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Towards Dynamic Transparency: Robust Interaction Force Tracking Using

Multi-Sensory Control on an Arm Exoskeleton

Yves Zimmermann1,2, Emek Barış Küçüktabak1, Farbod Farshidian1, Robert Riener2,†, and Marco Hutter1,†

Abstract— A high-quality free-motion rendering is one of
the most vital traits to achieve an immersive human-robot
interaction. Rendering free-motion is notably challenging for
rehabilitation exoskeletons due to their relatively high weight
and powerful actuators required for strength training and sup-
port. In the presence of dynamic human movements, accurate
feedback linearization of the robot’s dynamics is necessary to
allow for a linear synthesis of interaction wrench controllers.
Hence, we introduce a virtual model controller that uses two 6-
DoF force sensors to control the interaction wrenches of a multi-
DoF torque-controlled exoskeleton over the joint accelerations
and inverse dynamics. Furthermore, we propose a disturbance
observer for controlling the joint acceleration to diminish the
influence of modeling errors on the inverse dynamics. To
provide a high-bandwidth, low-bias estimation of the system’s
acceleration, we introduce a bias-observer which fuses the
information from joint encoders and seven low priced IMUs.
We have validated the performance of our proposed control
structure on the shoulder and arm exoskeleton ANYexo. The
experimental comparison of the controllers shows a reduction
of the felt inertia and maximum reflected joint torque by a
factor of more than three compared to state of the art. The
controllers’ robustness w.r.t. a model mismatch is validated.
The experiments show that the closed-loop acceleration control
improves the tracking, particularly at joints with low inertia.
The proposed controllers’ performance sets a new benchmark
in haptic transparency for comparable devices and should be
transferable to other applications.

I. INTRODUCTION

Physical human-robot interaction gained significance dur-

ing the last years propelled by the increased fusion of robots

into the human’s workplace. Many of these devices render

haptic environments to the user. While robots dedicated to

this task perform reasonably well, more universal devices

often struggle to achieve the desired rendering fidelity. An

epitome of this challenge is rehabilitation robots.

On the one hand, these devices should provide high-quality

free motion (transparency) to avoid interfering with the

patients’ movements while supporting them [1]. On the other

hand, they need high torque actuation to allow for strength

training, dynamic assessments [2], and to assist severely

affected patients [3]. Limited transparency is acceptable for

the first steps in therapy of severely affected patients [4],

[5]. However, state-of-the-art devices strive to make robot-

assisted therapy useful also for patients able to perform more
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Fig. 1. The kinematic structure of the robot with the shoulder girdle
joints (SG): protraction/retraction (GPR) and elevation/depression (GED);
the glenohumeral joints (GH): GHA, GHB, and GHC; elbow joint (EFE);
fixed passive link length adjustments di; contact points upper arm (UA) and
forearm (FA) with attached coordinate systems [6].

agile movements [6].

With these powerful and thus, bulky devices it is challeng-

ing to render haptic transparency for dynamic movements.

First, often high transmission ratio gears are installed to

achieve the required joint torques at reasonable weight and

footprint. This design choice leads to increased joint friction

and high reflected motor inertia at the joint [7]. Many

state-of-the-art robots address this concern by series elastic

actuation [2], [6], [8], [9]. Second, the mechanical impedance

at the interaction point is comparatively large. Therefore, the

non-linear dynamics should be compensated to control the

device accurately. For trailing of fast human motions, vig-

orous control actions are required. Noise on the interaction

force measurement, the actuator bandwidth, and controller

sampling frequency limit the controller bandwidth. Hence

advanced control designs have been proposed to improve the

performance [10], [11]. Some devices have been developed

with remote actuation to reduce the moving mass [12], [13].

However, due to the transmission, the bandwidth is further

restricted, and additional non-linear friction is caused.

In this paper, we present a method to tackle the challenge

mentioned above through a virtual model controller (VMC)

using inverse dynamics (ID) for feedback linearization. We

elaborate on the advantage of using the measured interaction

wrench state for the linearization instead of the desired

wrench when interacting with a soft, unknown impedance.

To compensate errors in the ID model, we propose a closed-

loop acceleration controller. This control method uses a

multi-sensor signal with direct acceleration measurement as

feedback. Further, we investigate the method’s performance



on the series elastic actuated exoskeleton ANYexo shown in

Fig. 1.

