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Abstract: Recently, more and more mobile devices have been connected to the Internet. The Internet
environment is complicated, and network security incidents emerge endlessly. Traditional blocking
and killing passive defense measures cannot fundamentally meet the network security requirements.
Inspired by the heuristic establishment of multiple lines of defense in immunology, we designed and
prototyped a Double Defense strategy with Endogenous Safety and Security (DDESS) based on multi-
identifier network (MIN) architecture. DDESS adopts the idea of a zero-trust network, with identity
authentication as the core for access control, which solves security problems of traditional IP networks.
In addition, DDESS achieves individual static security defense through encryption and decryption,
consortium blockchain, trusted computing whitelist, and remote attestation strategies. At the same
time, with the dynamic collection of data traffic and access logs, as well as the understanding and
prediction of the situation, DDESS can realize the situation awareness of network security and the
cultivation of immune vaccines against unknown network attacks, thus achieving the active herd
defense of network security.

Keywords: network security; double defense; zero trust; situation awareness; immunology

1. Introduction

With the development of the Internet and its deep integration with human social life,
more and more mobile devices are connected. They are heterogeneous and ubiquitous,
and put forward higher requirements for network security. The predominant best-effort
design of TCP/IP network architecture focuses on the end-to-end communication between
non-commercially and mutually trusted users. The network data transmission is entirely
transparent, and the service and the bearer are separated. However, it instead hands
over the security control to the users. This helps to improve the network availability and
flexibility but at the cost of network security [1]. The Internet appears to be incapable
of responding to users’ demands for security in obtaining massive content. In addition,
the current internet IP addresses have positioning, identity, and forwarding functions that
pose many challenges for supporting quality of service (QoS), especially for the Internet
of things (IoT) [2], Internet of Vehicles (IoV) [3], and the authenticity and credibility of the
fusion of the virtual and real world in the metaverse [4].

Currently, network security protection is mainly based on IP networks’ character-
istics and adopts passive defense measures with blocking and killing methods, such as
firewalls, authentication technology, access control, vulnerability scanning, disaster recov-
ery, and honeypot technology. The defense capabilities of these measures can be passive
or static, depending on predetermined settings before accessing the system and updating
the preset defense library during use. Therefore, they can only detect and defend against
a number of predefined network security attacks. Moreover, although these methods
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require higher user permissions and privileges, they can be easily controlled and exploited
by attackers [5]. It is worth mentioning that the network security vulnerabilities con-
stantly emerge while the attack methods are persistently refreshed. As demonstrated in
Figure 1, attackers usually scan the weakest link in security defense to launch network
attacks. Traditional defense measures focus on improving the protection capabilities against
attacks rather than identifying, tracking, and investigating the responsibility of the attack-
ers. They passively receive every intrusion attack, which is difficult to detect, identify,
and respond to emerging attack methods, and it is challenging to solve network security
problems fundamentally.
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Figure 1. Network attack procedures.

While paying attention to network security, we found much inspiration from the
biological immune system. The biological immune system has the advantages of feature
extraction, distributed detection, self-tolerance, self-adaptation, robustness, and the capabil-
ities of pattern recognition, learning, and memory [6]. It forms individual immunity to viral
infections through its physical barrier, innate immune system, and adaptive immune sys-
tem, and achieves the public herd immunity through collaboration between heterogeneous
nodes and the cultivation and injection of vaccines [7]. Inspired by the multiple defense
lines in immunology [8], this paper proposes a double defense strategy with endogenous
safety and security (DDESS) as shown in Figure 2 based on the multi-identifier network
(MIN) architecture [9]. We adopt identity authentication as the core access control method
to solve traditional IP network security problems, and implement static network security
defense through key encryption technology, blockchain technology, and trusted computing
whitelist strategy. At the same time, through the dynamic collection of data traffic and
access logs, DDESS can find the network vulnerabilities in the existing system, understand
and predict the situation, realize the situation awareness of network attacks, and cultivate
the immune vaccine of unknown network attacks, to complete the active dynamic defense
of network security and the balance of network availability and security.

