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Abstract

Alzheimer’s disease (AD) is the most common type of dementia and a major
cause of disability worldwide. Early detection of AD is essential to provide the
patients with adequate and timely treatments and to help researchers monitor
their effectiveness. Structural Magnetic Resonance Imaging (MRI) is a diagnos-
tic tool that provides high-resolution images and a high brain tissue contrast.

MRI-based biomarkers have been investigated in an attempt to describe
and quantify structural differences between groups of normal elderly controls
and subjects suffering from AD. Additionally, classification methods have been
proposed that use these biomarkers as features to distinguish between those
groups, thereby also providing diagnostic value.

Two main approaches have been extensively explored in the past decades
to perform early-stage AD classification based on structural MR images. The
first uses the volume and/or the shape of specific brain structures, such as the
hippocampi and the entorhinal cortex. As a consequence, these methods rely
substantially on the quality of: 1) the assumptions of which brain regions are
affected at an early stage of AD; 2) the segmentation of these brain structures,
which suffers from large variability across studies. Another major line of re-
search overcomes the first drawback by using voxelwise measures, such as the
probability maps of the brain tissues. However, these methods require a vox-
elwise inter-subject correspondence, which is difficult to achieve, particularly
considering the large anatomical variability of the brain across different sub-
jects.

Besides the above-mentioned disadvantages of these two approaches, they
both focus on structural (volume, shape, density) changes only. It has recently
been considered that also the MR image intensities and textures can provide
complementary information that is overlooked by the structural-based fea-
tures.

In this thesis, we propose methods to help diagnose AD at an early stage of
development. In particular, we build on the existing literature on classification
approaches that use MR image textures for early detection of AD.
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Firstly, we focus our analysis on a type of lesions in the white matter (white
matter hyperintensities) that have been shown to play a role in cognitive de-
cline. We propose a method to automatically segment these lesions from a
single MRI modality that can be suitable for large-scale clinical trials. We
show that our method, despite using less information, performs similarly to
current state-of-the-art multimodal approaches. Afterwards, we evaluate the
performance of white matter lesion texture descriptors in the detection of Mild
Cognitive Impairment (MCI, a transitional stage between normal ageing and
dementia). Results show that the textures are more discriminative than the
widely used lesion volumes and locations.

Secondly, we evaluate three approaches that use texture descriptors with-
out requiring prior brain structure segmentations. The first one takes the gray-
level histograms computed in the whole brain and in several cubic image re-
gions (patches). The second approach considers second-order statistical texture
maps and the third one uses intensity-invariant texture descriptors. Similarly
to the first method, these are also determined at cubic local patches.

The results from these three approaches show that: 1) texture descriptors
are able to achieve high classification rates, comparably to (or better than)
structural-based features; 2) by using local patches over the entire brain, no
assumptions need to be made about the expectedly affected brain regions, and
consequently no prior segmentations are needed; 3) by only affine-registering
the images (without performing non-linear alignments) we are still able to lo-
calize discriminative brain regions using finely sampled patches in the brain.



Samenvatting

De ziekte van Alzheimer (AD) is de meest voorkomende vorm van dementie
en een belangrijke oorzaak van invaliditeit in de wereld. Vroege detectie van
AD is essentieel om de patiënten te voorzien van adequate en tijdige behan-
deling en om onderzoekers te helpen hun effectiviteit te bewaken. Structurele
Magnetic Resonance Imaging (MRI) is een diagnostisch instrument dat beelden
biedt met hoge resolutie en een hoog hersenweefsel contrast.

MRI-gebaseerde biomarkers zijn onderzocht in een poging om structurele
verschillen te beschrijven en te kwantificeren tussen groepen normale con-
troles en patiënten die lijden aan AD. Daarnaast zijn classificatie methoden
voorgesteld die gebruik maken van deze biomarkers als kenmerken om een
onderscheid te maken tussen die groepen, waardoor ook het verstrekken van
diagnostische waarde.

Twee belangrijke benaderingen zijn uitgebreid onderzocht in de afgelopen
decennia om vroeg AD-classificatie op basis van structurele MR beelden uit te
voeren. De eerste maakt gebruik van het volume en/of de vorm van specifieke
hersenstructuren zoals de hippocampus en de entorhinale cortex. Bijgevolg
zijn deze methoden sterk afhankelijk van de kwaliteit van: 1) de aannames
over welke hersengebieden getroffen zijn in een vroeg stadium van AD, 2)
de segmentering van deze hersenstructuren, die lijdt aan grote variatie tussen
studies. Een andere belangrijke lijn van onderzoek overwint de eerste nadeel
met voxelgewijze maatregelen, zoals de waarschijnlijkheid kaarten van de
hersenweefsels. Deze werkwijzen vereisen een voxelgewijze interindividuele
correspondentie, die moeilijk te bereiken is, vooral gezien het grote anatomis-
che variabiliteit van de hersenen van verschillende proefpersonen.

Naast de bovengenoemde nadelen van deze twee benaderingen, zijn beide
gericht op structurele (volume, vorm, dichtheid) wijzigingen alleen. Het is
onlangs aangetoond dat ook de MR afbeelding intensiteiten en texturen aan-
vullende informatie kunnen bieden, die over het hoofd wordt gezien door de
structurele gebaseerde kenmerken.

In dit proefschrift stellen we methoden voor het diagnosticeren van AD
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in een vroeg stadium van ontwikkeling. In het bijzonder bouwen we voort
op de bestaande literatuur over classificatie benaderingen die MR afbeelding
texturen gebruiken voor de vroegtijdige detectie van AD.

Ten eerste richten we onze analyse op een soort laesies in de witte stof (witte
stof hyperintensiteiten) die worden verondersteld om een rol te spelen in de
cognitieve achteruitgang. Wij stellen een methode voor het automatisch seg-
menteren van deze laesies uit een MRI modaliteit die geschikt kan zijn voor
grootschalige klinische trials. We zien dat onze methode, ondanks het gebruik
van minder informatie, vergelijkbaar presteert aan de huidige state-of-the-art
multimodale benaderingen. Daarna evalueren we de prestaties van de witte
stof laesie textuur descriptoren in de opsporing van Mild Cognitive Impair-
ment (MCI, een overgangsfase tussen normale veroudering en dementie). Re-
sultaten tonen aan dat de textures meer onderscheidend zijn dan de veel ge-
bruikte volumes en locaties van de laesies.

Ten tweede evalueren we drie benaderingen die textuur descriptoren ge-
bruiken zonder voorafgaande hersenstructuur segmentaties. De eerste neemt
de grijze-niveau histogrammen in het hele brein en in verschillende kubieke
image regio (“patches"). De tweede benadering beschouwt tweede-orde statis-
tische textuur kaarten en de derde maakt gebruik van intensiteit-invariant tex-
tuur descriptoren. Net als de eerste methode, worden deze ook in kubische
lokale “patches" berekend.

Uit de resultaten van deze drie benaderingen blijkt dat: 1) textuur de-
scriptoren zijn in staat om een hoge classificatie nauwkeurigheid te bereiken,
vergelijkbaar met (of beter dan) de structurele gebaseerd kenmerken; 2) door
het gebruik van lokale “patches" over de gehele hersenen, hebben we geen
aannames nodig over de verwacht getroffen gebieden van de hersenen, en dus
ook geen voorafgaande segmentaties; 3) door alleen affine-registratie van de
beelden (zonder het uitvoeren van niet-lineaire registratie) zijn we nog steeds
in staat om onderscheidende gebieden van de hersenen te lokaliseren met be-
hulp van fijn bemonsterd “patches" in de hersenen.
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CHAPTER 1

Introduction

1.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease and the most com-
mon cause of dementia worldwide. The current prevalence of AD is about
1-2% at 65 years old and 35% or higher by age 85 [1]. As life expectancy in-
creases, the number of people suffering from AD will grow rapidly. In 2006,
the estimated number of people with AD was 26.6 million. This number is
expected to quadruple by 2050, meaning that, by that time, 1 in 85 persons
worldwide will suffer from AD [2]. Therefore, besides causing a major psy-
chological burden on patients, families and caregivers, AD is also expected to
place an increasingly large socioeconomic burden in our societies [3].

Clinically, AD is characterized by a gradual cognitive decline that usually
starts with memory impairment (short-term memory in earlier stages) and pro-
gresses to the deterioration of functional abilities, to behavioral changes, ulti-
mately leading to a complete loss of independence in late-stage patients [4].

The exact pathogenesis of AD is not yet fully understood, with multiple
processes currently thought to be involved in the disease development. Since
the early 1990’s, the so-called “amyloid cascade hypothesis" has had a promi-
nent role in describing the etiology and pathogenesis of AD. According to this
hypothesis, AD starts with the accumulation of Aβ proteins in the brain. These
trigger the formation of senile plaques (SP) and neurofibrillary tangles (NFT),
which in turn progressively lead to damage and loss of the neural tissue and
consequently to dementia [5] (Figure 1.1).

However, recent evidence shows that SP and NFT may develop indepen-
dently and that they may be the result of neurodegeneration rather than its
cause [6]. Other disease mechanisms have then recently been investigated in
an attempt to better describe the AD pathology [1].
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Figure 1.1: AD hallmarks: a) tissue-level representation, showing the presence of
amyloid (senile) plaques and neurofibrillary tangles; b) late-stage AD brain, showing

marked shrinkage in comparison with a healthy brain.

Currently, a definite diagnosis of AD will not be available until an autopsy
is made, i.e., post-mortem, or, in rare cases, through a brain biopsy. These tests
are able to confirm the presence of SP and NFT and consequently determine
the cause of dementia as being AD [7]. Furthermore, the clinical diagnosis for
“probable AD" cannot be given until the patient shows severe cognitive deficits
that significantly impact his/her daily life activities [8].

However, evidence shows that AD pathology starts decades before the first
symptoms arise [9]. Therefore, there is increasing interest in finding indica-
tors (“biomarkers") of AD that can help diagnose the disease at an incipient
stage. In particular, existing pharmacological therapies are only symptomatic
treatments that are prescribed for later stages of AD [3]. These therapies pro-
vide temporary and modest improvement in cognitive functions but do not
cure the disease [1]. An earlier diagnosis is expected to help with the proper
screening of patients for clinical trials and consequently lead to the develop-
ment of more suitable treatments. Additionally, an earlier intervention is likely
to be more effective since it can be applied before irreversible damage has taken
place [10]. It is estimated that interventions capable of delaying disease onset
and progression by only one year would be able to reduce the number of AD
patients in 2050 by 9.2 million worldwide [2].

Recent clinical and research guidelines for diagnosing AD consider the dis-
ease progression as consisting of three stages: a pre-clinical (pre-symptomatic)
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stage; a symptomatic, pre-dementia stage called “Mild Cognitive Impairment
(MCI) due to AD" and the AD or dementia stage [11].

MCI is generally considered to be a transitional stage between normal age-
ing and dementia, characterized by memory impairment as the most promi-
nent feature. Because MCI subjects have been considered to be at an increased
risk of developing AD, much effort has been put into distinguishing MCI indi-
viduals that will convert to AD from those that will not [12].

However, even though there are general guidelines for the diagnosis of MCI
[13], some criteria are not objective, which leads to a large variability in the def-
inition of MCI subjects across studies [14]. Also, a recent study by Morris et al.
[15] shows that MCI subjects progress gradually to more severe stages of de-
mentia at rates that depend on the level of cognitive impairment at baseline,
suggesting that the “MCI due to AD" stage [11] represents, in reality, the earli-
est symptomatic stage of AD.

Despite its large heterogeneity and the controversy regarding its exact def-
inition, MCI remains a group of interest in the study of early-stage AD.

1.2 Magnetic Resonance Imaging

Neuroimaging techniques enable in vivo assessment of brain changes and are
therefore promising in the field of early detection of AD [16]. Earlier clin-
ical guidelines supported the use of neuroimaging in the diagnosis of AD,
mostly to rule out other (possibly treatable) causes of memory loss [17]. Nowa-
days, the revised criteria for AD further recommends the use of neuroimaging
biomarkers in research settings to complement clinical assessments [13].

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique
with widespread use in research and clinical practice. It is based on the prin-
ciple of Nuclear Magnetic Resonance (NMR), in which nuclei, in the presence
of an external magnetic field, absorb and re-emit electromagnetic radiation at
a specific resonance frequency [18].

The human body is composed of large amounts of water molecules, which
in turn contain two hydrogen protons (1H) each. Nuclei with an odd num-
ber of protons and/or neutrons, such as that of hydrogen, exhibit a magnetic
moment and are therefore NMR-active. When a strong external magnetic field
is applied, the protons will align with the field. This alignment can be either
parallel or anti-parallel to the field. The parallel alignment corresponds to a
lower energy state and will therefore be more occupied than the correspond-
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ing anti-parallel state, resulting in a net magnetization vector that is parallel to
the magnetic field.

The magnetic moment of each active nucleus precesses around its axis at
the so-called Larmor frequency. To obtain the nuclear resonance effect, a radio-
frequency (RF) electromagnetic pulse with the same frequency is applied to
perturb the equilibrium state of the magnetic moments. When this RF pulse is
turned off, the magnetic moments will return to their equilibrium state (aligned
with the strong external field) by emitting an RF signal.

In particular, a 90◦ pulse will orient the magnetization vector perpendicu-
larly to the static magnetic field. The return of the longitudinal magnetization
(component of the magnetization vector along the direction of the static field)
to the equilibrium state, after the pulse is turned off, is referred to as longi-
tudinal relaxation, and its time constant is called T1. At the same time, the
transverse magnetization (component of the magnetization vector perpendic-
ular to the direction of the static field), which is created when the magnetic
moments are flipped by the RF pulse, will decay as the magnetic moments get
out of synchronization. This decay is exponential, characterized by the time
constant T2 [18].

Also, spatial information can be extracted (to build an image) by applying
a controlled spatial and time-variant magnetic field, which selectively excites
nuclei at specific positions in the body. The combination of the gradient fields
and the applied pulses is named pulse sequence. The measured signal, which
is read by an RF detector system, represents the sum of the signals emitted by
active nuclei from a certain part of the tissue, selected according to the pulse
sequence [18].

By varying the pulse sequences, it is possible to measure different prop-
erties of the tissues being imaged. For example, a T1-weighted image shows
differences in the T1 relaxation times of the different tissues. In the particu-
lar case of brain images, T1-weighting provides good contrast between gray
and white matter and is therefore widely used for brain segmentation and con-
sequently for the assessment of brain atrophy. Similarly, T2-weighted images
reflect differences in the T2 relaxation time of the tissues. This modality is able
to differentiate water from fat and is therefore suitable for imaging edema. T2-
weighted images have also shown to be more sensitive to microscopic neu-
rodegenerative processes than T1 images [19].

Another MRI modality that is often used for brain imaging is Fluid-
Attenuation Inversion Recovery (FLAIR). It is based on T2-weighting, with the
difference that the cerebrospinal fluid signal is attenuated. This causes lesions
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present in the white matter to show with increased contrast with respect to
healthy tissues [20].

T1, T2 and FLAIR images are often classified as structural MRI modalities
[21], since they are able to provide information about large-scale properties
such as the size, shape and volume of the imaged tissues. Figure 1.2 shows
examples of brain MR images (coronal slices) obtained from the same subject
using T1, T2 and FLAIR pulse sequences.

a) b) c)

Figure 1.2: Coronal slices of a subject’s MR images: a) T1, b) T2 and c) FLAIR.

Other MRI modalities include perfusion- and diffusion-weighted imaging.
The first analyzes the blood flow patterns to the brain tissues and can there-
fore detect microvascular perfusion abnormalities. This is particularly rele-
vant considering that vascular factors have also shown to be involved in AD
[22]. Diffusion-weighted imaging is based on the microscopic motion of water
molecules (diffusion) in structurally anisotropic tissues, such as the bundles of
neuron axons in the white matter, and is therefore sensitive to the presence of
microstructural white matter impairments [23]. Despite being more sensitive
to changes at a lower scale and at a more functional level, these techniques
are not yet widespread in the clinical practice. However, recent studies point
to the advantage of combining the three types of MRI modalities (structural,
perfusion-weighted and diffusion-weighted) to help understand the processes
underlying the development of AD [24].
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1.3 Structural MRI biomarkers to detect early-stage

AD

Structural MRI (particularly T1-weighted imaging) has shown the presence
of groupwise differences between healthy controls and (early) AD patients,
mostly in medial temporal structures like the hippocampus and the entorhi-
nal cortex. However, these studies have limited diagnostic value, since they
only focus on global group differences. More recently, and with the develop-
ment of machine learning techniques capable of dealing with high-dimensional
data, methods have been proposed that perform classification between normal
elderly controls and early-stage AD, having thus the potential to provide a di-
agnosis [25].

In this section, we briefly review such methods. We subdivide them into
four categories, according to the type of features considered: 1) volumetric
(features such as the volume and/or the shape of specific brain structures);
2) morphometric (voxelwise features, obtained after a non-linear registration
to a template); 3) textural (image texture descriptors, determined both within
specific brain structures or in the entire brain); 4) white matter hyperintensities
descriptors (volume, spatial location and textures of perfusion-related lesions
in the white matter).

1.3.1 Volumetric

Atrophy in medial temporal structures, such as the hippocampus and entorhi-
nal cortex, has been considered a valid MRI biomarker of AD [9].

Methods have been proposed that use the hippocampal volume [26, 27]
or its shape [28] as features in the classification of MCI. The volumes of the
entorhinal cortex [29] and the amygdala [30] have also been considered for
the same purpose. Similarly, the shape and the volume of the brain ventricles
have recently shown promising results in the classification of MCI [31]. Finally,
cortical thickness has also been considered in the early detection of AD [32].

However, it has been shown that medial temporal atrophy alone lacks
specificity to confidently diagnose AD and it has been suggested that other
brain regions should also be considered [9]. Additionally, the progression of
AD pathology has a complex pattern. It starts in medial temporal structures
like the hippocampus and the entorhinal cortex, and subsequently spreads
through most of the temporal lobe and the posterior cingulate, ultimately
reaching the cortical regions. Therefore, measuring volumes of specific brain
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regions of interest (ROIs) is likely to miss important information that is avail-
able in the three-dimensional MR image. Also, the AD atrophy pattern does
not necessarily follow pre-determined anatomical boundaries [33].

Furthermore, such volumetric measurements, besides making a priori as-
sumptions about the expectedly affected brain structures, require the segmen-
tation of these structures from the MR images, which is a complex and, in the
case it is performed manually, time-consuming task. In particular, although
several automatic hippocampus segmentation methods have been proposed,
they show significant variability in the measurement of atrophy rates due to
differences both in the methodological approaches and especially in the defini-
tion of the hippocampal boundaries [34]. On the other hand, manual segmen-
tations of the hippocampus by experienced neuroradiologists suffer from intra-
and inter-rater variability. They are also subject to the definition of anatomical
landmarks, for which there is not yet a consensus [35].

1.3.2 Morphometric

Morphometric approaches comprise two main steps: non-linearly registering
the brain images of all subjects to a common template and computing voxel-
wise measurements of interest. By statistically analyzing these voxelwise mea-
sures, it is possible to determine which voxels are significantly different be-
tween the subject groups, and maps showing the brain regions that are related
to the disease can be created [36].

Furthermore, these voxel-by-voxel measurements can be taken as features,
which are then fed to classifiers known to handle well high-dimensional data,
such as Support Vector Machines (SVM), to discriminate between normal con-
trols and early-stage AD [37, 25].

A widely used morphometric approach is to extract the voxelwise proba-
bility of the three brain tissues (cerebrospinal fluid, white and gray matter) that
result from the fuzzy segmentation step performed prior to the non-linear reg-
istration to the template. This technique is called Voxel-Based Morphometry
(VBM) [38]. In particular, the gray matter probability map (often referred to
as “density" or “concentration" map) is the most often used, based on the as-
sumption that AD primarily affects the cortical structures, as a consequence of
the underlying neuronal loss [37]. Similarly, Deformation-Based Morphometry
(DBM) considers the properties of the deformation field that results from the
non-linear registration step [39, 40]. In particular, Tensor-Based Morphometry
(TBM) is a variant of DBM and uses the voxelwise Jacobian determinant of this
deformation field. This measure represents the change in volume that a voxel
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undergoes during the non-linear registration and is therefore an indicator of
local volume differences [41].