II. SYSTEM DESCRIPTION

The hardware we use in this paper is a 6-DoF torque-

controlled shoulder and arm exoskeleton designed as a

research platform for methods concerning neural rehabili-

tation [6]. The device was developed with a focus on an

extensive range of motion (ROM) and particularly activities

that involve interaction with other parts of the user’s body.

Additional emphasis was put on swift motions to prevent

limitation of speed recovery, as described in [6]. However,

methods proposed in this paper should be transferable to any

other torque controlled haptic device.

The device has two actuated DoF at the shoulder girdle

(SG), three at the glenohumeral joint (GH), and one at the

elbow, as shown in Fig. 1. There are two physical interaction

points between user and robot: one at the upper arm (UA)

and one at the forearm close to the wrist (FA).

Six series elastic actuators drive the robot. A forerunner

version of these drives was presented in [14]. The version

used for the experiments provides 40Nm peak torque at

a bandwidth of 60Hz at 3Nm amplitude and a resolution

smaller than 0.1Nm. The maximum joint speed is 12 rad/s.
At both interaction points (UA/FA), there are 6-DoF force-

torque sensors (Rokubi Mini 1.1 by Bota Systems) mounted.

They provide force and torque measurements in a range of

±1000N and ±8Nm in the x-direction and ±500N and

±5Nm in the yz-plane with less than 0.02% noise. The

integrated IMUs attached to the shell of the drives and the

force-torque sensors provide inertial acceleration and angular

velocities. Their properties are identified in section VI-A.

The controllers, state estimation, and the model description

are updated at 800Hz by a ROS and C++ based software

stack. Control PC, actuators, and sensors communicate over

an EtherCAT bus. The low-level torque controller for the

SEA runs at 2.5 kHz on the integrated electronics of the

drive.

A. Dynamics

The system of the human interacting with the robot is

described in generalized coordinates by

Mi(qi)q̈i + hi(qi, q̇i) + gi(qi) = J⊤

C,i(qi)λC + τi, (1)

where i ∈ {R,H}. Indices R and H denote the robot and hu-

man system respectively, q are the generalized coordinates,

M is the mass matrix, h the centrifugal and Coriolis terms,

g the gravitation terms, JC the stacked spatial Jacobian of the

interaction points, τ the joint torques, and λC the interaction

wrench. For the high level control design, the actuators can

be considered as perfect torque or position source within the

bandwidths typical for humans that is around 7Hz [6], [15].

Therefore, we assume

τ [k + 1] = Πctrl(qR[k], q̇R[k], q̈R[k],λC,meas[k]), (2)

where Πctrl is the control policy defining the target joint

torque for the actuators and λC,meas is the measured inter-

action wrench.

The human H part of equation (1) is unknown regarding

the parameters of the system dynamics as well as its exact

state. The equations of motion (EoM) for R and H are

only coupled over λC. Therefore, we can model the human

dynamics as unknown disturbance dH on the interaction

wrench λC. Therefore

λC = f̂C(qR, q̇R, q̈R,dH), (3)

where f̂C is the unknown function describing the interaction

depending on the relative motion of the interaction points.

B. Optimization Framework

We use a hierarchical null-space projection based opti-

mization (HOC) as a standard on our hardware to manage

safety relevant constraints and other tasks on different pri-

orities [6], [16]. This method typically uses the following

optimization vector ξ = (q̈, τ ,λC).
The tasks T are then defined as linear equality Tp : Apξ =

bp or inequality Tp : Dpξ ≤ cp constraints at priority p,

where small p means high priority. The equations of motion

(1) and physical constraints should be defined on the first

priority as a solution deviating from physics is never valid.

The second priority can be used to define safety constraints

and the lower priorities to set therapy relevant tasks, and

regularization [6]. The next sections will discuss how to set

the tasks for the HOC to track interaction wrenches.

III. ENVIRONMENT ANALYSIS

The optimal choice for an interaction force control method

is highly dependent on the hardware and expected environ-

ment. Admittance controllers are generally used for systems

that are primarily position-controlled (e.g., hydraulic actu-

ated devices), Impedance controllers are used for systems

with low impedance (e.g., pneumatics, SEA), and torque-

controlled systems often use only feedforward control [17],

[18], [19]. In this section, we explain why an admittance con-

troller can be a better fit for a torque-controlled system in the

presence of an environment with unknown low impedance,

e.g., a human arm.

