
Towards Dynamic Monitoring of WS-BPEL Processes

Luciano Baresi and Sam Guinea

Dipartimento di Elettronica e Informazione - Politecnico di Milano,
Piazza L. da Vinci 32, I-20133 Milano, Italy

{baresi, guinea}@elet.polimi.it

Abstract. The intrinsic flexibility and dynamism of service-centric applications
preclude their pre-release validation and demand for suitable probes to monitor
their behavior at run-time. Probes must be suitably activated and deactivated ac-
cording to the context in which the application is executed, but also according to
the confidence we get on its quality. The paper supports the idea that significant
data may come from very different sources and probes must be able to accommo-
date all of them.

The paper presents: (1) an approach to specify monitoring directives, called
monitoring rules, and weave them dynamically into the process they belong to;
(2) a proxy-based solution to support the dynamic selection and execution of
monitoring rules at run-time; (3) a user-oriented language to integrate data acqui-
sition and analysis into monitoring rules.

1 Introduction

The flexibility and dynamism of service-centric applications impose a shift in the vali-
dation process. Conventional applications are thoroughly validated before deployment,
and testing is the usual means to discover failures before release. In contrast, service-
centric applications can heavily change at run-time: for example, they can bind to differ-
ent services according to the context in which are executed or providers can modify the
internals of their services. New versions of selected services, new services supplied by
different providers, and different execution contexts might hamper the correctness and
quality levels of these applications. Testing activities cannot foresee all these changes,
and they cannot be as powerful as with other applications: we need to shift validation
to run-time, and introduce the idea of continuous monitoring.

Runtime monitors [6] are the “standard” solution for assessing the quality of running
applications. Suitable probes can control functional correctness, and also the satisfac-
tion of QoS parameters, but web services introduce some peculiar aspects. Functional
correctness can be easily monitored by analyzing the data exchanged among services,
but service-centric applications also require that the many QoS aspects be monitored
with data that can be collected at different abstraction levels. We can analyze the SOAP
messages exchanged between client and provider, trace the events generated during
execution, and collect data from external metering tools. All these options must be ac-
commodated in a general framework that lets designers choose the values of interest
and the way they want to collect them.

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 269–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



270 L. Baresi and S. Guinea

Current technology for executing (composed) services, like the WS-BPEL engines
available in these days, does not support monitoring. It only allows designers to inter-
twine the business logic with special-purpose controls at application level, thus hamper-
ing the separation between the definition of the application (i.e., the WS-BPEL process)
and the way it can be monitored. Designers must be free to change monitors without af-
fecting the application, and the actual degree of control must be set at run-time. In fact,
since monitoring impacts performance, the user must be able to change the amount
of monitoring while the application executes to adjust the ratio between control and
performance.

In this context, the paper presents an approach towards the dynamic monitoring of
WS-BPEL processes. It proposes external monitoring rules as means to dynamically
control the execution of WS-BPEL processes. This separation allows different sets of
rules to be associated with the same process. Monitoring rules abstract Web services
into suitable UML classes, and use this abstraction to specify constraints on execution.
Assertions are specified in WS-CoL (Web Service Constraint Language), a special-
purpose assertion specification language that borrows its roots from JML (Java Model-
ing Language [11]), and extends it with constructs to gather data from external sources
(i.e., to interact with external data collectors).

Besides constraining the execution, monitoring rules provide parameters to govern
the degree of run-time checking. After weaving selected rules into the process at de-
ployment time, the user can set the amount of monitoring at run-time by means of these
parameters (see Sections 3 and 4). The weaving introduces a proxy service, called moni-
toring manager, which is responsible for understanding whether a monitoring rule must
be evaluated, interacting with the external services, and calling known data analyzers
(monitors) to evaluate specified constraints. This solution can be seen as a feasibility
study (proof of concept) before embedding the manager in a WS-BPEL engine and
letting monitoring rules become part of the execution framework.

The approach is demonstrated on a simple example taken from [8]. Even if the pro-
posal is suitable for checking both functional and non-functional constraints, here we
only address QoS related monitoring rules since functional aspects were already studied
in [7].

This paper is the natural continuation of the work already presented in [7], and its
novel aspects are: (1) the idea of monitoring rules, (2) WS-CoL to specify constraints
on execution, (3) the capability of setting the degree of monitoring at run-time, and (4)
the proxy-based solution to enact the monitoring rules.