In summary, this paper makes the following contributions:

• This paper discusses the problem of the network’s bottleneck resulting from the
traditional IP-network carrying capacity and the poor network security. In this regard,
we inspire our proposed system from the idea of zero-trust network [10]. In doing
so, based on MIN architecture [9,11], we built a security strategy with an identity
identifier as the core of network transmission. This strategy is built based on identity
identifiers rather than network locations. Only after user authentication, authorization,
and account verification can the user and the application communicate.

• Signature of network transmission packets protects data from theft. A variety of the
data related to the identifiers is stored in the consortium blockchain of the MIN to
ensure the identifier data’s non-repudiation, tampering-resistance, and traceability.
The independently developed voting consensus algorithm Proof of Vote (PoV) [12]
improves the throughput of the system. At the same time, the encryption key and data
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are stored in the trusted computing modules (TCM) to ensure that they are not read
or disclosed [13], and protected by remote authentication [14]. Real-time monitoring
of the trusted whitelist of accessing applications can promptly detect and respond
to attacks.

• The network traffic and application access logs are collected and analyzed for further
situation awareness. DDESS classifies and extracts appropriate attack information,
including attack behavior and mode, and makes use of the convolutional neural net-
works (CNN) to evaluate the network security attack index of attack information.
In addition, DDESS predicts the network security of the existing network system and
provides the corresponding solutions. DDESS simulates network behaviors in the
sandbox. It then analyzes these simulation results, cultivates a security immune vac-
cine, enriches the network attack behavior database, and prevents unknown network
attack behaviors.
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Figure 2. Double defense strategy with endogenous safety and security (DDESS).

The remainder of this paper is organized as follows: Section 2 reviews the related
work of image anomaly detection. A detailed description of our proposed method is given
in Section 3. In Section 4, we present experimental setups and comparisons. Section 5
carries out the corresponding experiments and gives out the simulations results. Section 6
concludes the paper and points out some of our future research.

2. Related Work

The traditional static defense of network security is divided into three types: reinforce-
ment protection of the system, intrusion detection, and network deception [15].

Firewall (including packet filtering, proxy type, state inspection, in-depth inspection,
web application) [16], encryption and decryption, data authentication [17], and access
control [18] focus on protecting information and enhancing the security of the network
system itself. They play a protective role in ensuring the normal access channels of the
network system, authenticating legitimate user identities and rights management, and the
security of confidential data and information.

Intrusion detection [19], vulnerability detection [20], traffic analysis [21], log auditing [22],
and other attack methods for known characteristic information make use of methods such
as characteristic scanning, pattern matching, and comprehensive data analysis to conduct
dynamic monitoring, linkage alarms, and emergency response to prevent or eliminate
attack threats.
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Honeypot technology [23] deploys some hosts and network services as decoys to
induce attackers to carry out attacks, thereby capturing and analyzing the attack behaviors,
understanding the tools and methods used by the supplier, and speculating the intention
and motivation of the attack, thereby enhancing its security protection capabilities [24].
However, it is difficult to deploy a honeypot environment that is not readily perceivable by
intruders [25].

The above static defense methods can better defend against attacks with known char-
acteristics and fixed patterns. However, it cannot defend against attacks based on unknown
vulnerabilities backdoors, complicated and changeable multimode joint attacks, and at-
tacks from within the network. With the continuous improvement of the automation and
intelligence of countermeasures, the construction and strengthening of the network security
defense system alone can no longer meet the actual needs of network security defense.
Dynamic defense technology has gradually attracted widespread attention and is consid-
ered a revolutionary technology that changes the asymmetry of network security, such as
Moving Target Defense (MTD) [26], Cyberspace Mimic Defense (CMD) [27], and Cyber
Deception (CD) [28].

Let us dive into a specific scenario: vulnerabilities have constantly been discovered
in the Internet of Vehicles (IoV), and the security problems of Vehicle to Everything (V2X)
interactive communication are gradually emerging. The Internet of Vehicles requires real-
time and timely resolution of network security issues. Therefore, many machine learning-
based solutions in V2X scenarios have been proposed to provide dynamic defenses and
address these problems. The surveillance of physical layer security (PLS) was explored in
the field of connected vehicles [29]. A delimitated anti jammer scheme based on machine
learning [30] secures the network and alleviates the traffic congestion simultaneously; in
the meantime, it can reduce the computing delay.

