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Abstract

Video paragraph captioning aims to describe multiple

events in untrimmed videos with descriptive paragraphs.

Existing approaches mainly solve the problem in two steps:

event detection and then event captioning. Such two-step

manner makes the quality of generated paragraphs highly

dependent on the accuracy of event proposal detection

which is already a challenging task. In this paper, we

propose a paragraph captioning model which eschews the

problematic event detection stage and directly generates

paragraphs for untrimmed videos. To describe coherent

and diverse events, we propose to enhance the conventional

temporal attention with dynamic video memories, which

progressively exposes new video features and suppresses

over-accessed video contents to control visual focuses of

the model. In addition, a diversity-driven training strat-

egy is proposed to improve diversity of paragraph on the

language perspective. Considering that untrimmed videos

generally contain massive but redundant frames, we fur-

ther augment the video encoder with keyframe awareness to

improve efficiency. Experimental results on the ActivityNet

and Charades datasets show that our proposed model sig-

nificantly outperforms the state-of-the-art performance on

both accuracy and diversity metrics without using any event

boundary annotations. Code will be released at https:

//github.com/syuqings/video-paragraph.

1. Introduction

Describing videos with natural language sentences,

a.k.a. video captioning, has attracted increasing research

attentions due to the rapid emergence of videos in our lives.

The dominant video captioning task [19, 46, 31, 42, 45] fo-

cuses on generating a single sentence to describe a care-

fully trimmed video which mainly contains one major event

within short duration such as 10-20 seconds [40, 37]. How-

ever, the videos in the wild are mostly untrimmed with
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at Renmin University of China.
†Corresponding author.

rich temporal event structures. A single sentence is insuffi-

cient to convey fine-grained information in such untrimmed

videos. Therefore, recent works [39, 21, 13] have attempted

to generate a story-oriented paragraph with multiple sen-

tences to comprehensively describe video contents.

Existing works [39, 21, 13] mainly adopt a two-stage

framework for video paragraph captioning: firstly detect-

ing event segments in the video, and then generating the

event description for each segment. Despite being reason-

able, the framework requires temporal segment coordinates

for descriptions in the paragraph to train the model, which

are expensive to annotate. Moreover, since event categories

are extremely diverse in open-domain untrimmed videos, it

is quite challenging to detect precise event segments com-

pared with the action detection task [25, 47, 4], which has a

fixed category list. The poorly detected events greatly harm

the performance of paragraph captioning in existing frame-

works. As a result, several works [21, 13] use ground-truth

event segments to generate video paragraphs, which cannot

generalize to videos without such event annotations.

However, is event detection really necessary for video

paragraph captioning? Let’s review a simpler task of im-

age paragraph captioning. The state-of-the-art approaches

[16, 17] directly generate sentences from images without

predicting sequences of image coordinates. The generated

paragraphs have shown good capability to capture descrip-

tive logic such as from foreground to background. Moti-

vated by these works, we aim to eschew the costly event

segment detection process, and efficiently generate video

paragraph descriptions in a single stage.

Compared with the image counterpart, there are mainly

three challenges for video paragraph captioning when event

segments are unavailable. Firstly, an untrimmed video gen-

erally consists of hundreds or thousands of frames, while an

image contains much fewer region candidates to be attended

to. Therefore, it consumes more computation resources

during description generation. Secondly, the large number

of frame candidates also makes it hard for the captioning

model to learn an effective attention mechanism to form a

coherent descriptive logic and describe diverse events in the

video, especially when the training examples are limited.
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Thirdly, the captioning model usually tends to generate re-

dundant words and phrases that are of high frequency in the

dataset especially for the long paragraph generation.

In this work, we propose an one-stage framework to

tackle the above challenges for diverse and efficient video

paragraph generation. Considering that there are many re-

dundant frames in untrimmed videos, we propose to auto-

matically select keyframes during the video encoding via

additional video semantic summary loss and sparsity loss.