The rest of the paper is organized as follows. Section 2 introduces the monitoring
approach, while Section 3 describes monitoring rules and Section 4 introduces the mon-
itoring manager. Section 5 surveys similar proposals and Section 6 concludes the paper.

2 Monitoring Approach

The ideas behind the monitoring approach presented in this paper come from assertion
languages, like Anna (Annotated Ada [4]) and JML (Java Modeling Language [11]),
which let the user set constraints on program execution by means of suitable comments
added to the source code. Similarly, we propose monitoring rules to annotate WS-BPEL



Towards Dynamic Monitoring of WS-BPEL Processes 271

processes and constrain their executions both in terms of functional correctness and
satisfiability of the QoS agreements set between the client, which runs the WS-BPEL
specification, and the providers, which supply the services invoked by the WS-BPEL
process.

Monitoring rules are blended with the WS-BPEL process at deployment-time. The
explicit and external definition of monitoring rules allows us to keep a good separation
between business and control logics, where the former is the WS-BPEL process that
implements the business process, and the latter is the set of monitoring rules defined to
probe and control the execution. These rules also comprise meta-level parameters that
allow for run-time tailoring of the degree of monitoring activities. This separation of
concerns lets designers produce WS-BPEL specifications that only address the problem
they have to solve, without intertwining the solution and the way it has to be checked.
Different monitoring rules (and/or monitoring parameters) can be associated with the
same WS-BPEL process, thus allowing the designer to tailor the degree of control to
the specific execution context without any need for reworking the business process.
Moreover, a good separation of concerns allows for a neater management of monitor-
ing rules, and it is an effective way to find the right balance between monitoring and
performance.

Besides separation of concerns, the approach was conceived with the goal of reusing
existing technology to ease the acceptability of the approach and foster the adoption of
monitoring techniques.

All these reasons led to the monitoring approach summarized in Figure 1. It starts as
soon as a WS-BPEL process exists (or the designer starts working on it):

– Monitoring rules are always conceived either in parallel with the business process
or just after designing it. These rules are associated with specific elements (for
example, invocations of external services) of the business process, and are stored in
monitoring definition files.

– When the designer selects the rules to use with a specific execution, BPEL2 instru-
ments the original WS-BPEL specification to make it call the monitoring manager.

A

B

C

NET

WS A

WS B

WS C

Monitoring 
Definition File

BPEL

MM 
Setup

A

MM NET

WS A

WS B

WS C

Monitoring 
Manager

MM

C

2

MM 
Release

WS-BPEL Process

Instrumented WS-BPEL Process

Monitor

Fig. 1. Our Monitoring Approach



272 L. Baresi and S. Guinea

Fig. 2. The monitoring manager’s interface

– When the instrumented WS-BPEL process starts its execution, it calls the monitor-
ing manager whenever a monitoring rule has to be considered. The actual invoca-
tion of the monitor, that is, the actual analysis of execution/QoS data depends on
the current status of the manager. For example, if a rule has priority lower than the
current one, the manager skips its execution and calls the actual service directly.

– The designer has a special-purpose user interface (see Figure 2) to interact with the
monitoring manager and change its status. This happens when the designer wants
to change the impact of monitoring at run-time without re-deploying the whole
process.

– If some constraints are not met, that is, if some monitoring rules are not satisfied,
the monitoring manager is in charge of letting the WS-BPEL process know. It could
also activate recovery actions specified in the monitoring rules, but this topic is not
part of this paper, and recovery actions are still work in progress.

2.1 Weaving

Code weaving is performed by the BPEL2 pre-processor. Its job is to parse the monitor-
ing rules associated with a particular process and to add specific WS-BPEL activities to
the process in order to achieve dynamic monitoring . If the rule embeds a post-condition
to the invocation of an external web service, BPEL2 substitutes the WS-BPEL invoke
activity with a call to the monitoring manager (Figure 3), preceded by WS-BPEL as-
sign activities that prepare the data that have to be sent to the monitoring manager, and
followed by a switch activity which checks the monitoring manager’s response. The
monitoring manager is then responsible for invoking the web service that is being mon-
itored and for checking its post-condition with the help of an external data analyzer.