An advantage of these methods, with respect to the above-mentioned ROI-
based volumetric approaches, is the fact that they do not require a priori as-
sumptions about the size, location or number of regions to be analyzed, since
they provide voxelwise measures determined in the entire brain.

However, and as mentioned above, these approaches always require non-
linear alignments to a template, in order to achieve voxelwise inter-subject cor-
respondence. A drawback is that, due to the high anatomical variability of
brain structures like the cortical folds, the non-linear registration in those re-
gions is not straightforward and severe misalignments may occur, compromis-
ing the subsequent analyses [42]. Also, the quality of the alignment is difficult
to evaluate [43]. Finally, while non-linear registration can give more precise
registration results than, for example, affine registration, there is also the risk
of an over-alignment which can result in the elimination of informative pat-
terns from the images [43].

1.3.3 Texture analysis

Volumetric and morphometric studies rely on large-scale structural alterations,
such as volume/shape changes, and therefore only indirectly measure the
changes that are known to occur, in AD, at the cellular level. Furthermore,
these macroscopical alterations occur mostly at later stages of the disease,
when neurodegeneration has already taken place [9].

The T1 intensities have been shown to be sensitive to degenerative age
changes in the white matter [44]. Other studies show that T2 hypointensities
are also present in AD brains [45]. The analysis of the MRI signal (intensi-
ties) may therefore bring additional information to the early diagnosis of AD
that is otherwise missed by the structural-based volumetric/morphometric ap-
proaches. Furthermore, the local composition of brain tissues is also reflected
in the MR intensity distribution, meaning that, for example, locally shrunk
brain structures will display a different proportion of gray matter and cere-
brospinal fluid compared with when they are unaffected.

Texture analysis is an image processing tool that has recently found appli-
cations in the study of various neurological diseases, including AD [46, 47, 48].
It extracts information that is not visible by a direct analysis of the image inten-
sity and shape properties. In particular, a 3D MR image is a collection of vol-
ume elements (voxels), which are characterized by spatial locations and gray
level intensities. Texture analysis evaluates the organizational pattern of these
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voxels. The extracted features reflect the structure of the imaged tissues. Intu-
itive textural properties of an image include smoothness/roughness, regular-
ity/irregularity, fineness/coarseness [49, 50].

In [48], the authors perform 2D texture analysis using the entire brain to
classify between AD and normal controls. Rajeesh et al performed a similar
study, but computed the textures only at the hippocampi [51]. In [52], Zhang
et al. discriminate between normal controls and AD using 3D texture features
computed at manually defined spherical ROIs, in the hippocampus and the en-
torhinal cortex. However, the results vary significantly with the location and
the size of the chosen ROI, with accuracies ranging from 64% to 96%. Further-
more, in neither of these two studies is an analysis with MCI/early-stage AD
subjects performed. Other studies have carried out texture analysis in the cor-
pus callosum and thalamus, but the focus is on groupwise analyses rather than
the classification of individual subjects [53].

The texture descriptors used in the above-mentioned studies have been
computed at manually segmented ROIs, thus suffering from the same draw-
backs as the volumetric approaches described above - they require a priori
knowledge about the disease and depend on the quality of the segmentations.
Also, although seemingly promising, texture analysis has not been thoroughly
explored in the field of early detection of AD. In particular, to the best of our
knowledge, no comparisons have been performed between the performance of
texture and volumetric/morphometric descriptors in the classification of early-
stage AD and the question about the usefulness of such image descriptors re-
mains open.

1.3.4 White matter hyperintensities

White matter hyperintensities (WMH) are diffuse white matter abnormalities
that are often associated with chronic cerebral ischemia, in particular with mi-
crovascular lesions originated by small vessel atherosclerosis [54]. They occur
often in the elderly [55, 56, 57, 58] and have been shown to predict an increased
risk of stroke, cognitive decline and death [59].

In structural MRI, WMH show as hypointensities in T1-weighted images
and hyperintensities in T2-weighted images and Fluid Attenuated Inversion
Recovery (FLAIR). In Figure 1.2, examples of such lesions can be observed
(more clearly in the FLAIR image because of its contrast properties). Causes
for signal changes in the lesions include demyelinization, axonal loss, gliosis,
or edema [60].
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The most widely used techniques to assess WMH in structural MR images
are based on the lesion segmentation binary results. In particular, both the
volume and the spatial distribution of these lesions have been thoroughly in-
vestigated. A recent long-term longitudinal study shows that the WMH load
(volume) increases rapidly in normal subjects who develop MCI a decade later,
suggesting that these lesions might serve as very early biomarkers of MCI and
thus help with the earlier detection of AD [61]. In [62], the authors observe that
the total lesion volume with a high proportion of lesions in the temporal region
is associated with the risk of developing MCI.

However, there is still some controversy regarding the actual role played
by WMH in the development of MCI and AD, with some studies showing that
there is no relation between lesion volume and cognitive decline [63, 64, 65].

While the majority of such studies is based on volumetric analyses, more
recently diffusion- and perfusion-weighted MR images have also been used to
analyze microstructural properties of the WMH that go beyond their volume
and location. In [66] the authors analyzed lesion perfusion differences between
a group of normal controls and AD patients. They observed that the WMH
locations were less perfused in AD than in the healthy subjects.

WMH also seem, then, to contain information that can help diagnose AD at
an early stage. However, not much research has been done that uses such in-
formation to perform classification. In [67], the authors use texture descriptors,
determined at the lesion locations in the images, to classify between a group
of normal controls and a group of patients suffering from dementia of various
types, including AD. Their results indicate a higher discriminative power of
the lesion textures compared to structural properties like their volumes and
locations.

1.4 Research scope and objectives

In this thesis, our goal is to detect Alzheimer’s disease at an early stage of
development, using structural MR images.

In order to achieve that, we use machine learning techniques to classify be-
tween groups of cognitively healthy controls and early-stage AD. In particular,
we focus on feature extraction approaches that are based on texture analysis
and that do not require prior knowledge nor segmentations of expectedly af-
fected brain structures. The exception is Chapter 3, where we perform texture
analysis on previously segmented white matter hyperintensities, to indepen-
dently evaluate whether these lesions contain discriminative information.
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Furthermore, we limit our scope to cross-sectional studies, in which we
analyse groups of normal controls and early-stage AD subjects at one time in-
stant, to investigate the possibility to provide a diagnosis based on a subject’s
single MR acquisition.

Specifically, the classification methods we propose are tested in groups of
elderly controls vs. MCI (Chapters 3 and 5) and elderly controls vs. very mild
to mild AD (Chapters 4 and 6). The terminology is based on the information
available at the database from which the data is retrieved. As explained above,
the boundaries between MCI and very mild AD are not objective nor consen-
sual, and the two groups often overlap. However, this issue is out of the scope
of this work. Also, the ground truth we use in the classifications is based on
the clinical diagnosis (no pathological confirmation of AD was available).

We address the following research questions:

• Can we accurately segment white matter hyperintensities from a single
MRI modality (FLAIR)? (Chapter 2)

• Is the proposed method comparable, in terms of performance, to existing
multimodal approaches? (Chapter 2)

• Is it possible to detect MCI using only textural properties of white matter
hyperintensities and what is the performance in comparison with volu-
metric/spatial features? (Chapter 3)

• Do intensity histograms contain enough information to detect early-stage
AD and how do they perform in both traditional and dissimilarity-based
classification frameworks? (Chapter 4)

• Can texture features help to classify between normal controls and
MCI/early-stage AD and how to they perform compared to structural-
based features? (Chapters 5 and 6)

• Can local patches help in both the classification of MCI/early-stage AD
and the localization of the affected brain structures? (Chapters 4, 5 and 6)

• Do the detected regions correspond to what is already known about the
affected brain structures? (Chapters 4, 5 and 6)
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1.5 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we pro-
pose an automatic segmentation method for white matter hyperintensities that
uses only three-dimensional FLAIR images and compare it with state-of-the-
art approaches that use at least two modalities. Chapter 3 presents a classifica-
tion method based on texture analysis of these lesions to discriminate between
normal controls and MCI, using T1, T2 and FLAIR images. In Chapter 4, we
propose a dissimilarity-based classification approach that uses simple image
histograms both globally at the whole brain and locally at small patches to
classify early-stage AD. In Chapter 5, we determine local texture maps of the
whole brain and use them to detect MCI. Subsequently, in Chapter 6 we fur-
ther use texture analysis on local image patches to both classify and localize
AD at an early stage of development. Finally, Chapter 7 concludes this the-
sis by summarizing the research results and providing recommendations for
future work.



CHAPTER 2

Segmentation of white matter

hyperintensities in FLAIR images

In the previous chapter, we have reviewed the state-of-the-art in the study of
early-stage Alzheimer’s disease using Magnetic Resonance images. One cur-
rent line of research concerns the study of white matter hyperintensities and
their possible role in the development of Alzheimer’s disease. In this chapter,
we propose an automatic segmentation method of white matter hyperinten-
sities that requires only one Magnetic Resonance Imaging modality (FLAIR)
and that can, therefore, be suitable for large-scale clinical trials. We evaluate
it against the manual segmentation by a neuroradiologist and compare it, in a
benchmark dataset, with more complex state-of-the-art multimodal methods.

This chapter is based on the following publication: Lopes Simoes, A.R. and
Moenninghoff, C. and Wanke, I. and Dlugaj, M. and Weimar, C. and van Cappellen
van Walsum, A. and Slump, C.H., Automatic segmentation of cerebral white matter
hyperintensities using only 3D FLAIR images. Magnetic Resonance Imaging, vol. 31,
no. 7, pp. 1182-1189, 2013.

2.1 Abstract

Magnetic Resonance (MR) white matter hyperintensities have been shown to
predict an increased risk of developing cognitive decline. However, their ac-
tual role in the conversion to dementia is still not fully understood. Automatic
segmentation methods can help in the screening and monitoring of Mild Cog-
nitive Impairment patients who take part in large population-based studies.
Most existing segmentation approaches use multimodal MR images. However,
multiple acquisitions represent a limitation in terms of both patient comfort
and computational complexity of the algorithms. In this work, we propose an
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automatic lesion segmentation method that uses only three-dimensional Fluid-
Attenuation Inversion Recovery (FLAIR) images. We use a modified context-
sensitive Gaussian Mixture Model to determine voxel class probabilities, fol-
lowed by correction of FLAIR artifacts. We evaluate the method against the
manual segmentation performed by an experienced neuroradiologist and com-
pare the results with other unimodal segmentation approaches. Finally, we ap-
ply our method to the segmentation of Multiple Sclerosis lesions by using a
publicly available benchmark dataset. Results show a similar performance to
other state-of-the-art multimodal methods, as well as to the human rater.

2.2 Introduction

White matter hyperintensities (WMHs) are diffuse white matter abnormalities
that appear with high intensities in T2-weighted Magnetic Resonance (MR) im-
ages. Although the pathogenesis of WMHs is not yet completely understood,
these lesions are often associated with chronic cerebral ischemia, in particu-
lar with microvascular lesions originated by small vessel atherosclerosis [54].
They occur often in the elderly [55, 56, 57, 58] and have been shown to predict
an increased risk of stroke, cognitive decline and death [59].

The analysis of the real influence of WMHs on the development of demen-
tia requires clinical studies involving large patient cohorts. Also, an accurate
description of the location, shape and volume of the WMHs is necessary. Typi-
cally, WMHs are classified according to visual scales, such as the Scheltens scale
or the Fazekas scale [68]. However, the results obtained by these visual scales
are seldom comparable [69]. In addition, they have been shown to be little
sensitive to clinical group differences [70]. Finally, they offer only a qualitative
description of the WMHs, originating high intra- and inter-subject variabilities
[71].

A quantitative and more reliable way of assessing WMHs is by manually
determining the lesion volumes. However, for three-dimensional data this typ-
ically requires a slice-by-slice analysis, making the whole process cumbersome
and time-consuming for the neuroradiologist. Also, the intra- and inter-rater
variability have been reported to be high [72]. Clinical studies with hundreds
of patients require, therefore, automated and robust segmentation methods.

Several methods have been proposed to automatically segment WMHs
from MRI images, most of them using various types of MRI modalities
[73, 74, 75]. The use of multimodal data presents several disadvantages.
Namely, the acquired datasets must be coregistered, making the segmentations
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computationally intensive and more prone to errors. In particular, motion ar-
tifacts are seen frequently in the MRI data from elderly patients, who are often
not able to lie still during the whole acquisition period. This represents a seri-
ous limitation for the registration algorithms and can negatively influence the
outcomes [76, 77].

Other methods have been specifically designed to segment Multiple Sclero-
sis (MS) lesions [78, 79]. Although MS lesions look similar to vascular-related
WMHs in MR images, the spatial distribution of the lesions is often very dif-
ferent, with MS lesions occurring commonly in the corpus callosum and being
symmetrically distributed in the brain, unlike the vascular WMHs [80].

WMHs are characterized by a larger T2 relaxation rate due to increased tis-
sue water content and degradation of myelin [76]. Fluid-attenuated inversion-
recovery (FLAIR) is a T2-weighted MR modality in which the cerebrospinal
fluid (CSF) signal is attenuated. In FLAIR images, WMHs are characterized
by an intensity range that only partially overlaps with that of normal brain re-
gions, making this MRI modality well suited for lesion segmentation purposes
[81].

Despite being the preferred imaging modality used by neuroradiologists to
assess WMHs in the clinical setting, FLAIR has seldom been used alone in the
automatic detection of these lesions [76, 77].

In [76], the authors determined an optimal FLAIR intensity threshold to
separate WMHs from normal brain tissue, based on the analysis of the image
histograms on a training set. More recently, Ong et al. [82] have applied an out-
lier detection approach to find this optimal threshold, followed by a false pos-
itive correction step that uses the co-registered T1-weighted image. Similarly,
de Boer et al. [75] determined the optimal intensity threshold on a training set
and used the T1-weighted image to ensure the detected lesions were all within
the white matter.

Applying a threshold allows only for crisp segmentation and does not ac-
count for the Partial Volume Averaging (PVA) effect that is present in MR im-
ages. Having that in mind, Khademi et al. have proposed a segmentation
method that allows for fuzzy segmentation and is based on a PVA model in
FLAIR images [77].

In the methods described above, only the voxel intensity information is con-
sidered. However, it has been recognized that this makes methods highly sen-
sitive to noise. In particular, boundary detection becomes problematic in noisy
images. Furthermore, the common assumption that the voxel intensities are
independent does not hold in practice. In reality, and intuitively, we can expect
a certain voxel’s value to be affected by those in its neighborhood [83, 84].
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In this work, we propose a WMH segmentation method that uses solely
FLAIR images. It is based on a modified Gaussian Mixture Model (GMM) that
incorporates neighborhood information, followed by a false positive correction
step, where common FLAIR artifacts [85] are eliminated from the segmenta-
tion.

Gaussian Mixture Models (GMM), estimated by the Expectation-Maxi-
mization (EM) algorithm, have been widely used in brain image segmentation
[86, 87]. They provide a statistical description of the voxels’ intensities and
allow for fuzzy classification [88]. Because the traditional GMM-EM method
is based only on intensity information, we use a modified GMM-EM method,
initially proposed in [84], that considers additional contextual information. All
initialization parameters are derived from the FLAIR image histogram.

We compare the performance of the proposed method with other unimodal
approaches. For each method, the optimal parameters are determined using a
training set that is retrieved randomly from our patient database. Evaluation
is performed using the remaining patient datasets against the manual segmen-
tation performed by an experienced neuroradiologist. Finally, we apply the
method to a publicly available dataset of MS patients and compare the ob-
tained performance results with those by multimodal segmentation methods
and with the human expert.

2.3 Methods

Figure 2.1 shows the general overview of our method.
The raw FLAIR image is first preprocessed to remove the skull and to cor-

rect for bias field inhomogeneities. Subsequently, a context-sensitive GMM is
applied to the brain image and the resulting WMH probability class is thresh-
olded. Finally, the existing FLAIR artifacts (located at the interface between the
cerebrospinal fluid and the gray matter and inside the ventricles - red pixels in
the last figure) are eliminated by morphological processing of the cerebrospinal
fluid segmentation mask, resulting in the final segmentation of the WMH (blue
pixels in Figure 2.1d)). In the following subsections we will describe these steps
in detail.

2.3.1 Gaussian Mixture Model

Figure 2.2 shows the histograms of the FLAIR images of two patients. Two
peaks can be easily distinguished: the one at lower intensities corresponds to
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cerebrospinal fluid voxels; the highest peak refers to white and gray matter
voxels. Additionally, in Figure 2.2b) a low and broad peak is present at the
right-end tail of the histogram. This peak is especially prominent in patients
with a large lesion load and corresponds to WMH intensities.

We assume that the data can be modelled by a Gaussian Mixture Model
(GMM) and that each voxel belongs to one of three distinct classes—cere-
brospinal fluid (CSF), white and gray matter (WM/GM), or white matter hy-
perintensity (WMH)—. The probability density function (pdf) of a gray-level
x can then be described by:

p(x|π,µ,σ) =
3

�

k=1

πkN (x|µk,σk) (2.1)

with k = 1, 2, 3 respectively corresponding to the CSF, WM/GM and WMH
classes. Each Gaussian component N is characterized by a mixing weight
πk, a mean value µk and a standard deviation σk. We use the Expectation-
Maximization (EM) algorithm to find these parameters.

Traditional Expectation-Maximization

The EM algorithm is an iterative procedure that maximizes the log-likelihood
of the parameters [89, 90]. It alternates between two consecutive steps: the
Expectation (E)-step and the Maximization (M)-step. In the E-step, the param-
eters at the current iteration are used to compute the log-likelihood. In the
M-step, the computed log-likelihood is maximized to determine the new pa-
rameters.

Assuming that the data, X = (x1, ..., xN ), are independent and identically
distributed variables, the log-likelihood of the parameters given the data is
defined as:

�(π,µ,σ|X) = log

N
�

n=1

p(xn|π,µ,σ) =
N
�

n=1

log p(xn|π,µ,σ) (2.2)

The M-step parameter estimates are derived by maximizing Eq. (2.2):
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µ
(i+1)
k =

1

N

N
�

n=1

xnT
(i)
k,n

σ
(i+1)
k =

�

�

�

�

�

�N
n=1

�

xn − µ
(i+1)
k

�2

T
(i)
k,n

�N
n=1 T

(i)
k,n

π
(i+1)
k =

1

N

N
�

n=1

T
(i)
k,n

(2.3)

where T
(i)
k,n is determined at the E-step by:

T
(i)
k,n =

π
(i)
k N (xn|µ

(i)
k ,σ

(i)
k )

p(xn|π(i),µ(i),σ(i))
(2.4)

The initial parameters are computed from the histogram as follows:
µ
(0)
WM/GM and µ

(0)
CSF correspond to the first and second highest peaks in the

histogram, respectively; µ(0)
WMH is taken as the local histogram maximum be-

tween µ
(0)
WM/GM and the maximum intensity (if no local maxima are found, we

take this value as the average between µ
(0)
WM/GM and the maximum intensity);

all standard deviations are initialized with the same value: the standard devi-
ation of the voxel intensities in the CSF class (with the threshold for this class
being the local minimum between µ

(0)
WM/GM and µ

(0)
CSF ); finally, the initial class

weights are selected based on the relative ratios between µ
(0)
WM/GM , µ(0)

CSF and

µ
(0)
WMH . These weights can take values in the interval [0,1]. This means that if

there are no lesions in the brain the outcome will be a two-class segmentation
(CSF and WM/GM).

The algorithm has converged when the absolute normalized difference be-
tween the log-likelihood values at two consecutive iterations is lower than tol-
erance T = 10−3.

