delay less

than 0.9 seconds, therefore shows satisfactory results.

We also verify the scalability of UbiFlow in the ORBIT

testbed, where we choose three ORBIT sandboxes (each has 1

WiMAX node and 7 WiFi) and assign each sandboxes with a

controller. Similar to our scalability simulation in Section 5.2,

Packet-In message is used to evaluate the scalability of flow

scheduling in UbiFlow. On average, for each controller, we send

10000 consecutive Packet-In messages to reflect the flow requests

generated by around 100 IoT devices in 10 minutes to it. We plot

the throughput of UbiFlow with varying number of controllers, as

shown in Fig. 14 (a). We observe that adding controllers increases

the throughput almost linearly due to the fact that each controller

in UbiFlow mainly controls the traffic flows in its own partition.

In addition, if there is an imbalance in one controller, other

controllers with light-weight traffic also can help to migrate the

flows to their partitions by the UbiFlow overlay structure.

Note that the Packet-In messages in the scenario of Fig. 14

(a) is a type of control message generated by the OpenFlow

switches and sent to the SDN controller to request flow services

for ubiquitous IoT devices. In our UbiFlow implementation, these

messages are triggered by the flow request messages initiated from

the IoT device. In addition, there are other overhead imposed by

the distributed coordination of SDN controllers under different

networking and traffic conditions. We present the total number of

overhead generated by different types of control messages during

mobility management and flow scheduling with varying number of

controllers in Fig. 14 (b). In general, these control message based

overhead can be classified as Packet-In messages and Packet-Out

messages, respectively, for the SDN controller.

As for the interaction between the SDN controller and the

IoT devices, the AP request messages and flow request messages

generated by the IoT devices all can trigger Packet-In messages

from the switch to the controller. From the controller aspect,

the AP response messages and AP update message can trigger

Packet-Out messages from the controller to the switch. As for

the interaction between the controller and the switch, if new flow

arrives or flow changes, the controller sends Packet-Out messages

to the switch to update its flow table. The controller also sends

Packet-Out messages to the switch to obtain traffic information

for statistical analysis of network status and derive the partition

view. As for the interaction between different controllers, the join

or leave operation of a controller node on our overlay network

makes its neighboring controllers to send Packet-Out message

to maintain the network consistency. Also, the mobile handover

of an IoT device across different geographical partitions triggers

its current associated controller to localize its previous associate

controller through its supervisory controller. This process results

in Packet-Out message transmitted between the different types

of controllers for information inquiry, mobility update and flow

migration purposes. In addition, when controller level failure hap-

pens, our fault tolerance mechanism requires the failed controller

to send Packet-Out message carrying data replica to its successor

controllers.

Above interactions happened during mobility management and

flow scheduling result in the overhead cost in Fig. 14 (b). For one

controller case, in addition to the 10000 consecutive Packet-In

messages for flow requests from 100 IoT devices, extra overhead

are caused by the control messages of interaction between the

controller and the IoT devices, and the control messages of

interaction between the controller and the switch. For two and

three controllers, we observe that adding controllers increases the

overhead almost linearly due to the fact that each controller mainly

controls the traffic flows in its own partition, and on average

there are 100 IoT devices in each partition generating 10000 flow

request message in 10 minutes. Meanwhile, the control messages

of interaction happened between different controllers generate

additional overhead in comparison to the one controller case.

The overhead cost of SDN controller is induced in the necessary

interaction procedures, and these interactions present the dynamic

capability of UbiFlow to re-adapt scheduling and effective flow

bandwidth when varying the network conditions.

Overall, both simulation and real testbed results have shown

that, in mobile environments, UbiFlow can adaptively match

various traffic flows to wireless links; therefore can provide better

service to satisfy the requirements of IoT devices and guarantee

the partition performance at the same time.