In this way, only keyframes are used to generate the long

paragraph during inference, which improves the computa-

tional efficiency. To guide the model in effective description

logic learning for diverse and coherent events, we propose

to improve conventional temporal attention with dynamic

video memory which tracks and controls visual focuses in

the video. It includes an “add” operation to progressively

expose new video frames to the model, and an “erase” op-

eration to suppress over-accessed video contents. To fur-

ther improve diversity of generated paragraphs from lan-

guage perspective, we improve the training objective with

token-level and sequence-level high-frequency penalties to

encourage generating more unique expressions. Experi-

ments show that our model outperforms two-stage methods

which even utilize ground-truth event segments on Activi-

tyNet dataset, and also achieves the state-of-the-art result on

Charades dataset which does not have temporal annotations.

The main contributions of this work are as follows:

• To the best of our knowledge, we are the first to eschew

event detection stage and directly generate paragraphs

for untrimmed videos, which avoids the dependence

on expensive event temporal annotations.

• We propose an attention mechanism with dynamic

video memories and diversity-driven training objec-

tives to generate coherent and diverse paragraph from

video and language perspectives, and improve genera-

tion efficiency via keyframe-aware video encoder.

• Our model achieves state-of-the-art results on both

ActivityNet and Charades datasets without using any

event boundary annotations.

2. Background: Vanilla Paragraph Captioning

Given an untrimmed video v, the video paragraph cap-

tioning task aims to generate a paragraph y = {y1, · · · , yT }
to describe events in v, where yt denotes the t-th word in the

paragraph. In the following, we introduce a vanilla video

paragraph captioning model without the event segment de-

tection stage and discuss its limitations.

The vanilla model is similar to conventional video cap-

tioning models [19, 46, 31] based on the encoder-decoder

framework [27]. The encoder transforms v into a sequence

of clip-level features. Specifically, we first divide v into

non-overlapping clips with 64 frames per clip and use pre-

trained CNNs [10, 3] to extract features for each clip as

X 0 = {x0
1, · · · , x

0
L}, where L is the number of clips. To

encode long-range temporal dependencies among clips, we

apply N transformer layers on X 0 as follows:

X i = FFN(X i−1+MultiHead(X i−1,X i−1,X i−1)) (1)

where FFN(·) and MultiHead(·) denote feed-forward net-

work and multi-head attention as in [29]. The hidden state

XN is used as the encoded video feature Venc ∈ R
L×d,

where d is the feature dimension.

For the decoder, we use N layers of transformer due

to the advantage of its structure in long text generation

[50, 13]. Besides the self-attention as in the encoder, the de-

coder further adopts the cross-modal multi-head attention to

compute attention weights on Venc at each decoding step.

Therefore, each word is generated conditioning on previ-

ously predicted words and the attended video contents.

The captioning model is typically trained by maximum

likelihood estimation (MLE) given the ground-truth pair

(v, y∗), where y∗ = {y∗1 , · · · , y
∗

T }, which is:

Lmle = −
1

T

T
∑

t=1

log p(y∗t |y
∗

<t, v) (2)

To address the exposure bias and target mismatch [23] prob-

lems in MLE, reinforcement learning (RL) [22] is usually

adopted to further improve the model with sequence-level

non-differentiable caption rewards as follows:

Lrl = −
1

T
r(ys)

T
∑

t=1

log p(yst |y
s
<t, v) (3)

where ys = {ys1, · · · , y
s
T } is a paragraph sampled from the

model and r(·) is the reward function.

Without event segment annotations, the above vanilla

model suffers from three limitations for video paragraph

captioning. Firstly, the untrimmed video usually contains

a large number of clips, while the vanilla encoder feeds all

clip features to the following decoder which brings huge at-

tention computation burden for long paragraph generation.

Secondly, due to the large amount of clip candidates and

limited training examples, it is hard for the decoder to learn

effective attention mechanism to form coherent descriptive

logic. Finally, both MLE and RL training make the model

more likely to generate high-frequency words and phrases,

and thus harm the diversity of generated paragraphs. There-

fore, it is essential to address these limitations to make the

one-stage model more practical.

3. The Proposed Method

In this section, we introduce the proposed video para-

graph captioning model, which is illustrated in Figure 1.
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Figure 1. Left: The framework of our proposed video paragraph captioning model. Right: Details of the proposed dynamic video memories

with two updating mechanisms for description coherence and diversity respectively. ⊕ denotes addition and ⊙ denotes hadamard product.