Network dynamic defense is an innovative network defense technology system grad-
ually developed to deal with the increasingly severe cyberspace security situation, which
makes it possible to break the long-standing impregnable asymmetry and will balance the
difficulty of network attack and defense in the future.

In this paper, we present a network defense strategy that integrates static and dynamic
defenses. It adopts the ideas of the zero-trust network, and employs identity authentication,
blockchain technology, and trusted computing technology, with situation awareness and
dynamic immune functions.

3. Static Defense

We adopt the idea of a zero-trust network and build a multi-identifier network sys-
tem with identity as the core, supplemented by data signature, blockchain technology,
and trusted computing technology to realize the static defense of network security to
improve the autoimmunity of network individuals.

3.1. Multi-Identifier Network System with Identity as the Core

The network identifier is the data carried in the network packet for addressing and
forwarding by the intermediate router. In the traditional IP network, the target IP address
of a network packet is its network identifier, forming a thin waist hourglass structure
with IP as the core in the network layer, which identifies two network nodes for end-
to-end communication. This network architecture is no longer suitable for the network
communication requirements of the existing network to obtain content and services. At the
same time, since the original design purpose of the IP network is to communicate between
non-commercial users who trust each other, the network transmission is entirely transparent
to the intermediate router, which makes data theft and monitoring easy. The IP network
lacks top-level design and usually adopts a passive patching method for network security,
making it increasingly challenging to implement [31].

The multi-identifier network (MIN) system [11] takes identity as the core, and supports
the coexistence of multiple network identifiers such as identity, content [32], service, space,
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space, and location information, and IP, to solve the depletion of IP addresses and the
security problems existing in IP networks, as shown in Figure 3. The multi-identifier net-
work is divided into a management plane (multi-identifier system, MIS) and data plane
(multi-identifier routers, MIR), which supports simultaneous transmission of multiple
network identifiers in the network, as depicted in Figure 4. MIS supports the management
and resolution of network identifiers by multiple parties equally, and is responsible for the
affairs related to identifiers combined with offline. Its main functions include identifier
registration, identifier query, identifier generation, and identifier query. The multi-identifier
router (MIR) is mainly responsible for the addressing, forwarding, and mutual translation
functions of multiple identifier network packets. It supports the push transmission mode
of identity and IP identifiers and the pull transmission mode of content identifier and
service identifier.
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Figure 3. Multi-identifier network architecture.

Identity is not limited to users but also includes the unique identification of network
communication physical entities (from now on referred to as users) such as devices, inter-
faces, applications, and business systems in the digital network world. It is the equivalent
of physical network entities in the digital network world. The identity of a physical entity
is unique in the digital network world, which is different from a username. A physical
entity can have different usernames in different systems.

The identity identifier is the core network identifier in the MIN, and all multi-identifier
routers need to support routing and forwarding of the identity identifier. Other types of net-
work identifiers will be associated with a particular identity identifier. In an unsupported
network domain, it can go back to the identity identifier for data forwarding. The hash
value of the real identity information of the network communication entity (such as ID
number, fingerprint, face, voiceprint, iris, and other biometric information, password) is
included in the signature field in the data packet. It carries the sender’s accurate identity
signature information and time stamps, realizes dynamic access control based on identity,
establishes a unified digital identity identifier and life cycle management for users and
other physical entities participating in network communications, and saves them in the
consortium blockchain of the MIS system.

After the communication entity is registered in the MIS, a unique identity is formed,
corresponding permissions are assigned according to its role identification, and fine-grained
permission management is carried out by monitoring its access behavior to realize the
management and control of dynamic permissions. The principle of the least authority
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is implemented for communication entities, and their authority is allocated reasonably
to ensure that each communication entity (including applications, services, users) can
only access the required information or resources. When it is necessary to access sensitive
resources, the identity recognition module will call other real identity information saved in
the MIS for secondary verification, such as SMS verification code, dynamic password, face
verification, to form access control and dynamic threat identification, privilege confirmation,
alarm, and blocking at the regional boundary. The information transferred by users in
the system will be recorded. The data package is highly bound with the user identity
information to realize the traceability of data and behaviors.
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Figure 4. Separation of multi-identifier network management plane and data plane.