6 CONCLUSION

In this paper, we have presented a software-defined IoT system,

namely UbiFlow, for efficient flow control and mobility man-

agement in urban heterogeneous networks. In addition to flow

scheduling, the approach shifts mobility management, handover

optimization, and access point selection functions from the rela-

tively resource constrained IoT devices to more capable distributed

controllers. The distributed controllers are organized in a scalable

and fault tolerant manner. The system was evaluated through

simulation and on a testbed.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

insightful comments, and sincerely acknowledge Mr. Ivan Seskar

from Rutgers University and Mr. Ryan Izard from Clemson Uni-

versity for their help on setting up the Orbit testbed. This work was

partially supported by the Intel Collaborative Research Institute

for Sustainable Connected Cities (ICRI Cities), the University of

California Center on Economic Competitiveness in Transportation

(UCCONNECT), the National Natural Science Foundation of

China under Grant No. 61602168, the Hu-Xiang Youth Talent

Program under Grant No. 2018RS3040, and the research project

OrganiCity under Grant No. 645198 of the European Unions

Horizon 2020 research and innovation program.

REFERENCES

[1] V. Gutiérrez, E. Theodoridis, G. Mylonas, F. Shi, U. Adeel, L. Diez,
D. Amaxilatis, J. Choque, G. Camprodom, J. A. McCann, and M. Luis,
“Co-creating the cities of the future,” Sensors, vol. 16, no. 11, p. 1971,
2016.

[2] D. Wu, D. I. Arkhipov, M. Kim, C. L. Talcott, A. C. Regan, J. A.
McCann, and N. Venkatasubramanian, “ADDSEN: Adaptive data pro-
cessing and dissemination for drone swarms in urban sensing,” IEEE

Transactions on Computers, vol. 66, no. 2, pp. 183–198, 2017.
[3] Z. Qin, D. Wu, Z. Xiao, B. Fu, and Z. Qin, “Modeling and analysis of data

aggregation from convergecast in mobile sensor networks for industrial
iot,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp.
4457–4467, 2018.

[4] D. Wu, Q. Liu, Y. Zhang, J. A. McCann, A. C. Regan, and N. Venkata-
subramanian, “CrowdWiFi: efficient crowdsensing of roadside WiFi
networks,” in ACM/IFIP/USENIX Middleware Conference, 2014, pp.
229–240.

[5] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G. Denker, and
N. Venkatasubramanian, “Mina: A reflective middleware for managing
dynamic multinetwork environment,” in IEEE/IFIP NOMS, 2014.

[6] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications

Surveys & Tutorials, vol. 19(3), pp. 1657–1681, 2017.
[7] D. Wu, D. I. Arkhipov, T. Przepiorka, Y. Li, B. Guo, and Q. Liu, “From

intermittent to ubiquitous: Enhancing mobile access to online social
networks with opportunistic optimization,” Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT),
vol. 1, no. 3, pp. 114:1–114:32, 2017.

[8] F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, and Y. Li, “Big
data driven mobile traffic understanding and forecasting: A time series
approach,” IEEE Transactions on Services Computing, vol. 9, no. 5, pp.
796–805, 2016.

[9] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “UbiFlow:
Mobility management in urban-scale software defined IoT,” in IEEE

INFOCOM, 2015, pp. 208–216.
[10] D. G. Zhang, G. Li, K. Zheng, X. C. Ming, and Z. H. Pan, “An energy-

balanced routing method based on forward-aware factor for wireless
sensor networks,” IEEE Transactions on Industrial Informatics, vol. 10,
pp. 766–773, 2014.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 2, pp. 69–74, 2008.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: towards an operating system for networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[13] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2016-2021 ,” Tech. Rep., 2017.

[14] D. Wu, L. Bao, A. C. Regan, and C. L. Talcott, “Large-scale access
scheduling in wireless mesh networks using social centrality,” Journal

of Parallel and Distributed Computing, vol. 73, no. 8, pp. 1049–1065,
2013.

[15] D. Wu, Q. Liu, Y. Li, J. A. McCann, A. C. Regan, and N. Venkatasubra-
manian, “Adaptive lookup of open wifi using crowdsensing,” IEEE/ACM

Transactions on Networking, vol. 24, no. 6, pp. 3634–3647, 2016.

[16] D. Wu, D. I. Arkhipov, Y. Zhang, C. H. Liu, and A. C. Regan, “Online
war-driving by compressive sensing,” IEEE Transactions on Mobile

Computing, vol. 14, no. 11, pp. 2349–2362, 2015.