We first describe the keyframe-aware video encoder in Sec-

tion 3.1, which selects key frames during video encoding to

improve attention computation efficiency in decoding. Then

in Section 3.2, we present a more effective cross-modal at-

tention mechanism enhanced by dynamic video memories,

including progressive memory exposure to guide the model

describing temporally coherent events, and over-accessed

memory decay to reduce repetitions on described events. Fi-

nally, we present the proposed diversity-driven training ob-

jective in Section 3.3, which improves the language diver-

sity via penalizing tokens and phrases of high-frequency.

3.1. Keyframeaware Video Encoder

Considering that there is a large amount of clips in

untrimmed videos which brings huge attention computation

burden to the decoder, we propose to explicitly select key

frames during video encoding. We augment the vanilla en-

coder with a keyframe selection layer, which predicts the

informativeness of each clip based on its contextual rep-

resentation. In the i-th encoding layer, the encoded video

feature is computed as follows:

X̂ i = X i−1 +MultiHead(X i−1,X i−1,X i−1) (4)

s
i = σ(FFN(X̂ i)) (5)

X i = X̂ i · si (6)

where σ is the sigmoid function, sij is a scalar to infer the

informativeness of the j-th clip to the i-th encoding layer.

In this way, we can employ s
N ∈ R

L to identify the key

frames to be used in the following decoder.

However, the paragraph generation loss alone cannot

provide sufficient supervision for the keyframe selection

and the poorly selected video features can hinder effective

attention learning in the decoder. Since key frames can

well represent the semantic contents of a whole video, they

are expected to reconstruct original video in the semantic

space. Therefore, we propose to reconstruct high-level se-

mantic embedding of the video in a visual-semantic joint

embedding space. Specifically, we utilize the video-text

retrieval [9] task as a proxy task to pre-train such visual-

semantic joint embedding space. We first feed the video

feature sequence X 0 and the ground-truth paragraph y∗ to

GRUs [6] respectively to get a global encoding vector for

each of them. Then they are mapped to the joint embedding

space with the hard negative triplet loss [9] to ensure the

video/text with similar semantics will be embeded closer.

After pre-training, we fix the video GRUv and employ it to

compute the video reconstruction loss as follows:

Lreconst =
∥

∥GRUv(X 0
key)−GRUv(X 0)

∥

∥

2
(7)

where X 0
key = X 0 · sN , which is the soft selected keyframe

features. We choose to reconstruct X 0 rather than y∗ be-

cause there is less cross-modal gap between X 0
key and X 0

making the learning more effective. To penalize a large

number of key frames being selected, we further introduce

a sparsity loss as follows:

Lsparsity =

∥

∥

∥

∥

∥

∥

1

L

L
∑

j=1

sNj − δ

∥

∥

∥

∥

∥

∥

1

(8)

where L is the total number of video clips and δ is the hyper-

parameter which denotes the selecting ratio of key frames.

Notice that in the training phase, we use the soft selection

of key frames for the gradient back-propagation, while at

inference time, we use sN to select the top ⌈δL⌉ key frames

to reduce the computational cost for decoding efficiency.

3.2. Attention with Dynamic Video Memories

With the encoded video feature sequence Venc, the de-

coder employs temporal attention mechanism to generate
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the paragraph. However, the video paragraphs usually con-

tain rich temporal logic structures, which are hard to learn

by traditional attentions from limited training examples.

Therefore, we enhance the temporal attention mechanism

in the decoder with dynamic video memories.

Instead of attending on the same Venc at each decod-

ing step, our model attends on video memory Mt =
{mt,1, · · · ,mt,L} at each step t, which are dynamically up-

dated to make visual attentions moving coherently on di-

verse events. Suppose αt ∈ R
L (averaged from multiple

heads and layers) is the overall attention weights over the

video memory Mt at t-th step. We utilize attention histo-

ries {αt−W , · · · ,αt} with a history window W to update

Mt to Mt+1 for the attention at next step. We use the atten-

tion histories instead of αt because we expect to update the

video memory when a complete phrase or sentence has been

generated. The attention weights for a single word are noisy

to indicate if the model should move to other frames. We

aggregate the attention histories into α̃t ∈ R
L as follows to

make attentions from more recent steps more important:

α̃t =
∑W

j=0 wjαt−j (9)

wj =
e1−(j/W )

∑W
k=0 e1−(k/W ) (10)

where wj is the history decay weight. The α̃t is then used

to update the video memory via two operations, which in-

clude an “add” operation in progressive memory exposure

to progressively add more video clip features to the mem-

ory and an “erase” operation in over-access memory decay

to erase already described clips.