A. Environments with Known Impedance

Torque controlled robots offer a fairly easy method to

control interaction wrenches towards a fixed environment

(e.g., hard floor). In this case, all active contact DoF C
can be assumed motionless ẋC , ẍC = O. This constraint

allows projecting the EoM into the support consistent space.

This assumption for fixed contact points is eligible for, e.g.,

legged robots, as they mostly assume a fixed and rigid floor

[16], [11]. Also, for systems where the impedance of the

environment at the interaction points is well known, the same

method can be used. There the expected acceleration of the

interaction point ẍC,exp under the desired load λC,des can be

estimated and compensated for by setting the equality task

JC q̈ = ẍC,exp − J̇C q̇. (4)

This task assures that all solutions of the HOC are chosen

within the null-space of the support consistency constraint

https://www.botasys.com


(4). As next priority, the HOC receives the desired interaction

wrench λC = λC,des as an equality task and as last priority

the regularization q̈ = 0. If no other tasks are defined, the

optimal joint torque τ ∗ to achieve the desired interaction

wrench λC derives from equation (1)

τ ∗ = Mq̈∗ + h+ g − J⊤

C λC,des, (5)

where q̈∗ is the generalized acceleration resulting from the

HOC. As we assumed perfect torque sources for our model,

the desired interaction wrench would instantaneously be

established. This means that on the non-perfect hardware the

interaction wrench controlling task is converted to a joint

torque control task without any loss in accuracy. Whereas

the joint torque control performance is only dependent on

the actuation system.

B. Environments with Unknown Impedance

For systems that interact with a mostly unknown environ-

ment like a human arm, it is not possible to estimate ẍC,exp.

Without or with an inaccurate constraint (4) the torques from

equation (5) do not establish the desired interaction wrench

as the environment reacts unexpectedly to the robot’s action.

Consequently a deviation of the robot’s acceleration from q̈∗

occurs. Employing linear control synthesis for the interaction

wrench tracking is sub-optimal due to the cross-coupling in

the robot’s wrench-acceleration dynamics.

IV. CONTROL APPROACH

As the model of the robot dynamics is significantly more

accurate than the model of the environment, we suggest

using all available information to define the robot’s EoM

as accurately as possible. Thereby at least the robot behaves

as expected, even when coupled to a completely unknown

environment. Furthermore, linear controller design is eligible

as the feedback linearization is valid. Hence, we set the

equality task λC = λC,mes at the same priority as the EoM.

This results in the best possible estimate of the real system

dynamics at the time of the measurement. For rather low

impedance environments as a human arm, this guess is also

more accurate during the whole control cycle (i.e. after

1.25ms) than assuming λC = λC,des. Thus the feedback

linearization is as accurate as possible and only limited

by the accuracy of the robot model and interaction force

measurement. Hence, the system should track a desired

accelerations task q̈ = q̈des precisely as long as none of

the safety constraints are active. In this case, the optimum

joint torque is expressed by

τ ∗ = Mq̈des + h+ g − J⊤

C λC,mes. (6)

Hence, we are looking for an admittance controller with

desired accelerations as output.

A. Wrench Controller

In this paper, we demonstrate this strategy with a straight

forward and easy to tune virtual mass controller (VMC).

A good guess for the unknown environment’s admittance is

that it behaves as decoupled one-dimensional systems with

a mass that is attached to the robot via a spring-damper

force element. Hence, accelerating the interaction points in

the direction of the interaction wrench error λC,err = λC,mes−
λC,des will diminish the same. Large acceleration gains im-

prove the tracking performance. However, a stable controller

design is limited by the robots dynamics, actuation, and

communication delay. The idea of the VMC is to schedule

the acceleration gains so that the desired accelerations q̈des

mimic a desired virtual admittance under the influence of the

residual interaction wrench error λC,err. We want to control

a 12-DoF interaction wrench with six or less DoF of the

exoskeleton. Therefore, we do not have full controllability

over λC,err. Hence, we define the VMC in the generalized

coordinates where the controllable part of the interaction

wrench is mapped to the joint space. We propose to chose

the virtual admittance so that it behaves like a down-scaled

reflected inertia of the real robot system Mvirt = αMsys.