Although it may be sufficient to obtain a first rough approximation of the
voxels’ statistical distributions, the traditional GMM-EM algorithm has the dis-
advantage of taking only intensity information into account. We therefore ap-
ply a previously proposed [84] adaptation to the E-step. The difference be-
tween the performance of the normal and the modified GMM-EM approaches
is particularly significant in images with low WMH loads, as we will show in
Section 2.4.
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Context-Sensitive Expectation-Maximization

In [84], the authors introduced contextual information into the traditional
GMM-EM method as follows. At each iteration, the posterior probability (Eq.
(2.4)) is substituted by:

T
(i)CC
k,n =

π
(i)
k C

(i)
k,nN (xn|µ

(i)
k ,σ

(i)
k )

p(xn|π(i),µ(i),σ(i))
, (2.5)

which incorporates a context-sensitive penalty term C
(i)
k,n. This term imposes

that, at each iteration, the probability that a voxel belongs to class k depends
not only on the voxel’s intensity, but also on its neighbors’ current class proba-
bilities. We define the penalty term as follows:

C
(i)
k,n = Φ{I

(i)
k }(xn) (2.6)

with I
(i)
k being the membership image which, at each brain voxel xn, represents

the probability that the voxel belongs to class k. Φ{·} represents the filter used
to take the voxel’s neighborhood into account.

We initialize the context-sensitive (CS-) EM method with the parameters
that result from applying the traditional GMM-EM method to the dataset. Af-
ter convergence, we apply thresholds tWMH and tCSF to the resulting WMH and
CSF membership images, respectively.

2.3.2 False Positive correction

After applying the threshold to the WMH probability map, we still obtain some
false positives — voxels that are initially considered to be lesions but are in real-
ity FLAIR artifacts. We apply a postprocessing step that consists of eliminating
these voxels from the segmentation.

A common location of false positives is in the interface between the CSF
and the cortical gray matter. To eliminate these voxels from our initial segmen-
tation, we use the CSF mask obtained after thresholding the CSF class mem-
bership image that results from the segmentation method described above. We
perform binary dilation of this mask with a three-dimensional cubic structure
with size S×S×S. We mask our first WMH segmentation obtained after apply-
ing the EM method with the dilated CSF mask.

Other hyperintense voxels, resulting from flow artifacts (located mainly in
the ventricular system) [85] are also eliminated in this step by morphologically
“closing the holes" [91] in the dilated CSF mask.
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Finally, and because the lesion voxels adjacent to the ventricles are also
eliminated after this step, we perform binary propagation [91] to the initial
WMH segmentation in order to recover these wrongly eliminated voxels.

2.3.3 Evaluation metrics

To evaluate the method, we compare our results with the manual segmentation
provided by an experienced neuroradiologist. We use the following metrics
for comparison: Dice Similarity Coefficient (DSC), Overlap Fraction (OF) and
Extra Fraction (EF) [73]:

DSC =
2×#TP

#AS +#GT
(2.7)

OF =
#TP
#GT

(2.8)

EF =
#FP
#GT

(2.9)

with TP and FP being the true and the false positives, respectively, AS the au-
tomatic segmentation and GT the ground truth provided by the expert.

Because the lesion load (LL) is often an important measure in clinical stud-
ies, we finally determine the correlation coefficient between the obtained LL
values with those from the manual segmentations.

2.4 Experiments and Results

2.4.1 Data

Forty datasets were retrieved from a large database of a cognition study with
MCI and control subjects carried out at the University Hospital of Essen, Ger-
many. From these 40 subjects, 15 correspond to stable normal controls, 14 to
stable amnestic-MCI subjects, 8 to MCI subjects who have progressed to de-
mentia and 3 to normal subjects who have declined to amnestic-MCI. The age
of the subjects is 74.7± 4.3 (range 62-82).

Three-dimensional isotropic FLAIR images are utilized in this study (1.5 T
Siemens Avanto, Germany); TR = 6000ms; TE = 308ms; TI = 2200ms; voxel size
= 1mm3). We apply the following preprocessing steps to the raw FLAIR im-
ages:
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- brain extraction using BET (FMRIB’s Brain Extraction Tool, http://fsl.
fmrib.ox.ac.uk/fsl/bet2) [92];
- bias field correction using FAST (FMRIB’s Automated Segmentation Tool,
http://fsl.fmrib.ox.ac.uk/fsl/fast4) [93]

For the evaluation of the method, we use as the ground truth the manual
segmentation performed on all 40 FLAIR images by an experienced neuroradi-
ologist using 3D Slicer (www.slicer.org).

The WMH lesion loads are typically divided into three groups: low LL (less
than 10 cm3), medium LL (between 10 and 30 cm3) and large LL (more than 30
cm3). After manual labeling, we obtain 18 datasets that are considered to have
low LL, 13 datasets with medium LL and only 9 datasets with high LL.

We randomly split our dataset into 30% training and 70% test. That is, we
use 12 datasets (four of each LL category) to learn our method’s optimal param-
eters, while the remaining 28 datasets are used as a test set for an independent
evaluation of the method.

2.4.2 Selection of the optimal parameters

First WMH segmentation

Two parameters influence the outcome of the first step of the segmentation
method: the threshold which is applied to the WMH class membership to ob-
tain a crisp segmentation and the neighborhood filter type and size (Φ{.} in Eq.
(2.6)).

We use the training set to find the optimal joint parameters. Figure 2.3
shows the joint parameter analysis - on the horizontal axes, we plot the thresh-
old values and the filter types. The z-direction shows the corresponding DSC
values averaged across the training set. We observe that the DSC index is most
sensitive to tWMH, with very little variability across the various neighborhood
types. At the optimal threshold (10−5), the average DSC values vary less than
5% across the considered neighborhood types. The exception is the case where
no neighborhood information is used. This approach, as we will also show in
Section 2.4, performs considerably worse than the contextual methods.

We then select the first neighborhood (the 3× 3× 3 mean filter) for further
processing.

For this neighborhood filter, we plot each subject’s DSC curve and the av-
erage across all training set subjects. The broader curve, with a lower optimal
threshold, corresponds to a low LL dataset. On the other hand, the datasets
with higher LL have higher optimal thresholds.

http://fsl.fmrib.ox.ac.uk/fsl/bet2
http://fsl.fmrib.ox.ac.uk/fsl/bet2
http://fsl.fmrib.ox.ac.uk/fsl/fast4
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Figure 2.3: Search for the optimal parameters of the first step of the segmentation
method. The neighborhood filter types are the following: 0: no neighborhood

information (traditional GMM-EMM method); 1: mean filter with size 3×3×3; 2: mean
filter with size 5×5×5; 3: mean filter with size 7×7×7; 4: isotropic Gaussian filter with

σ = 0.7; 5: isotropic Gaussian filter with σ = 1.5; 6: isotropic Gaussian filter with
σ = 2.

False positive correction

Finally, we correct for the presence of FLAIR artifacts. This step takes also two
parameters: the threshold of the CSF membership image and the size of the
structuring element used to create the FP mask from the CSF segmentation.

Similarly to what was done in the previous subsection, we analyze the joint
parameters and select the combination that gives the best results on the train-
ing set. In this case, we fix the WMH threshold to 10−5 and the neighborhood
filter to the mean in a 3×3×3 local window.

As in the previous case, the CSF threshold has the most influence on the
DSC value, with the best performance being achieved at tCSF = 10−2 and with
a structuring element size of 5 × 5 × 5. However, for thresholds greater than
10−5, the mean DSC values also vary less than 5%, regardless of the structuring
element size.
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Figure 2.4: DSC values for all patients in the training set, using a mean filter with size
3×3×3. The average DSC corresponds to the thicker black line.

Figure 2.5: Search for the optimal parameters in the FP correction step.
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2.4.3 Evaluation on the test set

We evaluate the method against the manual segmentation on the remaining 28
datasets. Table 2.1 shows the final DSC, EF and OF values, per lesion load, in
the test set.

Table 2.1: Performance measures for the 28 patients in the test set.

LL category Subject ID DSC EF OF AS (cm3) GT (cm3)

Low

1 0.79 0.19 0.78 5.787 5.973
2 0.44 0.10 0.31 2.048 4.887
3 0.70 0.21 0.65 3.781 4.380
4 0.60 0.11 0.47 3.353 5.742
5 0.64 0.14 0.54 4.547 6.708
6 0.21 0.01 0.12 1.177 9.168
7 0.25 0.03 0.15 0.375 2.160
8 0.37 0.01 0.23 1.170 4.896
9 0.70 0.30 0.69 8.100 8.160

10 0.49 0.03 0.34 1.322 3.583
11 0.37 0.01 0.23 0.919 3.801
12 0.40 0.05 0.26 0.698 2.226
13 0.67 0.15 0.53 4.945 7.062
14 0.51 0.27 0.43 0.497 0.714

Medium

15 0.72 0.28 0.72 10.291 10.267
16 0.63 0.15 0.53 8.113 11.917
17 0.71 0.11 0.61 7.541 10.328
18 0.74 0.17 0.69 11.471 13.475
19 0.70 0.28 0.69 11.108 11.497
20 0.39 0.09 0.26 3.963 11.375
21 0.77 0.18 0.74 10.877 11.801
22 0.83 0.17 0.84 13.403 13.313
23 0.80 0.20 0.79 12.999 13.109

High

24 0.85 0.29 0.96 155.220 124.177
25 0.86 0.18 0.89 40.293 37.559
26 0.84 0.23 0.89 56.411 50.679
27 0.81 0.33 0.90 73.326 59.881
28 0.83 0.20 0.84 47.226 45.177

The average DSC values are 0.51, 0.70 and 0.84 for the low LL, medium LL
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and high LL, respectively. DSC values above 0.70 are considered to represent a
very good agreement between segmentations [94]. The lower similarity values
for the low lesion loads are to be expected, since errors in the segmentation
have a greater impact on the similarity score when the lesion load is lower.
This has also been reported in previous studies [74, 73, 95].

In Table 2.1 we can observe a systematic underestimation of the lesion loads
in the low LL cases and an overestimation for the high LL datasets. The latter
can be visualized on the first example of Figure 2.6c) and is also expressed on
the relatively high EF values for the high LL datasets (Table 4.2).

Finally, we plot the automatically obtained LL against the ground truth LL
(Figure 2.7). The obtained correlation coefficient (R = 0.9966) indicates a strong
correlation between the two measurements.

Figure 2.7: Ground Truth (GT) and Automatic Segmentation (AS) lesion loads and the
fitted linear regression line (y = 1.28x− 4.19).

2.4.4 Comparison with other unimodal approaches

To further evaluate the performance of the proposed method, we compare it
with four other segmentation approaches which use only FLAIR images. For
each of these approaches, we search for the optimal parameters in the training
set and evaluate them in the test set. The exception is the first method, in which
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a threshold is applied to the FLAIR intensities (intensity thresholding, IT). In
this case, because the goal is not to evaluate any specific method that searches
for an optimal threshold, we take the optimal threshold value for each subject
individually. This way we ensure that the obtained DSC is the highest that can
be achieved with such approach.

The second comparison is with the traditional GMM, with parameters de-
termined by EM (simple GMM, sGMM). This method, unlike the first one,
yields a fuzzy segmentation. However, it is also based only on intensity in-
formation.

The PVA model introduced in [77] is used for the third comparison. Simi-
larly to the GMM-EM method, its output is a fuzzy segmentation that does not
consider any contextual information. However, this method is based not only
on the image intensities but also on the gradient magnitudes.

Finally, we compare our approach with an analogous segmentation method
- Fuzzy C-Means (FCM), modified in [96] to incorporate neighborhood infor-
mation (cFCM). Unlike the GMM-EM approach we use here, this method does
not assume any probabilistic model for the voxel intensities.

For the proposed method, we show the results obtained after the initial
WMH segmentation (“proposed (first)") and after FP correction (“proposed (fi-
nal)").

The results are shown in Table 2.2. Figure 2.8 shows the average DSC values
obtained for the three LL categories.

We observe that the proposed method performs significantly better than
the first three context-free approaches. A slight improvement is also observed
with respect to the contextual FCM method. However, the FCM method seems
to perform considerably less robustly in very low LL cases - particularly with
respect to the EF measure.

In all cases, the DSC values are lower for the low LL cases. This is ex-
pectable, since errors in these measurements tend to have a larger impact on
the final similarity score. Also, the variability is larger in these cases, indicating
a lower robustness of the methods.

A criticism that can be made to model-based segmentation methods, such
as GMM, is that, for low LL, there may not be enough lesion voxels to ac-
curately derive the model’s parameters [97]. Although this may be true for
the simple GMM (with an average DSC of 0.38 in the low LL case), the prob-
lem seems to be overcome by considering contextual information, as in the
proposed method, which outperforms the model-free contextual approach
(cFCM).

It is worth noting that the performance of the first approach is highly over-
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Figure 2.8: Average DSC values for the six compared methods, separated by lesion
load.

estimated, since for each patient we take the optimal DSC value (without recur-
ring to a training set). However, results also show that the two other context-
free approaches (simple GMM and PVA model) have a similar performance,
indicating that adding neighborhood information not only improves the simi-
larity scores but also seems to be a determinant factor in the methods’ perfor-
mance.

Finally, a paired sample t-test on the results of all subjects on the test set
shows a significant improvement (p < 0.05) on the DSC metric with the first
step of the proposed method with respect to all other approaches. Further-
more, the second step also accounts for a significant improvement of the per-
formance metrics with respect to the first step, indicating the importance of the
artifact elimination step in the segmentation.

Table 2.3 shows the correlation coefficients between each segmentation ap-
proach and the manual measurements.
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Table 2.3: Correlation coefficients between the lesion loads determined by the
automatic and the manual measurements.

IT sGMM PVA cFCM prop. (first) prop. (final)

0.9969 0.9901 0.9927 0.9862 0.9957 0.9966

2.4.5 Robustness to the initialization parameters

A final evaluation is performed by varying the parameters that initialize the
first EM procedure. Converging to local minima is a well-known limitation of
the EM method [98]. Therefore, we evaluate the robustness of the proposed
method to variations in the three parameters of the Gaussian that describes the
WMH class distribution: the mean value µWMH, the standard deviation σWMH
and the weight πWMH, determined as described in Section 2.3. Again, we use
the Dice Similarity Coefficient as a performance measure.

The results are shown in Figure 2.9.

Figure 2.9: Variation of the average DSC values with varying initialization parameters.

In the horizontal axis we show the parameter values used for compar-
ison. During the evaluation of each parameter, the others remained con-
stant and equal to the values automatically determined by the method, as de-
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scribed in Section 2.3. The values {p−2, p−1, p, p1, p2} correspond to {µWMH −

20, µWMH − 10, µWMH, µWMH +10, µWMH +20} for the WMH mean, to {σWMH −

10,σWMH − 5,σWMH,σWMH + 5,σWMH + 10} for the standard deviation and to
{πWMH/10,πWMH/5,πWMH,πWMH × 5,πWMH × 10} for the WMH weight.

Even though we select a large range of parameter values, the DSC values
remain approximately constant. For the mean value, the variability of the DSC
scores (ratio between the range and the maximum value) is 0.7%. For the stan-
dard deviation and the class weight the variabilities are 1.1% and 0.9%, respec-
tively.

2.4.6 Application in the segmentation of Multiple Sclerosis
(MS) lesions

To show the applicability of our method in a different neurological disease, we
use a benchmark dataset made available by the Medical Image Computing and
Computer Aided Intervention Society’s (MICCAI’s) MS Lesion Segmentation
Challenge 2008 (http://www.ia.unc.edu/MSseg). The data consist of 23
FLAIR images acquired at the Children’s Hospital Boston (CHB) and at the
University of North Carolina (UNC), with a dimension of 512 × 512 × 512
voxels, resliced at 0.5 mm × 0.5 mm × 0.5 mm resolution using cubic spline
interpolation.

The four error metrics used to evaluate the methods’ performance are the
following: relative absolute volume difference, average symmetric surface dis-
tance, true positive rate and false positive rate. The results were scaled to a
range such that a score of 90 points is comparable to the performance of a hu-
man expert. For further details on the design of the Challenge, we refer the
reader to [99].

The results for all subjects are shown in Table 2.4.
Our method obtained an overall score of 82.0055 (http://www.ia.unc.

edu/MSseg/results_table.php), outperforming other WML segmenta-
tion methods in the literature [73, 82, 78] and reaching similar performance
to other methods [79]. It is worth noting that our method performs less than
2 score points worse than the method that is currently at the first position of
the Challenge. Also, all other participating methods require at least two MR
modalities, while ours uses only FLAIR image data. Finally, some of the meth-
ods assume a priori knowledge about the spatial distribution of the MS lesions
[100, 79]. In contrast, our method has a more general applicability since it uses
only intensity information.

http://www.ia.unc.edu/MSseg
http://www.ia.unc.edu/MSseg/results_table.php
http://www.ia.unc.edu/MSseg/results_table.php
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2.5 Conclusion

In this work, we present a method to automatically segment WMHs using only
3D FLAIR images. It uses a context-sensitive Gaussian Mixture Model to ob-
tain class probabilities, followed by crisp segmentation and artifact correction.
Unlike the majority of the existing approaches (to the best of our knowledge),
our method requires no additional MRI modalities nor atlases, thereby short-
ening the acquisition time, avoiding the need for co-registrations and allowing
for near real-time analysis. Results show that the method is suitable for a ro-
bust segmentation of WMHs of various loads. Also, a comparison with other
segmentation approaches indicates the usefulness of, on the one hand, incor-
porating contextual information and, on the other hand, considering a model
for the lesions (instead of a model-free approach such as FCM). The significant
improvements observed on the performance measures after applying the FP
correction step (with respect to the initial segmentation) suggest the efficacy
of the simple CSF-based mask we have used, without needing additional MR
modalities.

We have also demonstrated the applicability of our method in the detection
of other lesion types, namely Multiple Sclerosis lesions. In particular, the re-
sults on a benchmark dataset show that our method performs comparably to
other state-of-the art multimodal methods, with the difference that ours does
not need any MR modalities other than FLAIR and does not make assumptions
about the spatial distribution of the lesions, therefore having a wider applica-
bility. The final score obtained in this evaluation indicates that the method per-
forms close to the human observer. Because we make no assumptions about the
lesion spatial distribution, we believe that this method can be applied to other
neurological diseases that have a similar appearance in FLAIR images. Exam-
ples include subcortical arteriosclerotic encephalopathy and brain tumors.

A possible drawback of our method is that it requires two preprocessing
steps: brain extraction and bias field correction. This is a consequence of the al-
gorithm being fully intensity-based and relying on the brain image histogram.
An extension can be considered in which the bias field correction is incorpo-
rated into the segmentation framework. Also, a study on the robustness of the
method to the presence of field inhomogeneities and wrong brain extractions
should be carried out. Finally, it is worth pointing out that we do not perform
any registration step, which is typically more time-consuming than the two
steps required by our method (particularly when using multimodal data).

Ultimately, we expect that this method can become a useful tool in the eval-
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uation of WMHs in the large patient cohorts required by population-based
studies.



CHAPTER 3

Texture analysis of white matter

hyperintensities

In this chapter, we further analyse a number of properties of the white matter
hyperintensities, which have been introduced in Chapter 2. In particular, we
investigate the image textures at the lesions as possible early-stage Alzheimer’s
disease biomarkers. For that, we perform classification between a group of nor-
mal elderly controls and a group of Mild Cognitive Impairment subjects using
local texture descriptors. We also assess whether texture descriptors are more
discriminative in this classification task than the widely used lesion volumes
and locations.

3.1 Introduction

Mild Cognitive Impairment (MCI) is considered to be a transitional stage be-
tween normal ageing and dementia, with impaired memory as first sign [12].
Some studies have demonstrated that MCI patients are at an increased risk
of developing dementia when compared with healthy subjects of the same
age group [101], while others claim that MCI generally represents very mild
Alzheimer’s Disease (AD) [102], with subjects progressing to more severe
stages of dementia at different rates. In any case, MCI subjects are a group
of interest in the development of techniques to detect early-stage AD.

Structural Magnetic Resonance Imaging (MRI) is a diagnostic tool that pro-
vides high-resolution images and a high brain tissue contrast. In addition, its
non-invasiveness makes it a suitable imaging technique for follow-up studies.
Most MRI studies on prodromal stages of AD focus on the large-scale analy-
sis of gray matter structures. In particular, volume and shape changes at the
level of the cortex [29], the hippocampi [27, 28] and the amygdalae [30], or the
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cerebrospinal fluid (CSF) cavities such as the ventricles [103] have been widely
explored as imaging markers of AD. However, recent studies have shown that
the white matter is also affected at the early stages of the disease [104, 105].