3.2. Encryption and Blockchain Protection

Identity authentication is based on Elliptic Curve Cryptography (ECC), rather than
RSA. In addition to the registration phase, the subsequent authentication phase does not
require the participation of a trusted third party, which ensures communication security and
reduces the overhead of computing and communication. Data transmitted in the network
will be protected by hash and asymmetric encryption at the packet level, rather than at
the channel level, to prevent sensitive information from being eavesdropped, intercepted,
or tampered with.

The nodes in the MIS consortium chain are divided into committee nodes, accounting
nodes, and ordinary user nodes. The committee nodes are elected by members who volun-
teer to maintain the consortium chain and have equal voting rights jointly. The bookkeeping
node is a node with the privilege to produce blocks voted by the committee nodes.

During user registration, the user will generate his public and private key pair, package
the public key and the real identity information signed by the private key, and submit it to
any blockchain node in the MIS system. The node will check the format of the registration
request and find whether the user information already exists in the local database to avoid
repeated registration. After that, this node will perform primary verification of the content
of the registration information, package it into blockchain transaction information and
submit it to the accounting node in the MIS consortium blockchain, and store the transaction
information in the transaction pool.
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We adopted the PoV consensus algorithm [33] to accelerate the process of consortium
blockchain consensus, as depicted in Figure 5. At the beginning of the blockchain consensus,
the accounting node will take out some transaction information from the transaction pool
to generate a pre-block, and send it to the committee node in the consortium chain to
request a signature. The committee node verifies the pre-block header and the content
of each transaction, and sends it back to the accounting node after signing. If the billing
node receives more than half of the signatures of the committee nodes within a given time
threshold, it will store the signature information in the block header and set the timestamp
to write this pre-block to the master of the consortium chain, and the pre-block becomes
an official block. Otherwise, the pre-block will be deleted; the transaction will be taken
out from the transaction pool again, and the pre-block will be generated and sent to all
committee nodes for verification and signature.

Genesis 

Block Special block
Ordinary 

block
Initialize 

commissioners

{C1,C2,...Cj}

Including butlers 

{B1,B2,...Bi,..,BNb}

Including ordinary 

transactions

Select butler Bi 

to generate 

block

Is special block?

Collect 

votes

Collect 

transations

Generate 

special pre-

block

Generate 

ordinary 

pre-block

Signatures 

number

Nc/2

TimeoutVerification 

failed

Qualified 

special 

block

Invalid 

block

Commissioner nodes 

{C1,C2,...Cj,.., CNc}

i = ( i +1 ) % Nb

M=M+1

N

Y

Is special bock?

Timeout?

One duty 

cycle

One tenure cycle

Random number

 i=R M=1

Random number 
i=R M=1

Qualified 

ordinary 

block

Y

N

Y

N

Y

N

Commissioner 

send votes to Bi

Send Pre-block 

and wait for 

signatures

  Phase 1    Phase 2   Phase 3  

Figure 5. PoV consensus and block generation procedure.

When a user performs network data transmission, the user’s signature information
will be included in the data packet to record the user’s access path in the multi-identifier
network and realize the traceability of network security. When abnormal access is de-
tected, the registered identity information reserved by the user will be retrieved from the
consortium chain database, and the user will be warned or prohibited.

3.3. Trusted Computing Whitelist

Trustworthiness is the expectation that an entity can acquire the expected effect when
realizing a given goal. It should be salable, adaptive, and auto-configurable, especially for
the ubiquitous computing scenarios, such as Internet of Things and Internet of Vehicles [34].
We adopted the active immune trusted computing module (TCM) independently developed
by China [13] in the client host hardware to save the encryption keys used in the consensus
process of the blockchain nodes.

The private key is stored in the TCM chip and cannot be leaked and read. The public
key can be used everywhere to identify the node identity and for signature verification.
At the same time, all kinds of data generated by the node (such as blocks, transactions)
are signed using the signature algorithm provided by TCM, to protect the private data
such as encryption keys, and ensure data integrity, confidentiality, and security of the data
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through the transmission of the trusted chain. Identity authentication and encryption key
mechanisms ensure the credibility of the computing environment.