[17] F. Shi, Z. Qin, D. Wu, and J. A. McCann, “Effective truth discovery and
fair reward distribution for mobile crowdsensing,” Pervasive and Mobile

Computing, vol. 51, pp. 88–103, 2018.

[18] D. G. Zhang, H. Ge, T. Zhang, Y. Y. Cui, X. H. Liu, and G. Q. Mao,
“New multi-hop clustering algorithm for vehicular ad hoc networks,”
IEEE Transactions on Intelligent Transportation Systems, no. 99, pp. 1–
14, 2018.

[19] D. Wu, D. I. Arkhipov, T. Przepiorka, Q. Liu, J. A. McCann, and A. C.
Regan, “DeepOpp: Context-aware Mobile Access to Social Media Con-
tent on Underground Metro Systems,” in IEEE International Conference

on Distributed Computing Systems (ICDCS), 2017, pp. 1219–1229.

[20] K. Liu, D. Wu, and X. Li, “Enhancing smartphone indoor localization
via opportunistic sensing,” in IEEE International Conference on Sensing,

Communication, and Networking (SECON), 2016, pp. 1–9.

[21] A. A. Khan, M. H. Rehmani, and A. Rachedi, “Cognitive-radio-based
internet of things: Applications, architectures, spectrum related function-
alities, and future research directions,” IEEE Wireless Communications,
vol. 24(3), pp. 17–25, 2017.

[22] D. Wu, Y. Zhang, J. Luo, and R. F. Li, “Efficient data dissemination
by crowdsensing in vehicular networks,” in IEEE/ACM International

Symposium on Quality of Service (IWQoS), 2014, pp. 314–319.

[23] J. Q. Chen, G. Q. Mao, C. L. Li, W. F. Liang, and D. G. Zhang, “Capacity
of cooperative vehicular networks with infrastructure support: Multi-user
case,” IEEE Transactions on Vehicular Technology, vol. 67, pp. 1546–
1560, 2018.

[24] D. Wu, L. Bao, and R. Li, “Robust localization protocols and algorithms
in wireless sensor networks using uwb,” Ad Hoc & Sensor Wireless

Networks, vol. 11, no. 3-4, pp. 219–243, 2011.

[25] M. Al-Fares, S. Radhakrishnanl, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in USENIX

NSDI, 2010.

[26] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM, 2011, pp. 254–265.

[27] D. Li, J. Zhu, J. Wu, J. Guan, and Y. Zhang, “Guaranteeing Hetero-
geneous Bandwidth Demand in Multi-tenant Data Center Networks,”
IEEE/ACM Transactions on Networking, 2015.

[28] Huawei Agile IoT Solution, http://e.huawei.com/en/news/global/2015/
201505301129.

[29] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in Proceedings of the internet network management

conference on Research on enterprise networking, 2010.

[30] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX OSDI, 2010, pp. 351–364.

[31] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Elas-
ticon: an elastic distributed sdn controller,” in ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, 2014, pp.
17–28.

[32] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN
control,” in ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, 2013, pp. 121–126.

[33] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44(2),
pp. 35–40, 2010.

[34] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A global name service for a highly mobile internetwork,”
ACM SIGCOMM Computer Communication Review, vol. 44(4), pp. 247–
258, 2014.

[35] D. Wu, L. Bao, and C. H. Liu, “Scalable Channel Allocation and Access
Scheduling for Wireless Internet-of-Things,” IEEE Sensors Journal,
vol. 13, no. 10, pp. 3596–3604, 2013.

[36] M. Hegde, P. Kumar, K. R. Vasudev, N. N. Sowmya, S. V. R. Anand,
A. Kumar, and J. Kuri, “Experiences With a Centralized Scheduling Ap-
proach for Performance Management of IEEE 802.11 Wireless LANs,”
IEEE/ACM Transactions on Networking, vol. 21(2), pp. 648–662, 2013.