White matter hyperintensities (WMH) are diffuse white matter abnormali-
ties that are often associated with chronic cerebral ischemia, in particular with
microvascular lesions originated by small vessel atherosclerosis [54]. They oc-
cur often in the elderly [55, 56, 57, 58] and have been shown to predict an in-
creased risk of stroke, cognitive decline and death [59].

In structural magnetic resonance (MR) imaging, WMH show as hypointen-
sities in T1-weighted images and hyperintensities in T2-weighted images and
Fluid Attenuated Inversion Recovery (FLAIR). Causes for signal changes in the
lesions include demyelinization, axonal loss, gliosis, or edema [60].

The most widely used techniques to assess WMH in structural MR images
are based on the binary results of the lesion segmentation. In particular, both
the volume and the spatial distribution of these lesions have been thoroughly
investigated. A recent long-term longitudinal study shows that the WMH vol-
ume (clinically known as “lesion load") increases rapidly in normal subjects
who develop MCI a decade later, suggesting that these lesions might serve
as very early biomarkers of MCI and thus help towards earlier detection of
Alzheimer’s Disease (AD) [61]. In [62], the authors observe that the total lesion
load with a high proportion of lesions in the temporal region is associated with
the risk of developing MCI.

However, there is still some controversy regarding the actual role played
by WMH in the development of MCI and AD, with some studies showing that
there is no relation between lesion volume and cognitive decline [63, 64, 65].

While the majority of such studies is based on volumetric analyses, more
recently diffusion- and perfusion-weighted MR images have also been used to
analyze microstructural properties of the WMH that go beyond their volume
and location. In [66], the authors analyze lesion perfusion differences between
a group of normal controls (NC) and Alzheimer’s disease (AD) patients. They
observe that the WMH locations are less perfused in AD than in NC subjects.

Despite their higher sensitivity to microstructural white matter changes,
diffusion- and perfusion-based imaging are less widespread in clinical trials
than structural MR imaging. In particular, T1- and T2-weighted images are
most often acquired. FLAIR, because of its contrast properties, is typically used
to help detect and quantify WMH. Knowing that the presence of white mat-
ter lesions is reflected in signal changes in structural MR images, a pertinent
question is whether these images contain sufficient information that can help
characterize WMH and distinguish them between normal elderly and MCI.
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Oppedal et al. [67] have extracted, from FLAIR images, 2D Local Binary
Patterns (LBP), a texture descriptor that is widely used in computer vision, to
classify between normal controls and patients with dementia. They determine
statistical measures on the LBP label images (at the lesion voxels) and obtain
higher classification rates than when using volumetric features.

To the best of our knowledge, Oppedal’s study [67] is the only one that
uses structural MR images to investigate textural differences, at the lesions’
locations, between NC and dementia patients. Furthermore, they analyze these
features’ discriminative power by performing classification between the two
groups.

However, the LBP descriptors they use are two-dimensional. Also, they
analyze only a few statistical properties of the LBP labels (such as the mean,
standard deviation, kurtosis, etc.) and not the entire histograms. Additionally,
their feature analysis and combination is performed a posteriori, with the com-
bination not including more than three selected features. Their analysis is also
based on FLAIR images only. Finally, the dementia subject group includes not
only Alzheimer’s disease patients but also subjects with Lewy Body dementia
[106].

In this work, we further explore the intensity content of three structural
MR modalities (T1, T2 and FLAIR) at the lesions’ locations. We investigate the
use of 3D LBP descriptors to discriminate between a group of normal controls
and MCI subjects. We incorporate both multiscale and multimodal informa-
tion and investigate which features are most significantly different between the
two groups. In particular, to avoid including large-scale structural differences
such as enlarged ventricles and shrunk hippocampi, we use only small-scale
texture descriptors. Finally, we compare the results with those obtained using
volumetric/spatial location features and intensity histograms.

3.2 Methods

3.2.1 Local Binary Patterns

The local binary pattern (LBP) is an operator that labels the pixels of an image
according to its local appearance, or small-scale structure. The most common
texture descriptor based on the LBP operator is the histogram of the labels
within a region of interest [107].

In its original form, proposed by [108], the LBP label of a certain pixel is de-
termined by thresholding its 8 neighbors (in a 3×3 neighborhood) with its own
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gray value and converting the resulting binary into a decimal number. More
recently, several variants of the LBP descriptor have been proposed [107]. In
particular, [109] extended the LBP descriptor to allow for other neighborhood
configurations.

The formal description of such an operator is as follows. At a pixel with
gray value gc, with P neighbors at radius r, its LBP label is given by:

LBPP,r =
P−1
�

p=0

s(gp − gc)2
p (3.1)

with

s(x) =

�

1, if x ≥ 0

0, otherwise
(3.2)

Typical values of r are in the order of a few pixels. Accordingly, P takes
normally values in the order of the number of neighbors for a certain r. Figure
3.1a) shows an example of a circular neighborhood. The points that, after bilin-
ear interpolation of the respective neighborhood, have a lower intensity than
the center pixel are shown in black and the others in white.

More recently, it was observed that the majority of the observed patterns
are uniform (described by no more than two bitwise 0-1 transitions). For the 8-
bit (P = 8) LBP descriptor, 58 out of the 256 possibilities correspond to uniform
patterns. Furthermore, it is possible to obtain a rotation-invariant descriptor by
rotating the LBP binary code into its minimum decimal value [110]. In general,
for P neighbors we have P + 1 possible uniform rotation-invariant LBP labels
(shown in Figure 3.1b) ). All non-uniform patterns are assigned label N =
P + 2.

Two extensions of the LBP operator to 3D data have been proposed in [111],
mostly for spatio-temporal applications. In particular, LBP-TOP (Three Or-
thogonal Projections) is computationally simple. It consists of calculating the
LBP histograms at three orthogonal slices (in the case of brain images, we se-
lect axial, coronal and sagittal planes) and concatenating them. The resulting
feature vector is then only three times larger than the 2D feature vector.

3.2.2 Multiscale and multimodal LBP-TOP descriptor

To incorporate multiscale information into the texture descriptor, we determine
the LBP histograms at increasing radii. Examples of LBP label images at three
different radii are shown in Figure 3.2.
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a) b)

Figure 3.1: a) Local Binary Pattern neighborhood, P = 8, r = 1. The 8 circular
neighbors are thresholded with the gray value of the center pixel; a binary is made by
assigning zeros (black circles) to all values lower than the center pixel and ones (white
circles) to those greater than or equal to the center pixel intensity; the resulting label is

the decimal number that corresponds to the obtained binary; b) Rotation-invariant
uniform LBPs.

Figure 3.2: LBP labels at a coronal slice of a subject’s FLAIR image, for three different
radii (from left to right, r = 1, 3, 6).

The LBP histograms are then computed, for each subject, at the respective
lesion voxels. Additionally, we include information from the three MR modal-
ities. We concatenate all feature descriptors determined for each modality and
each radius. Ultimately, for an LBP descriptor with P = 8 neighbors, for T
modalities and R radii, the final descriptor has dimensions 3× (P +2)×T ×R.
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3.2.3 Classification

A Support Vector Machine (SVM) is a supervised classification method. Given
a training set with M samples (xi, yi), i = 1, ...,M , with xi ∈ R

N being the
training samples consisting of N features and yi ∈ {−1,+1} the respective la-
bels, SVM finds the optimal hyperplane, w · x + b = 0, which maximizes the
margin between classes. For non-linear SVM, the training samples are first
mapped into a higher-dimensional space by a function Φ(x). The two hyper-
plane parameters w and b are determined by solving a constrained minimiza-
tion problem using Lagrange multipliers αi. The final decision function is then
given by [112]:

f(x) = sgn

�

M
�

i=1

yiαiK(xi,x) + b

�

(3.3)

with the kernel K(xi,x) = Φ(xi) · Φ(x).

3.3 Experiments and Results

3.3.1 Data

Twenty-nine datasets are retrieved from a large database of a cognition study
with MCI and control subjects carried out at the University Hospital of Essen,
Germany. From these 29 subjects, 15 correspond to normal controls (age 75.1 ±
3.4) and 14 to amnestic MCI subjects (age 73.4 ± 5.1).

For our analyses, we use three-dimensional isotropic images from three MR
modalities (1.5 T Siemens Avanto, Germany): T1-weighted images (TR = 40ms;
TE = 5ms; voxel size = 1mm3), T2-weighted images (TR = 3200ms; TE = 416ms;
voxel size = 1mm3) and FLAIR images (TR = 6000ms; TE = 308ms; TI = 2200ms;
voxel size = 1mm3).

To extract the lesion locations in the MR images, we use the manual seg-
mentation performed on all FLAIR images by an experienced neuroradiologist
using 3D Slicer (www.slicer.org).

3.3.2 Preprocessing

Before any further analysis, the images must be preprocessed to eliminate vari-
ations due to the different MR acquisitions. The preprocessing steps are sum-
marized in Figure 3.3 for the T1 image of one subject.

www.slicer.org
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1. affine registration
to template

2. bias field
correction

3. brain
masking

Figure 3.3: Preprocessing steps.

Firstly, we affine-register the T1 image to the Montreal Neurological Insti-
tute (MNI) Average Brain. This template corresponds to the average image
of 305 T1 scans, which have been linearly transformed to the Talairach space
[113]. The T2 and the FLAIR images are then affinely registered to the template-
aligned T1 image. Subsequently, we correct for bias field inhomogeneities in all
three images using the N4ITK method [114]. Finally, we apply the template’s
brain mask to the resulting images.

3.3.3 Local Binary Patterns

We start by extracting the individual LBP histograms, determined separately
for each modality and neighborhood radius r, before concatenating them into
a single feature vector. It is worth pointing out that we analyze only small-
scale (small r values) textures, in order to ensure we are capturing only lesion-
related information. Larger scales would imply that other brain structures,
such as the ventricles, would also be taken into account and possibly overesti-
mate the classifiers’ performances. This is true particularly for smaller (a few
voxels wide) lesions.

We use an SVM (implemented in the Python package scikits-learn [115]) to
classify the datasets into one of the two classes: NC or MCI. To better evaluate
the classifier’s generalizability, we perform leave-one-out cross-validation. At
each fold of the cross-validation, we scale the features such that their mean and
variance over all training samples are 0 and 1, respectively. We then perform a
grid search (with 5-fold cross-validation on the training set) for the best SVM
parameters: kernel type - linear or Radial Basis Function (RBF); the cost C and,
for the RBF kernel, the scale γ. The best classifier is then evaluated on the test
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sample. The final performance measures (accuracy, sensitivity and specificity)
are computed at the end of the cross-validation.

To simplify our subsequent graphical analyses, we use the balanced accu-
racy, which is defined as the average between the sensitivity and the specificity.
The balanced accuracy is equal to the classification accuracy (rate of correctly
classified subjects) when the classes are perfectly balanced (equal number of
subjects in the two classes).

Results are shown in Figure 3.4. We also include the performance of the
majority vote classifier that takes into account the classification outputs of the
three modalities.

Figure 3.4: Balanced accuracy for the three MR modalities and the resulting majority
vote at four LBP radii (r = 1, 2, 3, 4).

We observe that the accuracies obtained with the three modalities vary dif-
ferently with the LBP radius. Also, the LBP descriptors extracted from the
T2 images perform consistently better than the other modalities. Surprisingly,
the FLAIR LBP features perform worse than those from the T1 images. The
majority vote classifier does not improve the performance with respect to the
individual modality classifiers, indicating that the different modalities provide
the same type of information. Overall, the highest individual balanced accu-
racy (0.73) is obtained for the T2 images at r = 2, 3 (sensitivity: 0.79; specificity:
0.67).

To capture multimodal and multiscale information, we concatenate all LBP
histograms into a single feature vector. For the three modalities and the four
LBP radii, we obtain a 360-dimensional feature vector. We perform SVM classi-
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fication on these feature vectors and obtain a sensitivity of 0.57 and a specificity
of 0.67 (balanced accuracy: 0.62).

Clearly, the classification using the concatenated feature vectors has lower
performance than that using the feature vectors per modality and per radius.
A possible explanation is the curse of dimensionality, which occurs when the
number of features is significantly larger than the number of samples. Al-
though the SVM classifier is known to deal well with this problem, it is likely
that redundant information and noise are present in the concatenated feature
vector. To further analyze this effect, we perform univariate feature selection
before applying the classifier.

At each fold of the cross validation, we select the k best features from the
initial 360. The feature ranking is based on the F-score obtained by each indi-
vidual feature on the training set. We then perform SVM classification on the
reduced feature vectors. The performance of this classification is evaluated for
increasing values of k (Figure 3.5).

Figure 3.5: Balanced accuracy of the SVM classifier using the concatenated feature
vectors after feature selection.

Performances better than those using the individual T2 LBP descriptors are
obtained for fewer than 150 features, with the highest balanced accuracy (0.83,
at a sensitivity of 0.79 and a specificity of 0.87) occurring at k = 4. As antici-
pated, noisy features are probably present among the entire set of 360.

We then analyze the best 4 features, selected in each cross-validation fold.
We summarize this information in Table 3.1.

In one fold, a feature corresponding to r = 1 is also selected.
Interestingly, features from three out of the four analyzed LBP radii are con-
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Table 3.1: Most frequently selected features in the cross-validation folds.

Modalities radii orthogonal planes LBP labels
T2 2, 3, 4 coronal, sagittal 7, 8

sistently selected, indicating the presence of discriminative multiscale informa-
tion. Surprisingly, only the T2 images seem to contain relevant information to
distinguish between NC and MCI. Also, only the LBP histograms determined
at the coronal and the sagittal slices have bins selected. Finally, these selected
bins (corresponding to LBP labels 7 and 8) indicate that the greatest differences
between the two groups are in edge-like and more homogeneous regions. An
inspection on the LBP histograms shows that AD patients have generally fewer
of these regions, possibly indicating more heterogeneity in AD brain tissues.

3.3.4 Comparison with other methods

Volumetrics and spatial distribution

Finally, to compare the texture-based approaches with the commonly used vol-
umetric methods, we determine the total lesion load (volume) for each subject
in the two groups (Figure 3.6).

The group of NC subjects has an average lesion volume of 17.336 cm3 (±
15.623 cm3), while for the MCI group this average is 29.057 cm3 (± 50.088 cm3).
In order to evaluate the statistical significance of this observed difference be-
tween the two groups, we perform a two-sample t-test. The obtained p-value
is 0.61, which indicates that the difference observed between the two means is
not significant.

A nearest mean classifier (in a leave-one-out cross-validation) on the WMH
volume feature yields 0.44 accuracy (0.14 sensitivity, 0.73 specificity), perform-
ing similarly to a random classifier and indicating that, for this dataset, the
lesion volume is not a discriminative feature.

Another WMH characteristic that has been investigated in the literature
is the location of the lesions in the brain. We show in Fig. 3.7 a Maximum
Intensity Projection (MIP) of the voxelwise normalized lesion count in the two
subject groups.

To quantify the significance between the voxelwise differences between the
groups, in terms of amount of lesion voxels, we perform a voxelwise t-test on
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Figure 3.6: Box plots showing the total WMH volumes for all subjects: the box ranges
from the lower to the upper quartile values, with a line at the median; the whiskers

show the range of the data (between -1.5×IQR and +1.5×IQR; IQR: interquartile
range); the crosses represent extreme data points, located beyond the whiskers’ range.

Figure 3.7: Transversal Maximum Intensity Projection (MIP) of the normalized number
of lesions in each subject group. Left: normal controls; right: MCI.

the lesion spatial distribution. The resulting p-scores are shown in Figure 3.8,
in a transversal minimum Intensity Projection (mIP).

Statistically significant differences in the amount of lesion voxels between
the two subject groups are present mostly in periventricular regions, particu-
larly in areas posterior to the temporal horn of the ventricles. This is in line
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a) b)

Figure 3.8: a) Transversal minimum Intensity Projection (mIP) of the p-values resulting
from the statistical test between the binary GT images of the two groups, Normal

Controls and Mild Cognitive Impairment; b) Isosurface at p = 0.05, displayed together
with three orthogonal slices of the average FLAIR image (determined using all

subjects).

with recent findings that show that a large amount of lesions in the temporal
lobe is associated with the risk of developing MCI or dementia [62].

As our goal is to investigate the possibility to predict MCI based on WMH
characteristics, we also use the lesion locations as features in a classification
framework. The feature values are then the voxelwise binary values in the
segmentation images. Similarly to what we do above, we perform univariate
feature selection (in the training set, at each fold of the cross-validation) prior
to SVM classification. Results are shown in Figure 3.9.

The classification based on the lesion locations is slightly better than ran-
dom, reaching a maximum at k = 1000 (0.59, with sensitivity 0.57 and speci-
ficity 0.60). Although more informative than the simple lesion volume, the
lesion locations are still far from optimal in the task of detecting MCI.

Intensity histograms

Other features that might also be informative are the actual voxel intensities.
However, the MR intensities are not standardized and may vary per acquisi-
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Figure 3.9: Balanced accuracy of the SVM classifier using the lesion binary values after
feature selection.

tion. Therefore, a standardization step is necessary, in which the intensities
are linearly transformed to a predefined range (per modality). We use the ap-
proach proposed by Nyúl et al. [116], in which deciles are matched to a stan-
dardized scale, determined from the average decile locations of all subjects.

Figure 3.10 shows the histograms of the images before and after standard-
ization and Figure 3.11 shows coronal slices of the FLAIR images before and
after standardization.

We then extract the histograms from the standardized images at the lesion
voxels (Figure 3.12).

A question that arises when using histograms as feature vectors is the num-
ber of bins (or the bin distribution) that best describe the image’s intensity con-
tent. We then evaluate the classification performance of the three MR images’
histograms using different bin amounts.

We show in Figure 3.13 that, firstly, the classification rate varies significantly
with the number of bins, indicating that this is a crucial parameter. Secondly,
the T1 intensities perform better than the T2 and the FLAIR intensities.

Similarly to what we do with the LBP descriptors, we perform univariate
feature selection before applying the SVM classifier. However, the classification
rates are consistently lower than those shown in Figure 3.13 regardless of the
number of selected features.

A possible explanation for this performance is the way the image intensi-
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a) b)

Figure 3.10: Image histograms before (a) and after (b) standardization. Top: T1;
middle: FLAIR; bottom: T2.

ties were standardized. Although in Figure 3.10b) the global brain histograms
seem to be well aligned over all subjects, the same is not true for the local le-
sion histograms, shown in Figure 3.12. Particularly for the FLAIR images, we
see that the lesion histograms are skewed differently for different subgroups of
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a) b)

Figure 3.11: Coronal slices of all subjects: a) non-standardized; b) standardized. Top:
T1; middle: FLAIR; bottom: T2.

subjects. This indicates that the widely used standardization method (Nyul’s)
applied here may be sub-optimal for our dataset. However, finding the right
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a) b)

c)

Figure 3.12: Lesion histograms from the images of each MR modality: a) T1; b) T2; c)
FLAIR.

balance between a good intensity standardization and keeping the lesion inten-
sities sensitive to the presence of disease is a complex task, particularly since
no ground truth is available.

3.4 Conclusion and Recommendations

In this work we propose the use of a texture descriptor, the histogram of 3D
Local Binary Pattern labels, in the detection of Mild Cognitive Impairment,
based only on the brain regions containing white matter hyperintensities. We
explore the incorporation of both multiscale and multimodal information, as
well as the effect of feature selection on the classification performance.

We show that textural information from MR images can indeed help predict
the presence of Mild Cognitive Impairment, even in a population with lesion
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Figure 3.13: Balanced accuracy for the three MR modalities and the resulting majority
vote using histograms with different numbers of bins.

loads which are not significantly different than those of a group of comparably
elderly normal controls. Also, T2 images seem to provide the most discrimina-
tive features. Surprisingly, the FLAIR LBP descriptors were less discriminative
than those extracted from the T1 images.

To further investigate the usefulness of including texture-based features in
the quantification of WMH, studies should be performed on larger databases.
In particular, images acquired at different centers should be considered to con-
firm the robustness of the texture descriptors to acquisition parameters.