Whitelist is adopted for application identification, and protection, such as NFD,
PSYNC; only a few trusted applications are allowed to run in the current network system
to realize the supervision and protection of the whole life cycle of applications from startup,
loading, and operation, which reduces the load of the system and improves the availability
of the system, as shown in Figure 6. The application developers use their private key to
issue the application signatures and register them with the MIS, or the MIS trusted service
to provide the verification benchmark and establish the application white list database.
For applications on the whitelist, we conduct essential behavior analysis on their regular
operations, and establish the whitelist behavior rule base of the applications. When an
application starts, the hash measurement value of the application is obtained and compared
with the expected benchmark value taken from the trusted module (TCM) to complete the
integrity measurement. The execution of the application will be allowed only when the
application is integrity and has not been tampered with. At the same time, during the oper-
ation of the application, the running status of its key behaviors is monitored in real-time,
and the pre-established application behavior rule base is compared to detect abnormal
behaviors in time, and record their operations in the log, to trade off between security and
availability, and ensure the orderly operation of the application.

User
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Figure 6. Trusted computing remote attestation and whitelisting.

At the same time, the security of TCMs needs to be guaranteed. [35] The feasibility
of trusted computing storage and computing environment can be confirmed remotely
through remote attestation Direct Anonymous Attestation (DAA) technology [14]. DAA
uses the Carmenisch–Lysyanskaya signature mechanism [36] to sign certificates of the
public key generated by the TCM to ensure the legitimacy of the TCM module. The TCM
module uses the DAA certificate to interact with the DAA verifier, thereby identifying and
distinguishing the compromised TCM module and ensuring the security of the trusted root.

4. Dynamic Defense

Static defense methods, such as identity authentication, data signatures, blockchain,
and trusted computing, provide sufficient external barriers for network security to obtain
balanced network confidentiality, integrity, and availability and hence protecting network
nodes’ security. They can effectively prevent and trace security problems. At the same time,
nodes in the network are not simply isolated. They may face group network problems and
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new types of severe or unknown attacks. Therefore, it is necessary to build an effective dy-
namic defense system. The measures taken into consideration by DDESS include situation
awareness and network security vaccine training and distribution.

4.1. Situation Awareness

Network situation awareness refers to the acquisition, understanding, and display
of security elements that can bring about the network situation changes in a large-scale
network environment, as well as the prediction of network development trends [37,38].
It is divided into network security situational extraction, understanding, and prediction.

When a network individual conducts a static defense, numerous original log files
and backbone network traffic data will be generated, including user usage logs and alarm
information, which provides a wealth of training materials for dynamic defense situation
awareness of network security.

DDESS builds a decision tree containing all or part of the rules in the security policy
rule set on the log file, which parses, filters, omissions, and normalizes the entries in the
log file. Firstly, the raw data generated by the network monitoring equipment and manage-
ment system are preprocessed, including data cleaning, noise reduction, dimensionality
reduction, standardized merging or conversion, and data verification, removing duplicate
and redundant information, merging similar information, and correcting error information,
in order to obtain standardized asset data sets, threat data sets, and vulnerability data
sets. Then, it carries out data correlation analysis and uses expert knowledge to model
network activities and their regulations and characteristics, and identifies the existence and
forms of various individuals in the network, and further identifies three different behaviors:
malicious attack behavior, abnormal risk behavior (including weak password, account
risk login, remote control), and normal access behavior. Behaviors that do not conform to
the behavior baseline will trigger behavior alarms to detect risks in time and better find
hidden attacks.

