
Towards Distributed Software Transactional

Memory Systems∗

Paolo Romano
INESC-ID/IST

romanop@gsd.inesc-id.pt

Nuno Carvalho
INESC-ID/IST

nonius@gsd.inesc-id.pt

Lúıs Rodrigues
INESC-ID/IST
ler@ist.utl.pt

Abstract

The recent architectural trend that has lead to the widespread
adoption of multi-core CPUs has fostered a huge research interest to-
wards Software Transactional Memory (STM). As STMs are starting
to face the high availability and scalability requirements of real-world
production environments, it is natural to foresee the need for repli-
cation solutions specifically tailored for STMs. Since databases and
STMs share the same key abstraction of atomic transaction, it is natu-
ral to wonder whether the mechanisms originally designed for database
replication could be successfully and seamlessly exploited also to sup-
port replication of STM systems.

This paper seeks an answer to this question, highlighting some
critical performance issues related to the application of state of the
art database replication techniques in the context of STM systems,
and presenting some of our research directions aimed at designing and
implementing high performance replication strategies able to fit the
unique requirements of STMs.

1 Introduction

Software Transactional Memory (STM) systems have garnered considerable
interest of late due to the recent architectural trend that has lead to the per-
vasive adoption of multi-core CPUs. STMs represent an attractive solution
to spare programmers from the pitfalls of conventional explicit lock-based
thread synchronization, leveraging on proven concurrency-control concepts
used for decades by the database community to simplify the mainstream

∗This paper was partially supported by the Pastramy (PTDC/EIA/72405/2006)
project.

1

parallel programming [2]. When using STMs the programmers are simply
required to specify which operations on shared data structures are to be
executed within the scope of an atomic and isolated transaction. The task
of ensuring the consistent execution of the transactions is delegated to the
STM, which transparently takes care of regulating the concurrent access to
shared data, by automatically aborting unserializable transactions, avoiding
deadlocks and priority inversions.

When STM systems are used in the core of enterprise systems, they are
faced with the high availability and scalability requirements of production
environments [8]. A relevant example is the FénixEDU system, which is a
web application that relies on a STM-based solution in order to ensure the
consistency of an in memory middle-tier object cache. The current version
of the FénixEDU system is facing scalability and dependability challenges,
as it has to process between 1,000,000 and 4,500,000 transactions per day for
a population of 12000 students, 900 faculty and 800 administrative members
in the Instituto Superior Técnico (IST) campus1. As replication techniques
have been successfully used since decades to enhance the availability of com-
puting systems, it is rather natural to foresee the emergence of replication so-
lutions specifically tailored for STM systems. Also, since STM and Database
management Systems (DBMS) share the notion of transaction, it might ap-
pear that the state of the art database replication schemes [21, 20, 9, 3]
represent natural candidates, among the plethora of replication solutions
presented in literature, to support STM replication.

This paper aims at uncovering the pitfalls related to the adoption of
conventional database replication techniques in the context of STM sys-
tems. First, in Section 2, we recall some key techniques at the basis of the
most popular modern database replication techniques. In the Section 3 we
contrast, from a replication oriented perspective, the workload characteris-
tics of two standard benchmarks for STM and DBMS. Our analysis allows
us to derive insights on several critical issues which make the state of the
art solutions based on database replication strongly under-performing when
adopted in the context of STM-based systems. At the light of such analy-
sis, in Section 4, we present promising research directions we are currently
pursuing in order to develop high performance replication strategies able to
fit the unique characteristics of the STM.

1http://www.ist.utl.pt

2

2 Database Replication

Most recent database replication schemes perform reads on one replica and
writes on all (available) replicas so to maximize performance of (common)
read-intensive applications. Further, the fulcrum of modern database repli-
cation schemes [21, 20, 9, 3, 17, 10] is the reliance on an Atomic Broad-
cast [11, 12] (AB) primitive, typically provided by some Group Communica-
tion System (GCS) [19, 4]. AB plays a key role to enforce, in a non-blocking
manner, a global transaction serialization order without incurring in the
scalability problems affecting classical eager replication mechanisms [13].