Histogram-based features also perform better than random classification.
However, such an approach requires a prior standardization step, which ac-
counts for making corresponding tissues similar (in terms of intensity levels)
across subjects. A possible consequence of this tissue matching is that disease-
related differences might also be eliminated. Finding the optimal trade-off be-
tween these two effects is not straightforward. Also, a ground truth is not
always available to evaluate the quality of the standardization. Additionally,
we show that results are highly sensitive to the number of bins used to build
the histograms. Indeed, selecting an appropriate number of bins is a complex
task. For a different number of data points (in this case, lesion voxels), the
number of optimal bins to represent the data in a histogram is also different. In
this work, we have lesion loads ranging from only a few cm3 to a few hundred
cm3, meaning that fixing the number of bins for all subjects is most likely sub-
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optimal. Other approaches to approximate the probability density function of
the lesion intensities, such as kernel density estimation, may therefore be more
appropriate. Also, such descriptors are smoother than histograms, likely re-
ducing the amount of noisy features and consequently improving classification
results.

Finally, while here we focus on the analysis of the overall WMH lesions
per subject, a spatial analysis of which individual lesions contribute more to
the discrimination between NC and MCI is also desirable. However, that will
require a larger database which includes a larger variety of lesion locations and
severities in both NC and MCI subjects.



CHAPTER 4

Dissimilarity-based classification using

gray-level histograms

In this chapter, we begin our analysis on the use of whole image information to
detect Alzheimer’s disease at an early stage of development. Unlike in Chap-
ter 3, where we have focused on the textural content of specific white matter
regions (the hyperintensities), in this chapter, as well as in the following ones,
we avoid making assumptions about which brain locations play an important
role in the detection of early-stage Alzheimer’s disease.

As an initial attempt to explore image-based features, we evaluate the per-
formance achieved by simple gray-level histograms determined: 1) globally at
the entire brain and 2) locally at patches covering the brain. In the second case,
we also investigate which regions are most discriminative and whether their
combination improves the final classification results. Additionally, we analyse
the usefulness of a dissimilarity-based classification framework as a way of im-
proving the feature representation of each subject. Finally, we compare our ap-
proach with a dissimilarity-based method proposed in the literature that uses
a deformation-based distance measure.

The contents of this chapter have been accepted for publication at “SPIE
- Medical Imaging: Computer-Aided Diagnosis 2014, San Diego, California,
USA".

4.1 Abstract

Classification methods have been proposed to detect early-stage Alzheimer’s
disease using Magnetic Resonance images. In particular, dissimilarity-based
classification has been applied using a deformation-based distance measure.
However, such approach is not only computationally expensive but it also con-
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siders large-scale alterations in the brain only. In this work, we propose the use
of image histogram distance measures, determined both globally and locally,
to detect very mild to mild Alzheimer’s disease. Using an ensemble of local
patches over the entire brain, we obtain an accuracy of 84% (sensitivity 80%
and specificity 88%).

4.2 Introduction

Alzheimer’s Disease (AD) is the most common type of dementia and a major
cause of disability worldwide [117]. Its exact etiology is not yet fully under-
stood, with multiple processes thought to be involved in the disease develop-
ment. Since the initial description of dementia by Alzheimer in 1907 [118], the
pathogenic mechanism that has been traditionally considered is that AD starts
with the accumulation of β-amyloid (Aβ) proteins in the brain. These trig-
ger the formation of senile plaques and neurofibrillary tangles, which in turn
progressively lead to damage of the neural tissue [7]. However, recent stud-
ies show that it might be neurodegeneration that leads to the accumulation of
abnormal proteins and not the other way around [6].

Early detection of AD is essential to provide the patients with adequate
and timely treatments and to help monitoring their effectiveness [9]. Struc-
tural Magnetic Resonance Imaging (MRI) is a diagnostic tool that provides
high-resolution images and a high brain tissue contrast. In addition, its non-
invasiveness makes it a suitable imaging technique for follow-up studies.

Several pattern recognition-based methods have been developed to detect
Alzheimer’s disease using structural MR images. A recent comparison study
of various classification methods [25] shows that the current major challenge
is to discriminate patients who are at a very early stage of AD. In particular,
feature extraction is a critical step in the classification framework.

Medial-temporal atrophy has been considered a valid MRI biomarker in
the classification of AD [9]. Methods have been proposed that consider the
hippocampal volume [27] and/or shape [28]. The volumes of the entorhinal
cortex [29] and the amygdala [30] have also been used as features in AD clas-
sification. However, such volumetric approaches rely mostly on manual or
semi-automatic segmentations, which are time consuming and prone to errors
and inter/intra-rater variability. Also, recent metabolic studies have shown
that other brain regions, such as the parietal cortex, might be more involved in
the earlier stages of AD [119].

To avoid requiring a priori knowledge and segmentation of the structures
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involved in the initial stages of the disease, Klein et al. [120] use the whole brain
morphology in the classification of early-stage Alzheimer’s patients. Addition-
ally, they follow a dissimilarity-based classification approach. Dissimilarity-
based classification (DBC) is a promising machine learning technique that con-
sists of representing objects based on their distance to a representative set of
objects, rather than on a set of pre-defined features [121].

In [120], the authors use a distance measure based on the whole-brain de-
formation field between images - the standard deviation of the logarithm of the
Jacobian of the deformation field that results from non-linearly registering the
two subjects’ brain images.

The DBC approach with a deformation-based distance measure requires
then N2 pairwise non-linear registrations, with N being the number of sub-
jects. For large-scale datasets, such as those available in most public databases,
N is in the order of hundreds, meaning that tens of thousands of non-linear
registrations need to be performed.

Another DBC application in brain MR images was proposed in [122] to de-
tect schizophrenia, where histograms at specific regions of interest (ROIs) were
used together with respective shape features. The ROIs used consisted of brain
structures that had been previously manually segmented from the images by
an expert.

In this work, we analyze how brain gray-level histograms perform in the
detection of very mild to mild AD. We hypothesize that large-scale structural
differences, such as those captured by deformation-based methods, are also
reflected in terms of image intensity content. Additionally, we also use a DBC
approach and compare it with the traditional classification approach. Finally,
we perform local analyses at patches over the entire brain without assuming
which brain structures are most discriminative.

4.3 Methods

4.3.1 Intensity standardization

MR image intensities are not standardized, meaning that the same brain tissue
of the same subject in different acquisitions may have different intensity values.
Since in this work we focus on the use of gray level histograms, a preprocessing
step is necessary in which we transform the intensities of all subjects’ images
into comparable ranges.
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We evaluate two histogram landmark-matching approaches: the one pro-
posed by Nyúl et al. [116], in which the histogram deciles are used as land-
marks, and a peak-based approach, in which the landmarks are the histogram
peaks. These correspond, in turn, to the three brain tissues: cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM).

A schematic representation of the intensity transformations performed in
each of the two methods is shown in Figure 4.1.

a) b)
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Figure 4.1: Piecewise linear intensity transformations applied to one subject’s image. a)
Nyúl’s method: p1 and p2 are the lower and upper cut-off percentiles, respectively; s1

and s2 are the corresponding standard intensity values; µ10,...,90 are the intensities
corresponding to the decile percentages; µ

10,...,90
are the deciles averaged over all

subjects. b) Peak-based approach: p1 and s1 are the subject’s and the standardized
cut-off lower percentile, respectively; similarly, x and sx are the intensities at the peaks

of the subject’s histogram (with x being csf , gm and wm) and the corresponding
values in the defined standardized scale, respectively.

4.3.2 Distance measures

We evaluate three distance measures, defined for two normalized histograms,
p and q, each determined at L bin values.

• Chi square

d(p, q) =
1

2

L
�

i=1

(pi − qi)
2

pi + qi
(4.1)
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• Euclidean

d(p, q) =
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L
�

i=1

(pi − qi)2 (4.2)

• Jensen-Shannon divergence

d(p, q) =
1

2

L
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i=1

pi log2
pi
qi

+
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�

i=1

qi log2
qi
pi

(4.3)

4.3.3 Classification in the dissimilarity space

For N subjects, we build a N × N dissimilarity matrix where each entry (i, j)
corresponds to the distance between the histograms of subjects i and j. Each
row (or column, since the matrix is symmetric) corresponds to the distance of
the respective subject to all other subjects in the dataset.

The feature vectors are then the rows of the dissimilarity matrix [121]. We
use a k-Nearest Neighbors (kNN) classifier with leave-one-out cross validation.
At each fold, we estimate the optimal number of neighbors, k, in the training
set.

Finally, we determine the resulting sensitivity and specificity. For most of
the subsequent graphical analyses, we define the “balanced accuracy" (bac) as
the average between the sensitivity and the specificity. In the case of equal-
sized classes, this performance parameter corresponds to the classification ac-
curacy.

4.4 Experiments and Results

4.4.1 Data

We use data from the publicly available OASIS (Open Access Series of Imaging
Studies) database (http://www.oasis-brains.org). The data consist of
T1 images that have been previously aligned to a template, corrected for bias
field inhomogeneities and brain masked [123].

From the 436 subjects available, we use data from subjects aged 60-80 years
old, divided into two classes: 66 normal controls (NC) and 70 subjects with
very mild to mild AD. The designation of very mild and mild is based on the
Clinical Dementia Rate (CDR). A CDR of 0 corresponds to the normal cognitive

http://www.oasis-brains.org
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state, 0.5 to very mild dementia, 1 to mild dementia, 2 to moderate dementia
and 3 to severe dementia [124]. In this database, all subjects with dementia
(CDR > 0) had been diagnosed with probable AD.

The demographic information of these subjects is summarized in Table 4.1.

Table 4.1: Demographic information of the subjects in the two classification classes.

normal controls early-stage Alzheimer’s

Age 70.8 ± 5.5 73.2 ± 4.8
Gender (F/M) 48/18 41/29

CDR∗ (0/0.5/1) 66/0/0 0/48/22
MMSE∗∗ 29.1 ± 1.1 24.5 ± 4.2

∗CDR: Clinical Dementia Rate
∗∗MMSE: Mini-mental State Examination

4.4.2 Intensity standardization

The histograms of the raw and standardized images are shown in Figure 4.2.

a) b) c)

Figure 4.2: a) Raw histograms. Standardized histograms with two methods: b) Nyúl’s,
c) Peak-based (the left-most peak corresponds to cerebrospinal fluid, the middle peak

to gray matter and the right-most to white matter). NC: normal controls; AD:
Alzheimer’s disease patients.

Clearly, the two standardization methods give different results. In particu-
lar, Nyúl’s approach results in a closer histogram matching over the subjects,
while the peak-based standardization yields more loosely matched histograms.
This is to be expected considering the number of matching points used in each
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of the two methods - 9 deciles in Nyúl’s approach, 3 peaks in the peak-based
approach. While on the one hand a closer histogram matching might indicate
a more accurate standardization, it may also come with the cost of discarding
relevant disease-related differences between the subjects. The effect of this step
on the classification needs then to be evaluated.

In what concerns the actual histograms, a difference also seems to be
present between the two groups, in both the unstandardized and the peak-
based standardized images. In particular, the peak heights indicate a difference
in the relative amounts of the three tissues: more CSF and less gray and white
matter in AD subjects when compared to the NC subjects.

4.4.3 Dissimilarity matrix

We first make a qualitative analysis on the dissimilarity matrices obtained us-
ing the image histograms both before and after standardization (Figure 4.3).
We use L = 50 bins and the chi square distance measure.
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Figure 4.3: Dissimilarity matrices using a) unstandardized images and standardized
images with two methods: b) Nyúl’s and c) peak-based. All dissimilarity values are
normalized to the maximum in the respective dissimilarity matrix to facilitate the

visual comparison.

In the three cases, the dissimilarity matrices have a blockwise appearance,
with the two off-diagonal blocks showing higher distances than the diagonal
blocks. However, this difference is more prominent when the standardized
images are used (in Figures 4.3b) and c)), which indicates that a DBC approach
might perform better in these cases.
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The N -dimensional rows of the dissimilarity matrix, with N being the num-
ber of subjects, are then taken as feature vectors in a leave-one-out kNN classi-
fication scheme.

4.4.4 Classification

Number of bins in the histogram

Firstly, we assess the influence of the number of bins, L, used to build the
whole-brain histograms, on the classification results. To do so, we select a
range of L values such that the resulting histograms are smooth and do not
change significantly with L.

We perform this separately for the two standardization methods (Figures
4.4a) and b)) and compare the performance of the three distance measures de-
scribed above. Also, we include the results obtained by a traditional feature-
based classification, in which the histograms are directly used as feature vec-
tors in the leave-one-out kNN classification.

a) b)

Figure 4.4: Classification rates for the DBC approach, in which the dissimilarity
matrices (DM) are determined using the three distance measures, and the traditional

classification using the histograms as features. The evaluation is performed at various
histogram bin numbers L. a) Nyúl’s, b) Peak-based.

In Table 4.2 we additionally show a summary of the results presented in
Figure 4.4, computed for all L values. We also include the results obtained
when using the raw intensities.



4.4 Experiments and Results 63

Ta
bl

e
4.

2:
Ba

la
nc

ed
ac

cu
ra

ci
es

fo
r

th
e

tw
o

st
an

da
rd

iz
at

io
n

m
et

ho
ds

,d
et

er
m

in
ed

ov
er

al
lL

va
lu

es
;µ

:a
ve

ra
ge

,s
td

:
st

an
da

rd
de

vi
at

io
n,

C
V

:c
oe

ffi
ci

en
to

fv
ar

ia
ti

on
(s

td
/
µ

).

M
et

ho
ds

C
hi

sq
ua

re
Eu

cl
id

ea
n

Je
ns

en
-S

ha
nn

on
H

is
to

gr
am

s

µ
st

d
C

V
µ

st
d

C
V

µ
st

d
C

V
µ

st
d

C
V

N
yú

l
0.

73
0.

02
2.

1%
0.

73
0.

01
1.

8%
0.

72
0.

01
1.

6%
0.

72
0.

00
9

1.
2%

Pe
ak

s
0.

74
0.

00
6

0.
8%

0.
73

0.
00

9
1.

2%
0.

73
0.

00
8

1.
1%

0.
71

0.
00

4
0.

6%
-

0.
62

0.
01

1.
6%

0.
68

0.
01

2.
0%

0.
65

0.
01

2.
0%

0.
71

0.
01

1.
2%



64 4 Dissimilarity-based classification using gray-level histograms

Interestingly, we observe that the traditional approach (histograms as fea-
ture vectors) performs similarly for both unstandardized and standardized im-
ages. This can be explained by the fact that, as shown in Figure 4.1a), the im-
ages are almost standardized. This would not be the case if they had been
acquired at different imaging centers.

However, a deterioration in performance is observed when the unstandard-
ized gray-level histograms are used in a DBC framework, indicating that such
an approach requires a matching between subject intensities. Additionally, the
slightly better performance obtained when using the peak-based standardiza-
tion method suggests that a “looser" histogram matching may be desirable, so
as to better preserve disease-related differences.

The three distance measures also perform comparably, when considering
the entire range of L values. Furthermore, the variability of the classification
accuracy with this parameter is always lower than 2.1%, indicating that, at least
for this dataset, the number of bins used to build the histograms is not a crucial
parameter in the considered range of bins.

Finally, we show in Figure 4.5 the variation of the sensitivity and specificity
with the number of bins, for the two standardization methods using the chi
square distance measure. We observe that, although the accuracies are simi-
lar for the two standardization methods, the peak-based standardized images
yield higher specificity and lower sensitivity than those standardized using
Nyúl’s method, suggesting a difference in performance when standardizing
NC and AD subject images.

Local patches

While the results presented above are obtained for whole-brain dissimilarities,
we now investigate on local dissimilarities. These are calculated between his-
tograms extracted from a number of cubic patches covering the entire brain.

We analyse the influence of the patch size and show the results obtained by
both the best individual patch and by a combination of the patches that have
the highest individual performances (Figure 4.6a)). Instead of the commonly
used majority vote classifier, which considers all classifiers (in this case, all
patches) with the same weight, we first apply a threshold to the individual
patch accuracy in order to select only informative patches. In particular, we
take the majority vote of all patches whose balanced accuracy is greater than
0.70.

In this experiment, we fix the number of bins, L = 50, and we use the chi
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a) b)

Figure 4.5: Sensitivity and specificity of the DBC approach using the chi square
distance measure. The evaluation is performed at various histogram bin numbers L. a)

Nyúl’s, b) Peak-based.

square distance measure on the peak-based standardized images. Also, we
select patches that are at least one third occupied by brain voxels.

a) b)

Figure 4.6: a) Balanced accuracies for the local DBC approach. b) Coronal slices of one
subject highlighting the location of some of the “best" individual patches for the

smallest patch size (10×10×10).

We observe that an improvement with respect to the accuracy achieved by
the best patch is obtained when an ensemble of well performing patches is con-
sidered. In particular, for 10×10×10 patches we obtain a balanced accuracy of
84% (sensitivity 80% and specificity 88%). The corresponding best performing



66 4 Dissimilarity-based classification using gray-level histograms

patch achieved an accuracy of 76% (sensitivity 73% and specificity 79%). These
results indicate that it is useful to take different brain regions into account,
since they provide complementary and discriminative information.

Additionally, Figure 4.7 shows the spatial distribution of the local patches
and their respective individual balanced accuracies.

a) b) c)

Figure 4.7: Coronal slices overlayed by the accuracy maps, determined at local patches
of different sizes: a) 10×10×10, b) 20×20×20, c) 30×30×30.
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The “best" patches are located near the medial temporal lobe, particularly
in the hippocampal region. This is more clear when we consider small patches
(Figure 4.7a)), which allow for a higher resolution of the accuracy maps. For
larger patches, also the ventricular and cortical regions show as highly dis-
criminative. This is possibly due to the different proportions of CSF and GM
inside those patches, caused by more expanded ventricles in the early-stage
Alzheimer’s subject group.

Comparison with other methods

To compare our approach with that proposed by Klein et al., we apply Klein’s
method to a subset of the dataset we use above. For practical reasons, we select
40 NC and 40 AD subjects. As mentioned above, this approach is particularly
time-consuming, since it requires a large number of non-linear registrations
(N2, with N being the number of subjects).

We perform B-spline registration using the same Elastix [125] parameter
file as that used in [120] (available at http://elastix.bigr.nl/wiki/
index.php/Par0010).

The distance measure is then determined as follows:

d(i, j) =
1

2
(σ(log Jij) + σ(log Jji)) (4.4)

with Jij being the Jacobian determinant of the transformation field that results
from warping image i to image j; σ is the standard deviation.

We obtain a sensitivity of 67.5% and a specificity of 65% (balanced accuracy
of 66.3%). By applying the global approach we have proposed to the exact same
subjects, the resulting sensitivity and specificity are 75% and 72%, respectively
(balanced accuracy of 73.8%).

4.5 Conclusion and recommendations

In this work, we investigate the use of simple gray-level histograms to detect
Alzheimer’s disease at an early stage of development. We propose two ap-
proaches for determining the histograms: a whole-brain approach and a local
patchwise approach. We show that both perform reasonably well in this classi-
fication task, and that local patches can be combined to improve the classifica-
tion. Also, the dissimilarity representation performs better than the individual

http://elastix.bigr.nl/wiki/index.php/Par0010
http://elastix.bigr.nl/wiki/index.php/Par0010
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histograms used as feature vectors, corroborating findings from other studies
on brain MR images.

However, a major drawback of histogram-based approaches is that the im-
age intensities need to be standardized, so that there is a meaningful corre-
spondence across all subjects. Finding the most appropriate standardization
method is a difficult problem enhanced by the fact that often no ground truth
exists.

Also, selecting an appropriate number of histogram bins is not straightfor-
ward. The optimal amount of bins is likely to vary with, for example, the patch
size - the smaller the patch, the fewer the data points and, consequently, the
fewer the bins desirable to build the histograms. We show that for our dataset,
however, the variability of the classification accuracy with the number of bins
is always lower than or about 2%. Future studies are necessary to confirm the
robustness of the proposed method with this parameter.