Towards Dynamic Monitoring of WS-BPEL Processes 273

Invocation of 
Service A

BPEL2

PostCondition
Assign activities in 

preparation of monitoring 
manager invocation

Monitoring Manager 
invocation

Throw BPEL exception
Assertion 
verified

Assertion 
not verifiedSwitch

Monitoring 
Manager

Monitor

WS A

WS A

Fig. 3. The effects of weaving

Depending on the response it receives from the monitoring manager, the process flow
can either continue or stop (see Figure 3). Pre-conditions are treated the same way, ex-
cept that the monitoring manager first checks the pre-condition, and only if it is verified
correctly does it then proceed to invoke the web service being monitored.

If the rule represents an invariant on a scope, BPEL2 translates it as a post-condition
associated with each of the WS-BPEL activities defined in the scope. If the rule is a
punctual assertion then a single call to the monitoring manager is added, together with
the corresponding WS-BPEL assign and switch activities.

BPEL2 always adds to the WS-BPEL process an initial call to the monitoring man-
ager to send the initial configuration such as the monitoring rules and information about
the services it will have to collaborate with (see MM Setup in Figure 1). BPEL2 also
adds a ”release” call to the monitoring manger to communicate it has finished execut-
ing the business logic (see MM Release in Figure 1). This permits the monitoring
manager to discard any configurations it will not be needing anymore. Every call to the
monitor manager (which is not a setup or a release call) is also signed with a unique
incremental identifier. This is used for matching the manager call to the specific rules
and the data stored in the monitoring manager during setup.

This solution does not require any particular tool to run and monitor WS-BPEL pro-
cesses. Once the weaving of rules has been performed, the resulting process continues
to be a standard WS-BPEL process which simply calls an external proxy service to
selectively apply specified monitoring rules.

3 Monitoring Rules

Monitoring rules reflect the ”personal” monitoring needs that single users of WS-BPEL
processes may have. Every time a WS-BPEL process is run, different monitoring ac-
tivities should be enacted, depending on ”who” has invoked the process. This requires
the ability to define and associate monitoring activities to a single WS-BPEL process
instantiation, or execution. These definitions are conceived by producing a monitoring
definition file.

The monitoring definition file follows the structure illustrated in Figure 4. The infor-
mation it provides is organized into three main categories: General Information, Initial



274 L. Baresi and S. Guinea

General Information

Initial Configuration

Monitoring Rules

Monitoring Rule #1

Monitoring Location

Monitoring Parameters

Monitoring Expression

Fig. 4. Monitoring Definition

Configuration, and Monitoring Rules. The first part provides generic data regarding the
WS-BPEL process to which the monitoring rules will be attached. The second part con-
tains values that are associated with the process execution as a whole and can impact the
amount of monitoring activities that will be performed at run-time. This concept will
be further analyzed in Section 4. The third part, the monitoring rules, represent the core
of the monitoring definition. They are organized in Monitoring Location, Monitoring
Parameters, and Monitoring Expressions.

The first element indicates the exact location in the WS-BPEL process in which the
monitoring rule must be evaluated. The second element contains a set of monitoring
parameters, meta level information that define the context of the monitoring rule itself.
These parameters influence the actual evaluation of the rule, and can even impede its
run-time checking. Since we envisage the existence of multiple external monitors, the
type of monitor that should be used for the given rule is an important parameter. Besides
this, we currently consider three parameters (but many others could easily be added in
the future1). The three parameters considered so far are:

Priority. It is a number between one and five indicating the level of importance that
is associated with the rule. A priority level of one indicates a very low priority level,
while a priority level of 5 indicates a very high priority level. The idea is that a process
can run at various levels of priority. Given a process priority, any monitoring rule with a
priority level inferior to this threshold would not be considered at run-time. This makes
it possible to execute the same business logic with different degrees of monitoring.

1 The context could be more complex and address the physical location in which the process is
executed, or interact with the device on which the process executes through interfaces such as
WMI (Windows Management Instrumentation).



Towards Dynamic Monitoring of WS-BPEL Processes 275

Validity. The user defining the monitoring rules can decide to associate a time-frame
with a monitoring rule. Every time a process execution occurs within this time-frame,
the monitoring rule is checked; while, should it occur outside the time-frame, it would
be ignored. This can be useful when a service invocation must be initially monitored
for a certain amount of time before deciding that it can be trusted.

Certified Providers. It is a list of providers that gives us a way of indicating that the
monitoring activity does not have to be executed if the actual service is supplied by one
of the providers in the list. This is because we envisage monitoring playing a key role
in systems living in highly dynamic environments, and for this reason we imagine that
a specific service with which to do business could be chosen dynamically. We are never
entirely sure of ”who” will really be providing that service at run-time. In fact, even
when a service has been chosen statically, it can still need to be substituted at run-time
in the wake of erroneous situations.