Where α is a tuning parameter. The robot’s gravitational,

centrifugal, and Coriolis terms can be compensated entirely

without stability issues, as shown in [6]. Therefore, these

terms are not included in the virtual admittance. The HOC

obtains the desired joint accelerations q̈des as an equality task

q̈des = M−1

virt J
⊤

C λC,err =
1

α
M−1

sys J
⊤

C λC,err. (7)

Due to the memoryless structure of the controller, this

method is not prone to windup if a higher priority task is

active on a subset of the controlled DoF. Hence, this free-

motion controller can always be defined as a task of priority

pVMC. If other haptic interactions i should be modelled they

can be added with a higher priority pi < pVMC. In this case,

the haptic interaction i is rendered on its DoF while the VMC

still controls the rest of the device’s DoF.

To give an intuition about the feeling of this controller,

we can investigate the admittance at joint level

q̈sys = M−1
sys J

⊤

C

(

1

α
λC,err +∆λC

)

, (8)

where ∆λC = (λC,R − λC,mes) is the difference between

the delay afflicted, measured interaction wrench λC,mes and

the continuous interaction force of the real system λC,R.

Assuming a small delay and accurate measurement, this term

gets negligible. Then the system behaves as a down-scaled

impedance in the presence of λC,err.

B. Acceleration Tracking Controller

The inverse dynamics (ID) for joint torque control are

known to be sensitive to modeling errors. Hence, pure joint

torque control finds its application in robots with closed

kinematic chains, e.g., legged robots [16] or open kinematic

chains with large inertia compared to the torque inaccuracy.

The distal parts of open kinematic chains usually have a

small inertia. Therefore, they are often position and velocity

controlled in addition to the feedforward torque. In our case,

we have a hybrid system. The robot itself is an open kine-

matic chain. While during therapy, there is always a human

arm attached that closes the kinematic chain. We control the
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ẍIMU
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Fig. 2. Control diagram of the virtual mass controller (VMC) with closed loop acceleration control and sensor fusion based acceleration estimation (AcE).
The assumed sensor noise for the force-torque sensors (F/T-S), encoder (ENC), and inertial measurement units (IMU) is indicated as gaussian noise. The
lowpass filter (LPF) for λmes is a butter worth filter. The filters for the other sensor signals contained in the AcE. The real system is built from links
with finite stiffness. Hence, the IMUs measure the accelerations of the compliant body dynamics (CBD) ẍIMU,i and not the accelerations equivalent to the

mapped joint acceleration ˆ̈xIMU,i = JCq̈sys + J̇Cq̇sys.

interaction forces over the robot accelerations and assume

the human arm to be of rather low impedance. Therefore

we expect that the open kinematic chain characteristics of

the arm could have a negative influence on the acceleration

control. We want to avoid to control all or a subset of the

joints in position-control, as we intend to keep the benefits of

torque control. Therefore we suggest using an acceleration

tracking controller to lower the error.

1) Controller Synthesis: We use a 2-DoF Internal Model

Controller structure for the controller [20]. This controller

design includes the plant’s model P̂ and allows separate

tuning of reference tracking Qr and disturbance rejection

Qd, as shown in Fig. 2. The HOC computes the optimum

generalized acceleration q̈∗ as well as optimum actuation

torques τ ∗. Without the acceleration tracking controller we

use the torques from HOC directly as torque commands for

the actuators τcmd = τ ∗. If we want to correct for errors

dm of the modeled plant, τ ∗ has to be augmented by the

term that compensates for the disturbance resulting in τcorr.

As mentioned before, we can assume perfect torque sources

in the bandwidth of humans. We assume that τcorr does

not contain higher frequency content. Therefore the plant P
including the ID can be modelled as pure delay P̂ = e−Tss,

were Ts is the sampling time.

To assume perfect torque sources without loss of accuracy,

Qr and Qd need a cutoff frequency lower than the actuator

bandwidth. This requirement is feasible, as the human band-

width is much lower. Reference and disturbance tracking

controllers are synthesized as H2 Optimal Controller for

ramp references and disturbances as the model errors are

mostly continuous (see [20]). Hence, we assume the model

disturbance to be of type d̂M = 1/s2. Applying the methods

in [20] to our assumptions results in following control

synthesis

P̂ = e−Tss ≈
−s+ 2/Ts

s+ 2/Ts

Q̃i = (d̂M )−1{P̂−1d̂M}∗ = Tss+ 1

(9)