Additionally, future work will include exploring other image-based (prefer-
ably robust to the intensity scale) descriptors such as texture features. A more
precise localization map can be achieved with smaller patches, at the cost, how-
ever, of a lower robustness of the histogram representation. Other patch com-
binations, such as overlapping patches and/or patches of different sizes, can
therefore overcome this problem. Also, in this work we apply a fixed threshold
to select only the best patches for the final classifier. Other combination rules,
such as adaptive weighting, should be further explored.



CHAPTER 5

Second-order statistical texture maps

In Chapter 4, we have shown that image intensities are informative and that
their histograms can be used as features in the classification of early-stage
Alzheimer’s disease. This chapter further introduces the use of second-order
statistical texture features that take pairwise gray-level occurrence frequencies
into account. We determine these textures within local patches centered at each
brain voxel to obtain the texture maps. Similarly to what is done in morpho-
metric studies, we also non-linearly register the texture maps into a common
template and compare their performance with that achieved by the gray mat-
ter density map used in voxel-brain morphometry approaches. With this, we
aim to compare the discriminative power of two voxelwise measures - the lo-
cal gray matter concentration and local statistical textures - after performing
the same exact preprocessing steps.

This chapter is based on the following publication: Lopes Simoes, A.R. and
Slump, C.H. and van Cappellen van Walsum, A.-M. (2012) Using local texture maps
of brain MR images to detect Mild Cognitive Impairment. In: 21st International
Conference on Pattern Recognition (ICPR 2012), 11-15 Nov 2012, Tsukuba, Japan.
pp. 153-156.

5.1 Abstract

Early detection of Alzheimer’s disease is expected to aid in the development
and monitoring of more effective treatments. Classification methods have been
proposed to distinguish Alzheimer’s patients from normal controls using Mag-
netic Resonance Images. However, their performance drops when classifying
patients at a prodromal stage, such as in Mild Cognitive Impairment. Most
often, the features used in these classification tasks are related to structural
measures such as volume, shape and tissue density. However, microstructural
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changes have been shown to arise even earlier than these larger-scale alter-
ations. Taking this into account, we propose the use of local statistical texture
maps that make no assumptions regarding the location of the affected brain
regions. Each voxel contains texture information from its local neighborhood
and is used as a feature in the classification of normal controls and Mild Cog-
nitive Impairment patients. The proposed approach obtained an accuracy of
87% (sensitivity 85%, specificity 95%) with Support Vector Machines, outper-
forming the 63% achieved by the local gray matter density feature.

5.2 Introduction

Alzheimer’s Disease (AD) is the most common type of dementia and a major
cause of disability worldwide [117]. Early detection of AD is essential to pro-
vide the patients with adequate and timely treatments and to help researchers
monitor their effectiveness. Structural Magnetic Resonance Imaging (MRI) is
a diagnostic tool that provides high-resolution images and a high brain tissue
contrast. In addition, its non-invasiveness makes it a suitable imaging tech-
nique for follow-up studies.

A limitation of most state-of the-art MR image analysis methods in this field
is that they often concern only group comparisons. Although these methods
can provide a description of the location and magnitude of statistically sig-
nificant differences between two groups, they have limited clinical value for
individual patients.

This limitation has led to the development of classification methods to
identify Alzheimer’s patients from Normal Controls (NC) and, more recently,
to distinguish NC from patients suffering from Mild Cognitive Impairment
(MCI), which indicates high risk of developing Alzheimer’s. As pointed out
by a recent comparison study on various classification methods [25], the cur-
rent major challenge is to discriminate patients who are at a very early stage of
AD or even possibly before they start developing the disease. As shown by the
comparison results, the performance of most classifiers dropped significantly
when they attempted to classify between NC and MCI.

Typically, the features used by these classification methods concern the vol-
ume and/or the shape of specific brain structures, like the hippocampus [25].
Voxel-Based Morphometry (VBM) approaches have also been used, which an-
alyze the local concentration of gray matter [25, 37].

However, such tools are limited by the segmentation quality of the struc-
tures of interest. Furthermore, it has been shown that the brain microstructure
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starts to deteriorate several years before the first symptoms arise and before
structural alterations can be detected [9].

Texture Analysis (TA) is an image processing tool that has recently
found applications in the study of various neurological diseases, including
Alzheimer’s. It extracts information that is otherwise not visible by a direct
analysis of the image intensity and shape properties. In [48], the authors per-
formed 2D texture analysis using the entire brain to classify between AD and
NC. Because the whole brain was used, no discrimination between significant
regions was performed. In [52], Zhang et al. also classified patients as AD or
NC using 3D texture features computed at manually defined spherical Regions
of Interest (ROIs), in the hippocampus and the entorhinal cortex. However,
and as the authors recognized, the results varied significantly with the location
and the size of the chosen ROI. Furthermore, in neither of these two studies
was an analysis with MCI patients performed. Other studies have carried out
texture analysis in the corpus callosum and thalamus [53]. In all cases, the tex-
ture descriptors are computed at manually segmented ROIs, thereby requiring
a priori knowledge about the disease and becoming dependent on the qual-
ity of the segmentations. Also, to the best of our knowledge, no comparisons
between the two approaches (structural and textural) have been performed.

In this work, we propose the use of local statistical (co-occurrence matrix
based) texture maps as features to be used in the classification of NC and MCI.
In these maps, each voxel contains texture information from its local neighbor-
hood and is considered as a feature for classification. We perform a statistical
significance analysis on these voxels as a feature selection step. Finally, we
use Support Vector Machines (SVM) in a cross-validation scheme to classify
the subjects. We compare our method with a structural approach that uses, as
features, the voxels in the gray matter probability map [37].

Our contributions are the following: application of local statistical texture
maps to the classification of NC and MCI, which make no assumption about
the expected location of significant differences and that require no previous
segmentation of brain structures; performance comparison of the proposed fea-
tures and a widely used structural feature - the local gray matter density. To the
best of our knowledge, no other texture studies have made such comparison.
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5.3 Methods

5.3.1 Calculation of the feature maps

The Haralick features are based on the Gray Level Co-occurrence Matrix
(GLCM), which gives information about the statistical distribution of voxel in-
tensity pairs [126]. In this work, we refer to these texture descriptors by the
following: F1 - angular second moment; F2 - contrast; F3 - correlation; F4 - sum
of squares; F5 - inverse difference moment; F6 - sum average; F7 - sum vari-
ance; F8 - sum entropy; F9 - entropy; F10 - difference variance; F11 - difference
entropy. For a complete description of the features, we refer the reader to [126].

As in previous texture studies [52, 53], we compute the first eleven Har-
alick features (according to [126]) at a 3 × 3 × 3 sliding window centered on
each brain voxel. This allows for texture analysis in the entire brain rather than
at specific ROIs. The GLCM is determined for all 13 three-dimensional direc-
tions, considering voxel pairs at a distance of 1 voxel. In order to increase the
computational speed of these calculations, and to avoid very sparse GLCMs,
we quantize the original image intensities to 5 bits (range [0, 31]). After texture
feature calculation, we obtain, for each subject, 11 feature maps.

5.4 Experiments and Results

5.4.1 Data and preprocessing

For this study, datasets from 15 Normal Controls (75.4±4.5 years, 8 males
and 7 females) and 15 MCI patients (73.3±8.2 years, 10 males and 5 females)
were retrieved from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [127]. The data consist of three-dimensional T1 images acquired at 3T.
These images have been previously corrected for acquisition artifacts such as
bias field inhomogeneities, geometric distortions and scaling, as described in
[127]. To eliminate global differences between brain shapes and volumes, we
align all images to the same spatial reference using a non-linear diffeomorphic
registration method, DARTEL [128].

5.4.2 Feature maps

We then register the features maps into the template space, by applying the
same warp field that originated from the non-linear registration of the T1
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images. An 8mm (FWHM) isotropic Gaussian kernel is finally applied to
smoothen the aligned feature maps.

To obtain the gray matter density feature maps, we first segment the brain
images using the probabilistic segmentation method offered by SPM8 (Well-
come Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/
spm). Then, and similarly to what is done with the texture maps, we apply the
respective warp field obtained in the non-linear registration step to the gray
matter segmentations, followed by Gaussian smoothing. The resulting maps
represent the local concentration of gray matter per voxel. Two-dimensional
slices of all obtained feature maps are shown in Figure 5.1.

Figure 5.1: Feature maps of an MCI patient after non-linear registration to a common
spatial reference. Bottom right: gray matter tissue probability map.

5.4.3 Classification

We use an SVM (implemented in the Python package scikits-learn [115]) to clas-
sify the datasets into one of the two classes: NC or MCI. To better evaluate
the classifier’s generalizability, we perform a random subsampling evaluation
with 10 random permutations, in which the test set corresponds to 10% of
the data samples. At each training fold, we carry out an analysis of variance
(ANOVA) test on the training samples and select the 5% most significant vox-
els, which are then used as features in the classification task. We perform a
grid search (with 5-fold cross-validation on the training set) for the best SVM
parameters: kernel type - linear or Radial Basis Function (RBF); the cost C and,

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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for the RBF kernel, the scale γ. The best classifier is then evaluated on the test
set. The final performance measures (accuracy, sensitivity and specificity) are
computed as the average of the values obtained at each evaluation fold.

The classification results are shown in Figures 5.2 and 5.3. The texture de-
scriptor with the best performance (F3 - correlation) achieved a mean accuracy
(percentage of correctly classified subjects) of 87%, at a sensitivity of 85% and
a specificity of 95%. In contrast, the accuracy of the structural feature was 63%,
with 75% sensitivity and 55% specificity. A Wilcoxon-Mann-Whitney statis-
tical significance test on the evaluation folds’ results showed that feature F3
significantly outperformed the gray matter density feature in terms of accu-
racy (p = 0.007) and specificity (p = 0.01). Feature F8 (sum entropy) showed
also, at a high significance level (p = 0.06), a better accuracy than the structural
feature.

Figure 5.2: Mean accuracy obtained using the first 11 Haralick features and the Gray
Matter (GM) tissue probability maps (rightmost blue hatched bar).

In addition, we show the brain voxels that were selected by the ANOVA
test in one of the training folds (Figure 5.4a). We observe that using the correla-
tion (F3) map voxels in the left hippocampus are detected as being statistically
significant (and consequently used in the classification). Voxels in the brain
ventricles, particularly near the edges, are also selected, as well as in the white
matter and near the lateral sulcus. The higher accuracy of the classification us-
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Figure 5.3: Mean sensitivitiy and specificity obtained using the first 11 Haralick
features and the Gray Matter (GM) tissue density maps (rightmost green and blue

hatched bars).

ing this feature map, when compared to the structural feature, indicates that
these regions might play a role in MCI, even though their corresponding gray
matter density is not significantly different between the groups. As a com-
parison, we show, in Figure 5.4b), the statistical differences between the same
NC group and a group of 12 AD patients, where we clearly see, for both fea-
ture types, the two hippocampi being selected (the left being more significant).
MRI signal changes which do not correlate with structural measurements have
already been observed in ageing subjects [44]. The underlying cause for these
alterations lies probably in the change of water, protein and mineral content
of the tissues. A similar explanation can be given to why texture descriptors
might be able to capture early signals of dementia.

A final analysis was performed on the effect of varying the percentile of
features selected for classification, although no significant changes in classifi-
cation performance were obtained.
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Figure 5.4: F-values of the statistical test (only the 5% most significant voxels are
shown) for the correlation map and the GM local density map.

5.5 Conclusions and recommendations

In this work, we have analyzed the performance of statistical texture maps in
classifying MCI patients and normal elderly controls. We used a whole-brain
voxelwise approach, in which we made no assumptions about the expected
location of differences between the two subject groups.

We obtained a mean accuracy of 87% (sensitivity of 85% and specificity of
95%) when using the correlation map voxels as features in an SVM classifica-
tion task, outperforming the structural feature map - the local gray matter den-
sity. Remarkably, the voxels selected using the two feature maps were not the
same, suggesting that texture- and structure-based features might be sensitive
to distinct aspects of the disease. In particular, part of the left hippocampus
was selected when using the texture map but not with the GM density map,
possibly indicating an earlier sensitivity of the texture descriptor to changes in
this region.

Further work will include a more thorough evaluation of other classifiers
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and feature selection/extraction methods. Also, the influence of the prepro-
cessing steps on the classification performance should be assessed. This in-
cludes the non-linear registration to the common spatial reference and the
smoothing applied to the registered feature maps.

The influence of the size of the local window chosen to compute the features
should be evaluated. In this work, we focused on very fine-scale statistical
textures. A multi-scale analysis will provide further insight on also larger-scale
texture properties. Other feature types, such as higher-order statistical features
and Gabor wavelets, as well as combinations of various features, need also be
considered.

Additionally, a comparison between the results obtained with images ac-
quired at 3T and at the most commonly available 1.5T is desirable. In partic-
ular, it is worth investigating how both structure- and texture-based features
perform at the two field strengths. Similarly, other MRI modalities (such as T2
images) should be considered.

Finally, the classification must be performed with a larger number of sam-
ples to allow for stronger conclusions. However, these preliminary results
seem to indicate that microstructural information, such as that provided by
local texture descriptors, can play a useful role towards better and earlier de-
tection of Alzheimer’s disease.





CHAPTER 6

Local Binary Patterns in local patches

In this chapter, we propose another texture-based approach to detect early-
stage Alzheimer’s disease. While the features used in Chapters 4 and 5 de-
pend directly on the original gray-scale values of the images, in this chapter
we use intensity-invariant descriptors, the Local Binary Pattern histograms,
which have been introduced in Chapter 3. Similarly to Chapter 4, but un-
like what has been done in Chapter 5, we avoid non-linear registrations and
use only affine-registered images. Furthermore, we explore the patchwise ap-
proach introduced in Chapter 4 and perform an exhaustive search for discrimi-
native regions over the whole brain. Finally, we compare our results to another
structural-based approach (the volumes of the hippocampi and the amygdalae)
and to other methods in the literature that also use local features.

This chapter has been submitted to Neuroradiology.

6.1 Abstract

Early detection of Alzheimer’s Disease is expected to aid in the development
and monitoring of more effective treatments. Classification methods have been
proposed to distinguish Alzheimer’s patients from normal controls using Mag-
netic Resonance images. Most often, the features used in these classification
tasks are related to structural measures such as volume, shape and tissue den-
sity. However, these approaches rely on a priori assumptions about the disease
location and/or non-linear registrations to a template. In this work, we pro-
pose the use of 3D texture analysis using Local Binary Patterns computed at a
large number of image patches and combined in a classifier ensemble. We eval-
uate our method in a publicly available database of 66 normal controls and 70
very mild to mild Alzheimer’s patients. For an ensemble of small (10×10×10
voxels) highly overlapping patches, the classification accuracy is 100% in a
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leave-one-out cross-validation setting. Finally, we show that our method is
able not only to perform accurate classification but also to localize discrimina-
tive brain regions, which are in accordance with the medical literature.

6.2 Introduction

Alzheimer’s Disease (AD) is the most common type of dementia and a major
cause of disability worldwide [117]. Its exact etiology is not yet fully under-
stood, with multiple processes thought to be involved in the disease develop-
ment. Since the initial description of dementia by Alzheimer in 1907 [118], the
pathogenic mechanism that has been traditionally considered is that AD starts
with the accumulation of β-amyloid (Aβ) proteins in the brain. These trigger
the formation of senile plaques and neurofibrillary tangles, which in turn pro-
gressively lead to damage of the neural tissue [7]. However, recent evidence
shows that it might be neurodegeneration that leads to the accumulation of
abnormal proteins and not the other way around [6].

Early detection of AD is essential to provide the patients with adequate
and timely treatments and to help monitoring their effectiveness [9]. Struc-
tural Magnetic Resonance Imaging (MRI) is a diagnostic tool that provides
high-resolution images and a high brain tissue contrast. In addition, its non-
invasiveness makes it a suitable imaging technique for follow-up studies.

Several pattern recognition-based methods have been developed to detect
Alzheimer’s disease using structural MR images. A recent comparison study
of various classification methods [25] shows that the current major challenge
is to discriminate patients who are at a very early stage of AD. In particular,
feature extraction is a critical step in the classification framework.

Medial-temporal atrophy has been considered a valid MRI biomarker in
the classification of AD [9]. Methods have been proposed that consider the
hippocampal volume [27] and/or shape [28]. The volumes of the entorhinal
cortex [29] and the amygdala [30] have also been used as features in AD clas-
sification. However, such volumetric approaches rely mostly on manual or
semi-automatic segmentations, which are time consuming and prone to errors
and inter/intra-rater variability. Also, recent metabolic studies have shown
that other brain regions, such as the parietal cortex, might be more involved in
the earlier stages of AD [119].

To overcome the limitations of ROI-based approaches, methods that con-
sider voxelwise measures can be employed [129]. A widely used approach is
to extract the voxelwise probability of the three brain classes. This technique
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is called Voxel-Based Morphometry (VBM) [38] and is generally followed by
classification with Support Vector Machines (SVM). The gray matter probabil-
ity map (often referred to as “density" or “concentration" map) is the most often
used, based on the assumption that AD primarily affects the cortical structures,
as a consequence of the underlying neuronal loss [37]. Similarly, Deformation-
Based Morphometry (DBM) considers the voxelwise deformation field that re-
sults from warping each subject’s image to a common template [39, 40]. With
these voxel-based methods, it is possible to determine which voxels are more
discriminative between the subject groups, and maps showing the brain re-
gions that are related to the disease can be created.

However, VBM and DBM-based approaches always require non-linear
alignments to a template, in order to achieve voxelwise inter-subject correspon-
dence [36]. A drawback is that, due to the high anatomical variability of brain
structures, it is difficult to evaluate the accuracy of this inter-subject matching.
Furthermore, while elastic registration can give more precise alignment results
than, for example, affine registration, there is also the risk of a misalignment
[42] or an over-alignment which can result in informative patterns being elim-
inated from the images [43].

To overcome these limitations, [43] have proposed the use of local features,
which are computed independently for each subject. In particular, they have
used the well-known Scale Invariant Feature Transform (SIFT) features [130] to
classify AD. Further adaptations of Toews’ approach were proposed by [131]
and [132].

Local Binary Patterns (LBPs) are a computationally efficient method for de-
scribing the local texture of an image. Since they were first proposed by [108],
LBPs have been widely used in various computer vision applications such as
face detection and recognition [133]. LBP descriptors are invariant to inten-
sity changes and can also be rotation-invariant [110], which makes them an
attractive alternative for texture analysis of medical images. In particular, their
robustness to various artifacts that are commonly present in brain MRI has
been studied by [134]. Also in neuroimaging, LBPs have recently been used as
descriptors for content-based image retrieval [135]. [136] have proposed a 3D
LBP variant to classify Attention-Deficit/Hyperactivity Disorder (AHDH) in
brain MR images. [67] performed classification between normal controls and
AD subjects based on LBP descriptors computed at the subjects’ white matter
hyperintensities.

Two main approaches can be followed when using LBPs as image descrip-
tors - we can either compute them at the whole image or at specific local re-
gions. As an analogy with the face recognition literature, we point to holistic
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or local methods, with the latter performing generally better than the former
[137]. In this work, we are particularly interested in investigating which brain
regions are affected at the early stage of AD. Because we also want to avoid
making a priori assumptions about these locations, we use a patchwise ap-
proach, in which LBP descriptors are determined for each local patch in the
image.

A question that arises when using such patchwise features is how to com-
bine them for the final classification. Many approaches, particularly in the face
recognition literature, concatenate the feature descriptors into a single large
feature vector [138]. However, when a large number of patches are defined,
the classification problem becomes high dimensional, and the “curse of dimen-
sionality" problem arises [137]. Since one of our goals is to obtain a localiza-
tion map of discriminative regions, we need a fine image sampling, i.e., many
patches at various locations in the brain image. Feature concatenation would
therefore not be appropriate.

Another approach is to use an ensemble of patchwise classifiers, which can
reduce the feature dimensionality per classification. The assumption is that
the combination of complementary information can give more accurate results
[139].

The classifier AdaBoost [140] has been used with this goal in face recog-
nition applications [141]. It consists of iteratively adding weak classifiers to
the ensemble and adjusting the weights attributed to the training samples, ac-
cording to whether they have been mis- or correctly classified. Although such
methods can alleviate the “curse of dimensionality", their training step can also
be very time consuming when a large number of base classifiers (patches) is
used, since for each iteration all patches must be classified.