Progressive Memory Exposure. To keep the event de-

scription coherent such as following the temporal order, we

propose to progressively expose the video feature sequence

Venc to the attended video memory M. We first initialize

the M0 as follows:

M0 = u0 · V
enc (11)

u0,i =

{

1− (i/S), i 6 S

0, i > S
(12)

where ut ∈ R
L denotes the exposure status at step t, which

records the proportion of each clip feature added to the

video memory. The ut,i ∈ [0, 1] is constantly updated,

where ut,i = 1 indicates that the i-th clip feature should not

be added anymore. S is the initialization window length. It

can make the decoder focus on the beginning of video first,

rather than randomly starting the paragraph generation.

We propose an adding gate gat ∈ [0, 1] to determine

whether we should “add” new features to the memory at

step t. Because when non-visual words are generated or the

accessed video frame has not been fully described, the video

memories should be updated less. The gate gat is computed

as follows:

gat = σ(fadd(ht; θadd)) (13)

where σ is the sigmoid function, ht is the output hidden

state at the t-th step and fadd is a fully connected network

parameterized by θadd.

Then we compute for each clip feature whether it needs

to be added in the new video memory according to their

visual relevance with previous context c̃t. The context can

make the model describe events which are relevant to the

previous one at next step to keep the event coherence. The

c̃t is computed based on aggregated attention history α̃t as

follows:

c̃t =
L
∑

i=1

α̃t,i · v
enc
i (14)

Therefore, the probabilities of each clip feature to be added

to the video memory is computed as:

pat,i = σ(fvis([v
enc
i ; c̃t]; θvis)) (15)

where fvis is the fully connected network similar to fadd.

Based on the adding gate gat and adding probability pat,i
of each clip feature, we gradually add video features to the

memories, which is:

m̂t+1,i = mt,i + gat (1− ut,i)p
a
t,iv

enc
i (16)

ut+1,i = ut,i + gat (1− ut,i)p
a
t,i (17)

where m̂t+1,i is the intermediate memory feature which

will be further processed with the “erase” operation.

Over-accessed Memory Decay. In addition to the de-

scription coherence, describing diverse content of the video

is also important to the video paragraph generation. To pre-

vent the decoder from only focusing on a few salient frames,

we propose to weaken the already accessed features to en-

courage the model to describe more unseen video frames.

Similar to the progressive memory exposure mechanism,

we employ get as an erasing gate to determine whether to

erase the memory at the t-th step as follows:

get = σ(fers(ht; θers)) (18)

Considering that the attention weights can indicate the ac-

cess intensity of each clip feature, we update the video

memory with the guidance of that. Besides the attention

weights, to ensure the highly attended features to be erased

have actually been described, we further compute their se-

mantic relevance to the generated words as follows:

h̃t =
∑W

j=0 wjht−j (19)

pet,i = σ(fsem([m̂t+1,i; h̃t]; θsem)) (20)

where h̃t is the history hidden states computed similar to α̃t

in (9). Finally, the video memories can be updated to Mt+1

as follows:

mt+1,i = m̂t+1,i(1− get α̃t,ip
e
t,i) (21)
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3.3. Diversitydriven Training

The dynamic video memories can help the model to de-

scribe diverse video content, while diverse language ex-

pression is also essential to the paragraph generation. The

typical MLE and RL training objectives for the captioning

model both force the model to fit the ground-truth distri-

bution, which makes the decoder prefer high-frequency to-

kens and phrases. It not only results in dull and repetitive

expressions, but also makes the model generate wrong de-

scriptions, regardless of video content. Motivated by the

unlikelihood training [38], we improve the training objec-

tives with token- and phrase-level high-frequency penalties.