Based on the identified attack activities and their characteristics, the attacker’s inten-
tion is inferred by further analyzing the semantics of these attack activities and the possible
correlation among them. Its main tasks include identifying the source and type of these
attack activities and judging the attacker’s capability, opportunity, and the possibility of
conducting a successful attack. Based on the network attack chain, network traffic abnor-
malities are found, such as external attacks, internal malicious scanning, ARP spoofing
attack, and internal illegal accesses. The attacker’s intentions can be mainly analyzed
from the attack’s behavior and target. The attack behavior prediction analyzes the logical
relationship between attack behaviors and infers possible changes. In addition, we need
to consider the function and importance of network assets to infer the attacker’s attack
intention and source. DDESS situational understanding draws portraits of user behaviors,
including individuals and groups. Moreover, it constructs the network attack knowledge
graph and draws the security graph from different perspectives, such as external attacks,
internal horizontal penetration, and network data leakage. Therefore, DDESS can under-
stand the current overall network security situation, detect and discover security events,
and analyze and evaluate the network vulnerabilities and the impact of attacks.

DDESS first checks the network’s security status to achieve network security situation
awareness. Then, it understands in detail the various assets and participants within the
networks and their potential vulnerabilities to attacks. It finally draws a graph of the
network assets and the corresponding security vulnerabilities. After comprehensively
acquiring network threat status data, convolutional neural networks (CNN) [39] are used
to evaluate the potential network security risks and the behavioral patterns of different
nodes. The resulting infliction of existing attack behaviors is based on the current network
status and the identified attack activities, along with the vulnerabilities of network assets,
as shown in Algorithm 1.
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Algorithm 1 Training of security situational project model
Input:

The total number of layers L, the number of neurons in each hidden layer and output layer,
activation function f , loss function, iteration step η,
maximum iteration times MAX and stop iteration threshold ε

Output:
linear relation coefficient matrix ω and bias vector b of each hidden layer and output layer.

1: Input the risk vector dataset R = {r1, r2, r3, · · · , rn}.
2: for m=1 to L do
3: Extract the m−layer features δm with a convolution kernel

δm(r)← f
(
∑ ωmδm−1 + bm

)
4: Reduce network scale with max pooling:

δm(r) = maxpooling(om−1(r) + bm)
5: end for
6: update the weight ω with backpropagation:
7: for l = L to 2 do
8: Compute δl based on δl+1 and ωl+1 and zl

9: Compute the gradient5ωl+1 and5bl

10: Update ωl and bl in lth layer:

ωl ← ωl − η
m
∑

i=1
δi,l(ai,l−1)T

bl ← bl − η
m
∑

i=1
δi,l

11: if ∆ω < ε or L > MAX then
12: break;
13: end if
14: end for

The overall time complexity of Algorithm 1 is the cumulative time complexity of all
convolution layers

Time : O

(
D

∑
l=1

m2
l · f 2

l · Cl−1 · Cl

)
, (1)

and the spatial complexity is

Space : O

(
D

∑
l=1

f 2
l · Cl−1 · Cl +

D

∑
l=1

m2
l · Cl

)
(2)

where D is the network depth, fl is the filter size, Cl is the filter number and the output
channels number of layer l, and Cl−1 also represents the input channels number of layer l.
ml is the size of the output feature map, and ml = b(nl − fl + 2 ∗ pl)/slc+ 1, where nl is
the size of the input matrix, pl is the padding, and sl is the stride. In addition, we eliminate
gradient vanishing problem with batch normalization [40] and introduce max pooling layer
and 1× 1 convolution kernel [41] for dimensionality reduction to reduce both the time and
space complexity. DDESS can predict the future security status and the changing trend of
the network and takes effective defensive measures.

4.2. Network Security Vaccine Training and Herd Immunity

The active immune trusted computing technology adopted in static defense can
provide immune capabilities for network information systems. The vaccine culture used in
organisms usually selects pathogens with strong immunogenicity, loses toxicity through
biochemical inactivation or repeatedly immune iteration of animal cells, and retains
its immunogenicity.

Biological vaccines are usually injected into organisms to produce immunity. However,
network vaccines are different from biological vaccines in a way that they aim to provide a
real-time and automatic defense. While defending against attacks, such vaccines improve
the network’s resilience and elasticity to maintain its availability and thus return to a
normal state eventually. Therefore, the cultivation of network defense vaccines needs
to be carried out dynamically in the network environment. The network vaccine can be
described as:
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V : (antigen, srcaddr, destaddr, timestamp, protocol). (3)

The vaccine of network security’s immunity is a string extracted from the character-
istics of data packets transmitted over the network. Antibodies are the measures taken
in static defenses and the rules generated in dynamic defenses. During the matching
process of antigens and antibodies, the immune cells constantly defend against network
attacks, form clonal regeneration, and evolve into memory cells. The memory cells record
accurately the network intrusions that have occurred, and encapsulate them into a vaccine
cell after stamping them with a timestamp according to the vaccine format as shown in
Equation (3).