In this work, we propose the use of a 3D variant of the LBP descriptor [111],
computed at local image patches densely sampled in the entire brain. We clas-
sify each patch with a template matching classifier and combine the results by
fixed weighted majority voting.

We evaluate our method on data retrieved from a publicly available
database, in which images have been affine-registered to a template. We hy-
pothesize that there is no need for non-linear registration since the image
patches contain already discriminative information between the groups of el-
derly controls and early-stage Alzheimer’s. We compare our results with those
obtained in recent studies on the same database - both shape/volume-based
methods and others that, like ours, use local features.

Finally, besides classifying between very mild to mild AD and normal con-
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trols, we also analyze which local brain regions are most discriminative in the
two subject groups.

6.3 Methods

6.3.1 Local Binary Patterns

The local binary pattern (LBP) is an operator that labels the pixels of an image
according to its local appearance, or small-scale structure. The most common
texture descriptor based on the LBP operator is the histogram of the labels
within a region of interest [107].

The formal description of such an operator is as follows. At a pixel with
gray value gc, with P neighbors at a neighborhood radius of r, its LBP label is
given by:

LBPP,r =

P−1
�

p=0

s(gp − gc)2
p (6.1)

with

s(x) =

�

1, if x ≥ 0

0, otherwise
(6.2)

In its original form, proposed by [108], the LBP label of a certain pixel is de-
termined by thresholding its 8 neighbors (in a 3×3 neighborhood) with its own
gray value and converting the resulting binary into a decimal number. More
recently, several variants of the LBP descriptor have been proposed [107]. In
particular, [109] extended the LBP descriptor to allow for other neighborhood
radii, r, and more sampling points, P . Typical values of r are in the order of
few pixels. Accordingly, P takes usually values in the order of the number of
neighbors for a certain r.

Figure 6.1a) shows an example of an LBP neighborhood. The circles that,
after bilinear interpolation of the respective neighborhood, have a lower inten-
sity than the center pixel are shown in black and the others in white.

More recently, it was observed that the majority of the observed patterns
are uniform (described by no more than two bitwise 0-1 transitions). For the 8-
bit (P = 8) LBP descriptor, 58 out of the 256 possibilities correspond to uniform
patterns. Furthermore, it is possible to obtain a rotation-invariant descriptor by
rotating the LBP binary code into its minimum decimal value [110]. In general,
for P neighbors we have P + 1 possible uniform rotation-invariant LBP labels



84 6 Local Binary Patterns in local patches

(shown in Figure 6.1b) ). All non-uniform patterns are assigned label N =
P + 2.

In this work, we are particularly concerned with the computational cost of
the feature extraction step, since we perform local analysis on a large number of
3D image patches. Also, we want the feature descriptor to be as insensitive as
possible to minor errors in the affine registration to the template. Therefore, we
use the uniform rotation-invariant LBP descriptor. An analysis of the influence
of the neighborhood parameters, P and r, on the classification accuracies is
performed in Section 6.4.

a) b)

Figure 6.1: a) Local Binary Pattern neighborhood, P = 8, r = 1. The 8 circular
neighbors are thresholded with the gray value of the center pixel; a binary is made by
assigning zeros (black circles) to all values lower than the center pixel and ones (white
circles) to those greater than or equal to the center pixel intensity; the resulting label is

the decimal number that corresponds to the obtained binary; b) Rotation-invariant
uniform LBPs.

6.3.2 LBP-TOP

Two extensions of the LBP operator to 3D data have been proposed in [111],
mostly for spatio-temporal applications. In particular, LBP-TOP (Three Or-
thogonal Projections) is computationally simple. It consists of calculating the
LBP histograms at three orthogonal slices (in the case of brain images, we se-
lect axial, coronal and sagittal planes) and concatenating them. The resulting
feature vector is then only three times larger than the 2D feature vector.
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6.3.3 Feature extraction

We subdivide the images into several 3D local patches (patch configuration will
be detailed in Section 6.4). The number of patches ranges from a few dozens (in
the case of large non-overlapping patches) to some hundred thousands (when
we use small highly overlapping patches). We then use the LBP-TOP histogram
(LBPH) as the descriptor of each local patch in the image.

Furthermore, because we are interested in localizing the brain regions that
are most discriminative in early-stage AD, we follow a multi-classification ap-
proach in which we extract the LBPH descriptors at each patch separately.
These feature vectors are then fed into individual classifiers to build a classifier
ensemble.

Figure 6.2 shows a summary of the feature extraction steps, which ulti-
mately result in one LBPH per 3D image patch.

6.3.4 Classification

To classify each patch, we use a computationally simple classifier called tem-
plate matching. It consists of determining a “template" for each class from the
training samples and selecting the class for which the distance of the patch to
each class template is lowest. We use the Chi-square (χ2) histogram distance
measure:

χ2(p, q) =
1

2

N
�

i=1

(pi − qi)
2

pi + qi
(6.3)

with N being the total number of features (histogram bins) and p and q two
histograms with N bins.

A popular approach to obtain the final results from a classifier ensemble is
to use a fixed combination rule, such as majority voting, since trainable clas-
sifier combination rules typically demand large training sets [137], especially
when the number of base classifiers (patches) is large [142]. They are also com-
putationally more cumbersome, which is particularly problematic in our ap-
plication since we use a number of local patches that is in the order of tens of
thousands.

Instead of performing simple majority voting, we weigh the prediction of
each individual classifier according to its classification accuracy. We propose
that the weights be given by a power law with fixed parameter β (with values
in the order of β = 10). In this way, larger weights are assigned to classifiers
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that perform best individually (the best patch is assigned a weight of 1). The
commonly used majority vote rule is a particular case of weighted voting, in
which the weights are the same for all classifiers.

The decision function is then defined as follows:

f(x) = sgn

�

�N
j=1 fj(x)wj
�N

j=1 wj

�

(6.4)

where fj is the decision function {−1,+1} for classifier j and the weight wj is
given by:

wj =
(aj − 50)β

aM − 50
(6.5)

where aj and is the accuracy of classifier j and aM is the accuracy of the best
classifier. The accuracies are defined in the range 50% < aj ≤ 100%. In the case
of 50% accuracy, we set wj = 0.

6.4 Experiments and Results

6.4.1 Data

We use data from the publicly available OASIS (Open Access Series of Imaging
Studies) database (http://www.oasis-brains.org). The data consist of
T1 images that have been previously aligned to a template, corrected for bias
field inhomogeneities and brain masked [123].

From the 436 subjects available, we use data from subjects aged 60-80 years
old, divided into two classes: 66 normal controls (NC) and 70 subjects with
very mild to mild AD. The designation of very mild and mild is based on the
Clinical Dementia Rate (CDR). A CDR of 0 corresponds to the normal cognitive
state, 0.5 to very mild dementia, 1 to mild dementia, 2 to moderate dementia
and 3 to severe dementia [124]. In this database, all subjects with dementia
(CDR > 0) had been diagnosed with probable AD.

The demographic information of these subjects is summarized in Table 6.1.

6.4.2 Classification

To evaluate each classifier’s generalizability, we perform leave-one-out cross-
validation. At each fold, we determine the class templates by averaging the

http://www.oasis-brains.org
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Table 6.1: Demographic information of the subjects in the two classification classes.

Normal Controls Alzheimer’s patients

Age 70.8 ± 5.5 73.2 ± 4.8
Gender (F/M) 48/18 41/29

CDR∗ (0/0.5/1) 66/0/0 0/48/22
MMSE∗∗ 29.1 ± 1.1 24.5 ± 4.2

∗CDR: Clinical Dementia Rate
∗∗MMSE: Mini-mental State Examination

respective LBPH descriptors. We then determine the distance of the test sam-
ple’s LBPH to each of the two templates and assign it with the class label that
corresponds to the lowest distance.

The sensitivity and specificity are computed at the end of the cross-
validation. To avoid overestimated performances due to the classes being
slightly imbalanced, we define here classification accuracy as the average be-
tween sensitivity and specificity (also known as “balanced accuracy" - bac
[143]). This classification is performed separately for all patches in the image.

In the following experiments, we subdivide the images into overlapping
patches with voxel sizes of 10×10×10, 20×20×20, 30×30×30 and 40×40×40.
These sizes are selected such as to capture local brain regions at increasing
scales (Figure 6.3a) ). The overlapping ratio (percentage of voxels common to
adjacent patches, as depicted in Figure 6.3b) ) is 80%. In this way, we are able
to obtain a rather high resolution of texture descriptors, which is important for
localization purposes. The effect of this ratio on the classification performance
is later evaluated.

First, we analyze the performance of the template matching (using χ2 the
histogram distance measure) as an individual classifier. In particular, we deter-
mine the histogram of the individual patch accuracies at the four patch sizes.
The outputs of the classifiers that perform worse than random (balanced accu-
racy lower than 50%) are first “negated" (NC becomes AD and vice-versa).

In this experiment, we use P = 8 and r = 1 for the LBP operator. Later we
evaluate the sensitivity of the method to these parameters.

The results are shown in Figure 6.4.
We observe that, as expected, the majority of the patches performs only

slightly better than random, with the histograms reaching their peaks, for all
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b)a)

Figure 6.3: Examples of local patches of various sizes (cubes with 10, 20, 30 and 40 side
lengths) and overlapping ratios (0%, 50% and 80%). For clarity purposes, two different
patches are shown in different colors (blue and yellow) and their overlapping region is

shown as a mixture of these.

Figure 6.4: Normalized histogram of the individual patch accuracies for different patch
sizes (cube side length, in voxels).

patch sizes, in the range between 50% and 60%. In Table 6.2 we show the results
obtained by the best individual patch, for all patch sizes.

Remarkably, the best patch alone achieves high classification accuracies, for
all patch sizes, achieving over 87% in the case of the smallest patches. The fact
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Table 6.2: Best patch classification results.

patch size balanced
accuracy (%) sensitivity (%) specificity (%)

10×10×10 87.4 90.0 84.8
20×20×20 83.2 78.6 87.9
30×30×30 81.5 84.3 78.8
40×40×40 77.8 81.4 74.2

that higher classification accuracies are obtained with smaller patches might
indicate that early changes are contained in small scales of the image.

The following step consists of making use of the various patch classifiers,
by combining them to build the final classifier.

Ensemble fusion rule

The simplest fixed combination rule is the majority vote, in which all classifi-
cation results are combined with the same weight. Table 6.3 shows the results
of this combination.

Table 6.3: Simple majority vote classification results.

patch size balanced
accuracy (%) sensitivity (%) specificity (%)

10×10×10 75.2 70.0 80.3
20×20×20 69.3 62.9 75.8
30×30×30 67.9 60.0 75.8
40×40×40 66.4 58.6 74.2

When all patches are combined with equal weights, the accuracy drops sig-
nificantly with respect to that obtained by the best individual patches. This
means that the equal inclusion of all patches deteriorates the final classifier
performance. This is expected considering that, as shown in Figure 6.4, most
patches are non-discriminative. Indeed, we observe that only a small amount
of patches contain discriminative information. Therefore, we can intuitively as-
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sume that those patches performing well individually should contribute more
to the final decision.

We then use a fixed accuracy-weighted rule to combine the classification of
the individual patches in the ensemble. This way we avoid an extra training
step to find the optimal combination weights, which can be particularly costly
when we have hundreds of thousands of patches (necessary in the localization
analysis), as is the case of when we use 10×10×10 patches with 80% overlap.

The only parameter of the combination rule is the exponent β in Equation
6.5, which controls the speed at which the weight given to each classifier in-
creases with the classifier’s individual accuracy. An example of the obtained
weights using three different values for β is shown in Figure 6.5.

Figure 6.5: Weighting schemes for three different power-law exponents: for lower β,
classifiers with lower accuracies are assigned with higher weights than when higher β
are used. In this case, the “best" classifier, which receives the weight 1, has an accuracy

of 80%.

We evaluate the influence of this parameter in the final classification accu-
racy and investigate how this approach compares to the single best patch and
the commonly used majority vote. As in the previous experiments, we use the
LBP8,1 operator and patches of four different sizes with 80% overlap subdivi-
sion. Figure 6.6 shows the variation of the ensembles’ accuracies with respect
to β.

The weighted majority vote yields higher classification accuracies than
the simple majority voting for all patch sizes, reaching 100% for the smallest
patches, at β = 8. We also observe that the smaller the patches used, the less
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Figure 6.6: Evaluation of the influence of the β parameter in the final classification of
the weighted voting rule, for four patch sizes (80% overlap).

sensitive the final classifier is to β. In particular, for the 10×10×10 patches, the
accuracy is constant for all β >= 8. On the other hand, for the largest patches,
the performance of the classifier ensemble is only better than that of the “best"
classifier for a limited range of β values (lower than 12). In particular, for very
large β values, the accuracy of the 40×40×40 patch ensemble tends to that of
the individually best patch (which receives, by definition, a weight of 1).

This can be explained by the fact that we have significantly more patches in
the 10×10×10 (80% overlap) configuration than when larger patches are used.
Therefore, the exact weights attributed to each individual patch do not have a
significant impact on the final combined performance. In contrast, when only
a few discriminative patches are present, a change in the weight given to these
patches is likely to influence the final result.

Patch parameters

Subsequently, we evaluate the joint influence of the two patch configuration
parameters (size and overlapping ratio) on the performance of the combined
classifier. We fix β = 10.

As shown in Figure 6.7, the accuracy of the ensemble decreases significantly
with the patch size. Also, the larger the overlapping ratio (or, in other words,
the more information we use to build the ensemble) the better the final clas-
sification accuracy. This indicates that, even though some patches might be
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Figure 6.7: Classification results at various patch sizes and overlapping ratios.

highly correlated when the overlapping is large (two neighbor patches con-
tain almost the same information), the overall patch combination still contains
complementary discriminative information.

LBP neighborhood parameters

Finally, we evaluate the influence of the number of neighbors, P , and the scale
of the LBP operator, r, on the classification accuracy. We use the 10×10×10
patches with 80% overlap. The results are shown in Figure 6.8.

Smaller scale operators perform better than larger scale ones, with the ac-
curacy decreasing significantly for large radii. Also, for the same radius, a
smaller number of neighbors P gives better results, the exception being r = 1,
with P = 8 and P = 10 both achieving 100% accuracy. As explained above,
the feature vector dimensionality increases with P . Therefore, lower values of
P yield smaller feature vectors, helping avoid the small sample problem.

Localization

Besides classification, our other main goal is to localize early-stage AD in the
brain. We use the classification accuracies of the individual patches and com-
pute their voxelwise average to obtain the classification maps. This way, these
maps indicate which brain regions have a high concentration of highly dis-
criminative local patches. Due to the averaging performed on the patches, a
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P r

Figure 6.8: Balanced accuracies (bac) at various (P ,r) LBP neighborhoods.

spurious highly discriminative patch will not have a high value in these classi-
fication maps.

Figure 6.9: Three-dimensional classification map. Each voxel intensity corresponds to
the average accuracy of the patches that contain that voxel.
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In Figure 6.9 we show the three-dimensional classification map. For visual-
ization purposes, we also show, in Figure 6.10, coronal slices of the classifica-
tion map at six different locations.

We see that, at an early stage of development, several patches are con-
centrated near the hippocampi (Figure 6.10c)), with the left one being more
discriminative. Several studies have shown asymmetric volume reduction in
AD, with the left hippocampus shrinking at a higher rate than the right one
[144, 145]. [146] point out that hippocampal asymmetry may be an early sign
of the presence of a degenerative process.

The expansion of cerebrospinal fluid (CSF) cavities in the brain is known
to occur in early-stage Alzheimer’s as a consequence of brain matter loss [147].
Indeed, the ventricles also show as highly discriminative structures in our clas-
sification maps. This is in accordance with neuroanatomical findings, which
have shown larger ventricular volume in early-stage AD brains compared to
that of normal controls [148, 103]. Interhemispheric fissures (Figure 6.10a)-c)),
as well as the Sylvian fissure (the right one being highlighted in Figure 6.10c))
are similarly regions of high classification accuracies.

6.4.3 Comparison with other methods

To better place our method among other classification approaches that have
been recently proposed to diagnose early-stage AD, we perform comparisons
in datasets and cross-validation settings that are as much as possible the same
as those used in other works. In particular, we focus on those that have been
performed on the OASIS database. An advantage of this database is that the
provided images have already been preprocessed (affine registered, bias field
corrected and brain masked), eliminating possible differences between steps
taken by the various approaches up until the feature extraction step.

In [43], Toews et al. train and test (with leave-one-out cross-validation) their
method in a cohort of 198 subjects (98 NC and 100 AD). This cohort includes
subjects aged 60-96 years, with dementia varying from very mild to moderate.
The results are then calculated separately for three sub-cohorts:

1. 66 NC and 22 AD (CDR = 1), age 60-80.

2. 98 NC and 28 AD (CDR = 1), age 60-96.

3. 66 NC and 70 AD (CDR = 0.5 and 1), age 60-80 - the same subdivision we
used in the previous experiments.
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a) b)

c) d)

e) f)

Figure 6.10: Coronal slices of the classification map overlayed on a subject’s T1 image,
after applying a threshold to the classification map for visualization purposes. a)-f)

posterior to anterior.
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Similarly, in [131], Daliri proposes the use of SIFT features, followed by clas-
sification with Support Vector Machines (SVM). They use the same training-
testing configuration as Toews as well as the same subject cohorts. An exten-
sion to Toews’ method has been proposed by Wang et al. [132] to improve
feature correspondences.

For a fair comparison with Toews’, Daliri’s and Wang’s methodology, we
train and test our method in the exact same subject subdivisions and determine
the sensitivity and specificity (in a leave-one-out cross validation setting) for
Groups 1, 2 and 3 separately. We use, as previously, the (8,1) LBP descriptor
and 10×10×10 patches with 80% overlap. Results are summarized in Table 6.4.

Table 6.4: Classification results in the literature: SIFT-based approaches.

1 2 3

[43] (EER∗) 80% 70% 71%
[131] (EER∗) 86% 78% 75%
[132] (EER∗) 80% 79% 71%

ours (bac) 100% 100% 100%

∗EER: Equal Error Rate, defined as the value for which the sensitivity and the
specificity are the same.

We show that our method outperforms the three SIFT-based approaches
presented earlier for the three subdivisions. The differences in performance can
be related to several aspects that differ between the two approaches. Firstly, in
what concerns the local descriptor used, the SIFT feature vector is determined
only at the so-called “interest points", which are located in regions of high in-
tensity gradient. However, the gradients alone can only partially describe the
local structure of an image. In particular, two points with the same gradient
might have significantly different regional intensity distributions [149]. On the
other hand, the LBP descriptor provides a more complete description of the
local texture. In addition, we compute these descriptors at the entire brain, not
only at specific “interest points", thereby including more information.

Furthermore, [150] proposed a Bag-of-Features (BoF) approach. They ex-
tract 2D patches from coronal slices in a training set and build a codebook from
those patches. The features used in the classification are then the histograms of
the dictionary words present in each image.

They separate the classification tasks into the Groups 1 and 3 described
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above. However, they use only one test-training split (70% training - 30% test)
for each Group and did not specify which subjects belong to which split. They
obtain accuracies of 95% and 85% for the two groups, respectively. For leave-
one-out cross validation performed separately in these two Groups, we obtain
accuracies of 94% (95% sensitivity, 92.4% specificity) for Group 1 and 100% for
Group 3.

Surprisingly, our method performs worse for the subdivision in Group 1
than for Group 3. This would not be expectable, since the AD patients in Group
1 are all at the “mild" stage of the disease (CDR = 1), whereas Group 3 includes
brain images from very mild (CDR = 0.5) AD subjects, which are in principle
more difficult to classify.

A possible explanation for this is that our method relies on the template
matching classifier, which requires representative class templates at each train-
ing fold. These might not exist when the number of subjects is low (in this case,
only 22 AD samples are present - 21 in each training fold of the leave-one-out
cross validation). Another reason might lie in the fact that, for this group, other
patch sizes or LBP scales might be more discriminative. In particular, since the
AD subjects in this cohort are at a more advanced stage of the disease than
those in Group 3, we can expect brain changes to be present at larger scales in
the image. Finally, the weighting applied to the patches is also most likely sub-
optimal. It is possible that, for this subject group, a different accuracy-based
weighting scheme should be used.