The third and last element, the monitoring expression, states the constraint that has
to be evaluated.

The monitoring definition file is mainly a container for the definition of the moni-
toring rules that are to be executed at run-time and of the conditions at which they can
be ignored. Obviously, this leads to the need of specific languages for identifying the
locations and for defining the expressions embedded in the rules.

3.1 Locations

In our approach we want to monitor pre- and post-conditions associated with the invo-
cations of external web services, invariants that can be attached to WS-BPEL scopes,
and punctual assertions indicating a property that must hold at a precise point of execu-
tion. While defining locations, we specify two things: the kind of condition we want to
monitor, and in which point of the process definition we want to monitor it. For the first
part, we use a keyword indicating whether the monitoring rule specifies a pre-condition,
a post-condition, an invariant, or an assertion. For the second part, we use an XPATH
query capable of pointing out where the rule has to be checked in the process, inde-
pendently of the fact that the run-time checking could later be dynamically switched
off. In the first two cases (pre- and post-conditions) the XPATH query indicates the
WS-BPEL invoke activity to which we associate the rule, in the case of an invariant it
indicates the WS-BPEL scope to which we associate it, and in the case of an assertion
it indicates any point of the WS-BPEL process (in this case we indicate the WS-BPEL
activity prior to which the assertion must hold). Regarding pre- and post-conditions,
we are only interested in attaching monitoring rules to WS-BPEL activities that can in
some way modify the contents of the process’ internal variables. We are not interested
in attaching monitoring rules to activities that are used by WS-BPEL to define the pro-
cess topology. Therefore, we assume that pre- and post-conditions can be attached to
WS-BPEL invoke activities, post-conditions to receive activities, and pre-conditions to
reply activities. We also assume that post-conditions can be associated with onMessage
branches in WS-BPEL pick activities. The reason for this is that although pick activities
contribute to the process topology, they also help define the internal state of the process,
and therefore should be monitored.



276 L. Baresi and S. Guinea

For example, recalling the Futuristic Pizza Delivery example presented in [8], if
we want to define a post-condition on the invocation of the operation named getMap
published by the MapWS web service and linked to the WS-BPEL process through
partnerlink MapServicePartnerLink, we would define the location as2:

type = "post-condition"
path = "//:invoke[@partnerLink="lns:MapServicePartnerLink" and

@operation="getMap"]"

3.2 Expressions

For monitoring expressions, we propose to reason on an abstraction of the WSDL def-
initions of the services the WS-BPEL process does business with. Depending on the
degree of dynamism, these could be the actual services used by the application, or ab-
stract descriptions of the services the process would like to bind to (dynamic binding is
not treated in this paper). To do this we use a tool based on Apache AXIS WSDL2Java
[2]. The tool permits us to reason on stereotyped class diagrams that represent the
classes that are automatically extracted from a WSDL service description. In the tool,
a web service becomes a �service� class that provides one public method for each
service operation and no public attributes. Similarly, for each message type defined in
the WSDL a �dataType� class is introduced, containing only public attributes and
no methods. Figure 5 shows a MapWS �service� class that provides a single method
called getImage. The exposed method takes a GetImageRequest �dataType�
as input and produces a GetImageResponse�dataType� as output. This way we
can state our pre- and post-conditions by referring to these classes. If we want to express
an invariant, we can only express conditions on variables visible within the WS-BPEL
scope to which the invariant is attached. Since internal WS-BPEL variables are struc-
tured as simple or complex XSD types, the automatic translation to stereotyped class
diagrams can still be achieved. The same holds for expressions that are punctual as-
sertions. The only difference lies in the visibility of the variables the expression can
refer to.

Expressions are defined using WS-CoL , inspired by the light-weight version of JML
(Java Modeling Language [11]). WS-CoL further simplifies it and introduces a set of
instructions for specifying how we can retrieve data that are external to the process.
This may be the case in which the monitoring rule defines a relationship that must hold
between data existing within the process in execution and data that can be obtained by
interacting with external data collectors.

WS-CoL does not make use of keywords \old and \result3. The first is not
useful because services are black-boxes that take input messages and produce output
messages. Therefore, it is never necessary to refer to the value a certain ”variable” pos-
sessed prior to the invocation of the operation. The second keyword is useless because
we can refer to returned messages with their names.