Token-level Training. In the token-level training, we

augment the MLE objective with high-frequency word

penalties as [38]. Considering that the model tends to re-

peat words that have been generated before, we define the

previous context words as the high-frequency tokens for the

current training pair (v, y∗). Therefore, the MLE loss func-

tion (2) is changed to:

Lmle = −
1

T

T
∑

t=1

(log p(y∗t |y
∗

<t, v)+
∑

c∈Ct

log(1−p(c|y∗<t, v)))

(22)

where Ct = {y∗1 , · · · , y
∗

t−1} \ {y∗t } is the candidate word

set to be penalized. In this way, not only the probabilities of

ground-truth words are enhanced, but also the probabilities

of wrong candidates with high-frequency are penalized.

Sequence-level Training. In the sequence-level train-

ing, we introduce the phrase-level penalty to the RL loss

function (3). Specifically, we compute the n-gram fre-

quency of the training annotations to create a phrase fre-

quency look-up table. The inverse document frequency (idf)

score can represent the uniqueness of n-grams, which is em-

ployed as the diversity reward in reinforcement learning. To

avoid the model generating meaningless phrases which of

course have low frequencies in the annotations, we combine

the diversity reward with the relevance reward computed by

CIDEr [30]. The RL loss function (3) is changed to:

Lrl = −
1

T

T
∑

t=1

(rrlv(y
s) + βrdiv(y

s
t )) log p(y

s
t |y

s
<t, v)

(23)

rdiv(y
s
t ) =

1

k

∑

ph∈Hn(ys
t )

1

freq(ph)
(24)

where Hn(y
s
t ) is the set of n-grams containing yst in ys, and

k is the size of Hn(y
s
t ). β is the hyper-parameter to balance

the diversity and accuracy. In practice, we normalize both

rrlv(·) and rdiv(·) with baseline rewards of sentences sam-

pled by greedy search as in [23] for training stability.

We first train the whole model with Lmle and video sum-

mary losses as follows:

L = Lmle + λ1Lreconst + λ2Lsparsity (25)

where λ1 and λ2 are hyper-parameters. Then we fine-tune

the model with Lrl in reinforcement learning.

4. Experiments

4.1. Datasets and Experimental Settings

Datasets. We conduct experiments on the ActivityNet Cap-

tions dataset [12] and Charades Captions dataset [36]. Ac-

tivityNet Captions dataset contains 10,009 videos for train-

ing, 4,917 for validation and 5,044 for testing. Each video in

the training set has a single reference paragraph while each

video in the validation set has two reference paragraphs.

Since the test set is held for the challenge evaluation, we

follow previous works [13, 49] to split the validation set into

two subsets: ae-val with 2,460 videos for validation and ae-

test with 2,457 videos for test. Charades Captions dataset

is processed from the Charades dataset [26], which contains

6,963 videos for training, 500 for validation and 1,760 for

testing. Each video is annotated with multiple paragraphs.

Evaluation Metrics. We evaluate the paragraph generation

qualities from two aspects, accuracy and diversity respec-

tively. For the accuracy measurement, we evaluate the gen-

erated paragraph against the ground-truth with three stan-

dard metrics as [13, 21, 39], including BLEU@4 [20], ME-

TEOR [7] and CIDEr [30]. Since the standard metrics do

not consider much about diversity of the paragraph, we fur-

ther evaluate the generated paragraphs with diversity met-

rics. Following [21], we evaluate the diversity using two

types of metrics: 1) n-gram diversity (Div@n) [24]: the ra-

tio of unique n-grams to the total number of words in the

paragraph, which is widely used for diversity evaluation;

and 2) n-gram repetition (Rep@n) [39]: the ratio of n-gram

repetitions to the total number of n-grams.

Implementation Details. For the videos, we use ResNet-

200 [10] pretrained on ImageNet and I3D (RGB+Flow)

[3] pretrained on Kinetics dataset to extract clip-level fea-

tures of dimensionality 4096D. We truncate video clips with

maximum number of 150. For the texts in ActivityNet

dataset, we truncate the paragraph with maximum length

of 150 and build the vocabulary with 10,246 words. For

the Charades dataset, we truncate the paragraph with max-

imum length of 100 and build the vocabulary with 2,692

words. We set the number of encoder and decoder layers

as N = 3, the hidden size as d = 512 and the number of

attention heads as 8. The start window length S in Eq.(12)

is set as 50, according to dataset statistics that the first 1/3

length of the video are likely to belong to the first event in

the paragraph description. We set the history window length

W = 20 in Eq.(9) based on the average length of a single

sentence. For the phrase penalty in Eq.(24), we set the n to

4. The β in Eq.(23) is set to 0.3, and the weights of video

summary losses in Eq.(25) are set as λ1 = λ2 = 0.5. Dur-

ing training, we use the label smoothing [28] with value set

11249



Table 1. Comparison with state-of-the-art approaches for video paragraph generation on ActivityNet Captions ae-test split. “Train” and

“Infer” indicate if the video segment annotations are needed at training and inference time.