The operator {·}∗ omits all terms of the operand’s par-

tial fraction expansion that contain the poles of P̂−1. For

causality, the controller needs a filter Fi that yields a proper

controller Qi = Q̃iFi for i ∈ {d, r}. Further, (1− P̂Qi)dM
must be stable to reject disturbances asymptotically. The

filters Fi are synthesized according to [20]

Fi =
ak−1s

k−1 + . . .+ a1 + a0
(Λis+ 1)m+k−1

=
2Λis+ 1

(Λis+ 1)2
, i ∈ {d, r},

(10)

where m = 1 and k = 2 as the controller has a zero-pole

excess of 1 and dM has double poles at the origin. The time

constants Λd and Λr for disturbance rejection and reference

tracking respectively can be tuned independently.

2) Acceleration Estimation: The quality of the accel-

eration estimation restricts the maximum performance of

the acceleration tracking. Typically a system acceleration

estimate q̈diff is derived by double differentiation of the joint

position measurements. A low pass filter with a low cutoff

frequency and a large delay has to be used to attenuate the

dominant noise of the signal resulting in ˆ̈qdiff. We strive for

prompt correction of acceleration errors, hence this delay is

not acceptable. Therefore, we use the integrated IMUs to

measure the system acceleration directly. First, the measured

gravitational acceleration of the IMU signals is compensated.

Then, the linear accelerations are fused to an estimate of the

generalized accelerations using least squares.

ẍIMUi,noG = ẍIMUi
−RIMUiIg

ˆ̈qIMU = J+

IMU(ẍIMU,noG − J̇ q̇),
(11)

where RIMUiI is the rotation from inertial coordinates to IMU

frame, g is the gravity vector, and JIMU and ẍIMU are the

stacked Jacobian respectively acceleration measurements of

all IMUs.

Inaccuracies of IMU pose and calibration can lead to

severe artifacts of the gravity in the acceleration measure-

ment. Therefore, ˆ̈qIMU is not qualified as control feedback.

However, if we merge the information of the delayed (tdelay),
bias-free ˆ̈qdiff and the high bandwidth, bias polluted ˆ̈qIMU we



generate an eligible signal. The bias of the latter signal can

be estimated by the former which allows compensation

ˆ̈qbias(t) = ˆ̈qIMU(t− tdelay)− ˆ̈qdiff(t). (12)

The high frequency content of the estimated bias ˆ̈qbias is

attenuated with a butterworth filter. The resulting signal
ˆ̈qbias,fil is used to compensate the bias

ˆ̈qmerge = ˆ̈qIMU − ˆ̈qbias,fil. (13)

A further butterworth filter is used to prune the merge

estimate from undesired high frequency content.

V. EXPERIMENTS

In this section, we discuss the general procedure for the

experiments, while section VI contains specific information.

We plan a shoulder synergy controller for the shoulder

girdle movement GPR and GED in the future. Therefore,

they are locked mechanically for all experiments to avoid

interference. Before every experiment with a new parameter

set or controller, the software measures and calibrates the

F/T-sensors bias to avoid any effect of sensor drift.

After the first couple of experiments, we observed that

eigenmodes of the base structure are excited by the strong

reaction forces at the attachment point of the arm. To avoid

a restriction of the performance by the base’s flexibility, we

use lashing straps to brace the aluminum beam structure to

the floor and ceiling.

A. Acceleration Tracking

For these experiments, we moved the robot to a central po-

sition of the RoM. Sinusoidal signals of different amplitudes

and frequencies set the reference. All joints use the same

controller with individually tuned parameters. The controller

is started from a static system by a button on a handheld

device.

Stick friction is a challenge for acceleration tracking as the

dynamics are entirely different than for the moving system.

On the one hand, the system should overcome the stick

friction as quickly as possible when acceleration is desired.

On the other hand, the disturbance estimation should not

wind up on acceleration measurement errors when no motion

is requested. Therefore, we use a case differentiation to

switch between suitable controller parameters.

B. Interaction Force Control

For all experiments λC,des = 0 is used. During each

experiment, one of the authors excited the device by grasping

it at the two contact points. This is not the typical way

of interaction with an exoskeleton. However, it is easier

to achieve repeatable interaction characteristics fC , as the

alignment of human and robot joints is avoided. Furthermore,

experiments for parameter tuning can be performed quicker

and with less required safety precautions. The presented

methods should be transferable to any robot interaction with

low impedance environments. Therefore the used type of

excitation is as representative as wearing the device like an

exoskeleton.