2 This is what the system produces but the user defines locations by pointing to the specific
WS-BPEL elements directly in the graphical editor, and by choosing the annotation type.

3 Lack of space does not allow us to thoroughly introduce the language, but JML uses \old
to refer to old values in post-conditions, and \result to identify the value returned by a
method.



Towards Dynamic Monitoring of WS-BPEL Processes 277

<<service>>
MapWS

+ getImage(GetImageRequest) : GetImageResponse

<<dataType>>
GetImageRequest

HCoord : long
VCoord : long

<<dataType>>
GetImageResponse

GetImageReturn : byte[]

Fig. 5. The MapWS Web Service

WS-CoL adds a set of keywords that represent ways of obtaining data from external
data collectors. A different extension is introduced for each of the standard XSD types
that can be returned by external data collectors: \returnInt, \returnBoolean,
\returnString, etc. Therefore, while defining a monitoring expression, we can use
these extensions. All follow the same design pattern. They take as input all the informa-
tion necessary for interacting with the external data collector, such as the URL location
of its WSDL description, the name of the operation to be called upon it, the parameters
to be passed to the data collector service, etc (see Section 4).

For example, if we want to specify a post-condition for the getImage operation in
Figure 5 and state that the returned map must have a resolution less than ”80x60” pixels
we would define the expression as:

@ensures \returnInt(wsdlLoc, getResolution,
’image’, GetImageResponse.GetImageReturn,
HResolution) <= 80 &&
\returnInt(wsdlLoc, getResolution, ’image’,
GetImageResponse.GetImageReturn, VResolution) <= 60;

In this example, a getResolution operation is invoked on a service that publishes
its interface at the URL wsdlLoc. The array of bytes GetImageReturn (see Fig-
ure 5) is passed as an input value and mapped onto the image message part defined at
wsdlLoc. HResolution and VResolution, on the other hand, are the message
parts defined in the output message at wsdlLoc that should be returned as integers.
These returned values are compared with the desired resolution (80 pixels for the hori-
zontal dimension and 60 pixels for the vertical dimension).

4 Monitoring Manager

The Monitoring Manager is the key component of our proxy-based solution for dy-
namic monitoring. This section illustrates its architecture and how it can be used by a
WS-BPEL process that requires monitoring. We also analyze how its structure impacts
the transformation produced by the BPEL2 pre-processor.



278 L. Baresi and S. Guinea

Monitoring Manager

CLiX 
Monitor 
Plugin

Monitor 
Plugin

Monitor 
Plugin

External 
Monitors 
Manager

Configuration 
Manager

Invoker

Rules 
Manager

Monitor 
Manager 
Interface

Plugin Interface

Plugin Interface

Plugin Interface

Fig. 6. The Monitoring Manager

The manager, whose architecture is shown in Figure 6, is capable of interpreting
monitoring rules, of keeping trace of the configuration with which a user wants to run
a process, of interacting with external data collectors to obtain additional data for mon-
itoring purposes, and of invoking external monitor services.

We illustrate its use in the case of monitoring of pre- and post-conditions; its usage
for the other cases is similar. To evaluate pre-conditions, the manager is used in substi-
tution to the services which have rules associated with them. In fact, it is called instead
of the service to be monitored. When called, it decides if the rule is to be evaluated
by looking at its associated monitoring parameters and if it is, it proceeds to evaluate
it. If the condition is verified correctly, it then invokes the original web service being
monitored. Post-conditions are evaluated in the same way.

The manager is constructed to keep a configuration table for each process execu-
tion. These configurations are managed by the Configuration Manager. In particular,
the manager needs to know: the initial overall process configuration (contained in the
monitoring definition file), the monitoring rules, and all the information necessary for
interacting with external services (the service being monitored, the external data collec-
tors, and the external monitor service). Most of these data can be sent to the manager
at the beginning of the process by invoking the setup method published by the man-
ager (see Figure 1). In particular, everything except the input/output values that will
be exchanged at run-time can be sent at the beginning of the process, before starting
to perform the real business logic. This solution is preferable, with respect to sending
all the data every time the process needs to interact with the manager, since an initial
slowdown is certainly better than slowing down all the intermediate steps. All the in-



Towards Dynamic Monitoring of WS-BPEL Processes 279

Fig. 7. The Monitoring Manager

formation sent during the setup phase is stored in the Configuration Manager and is
associated with a process execution through the unique identifier produced by the WS-
BPEL engine. Similarly, at the end of a process execution the manager is warned to free
itself of the burden of keeping the corresponding configuration table.