The encapsulated network security vaccine is transmitted to the vaccine defense center
of the adjacent network to be finally distributed among the network nodes. The selection
of such a network considers the local routing table, routing, and forwarding. When the
antigenic match with the vaccine happens, it becomes activated and can detect network
attacks. At the same time, network nodes can also be used for training and cultivating
network vaccines as described by Equation (3). When new types of attacks are discovered,
these nodes will continue training and learning to enhance the vitality of antibodies in
vaccine cells to improve the autoimmunity and achieve adversarial collaboration.

5. Experiments

We evaluated the overall defense effectiveness, and intrusion detection performance
of DDESS compared with related state-of-the-art schemes in this section.

5.1. Overall Performance Evaluation

Experiments were conducted on a testbed using the topology presented in Figure 7.
The router pkusz11 plays the role of the edge router that is connected to the Internet.
Experiments and simulations are based on the published KDD-99 dataset that consists of
5 million records [42]. These records are totally made up of 41 attributes and one attack
category field which marks all observations as either “normal” or “attacked” with one
of the following attacks: Denial of Service (DoS), Remote to Local (R2L), User to Root
(U2R), and Probing/surveillance. We carry out attack experiments on DDESS combined
with the multi-identifier network. The selected attack methods are conventional under IP
networks, such as target detection, attack injection, ARP attacks, and so on. Experiments’
results are demonstrated in Table 1, where X indicates that the attack was successful, while
% represents an attack failure.

pkusz1 pkusz2

pkusz5

pkusz8

pkusz3 pkusz4

pkusz6

pkusz9

pkusz10

pkusz11

pkusz7

Figure 7. DDESS performance evaluation topology.
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Table 1. Attack results of experiments.

Attack Phase Description IP-IP IP-MIN

Target detection

Host discovery X %

ping scan X %

OS recognition System fingerprints obtained Host non-survival

Port scan All ports probed The host is alive,
but no port detected

Attack injection
Trojan

TCP trojan X %

UDP trojan X %

ICMP trojan X %

One-sentence shell X %

Action ARP Attack
Information sniffing Target cannot be sniffed

Network disconnection attack Target not affected

MIN can effectively defend against target detection attacks such as host discovery,
ping scanning, and operating system recognition. It can also prevent Trojan attack injections
and one-sentence shell attacks. Attacks within the action phase were divided into ARP
disconnection and ARP spoofing. We used “arpspoof” to send fake MAC-IP binding
packets, hence poisoning the gateway’s ARP cache. The attacker can therefore disconnect
the target network or monitor its traffic. For the ARP disconnection attack, ARP spoofing
was first initiated with an arpspoof tool to change the IP forwarding path from one target
host to another within the LAN. Both types of ARP attacks were successfully blocked in
MIN as shown in Table 1.

5.2. Performance of Dynamic Defense

We compared the intrusion detection performance of DDESS on the KDD-99 dataset [42]
with that of state-of-the-art machine learning based methods with 10-fold cross-validation.
Our comparison references included Gradient Boosted Machine (GBM) [43], k-Nearest
Neighbor (kNN) [44], Classification and Regression Trees (CART) [45], Multi-Layer Percep-
tron (MLP) [46], and AdaBoost [47]. The evaluation results are depicted in Figure 8.

DDESS GBM kNN CART MLP AdaBoost
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Figure 8. Performance comparison of intrusion detection.
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It was observed that, compared with other algorithms, GBM, MLP, and CHAT have
better performance in accuracy, reaching 99.81%, 99.79%, and 99.71%, respectively. In order
to trade-off the precision rate and recall rate, F-Measure was usually applied [48],

F-Measure =
(1 + β2)P× R

β2P + R
, (4)

where P means the precision rate and R represents the recall rate. Here, we chose β2 = 1
because we attached importance of both P and R. GBM still achieved the best F-Measure
value (99.71%) across all the algorithms, whereas kNN obtains the worst one (99.35%).