For each controller, we excited the robot as versatile as

possible to check the performance. We included collisions

with the mechanical end stops to check the stability of the

controller. However, the data used to compare the controller

is from a repeated movement, which excites all joints without

touching the endstops. The movement can be described as

a punch from the hip to a point in front of the chest at

the height of the shoulders with internal rotation of the

shoulder. The test subject repeated this motion while trying to

maintain the speed and trajectory throughout all experiments.

However, small deviations of the execution are not restricting

the validity of the comparison as all metrics are normalized

w.r.t. the excitation. The attached video1 shows examples of

the excitation.

VI. RESULTS

The performed experiments and presented results should

give an insight into the sensors’ characteristics as well as

demonstrate and compare the performance of the control

methods.

A. Instrumentation Characteristics

The interaction force sensors are calibrated before every

experiment. Therefore we assume the bias µFT = 0. The

variance on the sensor signal was measured over 6s while

the device is active but static resulting in following model

of the disturbance dFT,force,x = N (0, 0.011), dFT,force,yz =
N (0, 0.019), dFT,torque,x = N (0, 9e − 7), and dFT,torque,yz =
N (0, 8e− 6). The signal is approximately white noise up to

100Hz where the power falls off until 250Hz to be constant

up to 400Hz.

The variance in linear acceleration magnitude is in av-

erage σ2
IMU = 3.6× 10−4 ms−4 without large variation

between the sensors. The bias ranges between |µIMU,GED| =
0.258m s−2 and |µIMU,GHA| = 0.035m s−2. Correcting for

the linear acceleration magnitude bias only would not solve

the problem as the IMU axes have an individual scaling

error. Furthermore, angular offsets of the IMU mounting

of more than 1.5◦ are expected. Calibration of all axes

would be a non-negligible effort. Therefore we introduced

the acceleration estimation method using the online bias

adaption.

B. Acceleration Estimation

Fig. 3a) illustrates the main mechanics of the AcE. On the

big scope, we can observe how the estimated offset corrects

for the configuration dependent bias of ˆ̈qIMU resulting in an

accurate estimation of the acceleration. As ground truth we

use the smoothed (non-causal gaussian filter) ˆ̈qdiff,smo. The

detail view shows how the bias estimation regulates the static

offset, which would be devastating for controls.

To demonstrate the performance of the estimation Fig. 3b)

shows the estimated signals compared to the ground truth

signal. The estimated acceleration describes the acceleration

of the compliant body dynamics lumped to the general-

ized coordinates, while the ground truth shows only the

1https://youtu.be/zvz8x3bI8K8

https://youtu.be/zvz8x3bI8K8
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Fig. 3. a) The plot shows the behavior of the acceleration estimation
variables during external excitation. The smoothed double-differentiated
joint position q̈diff,smo is used as a reference. Note that the oscillations in
the estimated signal are physical compliant body oscillations and not noise.
b) shows joint acceleration estimation state of all used joints during a multi-
DoF movement and the integrated joint velocities q̇int =

∫
q̈mergedt after

more than 15 s run time.

acceleration of the joints. Hence, the continuum mechanics

of the links are missing in the ground truth, which could

explain the momentaneous differences. In the integrated
ˆ̈qmerge, these differences should not lead to drift, as the

compliant body dynamics are only oscillations around the

rigid body dynamics. The black signals in Fig. 3b) show the

integrated velocity compared to the measured after more than

15 s run time. There is no drift, proving the method to be

valid.

C. Acceleration Tracking

Joint EFE is the most critical one regarding inverse dy-

namics as its output is attached to a low inertia. Therefore

dynamic and static friction are large compared to the torques

needed for acceleration. Fig. 4a) and b) show the effect of

an active joint acceleration control with Λr = 0.01 and

Λd = 0.09. While the joint does not move without accel-

eration control, it follows the desired trajectory well with

active control. The influence of the stick friction handling is

particularly distinct.

The estimated disturbance for EFE, GHB, and GHC in

4b)-c) shows completely different characteristics. The dis-

turbance is specific to the actuator, the six-DoF joint load,

and even the internal temperature. The estimation indicates

how complex a model would have to be to calibrate the
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Fig. 4. The four plots show the tracking performance w.r.t. a sinusoidal
reference acceleration q̈ref. Plot a) shows the performance without active
ATC and b) with ATC for the same reference trajectory on the EFE joint.
Plots b), c), and d) show the tracking controller state on different joints.

disturbance offline.