The manager also supplies a graphical interface to the user. It permits the run-time
consultation and modification of the values contained in the configuration table. For
example, it is possible to modify the priority level at which a process is being run or
to add a new provider to the list of certified providers that are associated with a given
monitoring rule.

Figure 7 shows the step by step interaction of the components that cooperate to
execute the service presented in Section 3 and to check its post-condition4. Initially, the
BPEL process sends the data that will be necessary to the manager (Step 1). Since no
pre-condition needs to be checked, the Rules Manager asks the Invoker to go on and
invoke the external web service (in our case service MapWS) (Steps 2 and 3). When the
RulesManager receives the results of the service invocation (Steps 4 and 5), it interacts
with the Configuration Manager to retrieve the monitoring rule (i.e. the post-condition)
that has to be checked (Step 6). By examining the monitoring parameters attached to
the rule, the Rules Manager dynamically decides if the rule is to be checked or not. For
example, if we consider the expression presented in Section 3, we could imagine the

4 More complete running examples are available at : http://www.elet.polimi.it/
upload/guinea.

http://www.elet.polimi.it/
upload/guinea


280 L. Baresi and S. Guinea

associated priority parameter to be 4. If the process is then run with a priority value
of 3, the rule would be checked since its priority parameter is higher than the value
associated with the process.

Then, Rules Manager decides whether additional data are required from external
data collectors. If this is the case, it calls the Invoker to obtain them (Step 7). This
component is built around Apache WSIF (Web Service Invocation Framework [3]) and
is capable of invoking a web service without previously creating client-side stubs but
by dynamically interacting with the service through its WSDL description. The Invoker
can be used to invoke any service provided it knows: the URL of the WSDL of the
service to be invoked, the name of the operation that is to be invoked on that service,
a list of keys that help map the operation’s input values onto the operation’s message
parts as defined in the WSDL description, a list of input values for the operation to
be invoked, and a list of keys for indicating the parameters (as indicated in the output
message parts contained in the WSDL description) we want to receive as output. The
Invoker can also be called when an expression uses a WS-CoL to obtain additional
monitoring data from external data collectors. In this case, the list of output keys is
reduced to a single key that corresponds to a part of the output message as described in
the WSDL description of the service (see the expression given in Section 3.1).

Once all the data necessary have been obtained (Steps 8, 9, and 10), the RulesMan-
ager begins its interaction with the External Monitors Manager (Step 11). This com-
ponent is responsible for managing the different kinds of external monitors that the
manager is capable of working with. In particular, it manages the set of plugins that
contain the logic necessary for converting the WS-CoL syntax used for defining the
monitoring expressions into the proprietary syntax used by each external monitor. The
monitor plugin also prepares the data that must be sent to the monitor by formatting
them in a way that the monitor is capable of interpreting (Step 12). In this paper, we
use a monitor built around XlinkIt [1]. For this monitor the WS-CoL expressions
must be re-written as CLiX rules and the data expressed as XML fragments. When the
External Monitors Manager has finished adapting the monitoring data and the monitor-
ing rules (Steps 13 and 14), the Invoker is called once again for invoking the external
monitor (Step 15). If the monitor responds with an error, meaning the condition is not
satisfied, the Rules Manager communicates it to the WS-BPEL process by returning a
standard fault message, as published in the WSDL description of the manager. If the
monitor’s response is that the condition is satisfied, the manager can then proceed to
return the original service response to the WS-BPEL Process (Step 19).

5 Related Work

The research initiatives undertaken in the field of web service monitoring share the
common goal of discovering erroneous situations during the execution of services. They
differ, although, in a number of ways: degree of invasiveness, abstraction level at which
they work, reactiveness or pro-activeness.

For example, Spanoudakis and Mahbub [9] developed a framework for monitor-
ing requirements of WS-BPEL-based service compositions. Their approach uses event-
calculus for specifying the requirements that must be monitored. Requirements can be



Towards Dynamic Monitoring of WS-BPEL Processes 281

behavioral properties of the coordination process or assumptions about the atomic or
joint behavior of deployed services. The first can be extracted automatically from the
WS-BPEL specification of the process, while the latter must be specified by the user.
Events are then observed at run-time. They are stored in a database and the run-time
checking is done by an algorithm based on integrity constraint checking in temporal
deductive databases. Like our approach, it supports reactive monitoring since erroneous
situations can be found only after they occur, but it is less intrusive since it proceeds
in parallel with the execution of the business process. This leads to a lesser impact on
performance but also to a lesser responsiveness in discovering run-time erroneous situ-
ations. The approach also proposes a lower abstraction level, placing therefore a heavier
burden on the designer.