Segment Annotation Accuracy Diversity

# Methods Train Infer BLEU@4 METEOR CIDEr Div@1↑ Div@2↑ Rep@4↓

1 MFT [39] X X 10.33 15.09 19.56 - - 15.88

2 VTransformer‡ [50] X X 10.38 16.33 21.05 61.45 77.36 7.42

3 AdvInf‡ [21] X X 10.89 17.41 20.40 60.59 78.29 5.09

4 MART‡ [13] X X 10.54 17.12 24.14 61.41 77.43 5.32

5 MFT [39] X × 8.45 14.75 14.15 - - 17.59

6 Vanilla × × 11.53 15.91 24.11 64.92 82.34 3.17

7 Ours × × 12.20 16.10 27.36 68.33 84.26 2.63

8 Human - - - - - 68.60 85.40 0.83

Table 2. Captioning results on Charades Captions dataset.

Accuracy Diversity

Methods B@4 M C D@1 D@2 R@4

HRL [36] 18.80 19.50 23.20 - - -

Vanilla 19.19 19.80 25.30 72.90 86.13 1.23

Ours 20.34 20.05 27.54 76.18 87.31 0.92

Human - - - 79.90 90.81 0.10

as 0.1 and optimize with the learning rate varied under a

warm-up strategy with 8,000 steps. In the inference phase,

we generate the paragraph with greedy search.

4.2. Comparison with the Stateofthearts

We compare our model with the following state-of-the-

art methods, which all use event segments (either ground-

truth events or automatically generated events) for video

paragraph generation.

• MFT [39]: A LSTM based model which couples two

RNNs for the event detection and event captioning re-

spectively. The previously detected events and gener-

ated captions are exploited as context information.

• VTransformer [50]: A transformer based model

which independently generates descriptions for each

event segment. We use ground-truth event segments

for a stronger baseline as in [13].

• AdvInf [21]: A LSTM based model with hybrid dis-

criminators to select diverse and fluent captions from a

sampling set at inference time. The ground-truth event

segments are used to generate captions.

• MART [13]: A transformer based model with memory

augmented to fully exploit the event and sentence his-

tories for better captioning. Similar to AdvInf [21], the

ground-truth event segments are used in generation.

Table 1 reports the paragraph generation performances

of different models on the ActivityNet Captions ae-test

‡These strong baselines are rerun using their released codes with the

same video features as in our model and are better than the reported results.

split. The table shows that there is a large performance gap

for two-stage approaches between using ground-truth event

segments (Row 1-4) and using automatically generated ones

(Row 5), which demonstrates that the poor performance of

event detection seriously hinders the quality of paragraph

generation. With the advantages of one-stage framework,

vanilla model and our final model both outperform these

strong baselines and do not require any event segment an-

notations. Our model achieves the best results on both the

accuracy and diversity aspects except on METEOR. The

METEOR metric prefers longer paragraphs, therefore, the

methods using ground-truth event proposals have higher

METEOR scores due to the same number of sentences with

the ground-truth. For the diversity aspect, we achieve com-

petitive results with the human level on Div@1 and Div@2,

which demonstrates the effectiveness of our proposed dy-

namic video memories and diversity-driven training objec-

tives. Experimental results on Charades Captions dataset in

Table 2 also demonstrate our model achieves state-of-the-art

results for video paragraph generation. Besides automatic

metrics, we also conduct human evaluation in the supple-

mentary material to further show the improvements.

4.3. Tradeoff of Efficiency and Performance

Figure 2 shows the inference speed and captioning per-

formances of our model using different keyframe selecting

ratios. The inference speed grows (the time cost drops)

rapidly with fewer video clips to be attended to, while the

CIDEr drops slowly until the selecting ratio δ is below 0.4.