As far as attack detection rate (ADR) is concerned, algorithms which are adaptive to
continuous attacks have better effects. In Figure 8, GBM (99.56%) and CART (99.51%) can
outperform other methods in ADR.

In addition, DDESS can acquire the best false alarm rate (0.118%) because the deep
neural networks can reduce the opportunities for false positives. A low false alarm rate
and low latency are important for time-sensitive networks (TSN) of Internet of Things
(IoT) [31]. Therefore, in order to better monitor network security, we proposed DDESS to
comprehensively measure these indicators and come to trade-offs.

We further evaluated the prediction performance of dynamic defense and compared it
with TSA-AdaBoost [49], a situation awareness algorithm based on the AdaBoost machine
learning method. DDESS adopts the batch normalization [40] to reduce the influence of
gradient vanishing problem, and max-pooling layer and 1× 1 convolutional kernel [41] for
dimensionality reduction. Therefore, the overall fitness of the proposed DDESS is better
than TSA-AdaBoost for the prediction of test samples, as shown in Figure 9a. We select
mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage
error (MAPE) as the prediction evaluation metrics to evaluate the proposed prediction
model, where

MAE =
1
N

N

∑
i=1
|ŷi − yi| (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (6)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (7)

where ŷi means the prediction situation value. As shown in Figure 9b, the MAE and RMSE
values of DDESS are 0.0306 and 0.035, respectively, while these of TSA-AdaBoost are 0.0417
and 0.0486, respectively. Compared with TSA AdaBoost, DDESS has less overall error
precision in predicting network security situation value. In addition, the MAPE value of
DDESS and TSA-AdaBoost is 6.67% and 8.95%, respectively, which means that DDESS has
better accuracy than TSA AdaBoost.

Let us analyze forecast results in Figure 9a from a network administrators’ perspective.
Although the situational value on day 3 is relatively low, it is predicted that the network
situational value will have a higher tendency on the next day (i.e., day 4), which will
warn network administrators about the occurrence of network attacks. At the same time,
based on the 11th-day forecast trend, this is likely to be the end phase of network attacks,
which will make administrators pay special attention to the network behavior logs for the
next two days to ensure that they are not deleted or destroyed by attackers. On the other
hand, the forecasts on the 12th and 13th show that network attacks continue, and some
vulnerabilities probably exist in the network system.
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Figure 9. Prediction performance comparison on situation awareness.

DDESS can train the attack model and make corresponding portraits of the attack
and the attacker without requiring additional hardware, such as FPGA. To perceive the
motivation behind the attack, DDESS will classify and mark the attack behaviors of the
same source. This helps learn and predict potential attacks behaviors from the same source
in the future.

5.3. Competition and Trial

The multi-identifier network system (MIN) combined with DDESS technology has
withstood the “Network Security Challenge Competition” held by the Purple Mountain
Laboratory [50]. Forty-eight teams continuously carried out remote online high-intensity
network attacks for 72 h. During this period, the cumulative number of attacks reached
3.58 million. More precisely, the MIN was one of the few network security systems any
team has not broken through. It also successfully prevented most competition-related
qualification attacks such as Linux privilege escalation, virtual machine escape, session
forging and hijacking, and simulation PWN. The DDESS-based system has been proved to
be more robust when compared with traditional commercial workarounds.

6. Conclusions and Future Work

To overcome the current internet security problems, we propose a double defense
strategy with endogenous safety and security (DDESS) based on the MIN system. DDESS
provides both static and dynamic defense strategies against different network attacks.
The proposed system preserves network security using static defensive measures such as
identity verification, encryption protection, and trusted computing. It also uses dynamic
defensive measures like situation awareness and vaccine cultivation and distribution.
Experiments and performance analysis showed that DDESS provides sufficient availability
and robust security compared to other existing network defense solutions. In the future
work, we plan to introduce edge computing technology to reduce the pressure of central
servers and better adapt to the network development, such as 6G, Internet of things (IoT),
etc. In addition, we will study the intrusion detection algorithms, and put forward more
effective strategies for network security detection and prediction in our future work.
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