Lazovik et al. [10] proposes another approach based on operational assertions and
actor assertions. The first can be used to express properties that must be true in one state
before passing to the next, to express an invariant property that must hold throughout all
the execution states, and to express properties on the evolution of process variables. The
second can be used to express a client request regarding the entire business process, all
the providers playing a certain role in the process execution, or a specific provider. The
system then plans a process, executes it, and monitors these assertions. This approach
shares with ours the fact of being assertion-based. Once the assertions are inserted, it
is completely automatic in its setup and monitoring. It lacks although the possibility of
dynamically modifying the degree of monitoring. It also lacks adoptability since it is
based on proprietary solutions.

Our approach must also be compared with the proposals that integrate Aspect Ori-
ented programming and WS-BPEL. An example can be found in the work by Finkel-
stein et al. [5]. It exploits the semantic analyzers present in their development toolkit
(called SmartTools) to implement a WS-BPEL engine as an interpreter. Abstract syntax
trees are built for each process and are then traversed by the semantic analyzer that im-
plements the visitor design pattern. These methods facilitate aspect oriented adaptation.
The approach concentrates more on weaving at the engine level and less at the process
level, which is where our approach works.

6 Conclusions and Future Work

The paper has presented an approach to support the dynamic monitoring of WS-BPEL
processes. It is an evolution and refinement of the ideas already presented in [7]. The
proxy-based solution is dictated by the wish of using available technology, instead of
inventing new non standard executors, but this proposal can also be seen as a feasi-
bility study to better understand the different pieces of the approach, and evaluate the
possibility of embedding them in an existing WS-BPEL engine.

Our future work will concentrate on further studying the possibility of embedding the
monitoring manager into a WS-BPEL engine, on experimenting with new data collec-
tors and data analyzers, on extending the language to support other types of monitoring
(e.g., the capability of predicating on histories instead of concentrating on punctual val-
ues), and on providing real-world results of the performance ”overhead” that can be
introduced by our approach.



282 L. Baresi and S. Guinea

References

1. XlinkIt: A Consistency Checking and Smart Link Generation Service. ACM Transactions
on Software Engineering and Methodology, pages 151–185, May 2002.

2. AXIS. Apache AXIS Web Services Project, 2005. http://ws.apache.org/axis/.
3. Web Service Invocation Framework. Apache WSIF Project, 2005. http://ws.apache.

org/wsif/.
4. D.C. Luckham. Programming with Specifications: An Introduction to Anna, A Language for

Specifying Ada Programs. Texts and Monographs in Computer Science, Oct 1990.
5. C. Courbis and A. Finkelstein. Towards Aspect Weaving Application. In Proceedings of the

25th International Conference on Software Engineering, 2005.
6. N. Delgado, A.Q. Gates and S. Roach. A Taxonomy and Catalog of Runtime Software-Fault

Monitoring Tools . IEEE Transactions on software Engineering, pages 859-872, December,
2004.

7. L. Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Composed Services. In Proceedings
of the 2nd International Conference on Service Oriented Computing, 2004.

8. L. Baresi, C. Ghezzi and S. Guinea. Towards Self-healing Service Compositions. In Pro-
ceedings of the First Conference on the PRInciples of Software Engineering, 2004.

9. K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of Service
Based Systems. In Proceedings of the 2nd International Conference on Service Oriented
Computing, 2004.

10. A. Lazovik, M. Aiello and M. Papazoglou. Associating Assertions with Business Processes
and Monitoring their Execution. In Proceedings of the 2nd International Conference on
Service Oriented Computing, 2004.

11. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A Be-
havioral Interface Specification Language for Java. Department of Computer Science, Iowa
State University, TR 98-06-rev27, April, 2005.

http://ws.apache.org/axis/
http://ws.apache.
org/wsif/

	Introduction
	Monitoring Approach
	Weaving

	Monitoring Rules
	Locations
	Expressions

	Monitoring Manager
	Related Work
	Conclusions and Future Work