It demonstrates that the proposed keyframe selection mech-

anism is effective which can discard less informative clips

in the untrimmed video to improve efficiency and maintain

the captioning quality. The best selecting ratio to trade off

the speed and performance is 0.5. Contrary to the accuracy

metric, the diversity of paragraph is improved with fewer

frames selected because the video features are more distinc-

tive without redundancy.

We also compare our proposed keyframe selection

method with a uniform interval sampling approach, which
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Table 3. Ablation study on ActivityNet ae-test set to demonstrate the effectiveness of different components. (pme: progressive memory

exposure, omd: over-accessed memory decay, token: token penalty objective, rrlv: relevance reward, rdiv: phrase penalty objective.)

# Decoder MLE RL Accuracy Diversity

pme omd token rrlv rdiv BLEU@4 METEOR CIDEr Div@1↑ Div@2↑ Rep@4↓

1 11.53 15.91 24.11 64.92 82.34 3.17

2 X 11.95 15.94 25.52 66.79 82.81 3.39

3 X 11.91 16.01 24.47 66.18 82.95 2.87

4 X X 11.61 15.72 25.65 67.90 83.37 2.80

5 X X X 11.74 15.64 26.55 68.42 83.95 2.75

6 X X X X 12.10 15.85 27.06 67.81 83.45 2.97

7 X X X X X 12.20 16.10 27.36 68.33 84.26 2.63

Table 4. Ablation study on ActivityNet ae-test set to demonstrate contributions of different losses for keyframe selection with ratio δ = 0.5.

# Lmle Lreconst Lsparsity BLEU@4 METEOR CIDEr Div@1↑ Div@2↑ Rep@4↓

1 X 11.60 15.51 25.47 66.97 81.06 4.30

2 X X 11.41 15.58 26.80 68.16 82.75 2.82

3 X X 11.34 15.27 26.02 68.06 81.45 3.77

4 X X X 11.67 15.71 26.74 68.71 83.23 2.52

Figure 2. Variation of captioning performance and speed with dif-

ferent selecting ratios δ. TPV denotes time per video (ms).

Figure 3. Visualization of the attention weights α on video frames

for paragraph generation. Left: vanilla model. Right: our model

with dynamic video memories.

uniformly selects video clip features instead of relying on

the learned s
N . Our proposed keyframe selection method

outperforms the uniform interval sampling on both CIDEr

and Rep@4 under all the selecting ratios, which demon-

strates our model can select more distinctive frames.

4.4. Ablation Studies

In order to demonstrate the contributions from differ-

ent components in our model, we carry out ablation stud-

ies in Table 3. Row 1 denotes the vanilla baseline pre-

sented in Section 2, which directly generates the video para-

graph as in conventional video captioning task. In Row

2-4, we replace the standard attention mechanism in the

vanilla transformer decoder with our proposed attention en-

hanced by dynamic video memories. The proposed pro-

gressive memory exposure and over-accessed memory de-

cay mechanisms both improve the paragraph diversity by

1-2 points on Div@1, while combining them achieves ad-

ditional gains on both accuracy and diversity metrics. We

visualize the attention weights from vanilla model and our

proposed model in Figure 3. It shows the learned attentions

in vanilla model only focus on a few salient clips for the

whole paragraph, which leads to repeated or missed event

descriptions. However, with our proposed dynamic video

memories according to the description status, our attention

can focus on diverse frames and roughly forms a diago-

nal line similar to human description with the chronologi-

cal order. In Row 5, we add the token-level high frequency

penalty to the MLE training objective, which further brings

improvements. In Row 6 and Row 7, we finetune the pre-

trained model via reinforcement learning. With the CIDEr

reward alone, the model yields better accuracy results, but

harms diversity metrics. Combining it with phrase-level

high frequency penalty achieves the best final results. The

proposed diversity-driven training objectives (both token-

and phrase-level) are shown not only improving the diver-

sity metrics but also the accuracy metrics due to their good

abilities to prevent the language decoder from generating

high-frequency words regardless of visual content.

Table 4 shows the effectiveness of the two auxiliary

losses in the keyframe selection. We report the results with

50% video clips selected in inference since it is the best

ratio choice to trade off the speed and performance. With-

out the video reconstruction loss, the model learns to select

keyframes only with the captioning loss, which results in

a large performance drop. However, the proposed recon-
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VTransformer (GT events): He starts cooking in the kitchen. A chef is standing at a counter in a kitchen. A man is standing in a kitchen.