The abundant AB-based database replication literature can be classified
in two main categories depending on whether the AB primitive is used to
multicast (i) the initial transactional “request”, rather than (ii) the sets of
items accessed by the transaction that enters the commit phase. In the for-
mer case, the approach is often referred to as state machine replication since,
just like in the original state machine approach [23], a (transactional) request
is serialized in the same order at all the replicas prior to its execution [18]. In
the latter solutions, which are typically referred to as “certification-based”,
transactions are validated a posteriori of their execution on the basis of their
readsets and writesets. The certification based approaches can be further
classified into voting and non-voting schemes [17, 22], where voting schemes,
unlike non-voting ones, need to atomic broadcast only the writeset (which is
typically much smaller than the readset in classical database workloads), but
on the other hand incur the overhead of an additional uniform broadcast [16]
along the critical path of the commit phase.

3 Replication on DBMS and STM Systems

In this section we aim at highlighting some critical issues related to the
application of state of the art database replication techniques in the con-
text of STM based systems. Our discussion is supported by a quantitative
comparative analysis of the workloads of a recent STM benchmark, namely
STMBench7 [14], and of a popular benchmark for web-based transactional
applications, namely TPC-W [24].

In Figure 1(a) we compare the execution latency of sequentially sub-
mitted transactions for STMBench7 and TPC-W when executing the two
benchmarks on top of a 4 Xeon CPUs machine using Linux 2.6.8-24.18 and
equipped with 2 SCSI disks in RAID-0 configuration and 4GB of main mem-
ory. We use JVSTM [7] as the STM for STMBench7, and PosgreSQL 8.1 as

3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
c)

Cumulative Distribution Function

STBench7 (write transactions)
TPC-W (write transactions)

(a) Transaction execution time: STM-
Bench7 vs TPC-W.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f A
cc

es
se

d
Ite

m
s

Cumulative Distribution Function

Readset size - STBBench7
Writeset size - STBBench7

(b) Readset/writeset size of STM-
Bench7’s transactions

Figure 1: Cumulative Distribution Function (CDF).

the relational database underlying TPC-W. This choice is motivated by that
both JSVTM and PostgreSQL have a similar approach to concurrency con-
trol, both of them relying on a multi-versioning scheme which allows read-
only transactions to be executed without ever being blocked or aborted.
Also, in order to fairly compare the performance of the two systems, we
configured the benchmarks so to generate a very similar percentage of write
transactions: specifically we evaluated the TPC-W Ordering Mix and the
STMBench7 Read-Write Workload Type, whose percentage of write trans-
actions is around the 50%.

By the plots we can draw the following considerations. First, the trans-
action execution time for the STMBench7 is at least one order of magni-
tude smaller than for TPC-W for around the 60% of transactions. This is
essentially due to that, unlike conventional DBMS transactions, STM trans-
actions only access in memory data items, hence not incurring the latencies
proper of disk accesses. Also, in STMs the overhead associated with SQL
parsing and plan optimization are absent, further contributing to shortening
the transaction lifetime.

The direct consequence of such a striking reduction of the transaction
lifetime in STMs with respect to DBMSs is that, in a replicated STM sys-
tem, the relative overhead of the atomic broadcast based synchronization
schemes would be correspondingly amplified with respect to the scenario of
conventional database replication.

Another important feature characterizing the STM benchmark is the
high heterogeneity of its workload. In fact, the transaction lifetime in STM-
Bench7, as clearly highlighted by Figure 1(a), spans over an impressively

4

wide range, with around the 30% of transactions executing for less than
100 micro-seconds, and about the 5% of transactions taking from hundreds
of milli-seconds up to several seconds. This is also reflected by the high
heterogeneity of the sizes of the transaction readsets and writesets, see Fig-
ure 1(b), which range from a just a few items up to around 10 millions. In-
deed, the presence of highly diversified components in the workload of STM
applications, such as in STMBench7, severely challenges the state of the
art on database replication solutions, which are designed to provide optimal
performance under much more restricted workloads. Another interesting
consideration that can be drawn by observing the writesets’ CDF in Figure
1(b), is that the writesets’ and readsets’ cardinality of STM transactions is
quite similar, especially when considering long-running transactions (repre-
senting nearly the 5% of the STMBench7 workload) which reads and writes
from tens of thousands to millions of data items. This strongly contrasts
with classical database workloads, in which transactions are rather char-
acterized by small writesets and often very large readsets, and for which
existing database replication solutions have been optimized.