[37] X. Wang, X. Lin, Q. Wang, and W. Luan, “Mobility Increases the
Connectivity of Wireless Networks,” IEEE/ACM Transactions on Net-

working, vol. 21(2), pp. 440–454, 2013.
[38] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a pro-

grammable wireless dataplane,” in ACM HotSDN, 2012, pp. 109–114.
[39] K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Hand-

igol, and N. McKeown, “OpenRoads: empowering research in mobile
networks,” ACM SIGCOMM Computer Communication Review, vol. 40,
no. 1, pp. 125–126, 2010.

[40] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A software defined networking architecture for the internet-of-
things,” in IEEE/IFIP NOMS, 2014, pp. 1–9.

[41] R. Izard, A. Hodges, J. Liu, J. Martin, K. Wang, and K. Xu, “An
OpenFlowTestbed for the Evaluation of Vertical Handover Decision
Algorithms in Heterogeneous Wireless Networks,” in Proc. of the 9th

International Conference on Testbeds and Research Infrastructures for

the Development of Networks & Communities, 2014.
[42] S. Wang, Y. Cui, S. K. Das, W. Li, and J. Wu, “Mobility in IPv6: Whether

and How to Hierarchize the Network?” IEEE Transactions on Parallel

and Distributed Systems, vol. 22(10), pp. 1722–1729, 2011.
[43] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: scalable and

flexible cellular core network architecture,” in ACM CoNEXT, 2013, pp.
163–174.

[44] M. Moradi, W. Wu, L. E. Li, and Z. M. Mao, “SoftMoW: Recursive and
Reconfigurable Cellular WAN Architecture,” in ACM CoNEXT, 2014, pp.
377–390.

[45] X. Qiu, H. Luo, G. Xu, R. Zhong, and G. Q. Huang, “Physical assets and
service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP),”
International Journal of Production Economics, vol. 159, pp. 4–15, 2015.

[46] Y. Zhao, Y. Li, D. Wu, and N. Ge, “Overlapping coalition formation game
for resource allocation in network coding aided d2d communications,”
IEEE Transactions on Mobile Computing, vol. 16, no. 12, pp. 3459–
3472, 2017.

[47] F. Shi, Z. Qin, D. Wu, and J. A. McCann, “MPCSToken: Smart Contract
Enabled Fault-Tolerant Incentivisation for Mobile P2P Crowd Services,”
in IEEE ICDCS, 2018, pp. 961–971.

[48] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[49] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in ACM

symposium on Theory of computing, 1997, pp. 654–663.
[50] S. A. Abid, M. Othman, and N. Shah, “A survey on dht-based routing

for large scale mobile ad hoc networks,” ACM Computing Surveys, vol.
47(2), pp. 20:1–20:46, 2015.

[51] F. 180-1, “Secure Hash Standard,” U.S. Department of Commerce/NIST,
National Technical Information Service, Tech. Rep., 1995.

[52] D. Namiot and M. Sneps-Sneppe, “Geofence and network proximity,”
in Internet of Things, Smart Spaces, and Next Generation Networking.
Springer, 2013, pp. 117–127.

[53] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, “Locality-preserving
hashing in multidimensional spaces,” in Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing. ACM, 1997, pp.
618–625.

[54] J.-Y. L. Boudec and P. Thiran, Network calculus: a theory of deterministic

queuing systems for the internet. Springer, 2001.
[55] Video streaming trace files, http://trace.eas.asu.edu/TRACE/ltvt.html.
[56] Skype tele audio trace files, http://tstat.polito.it/traces-skype.shtml.
[57] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the

Generalized Assignment Problem,” Information Processing Letters, vol.
100, no. 4, pp. 162–166, 2006.

[58] OMNeT++, http://www.omnetpp.org.
[59] ORBIT, https://www.orbit-lab.org.
[60] An OpenFlow Extension for the OMNeT++

INET Framework, http://www3.informatik.uni-
wuerzburg.de/research/ngn/ofomnet/of omnet.shtml.

[61] Project Floodlight, http://www.projectfloodlight.org/floodlight.
[62] Open vSwitch, http://openvswitch.org.
[63] GENI, http://www.geni.net.