D. Interaction Force Tracking

The open-loop controller (FF) described in equation (5)

with q̈∗ = 0 and λC,des = 0 is used as a baseline. In

the publication about the hardware [6], we compared the

performance of the device against the state of the art [10].

The results of [6] indicate, that the controller achieves haptic

transparency that is on par with the state of the art and is

potentially superior for dynamic movements.

We evaluate the performance of the controller with differ-

ent metrics that should represent transparency as accurately

as possible for a wide variety of excitations. The test subject

cannot excite the robot the same in each experiment run.

Therefore, all metrics are as independent of the excitation

as possible. As such normalized metrics were missing in the

state-of-the-art [10], we introduced new ones.

Inertia Ratio IR describes the ratio of felt inertia at one

joint to the reflected inertia of the physical system at the

same joint. Thus, small numbers indicate accurate wrench

tracking.

IRi =
mvirt

msys

=
SiJ

⊤

C λC,mes

SiMq̈C,mes

(14)

where Si is the selection vector of DoF i. Both denominator

and nominator of the equations (14) are smoothed. IRi,mean

is the mean over time for DoF i. IRmean is the mean of all

IRi,mean.

Inertia Ratio Span ∆IR indicates the consistency of

virtual mass rendering.

∆IR = max
i

(IRi,mean)−min
i
(IRi,mean). (15)



TABLE I

COMPARISON OF INTERACTION WRENCH CONTROL METHODS. FEED

FORWARD COMPENSATION (FF) OF THE DYNAMICS. VIRTUAL MASS

CONTROL (VMC) WITHOUT CLOSED LOOP ACCELERATION TRACKING

AND (VM+ATC) WITH ACCELERATION TRACKING CONTROLLER. ALL

DATA IS AVERAGED FROM CONTINUOUS SAMPLES OF AT LEAST 10 s. † :

THIS IS THE MEAN OF JOINTS GHA, GHB, AND GHC.

Method FF VMC VMC VM+ATC VM+ATC VM+ATC

α - 0.7 0.6 0.7 0.7 0.6
Λr - - - 0.01 0.01 0.01
Λd - - - 0.14 0.19 0.14

IRmean,GH
† 1.51 0.51 0.51 0.52 0.52 0.49

IRmean 1.76 0.59 0.58 0.56 0.57 0.52
∆IRmean 1.13 0.34 0.34 0.24 0.27 0.19
T Rmean 1.12 0.46 0.46 0.45 0.47 0.41
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Fig. 5. The average inertia ratio at a certain joint acceleration and joint
speed is plotted in this figure for all controlled joints.

Peak Torque Ratio T R describes the ratio peak interaction

torque to the peak expected interaction torque.

T Ri =
max(τvirt)

max(τsys)
=

max(SiJ
⊤

C λC,mes)

max(SiMq̈mes)
. (16)

1) Scalar Excitation-Normalized Metrics: In Table I these

scalar metrics are compared for the different methods using

control parameters that have shown best performance during

systematic tuning. We can observe that our proposed con-

trollers VMC and VM+ATC reduce the inertia ratio IR by

a factor of three compared to the baseline controller FF. The

variation of the inertia ratio ∆IR is lowered by a factor of

six for the best method. The peak torque ratio is also reduced

by more than a factor of two by all proposed methods.

Hence, the proposed controllers are superior to the baseline.

The VM+ATC controllers seem to perform slightly better in

reducing the ∆IR. However, in the IR metric, there is no

relevant difference observable.

2) Velocity and Acceleration Sensitivity: To render an

intuitive feeling of free space, it is vital to see if the system

behaves consistently over the full bandwidth of accelerations.

Figure 5 shows the average IRmean at different accelerations.

The rendered impedance is quite consistent. A clear drop in

IRmean,GHC is observable for higher accelerations as well

as a peak around 2.3 rad s−1. This can be explained by a

very low amount of data at this velocity and acceleration in

our experiments. Hence, these deviations might be a specific

artifact of the chosen excitation.

TABLE II

PERFORMANCE OF VMC AND VM+ATC CONTROLLER IN THE

PRESENCE OF A LARGE MASS MODELLING ERROR OF THE UPPER ARM

LINK ∆mUA =−1 kg.