4 Current Research Directions

In order to tackle the issues highlighted in the previous section, we are cur-
rently pursuing several orthogonal, yet complementary, research directions
which address both the theoretical and engineering aspects of scalable and
resilient STM implementation:

Speculative transaction execution The average latency of AB run is,
even for very small messages, on the order of at least a few milliseconds
in typical data-center environments, see, e.g., [15, 1, 5]. By contrasting
this performance data with the completion time of (not replicated) STM
transactions (see Figure 1(a)), we can argue that nearly the 50% of STM
transactions complete in around 1/10th of the time required to perform an
AB. This implies that it is highly likely that transactions complete and stall
(relatively) long before the AB is concluded, which could lead to severe
under-utilization of the available computing resource.

Given the above considerations, we are currently pursuing the idea to
speculatively explore multiple alternative transaction serialization orders
(rather than just the one suggested by the spontaneous order delivery as sug-
gested in, e.g. [18]) so to maximize the utilization of any CPU core waiting
idle for the termination of an AB’s run. Interestingly, this approach seems,

5

in principle, applicable to both certification-based replication schemes [17]
and classical state machine replication approaches [23].

The main challenge here is related to that the number of possible seri-
alization orders over a set composed of n elements is n!, which drastically
reduces the probability to blindly select the correct final serialization order
as the number of messages to be ordered grows. This issue raises the need
for ingenious heuristics that are able to effectively maximize the probability
to drive the speculative exploration of the serialization orders towards useful
trajectories.

Space efficient transaction readset’s encoding via Bloom Filters
The efficiency of AB is known to be strongly affected by the size of the
exchanged messages [15, 1, 5]. A straightforward way to improve the per-
formance of existing AB-based replication schemes is therefore to introduce
mechanisms capable of effectively reducing the size of the messages multi-
cast trough the AB primitive. To pursue this goal, we are studying how to
exploit Bloom filters2 [6] to encode in a space-efficient way the transactions’
read-/write-sets that are exchanged by certification based protocols.

The algorithmic and engineering challenge here is how to effectively ex-
ploit the message compression achievable trough Bloom filters, while pre-
serving the system’s consistency and minimizing the performance drawbacks
due to the occurrences of false positives.

Adaptive replication strategies We argue that no single universal repli-
cation scheme exists that is able to effectively cope with the high hetero-
geneity characterizing STM workloads. Therefore we advocate the need for
developing self-adapting STM replication schemes, able to timely and auto-
matically identify the optimal replication strategy for each incoming trans-
action on the basis of the (estimated) size of its readset and writeset, as well
as of its conflict probability. It is in fact possible to show that replication
schemes, such as the certification based solution [3] (in both its voting and
non-voting variants [22]) and the state machine scheme [23], are designed to
provide optimal performances in distinct (i.e. not overlapping) regions of
the space identified by the Cartesian product of the above parameters.

Realizing such a polymorphic replication strategy requires facing two
main challenges: on one hand, ensuring the consistent interaction of different

2Bloom filters are simple randomized data structures for supporting set membership
queries, which allow trading off the space compression factor for the possibility of incurring
in false positives.

6

replication algorithms and, on the other hand, engineering lightweight and
timely mechanisms to automatically identify the characteristics of incoming
transactions and the corresponding preferable replication scheme.

5 Conclusions

In this paper we discussed several characterizing features of STM systems’
workloads and highlighted some crucial issues related to the application of
state of the art database replication solutions in the context of STM systems.
We then presented some of the research directions we are currently pursuing
to develop high performance, dependable replicated STM systems.

In the LADIS workshop we plan to present some preliminary results of
our current research activities based on experimentation with reference STM
benchmarks.

Our final aim is, however, to assess the effectiveness of the proposed
techniques on the FénixEDU system, which is, to the best of our knowledge,
the first STM system in the world to be used in a (large scale) production
environment.

References

[1] An evaluation of the amoeba group communication system. In Proce. of
the 16th International Conference on Distributed Computing Systems,
page 436, Washington, DC, USA, 1996. IEEE Computer Society.