AdvInf (GT events): A man is standing in front of a counter while speaking to the camera and leads into him taking a pan and presenting it to the camera.

The camera pans around the food and ends by presenting it to the camera. The man takes a sip of the food and begins to stir the pan.

MART (GT events): A man is seen standing behind a table speaking to the camera and begins mixing ingredients into a pan. The man continues to mix
ingredients and ends by presenting it to the camera. He continues speaking to the camera and showing off his finished in the end.

Vanilla (no event detection): A man is seen standing behind a counter speaking to the camera and leads into him holding up a food. The man then mixes
ingredients into a bowl and finally putting food into a pan.

Ours (no event detection): A woman is seen standing behind a counter and putting various ingredients into a pan. She mixes the ingredients together and
ends by spreading it onto a plate.

Ground-Truth: A woman is seen cooking items onto a stove with various ingredients laid out. The camera pans around kitchen and shows the woman
cooking more ingredients. She continues mixing it around in the pan.

Figure 4. Qualitative examples of the generated paragraphs by our model and other state-of-the-arts methods. The words in red represent

high-frequency tokens and phrases which are generated regardless of video content.

struction loss can help to enforce the model to select salient

frames that maintain similar semantic information with the

original video clip features. Our final loss with the three

losses combined achieves the best results.

4.5. Qualitative Analysis

Figure 4 shows a test example with the paragraph cap-

tions from our model and other state-of-the-art models. The

compared models incorrectly describe the woman as “man”

due to its higher frequency (man 2.26% vs. woman 0.85%)

in the data. Furthermore, they tend to generate redun-

dant high-frequency phrases regardless of the video content,

such as “speaking to the camera”, which is the top1 frequent

verb phrase in the training set. Our model, however, can

generate more coherent and diverse video paragraphs even

without ground-truth event segment annotations. More ex-

amples can be found in the supplementary material.

5. Related Works

Over the past years, image captioning has achieved sig-

nificant improvements [32, 41, 43, 15, 1], which mainly

focus on generating a single sentence to describe the im-

age content. In order to describe more fine-grained de-

tails in an image, Krause et al. [11] propose the image

paragraph captioning with a hierarchical RNN to generate

topic vectors first and then convert topics into sentences to

form a paragraph. However, recent works [16, 17] have

shown that directly generating paragraph as a long sentence

outperforms the hierarchical manner when enhanced with

diversity-driven training and inference approaches. Inspired

by the image paragraph generation pioneers, in this work we

explore whether the video paragraph can be effectively gen-

erated without hierarchical manner of using event detection.

Video captioning [31, 44, 35, 5, 33] is more challenging

compared to image captioning with complexities on both

spatial and temporal dimensions. Recently, Krishna et al.

[12] propose the dense video captioning task to localize and

describe multiple events for long videos with multiple sen-

tences. They first detect multiple events in the video and

then generate description for each of them. However, these

descriptions are independent and not coherent as a whole.

Xiong et al. [39] further propose to generate a coherent

paragraph to describe multiple activities in the long video.

However, they still solve the problem in a two-stage way

like dense video captioning methods [50, 34, 14, 18]. They

first propose hundreds of event proposals with event pro-

posal networks [48, 2, 8], then select events to be described

with the contextual information from previously detected

events and generated captions. Park et al. [21] and Lei et

al. [13] directly generate video paragraphs with the ground-

truth event segments, which cannot generalize to videos

without such event annotations. In this work, we eschew the

event detection stage and directly generate the video para-

graph with dynamic video memories.

6. Conclusion

In this paper, we propose an one-stage framework for

video paragraph generation. Due to the long video inputs

and paragraph outputs, it is challenging to generate diverse

paragraphs efficiently. We propose a keyframe-aware video

encoder to improve the efficiency and an attention mecha-

nism with dynamic video memories to learn more diverse

and coherent visual attentions. Besides, a diversity-driven

training objective with high-frequency token and phrase

penalties is proposed to improve language diversity. Exper-

imental results on ActivityNet and Charades datasets show

that our proposed model outperforms the state-of-the-art

performance on both accuracy and diversity metrics.
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