Method VMC VM+ATC VMC VM+ATC

α 0.7 0.7 0.6 0.6
Λr - 0.01 - 0.01
Λd - 0.14 - 0.14

IRmean 0.60 0.53 0.55 0.50
∆IRmean 0.67 0.09 0.18 0.16
T Rmean 0.50 0.49 0.38 0.46
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Fig. 6. Interaction wrench tracking performance at joint GHB under a
mass model error of −1 kg at the exoskeleton’s upper arm. The results are
shown without a) and with b) acceleration control. The reflected torque is
τrefl = J⊤

C λC. Further, q̈∗ = q̈ref,out.

3) Robustness Against Modelling Errors: We assess the

robustness of the control methods by inducing a large mass

modeling error for the upper arm link ∆mUA =−1 kg. Table

II shows the resulting differences using the scalar values.

The results are shown for the control parameter sets which

have shown best performance in for the nominal model.

Both controllers show a quite good performance while the

acceleration tracking seems to improve the performance

slightly. Figure 6 shows the improved acceleration reference

tracking performance. The improved tracking helps to render

a more consistent feeling of low inertia as the system behaves

more like the controller dictates. This can be explained by

the ATC compensating for ∆λC in equation (8). Without the

ATC, the interaction feels very transparent during high jerk

as ∆λC helps to accelerate the system. However, when the

jerk crosses zero, the inertia feels higher than with ATC.

VII. DISCUSSION & CONCLUSION

We presented a control method to render free motion with

a multi-DoF rehabilitation exoskeleton in the presence of

rapid and high-acceleration movements by the user. We pro-

posed to compensate for the device’s dynamics as accurately

as possible during these swift movements. Therefore, we pro-

pose to work with the best knowledge of the current system

state to feedback linearize the dynamics at the interaction

points to the user. We introduce a controller rendering a low

virtual mass (VMC) at the end-effector by converting the

measured interaction wrench to desired accelerations.

To further improve the performance in the presence of

model inaccuracies, we developed a closed-loop joint accel-

eration controller (ATC). Therefore, we introduced a method

to fuse the double differentiated joint encoder signals and



acceleration measurements from multiple low priced IMUs

to an estimation of the generalized joint acceleration. This

estimate was shown to be bias-free and to have a low delay,

which makes it eligible for feedback control. We could

demonstrate that the feedback acceleration control improves

the tracking performance significantly. Particularly for joints

with low attached inertia, this method is recommendable if

position control is not an option. Furthermore, the method

uses affordable IMUs, which keeps the hurdle for a transfer

to other robots low. An experimental comparison of the

proposed approach’s performance to state-of-the-art methods

that do not use q̈ to estimate the tracking error, as presented

in [21] and [10], should be addressed in future research.

Further, we compared variations of the method w.r.t. each

other and against a model-based feedforward controller as

a reference. In an earlier publication, this reference method

showed performance on par with state-of-the-art closed loop

controllers on comparable devices. The experiments demon-

strated that the introduced method is significantly superior

regarding all considered performance metrics compared to

the reference controller. The felt inertia, as well as the

maximum felt joint torque, could be reduced by more than a

factor of three. Besides, the method showed robust behavior

in the presence of significant modeling errors.

With the non-integrative VMC, we could demonstrate

that the inverse dynamics with the best momentary model

approach is a promising method to lay the ground for linear

interaction wrench controller synthesis. We intend to extend

the method using controllers with integrative action or/and

prior knowledge about the environment’s impedance (e.g.,

human) to improve the performance further.

These results set a new benchmark for dynamic free space

rendering in rehabilitation exoskeletons. It is possible to em-

ploy this method in combination with hierarchical optimiza-

tion strategies, which allows one to intuitively combine it

with tasks on other priorities, e.g., position limits. Therefore,

the VMC is used as a new standard on the rehabilitation ex-

oskeleton ANYexo. The level of transparency should pave the

way for novel intervention techniques in neurorehabilitation.

The results indicate that the proposed multi-sensor based

closed-loop acceleration tracking improves the accuracy of

the inverse dynamics. This method is attractive for all inverse

dynamics applications and particularly for joints with low

attached inertia. The presented control methods, as well as

the findings of the experiments, should be well transferable to

end-effector type haptic devices as well as for manipulators

to delicately interact with general environments that have an

unknown low impedance.
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