Di Wu received the M.S. and Ph.D. degree in
Computer Science from the University of Cali-
fornia, Irvine, USA. He was a Researcher at the
Intel Collaborative Research Institute for Sus-
tainable Connected Cites, a Research Associate
at Imperial College London, a Staff Research
Associate at the University of California, Irvine,
a Visiting Researcher at IBM Research, and a
Student Research Associate at the SRI Inter-
national. He is currently an Associate Professor
in the Department of Computer Engineering at

Hunan University, China, and an Adjunct Researcher at the University of
California Transportation Center. His research interests include wireless
networks and mobile computing, Internet-of-things and cyber-physical
systems, smart cities and big data. He has actively served on many
conference committees and is currently Associate Editor for the IEEE
Transactions on Intelligent Transportation Systems. He is a member of
the IEEE and the ACM.

Xiang Nie received the B.S. degree in Network
Engineering from Wuhan Institute of Technology
in 2011. He is currently working toward his M.S.
degree Computer Technology at Hunan Univer-
sity, China. His research interests include soft-
ware defined networking, distributed systems,
and Internet of Things.

Eskindir Asmare received the Ph.D. degrees in
Computer Science from Imperial College Lon-
don, UK, in 2011. He was a Research Fellow in
the school of informatics at the University of Sus-
sex, UK. He is currently a Research Associate
in the Intel Collaborative Research Institute for
Sustainable Cities at Imperial College London.
His research interests include autonomic man-
agement of distributed systems, mobile systems
and pervasive computing.

Dmitri I. Arkhipov received the B.S. degree in
information and Computer Science, the M.S. de-
gree in Computer Science and the Ph.D. degree
from the University of California, Irvine in 2009,
2012 and 2016 respectively. He is currently a
Postdoctoral Researcher in the Department of
Computer Science at the University of California,
Irvine. His research interests include parallel and
distributed systems, large scale combinatorial
optimization, and cyber-physical systems.

Zhijing Qin received the B.S. degree in Software
Engineering from Beihang University in 2007,
the M.S. degree in Software Engineering from
Peking University in 2009, and the Ph.D. de-
gree in Networked Systems from the University
of California, Irvine in 2015. He is currently a
Software Engineer at Google Inc. His research
interests include multinetwork management, in-
formation collection, formal method based net-
work analysis and cyber physical system.

Renfa Li is a Professor in the College of Com-
puter Science and Electronic Engineering, Hu-
nan University, China, and the Director of the
Key Laboratory for Embedded and Network
Computing of Hunan Province, China. He is also
an expert committee member of National Super-
computing Center in Changsha, China. His ma-
jor research includes embedded systems, dis-
tributed systems, and cyber-physical systems.
He is a senior member of the IEEE and the ACM.

Julie A. McCann is a Professor in Computer
Systems at Imperial College London. Her re-
search centers on highly decentralized and self-
organizing scalable algorithms for spatial com-
puting systems e.g. wireless sensing networks.
She leads both the Adaptive Embedded Sys-
tems Engineering Research Group and the Intel
Collaborative Research Institute for Sustainable
Cities, and is currently working with NEC and
others on substantive smart city projects. She
has received significant funding through bodies

such as the UK’s EPSRC, TSB and NERC as well as various interna-
tional funds, and is an elected peer for the EPSRC. She has actively
served on, and chaired, many conference committees and is currently
Associate Editor for the ACM Transactions on Autonomous and Adaptive
Systems. She is a member of the IEEE and the ACM as well as a
Chartered Engineer, and was elected as a Fellow of the BCS in 2013.

Keqin Li is a SUNY Distinguished Professor
of computer science in the State University of
New York. His current research interests include
parallel computing and high-performance com-
puting, distributed computing, energy-efficient
computing and communication, heterogeneous
computing systems, cloud computing, big data
computing, CPU-GPU hybrid and cooperative
computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-

tems, mobile computing, service computing, Internet of things and
cyber-physical systems. He has published over 600 journal articles,
book chapters, and refereed conference papers, and has received sev-
eral best paper awards. He is currently serving or has served on the ed-
itorial boards of IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, IEEE Transactions on Cloud Comput-
ing, IEEE Transactions on Services Computing, and IEEE Transactions
on Sustainable Computing. He is an IEEE Fellow.