[2] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha. Unlocking concur-
rency. ACM Queue, 4(10):24–33, 2007.

[3] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases (extended abstract). In Proc. of the
Third International Euro-Par Conference on Parallel Processing, pages
496–503, London, UK, 1997. Springer-Verlag.

[4] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant archi-
tecture and protocol for wide area group communication. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), June 2000.

[5] R. Baldoni, E. Barbi, S. Cimmino, C. Marchetti, P. Papa, and L. Quer-
zoni. A Practical Comparison between the TAO Real-Time Event Ser-
vice and the Maestro/Ensemble Group Communication System. In In

7

proceedings of Distributed Objects and Applications (DOA) 2004, Lar-
naca, Cyprus, 10 2004.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Commun. ACM, 13(7):422–426, 1970.

[7] J. Cachopo and A. Rito-Silva. Combining software transactional mem-
ory with a domain modeling language to simplify web application de-
velopment. In 6th International Conference on Web Engineering, pages
297–304, July 2006.

[8] N. Carvalho, J. Cachopo, L. Rodrigues, and R. S. A. Versioned trans-
actional shared memory for the fenixedu web application. In Proc. of
the Second Workshop on DependableDistributed Data Management (in
conjunction with Eurosys 2008), Glasgow, Scotland, Mar. 2008. ACM.

[9] E. Cecchet, J. Marguerite, and W. Zwaenepole. C-jdbc: flexible
database clustering middleware. In Proc. of the USENIX Annual Tech-
nical Conference, pages 26–26, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[10] A. J. Correia, J. O. Pereira, L. Rodrigues, N. M. R. Carvalho, R. Vilaça,
R. Oliveira, and S. Guedes. Gorda: An open architecture for database
replication. In Proc. of the 6th International Symposium on Network
Computing and Applications, pages 287–290, Boston, MA, USA, july
2007. IEEE, IEEE.

[11] D. Powell (ed.). Special Issue on Group Communication, volume 39.
ACM, 1996.

[12] X. Defago, A. Schiper, and P. Urban. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey. ACM Computing Surveys,
36(4):372–421, 2004.

[13] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replica-
tion and a solution. In Proc. of the 25th Conference on the Management
of Data (SIGMOD), pages 173–182. ACM, 1996.

[14] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: a benchmark for
software transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315–
324, 2007.

8

[15] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quema. High through-
put total order broadcast for cluster environments. In Proc. of the
International Conference on Dependable Systems and Networks, pages
549–557, Washington, DC, USA, 2006. IEEE Computer Society.

[16] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer, 2006.

[17] B. Kemme and G. Alonso. A suite of database replication protocols
based on group communication primitives. In Proc. of the The 18th
International Conference on Distributed Computing Systems, page 156,
Washington, DC, USA, 1998. IEEE Computer Society.

[18] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing trans-
actions over optimistic atomic broadcast protocols. In Proc. of the
19th IEEE International Conference on Distributed Computing Sys-
tems, page 424, Washington, DC, USA, 1999. IEEE Computer Society.

[19] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol
kernel supporting multiple coordinated channels. In Proceedings of
the 21st International Conference on Distributed Computing Systems,
pages 707–710, Phoenix, Arizona, Apr. 2001. IEEE.

[20] M. Patino-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scal-
able replication in database clusters. In Proc. of the 14th International
Conference on Distributed Computing, pages 315–329, London, UK,
2000. Springer-Verlag.

[21] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. Distributed and Parallel Databases, 14(1):71–98, 2003.

[22] L. Rodrigues, H. Miranda, R. Almeida, a. M. Jo and P. Vicente. The
globdata fault-tolerant replicated distributed object database. In Proc.
of the First EurAsian Conference on Information and Communication
Technology, pages 426–433, London, UK, 2002. Springer-Verlag.

[23] F. B. Schneider. Replication management using the state-machine ap-
proach. ACM Press/Addison-Wesley Publishing Co., 1993.

[24] Transaction Processing Performance Council. TPC BenchmarkTM W,
Standard Specification, Version 1.8. Transaction Processing Perfo-
mance Council, 2002.

9