To compare our results with a volumetric approach on regions of inter-
est, we use data available from the FTP server of the OASIS database website
(ftp://ftp.nrg.wustl.edu/data). It consists of the volumes of 45 dif-
ferent brain segments, obtained using the widely used open-source software
FreeSurfer (http://surfer.nmr.mgh.harvard.edu). We use the same
group subdivisions as in the comparison with [150], except for 5 subjects in
Group 1 and 6 in Group 3, whose data is missing from the volumetry collec-
tion.

Using a Linear Discriminant classifier and all 45 volumes as features, the
volumetric approach obtains accuracies of 80.5% and 75.0% for Groups 1 and
3, respectively. Finally, we select only the volumes of the left and right hip-
pocampi and amygdalae. The classification accuracies are 70.0% and 70.8% for
Groups 1 and 3, respectively (Table 6.5).

This means that, at a very early stage of AD (as in Group 3), the amyg-
dalae and the hippocampi volumes contain the most discriminative informa-
tion. Adding measurements from other brain structures improves the classifi-
cation only slightly. In contrast, for Group 1, using the volume of those struc-

ftp://ftp.nrg.wustl.edu/data
http://surfer.nmr.mgh.harvard.edu
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Table 6.5: Classification results (percentage) for the volumetric approach (balanced
accuracy| sensitivity| specificity).

1 3

all volumes 80.5 |70.0 |90.9 75.0 |75.7 |74.2
hippocampi
amygdalae 70.0 |40.0 |100 70.8 |64.3 |77.3

ours 94 |95.0 |92.4 100|100 |100

tures alone implies a significant loss of information. A possible cause is that
the brain changes are, at this stage of the disease, more spread throughout the
brain. Therefore, better performance is obtained when all brain structures are
taken into account.

To better visualize the differences between very mild and mild Alzheimer’s
disease, we analyze the localization results on Group 1 as well. We show the
classification map at two coronal slices and compare it with the one obtained
for Group 3 (Figure 6.11).

For Group 1, the most significant patches are located, besides the hip-
pocampi and lateral sulci, near the frontal horns of the lateral ventricles. How-
ever, for Group 3 these are not as significant, which is consistent with recent
volumetric measurements that have been performed on groups of NC, Mild
Cognitive Impairment (MCI) and AD. [151] showed a significant difference in
the volumes of the frontal horns of the ventricles of NC subjects when com-
pared with those from AD patients. In the NC vs. MCI comparison, there was
no statistically significant difference.

It is worth noting that although there is not a direct correspondence be-
tween the CDR scores in Groups 1 and 3 and the diagnosis of MCI, both MCI
subjects and subjects with CDR values of 0.5 and 1 are expected to be largely
similar. In particular, a recent study by [15] in a large cohort has shown that,
according to the revised criteria for diagnosing MCI [13], 99.8% of the subjects
with a CDR score of 0.5 and 93% of those with a CDR of 1 would be classified
as MCI.
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a) b)

c) d)

Figure 6.11: Coronal slices of the classification maps for a), c) Group 1 and b), d) Group
3. Note that b) and d) are the same as Figure 6.10c) and e), but shown here in a

different color range to facilitate the comparison.

6.5 Conclusion

In this work, we have presented a method for classifying and localizing AD
at an early stage of development. We use LBP-TOP descriptors at individual
image patches and combine them into a classifier ensemble. We use template
matching (with the χ2 histogram distance) for individual patch classification.
This classifier is computationally very simple, therefore allowing for the classi-
fication of a large number of 3D patches. In particular, our results indicate that
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small highly overlapping patches achieve the highest classification rate when
combined in an accuracy-weighted ensemble classifier.

Also, by using a finely sampled image, a rather precise localization is
achieved. In particular, we observe that the patches located at the hippocampi
and the ventricles are highly discriminative, which is in accordance with recent
volumetric and voxel-based studies. This confirms our initial hypothesis that
local image patches contain sufficient texture information to be able to discrim-
inate between the two classes. Indeed, 100% classification accuracy is obtained
without requiring any a priori assumptions about the location of AD at an early
stage and without recurring to complex segmentations and non-linear regis-
trations. One of the purposes of performing non-linear registration to a tem-
plate is to obtain very accurate inter-subject voxelwise correspondences. One
might then expect that by simply affine registering the images the anatomical
variability would hinder the classification process. However, the classification
maps we obtain show that locations with very high anatomical variability but
not necessarily associated with early-stage AD, such as the cortical folds, are
indeed not discriminative.

We also demonstrate that the classifier ensemble obtains significantly
higher accuracies than the best individual patches, indicating that these are
uncorrelated and that different brain regions can provide complementary and
discriminative information.

Furthermore, we show that our method outperforms volumetric-based
classification. Our classification results are also higher than those obtained by
other state-of-the-art local feature approaches. These comparisons have been
performed on the exact same subjects and cross-validation configuration.

Future work will include considering other strategies for patch combina-
tion and/or selection. In this work, we have proposed a simple weighted ma-
jority voting with a fixed parameter. This has the advantage of not needing
extra training samples and allowing for an a posteriori combination of patches.
However, it is likely that the chosen weights are not optimal for each classifi-
cation task. This trade-off will have to be more thoroughly evaluated.

Additionally, other patch configurations (and combinations thereof) should
be investigated. In particular, it is reasonable to expect that, depending on
the local structure of the image, more elongated (parallelepipedic/ellipsoidal)
patches can provide better descriptors than the simplistic cube. Similarly, mul-
tiscale LBP descriptors should be considered.

Finally, we intend to further evaluate this method’s performance in other
datasets, preferably from different acquisition centers. More specifically, we
are interested in assessing the method’s ability to predict conversion to AD.





CHAPTER 7

Conclusion

In this thesis, we have presented methods to help with earlier detection of AD
using intensity and texture-based information contained in structural MR im-
ages. In this final chapter, we summarize our research results and discuss di-
rections for future work.

7.1 Answers to the research questions

Can we accurately segment white matter hyperintensities from a single MRI
modality (FLAIR)?

In Chapter 2, we present a method to automatically segment WMHs using only
3D FLAIR images. We evaluate it in 40 datasets against the ground truth pro-
vided by an experienced neuroradiologist. Our results show that the method
is suitable for a robust segmentation of WMHs of various loads and that it out-
performs other existing unimodal approaches. In particular, we obtain both
high similarity and volume correlation coefficients.

Additionally, we evaluate our proposed method in a publicly available
database of Multiple Sclerosis lesions (MICCAI MS Segmentation Challenge),
which have a similar appearance as WMH in FLAIR images. The obtained final
score (82) indicates that our method performs closely to the human observer,
for whom a score of 90 had been given.

Is the proposed method comparable, in terms of performance, to existing
multimodal approaches?

Because it does not require additional MRI modalities or atlases, our approach
enables the shortening of the acquisition time (thereby increasing patient com-
fort and potentially reducing motion-related artefacts), avoids the need for
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co-registrations and allows for near real-time analysis, making it suitable for
large-scale clinical trials. However, a pertinent question with respect to such
a segmentation method is whether the lack of extra (multimodal) information
compromises its ability to detect lesions. In principle, we might expect that a
trade-off needs to be made between computational complexity and segmenta-
tion accuracy.

To compare our proposed method with existing multimodal approaches,
we apply it on a benchmark database of MS lesions, in which around 30 ap-
proaches have been tested since 2008. Results show that our method performs
similarly to the best performing state-of-the-art multimodal methods, suggest-
ing that either the benefits of using multimodal information are not significant
or they are overshadowed by an increase in the amount of errors that result
from the various registration and normalization steps.

Is it possible to detect Mild Cognitive Impairment (MCI) using only textural
properties of white matter hyperintensities and what is the performance in
comparison with volumetric/spatial features?

Our results in a dataset with 14 normal controls and 15 MCI subjects (Chap-
ter 3) show that both intensity histograms and particularly texture descriptors
perform considerably better than random classification when used in a classi-
fication framework to distinguish between these two groups. In contrast, fea-
tures such as the lesion volume and location are not discriminative in the same
dataset. These results indicate that: 1) small-scale (microstructural) differences
exist between normal elderly and MCI subjects at the level of the lesions, cor-
roborating recent findings by diffusion- and perfusion-based studies; 2) these
differences can also be captured by structural MR modalities. For our dataset,
the T2 images are the most discriminative to perform this classification, in com-
parison with the T1 and FLAIR images.

Lesion textures, as captured by T2-based descriptors, are therefore also po-
tential early biomarkers of AD and should be further investigated in large-scale
structural MR imaging studies.

Do intensity histograms contain enough information to detect early-stage
AD and how do they perform in both traditional and dissimilarity-based
classification frameworks?

We show in Chapter 4 that image-based features as simple as gray-level his-
tograms achieve about 84% accuracy (73-76% using whole-brain histograms)
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when used to discriminate between healthy elderly controls and subjects with
very mild to mild AD. Additionally, our results indicate that a dissimilarity-
based representation performs better in this classification task than the tradi-
tional approach that uses the histograms as feature vectors. Also, our proposed
method outperforms that proposed by Klein [120], in which a deformation-
based dissimilarity measure is used. These results indicate that, for this dataset,
the intensity content of the images is more discriminative than that provided
by a large scale measure like the deformation field.

Can texture features help to classify between normal controls and
MCI/early-stage AD and how to they perform compared to structural-based
features?

In Chapters 5 and 6 we use local texture descriptors to detect MCI and early-
stage AD, respectively. In both cases, we show that the texture descriptors
not only provide high classification rates but they also perform better than
structural-based biomarkers: in the first case, the gray matter concentration
map; in the second case, the volumes of the hippocampi and the amygdalae.

Can local patches help in both the classification of MCI/early-stage AD and
the localization of the affected brain regions?

Our results presented in Chapters 4, 5 and 6 indicate that patchwise approaches
are useful in the classification and localization of MCI/early-stage AD. In par-
ticular, the results presented in Chapters 4 and 6 show that patch combination
performs better than the individual patches, suggesting that different brain re-
gions contribute positively to the classification. Furthermore, a spatial analysis
on the “best" individual patches also reveals which regions are more significant
in the discrimination between normal controls and early-stage AD.

Do the detected regions correspond to what is already known about the af-
fected brain structures?

We show in Chapters 5 and 6 that the regions that are significant for classifi-
cation are located near the hippocampi and the ventricles. Interhemispheric
fissures as well as the Sylvian fissure are similarly regions of high classifica-
tion accuracies. These structures are known, from the medical literature and
previous volumetric and morphometric studies, to be affected at an early stage
of AD. With these results, we show that it is important to consider the entire
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brain in the classification and not only specific priorly segmented regions like
the hippocampi. This is in line with the whole-brain voxelwise analyses per-
formed in morphometry studies, with the difference that we do not perform
non-linear registrations to obtain inter-subject voxelwise correspondences nor
do we rely on prior tissue segmentations.

7.2 Final remarks and recommendations for future

work

7.2.1 Segmentation of white matter hyperintensities

Despite the promising results obtained by our proposed lesion segmentation
method, it still performs worse than the human observer, as the MICCAI Chal-
lenge score seems to indicate. Also, for small lesion loads in the Essen dataset,
the correspondence with the manual segmentation by the neuroradiologist is
still far from optimal. However, it is worth pointing out that, for this case,
an intra- and inter-subject evaluation should be performed in order to have
an estimate of the human variability and of how our method compares to it,
particularly for low lesion loads.

So far, none of the methods tested on the MICCAI Challenge have per-
formed as well as the human observer. However, a question that remains open,
especially when considering the high inter-rater variability, is whether the seg-
mentation performed by the experts on in vivo MR images is a real ground
truth. In that sense, phantom studies may give a better insight and help to-
wards the development of more accurate and robust segmentation methods.

In any case, several improvements to our method can also be proposed.
Firstly, the preprocessing steps play an important role in the subsequent perfor-
mance of the method. In particular, wrong brain segmentations will likely in-
fluence the lesion segmentation, since the skull voxels show also as high inten-
sities in FLAIR images. Likewise, inappropriate bias field corrections will also
change the global intensity distributions and therefore influence our method’s
performance. The effects of varying these two steps need to be quantified and
ultimately corrected for, by incorporating them, for example, into the whole
segmentation framework.

Finally, in Chapter 2 we use a training set to find the optimal parameters.
These are used to extract the binary segmentation from the fuzzy result yielded
by the GMM-EM framework. However, a straightforward future implementa-
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tion of the method into the clinical setting will enable the online tuning of these
parameters according to the clinical judgement by the neuroradiologist.

7.2.2 Texture analysis

In this thesis, we have presented various approaches for texture analysis with
the goal of classifying between normal controls and MCI/early-stage AD: 1)
texture analysis at the white matter hyperintensities; 2) global and patchwise
analysis in affine-registered T1 images using simple intensity histograms; 3)
patchwise analysis in non-linearly registered T1 images using second order
statistical texture descriptors; 4) patchwise analysis in affine-registered T1 im-
ages using Local Binary Pattern descriptors.

We now discuss several aspects of the proposed approaches.

White matter hyperintensities

We show in Chapter 3 that local textures computed only at the white mat-
ter hyperintensities are able to capture differences between a group of normal
controls and a group of MCI subjects. A drawback of this study that can limit
the conclusions drawn from it is the small size of the subject groups. Further
research is then needed in a larger dataset, preferably with images acquired at
different centers.

However, these preliminary results indicate that white matter hyperinten-
sities should be characterized not only by their volume (which, as stated above,
is highly dependent either on the expert or on the automatic segmentation ac-
curacy) or their spatial location, but also by their MR signal properties, partic-
ularly textures. Although these microstructural differences have been investi-
gated in perfusion- and diffusion-weighted studies, we show that they are also
present in structural MR images.

Furthermore, larger studies are necessary to confirm whether T2 textures
are indeed consistently more discriminative than those extracted from T1 and
FLAIR images. In particular, since FLAIR is a type of T2-weighted modal-
ity (with cerebrospinal fluid signal suppression), it is worth investigating on
the differences between FLAIR and T2 lesion properties. Also, a comparison
between the lesion textures and the textures computed at normal-appearing
white matter may also give some insight into the neurodegeneration processes
occurring at an early stage of AD.

Finally, a spatial analysis of which lesions (at which locations) have the
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greatest discriminative power between normal controls and MCI is also de-
sirable.

Texture descriptors

In Chapter 5, we use second-order statistical texture descriptors (Haralick
features), which are based on pixel pair-wise intensity distributions (the co-
occurrence matrix). These descriptors, although often used in medical image
analysis, have the disadvantage of requiring a preliminary intensity standard-
ization step. This step is typically performed as a preprocessing step in MR im-
age analysis to make different scans comparable. However, this same intensity
matching can have the undesirable consequence of also eliminating disease-
related differences between the two groups.

We then advise on the use of local descriptors that are as little sensitive as
possible to intensity range differences. In particular, such descriptors are likely
to perform better when multicenter datasets are used. In these cases, the MR
acquisition parameters are often different, implying that the gray level scales
will also be different.

To avoid the intensity standardization step, in Chapters 3 and 6 we propose
using local descriptors (LBP histograms) that are insensitive to local intensity
differences, as they are based on pairwise intensity comparisons, rather than on
their absolute values. The images used in this thesis have been corrected for
common MRI artefacts like bias field inhomogeneities and position differences.
However, a sensitivity study should be performed to confirm the robustness of
the texture descriptors with respect to each individual artefact. These experi-
ments should be performed in images acquired at various MRI centers.

Additionally, even though the literature on texture analysis is extensive,
with many proposed descriptors and respective adaptations, our goal in this
work was to explore frameworks than can be easily adapted to use other de-
scriptors. Therefore, no thorough comparison between existing texture fea-
tures has been performed. However, properties such as those exhibited by LBP
descriptors are desirable in our application and should therefore be present in
further studies of this kind.

It is also worth pointing out that a possible drawback of texture analysis in
medical imaging studies is that often no direct medical interpretation can be
obtained from the extracted texture features. This is especially true for tissues
whose images show no particularly dominant orientations or frequencies, as
is the case with brain tissues. Therefore, it happens often that only texture
differences (between groups) are analyzed rather than their absolute values.
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An interesting direction for further texture analysis is to investigate
whether the actual texture values in a certain local patch (or region-of-interest)
can be translated into clinical parameters. These can then also be useful in mon-
itoring the progression of the disease, the same way volumetrics has been ap-
plied to the study of the evolution of certain brain structures during the course
of Alzheimer’s disease.

Patchwise approach

Registering individual subject images to a template is an often needed pre-
processing step in groupwise MR image analysis. It corrects for differences
in patient positioning, thereby enabling local image comparisons. Except for
the WMH segmentation method we propose in Chapter 2, which is fully data-
driven (meaning that no information from other subjects is required), and the
whole-brain DBC framework that uses histograms (these, by definition, lack
spatial information), the group comparisons we perform elsewhere require that
the subjects’ images be aligned. This is particularly true for Chapters 5, 6, and
for the local approach presented in Chapter 4, where the localization of affected
brain regions is also aimed for.

As explained in Chapter 1, morphometric techniques such as VBM require
the images to be non-linearly registered in order for a voxelwise correspon-
dence to be achieved. In Chapter 5 we follow this approach to enable the per-
formance comparison between the textural and the VBM features.

However, and similarly to what has been said about intensity standardiza-
tion methods, the attempt to align images in a voxel-by-voxel way also comes
with the risk of an over-alignment which can result in informative patterns
being eliminated from the images. Determining what is acceptable as a final
registration result is also not straightforward.

Having that in mind, in Chapters 4 (local approach) and 6 we propose
performing simple affine registration, which can correct for positioning and
scaling differences but will not interfere with the relative shapes of the brain
structures. Additionally, instead of voxelwise features, we use local patchwise
features. Our results show that regions of high anatomical variability, but not
necessarily associated with AD, such as the cortical folds, perform similarly to
random classification and do therefore not interfere with the final localization
maps.

Therefore, this patchwise methodology seems promising in both classifying
early-stage AD (by combining information from various brain regions) and lo-
calizing the regions that contribute most to the classification, without recurring
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to segmentations or complex non-linear registrations. However, a study on the
robustness of the patchwise approach with respect to minor changes in the
affine registration is also desirable. Considering the dimensions of the patches
used (more than 10 voxels on each cube side), we can expect than minor reg-
istration errors will not significantly hinder the localization and classification
processes.

Finally, the use of cubic patches raises the question about the type of in-
formation that the intensity-based texture descriptors are able to capture. In
particular, two types of groupwise differences can be reflected in the textures:
1) local shape differences which cause differences in the tissue proportions,
edge shapes and orientations; 2) local tissue microstructural differences (for
example, white matter degeneration). However, the only way to distinguish
the second effect from the first one would be to determine the texture descrip-
tors within the voxels of the same tissue. This requires a preliminary tissue
segmentation, which we have avoided in this thesis (except in Chapter 3).

In any case, it is worth further investigating whether certain patches are
more discriminative because they enclose regions with shape differences (like
shrunk hippocampi or enlarged ventricles) or because there are microstructural
differences at the tissue level. On the other hand, the fact that no assumptions
need to be made about the type of differences between healthy and AD subjects
brings the additional advantage of making this approach applicable to other
imaging modalities besides structural MRI.

Longitudinal analysis

Besides helping to diagnose AD at an early stage, imaging biomarkers are also
desirable to monitor the progression of the disease and the efficacy of the treat-
ments. Both volumetric and morphometric features have been used with this
goal. In particular, the rate of hippocampal atrophy has been used to evaluate
AD progression [152]. An adapted version of voxel-based morphometry has
also been applied to assess gray matter atrophy over time in groups of normal
controls and MCI/AD subjects [153].

In this thesis, our focus has been on cross-sectional analyses - images ac-
quired from a population, at one time instant. A natural extension of the pro-
posed methods is their application on longitudinal data - images acquired from
a population over time. In particular, instead of using absolute texture de-
scriptor values determined once for each brain image or each local region, a
possible extension is to determine (relative) differences between subsequent
time instants. In the case of local analysis, these differences can highlight lo-
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cations that have changed significantly in texture. Similarly to what is done
in cross-sectional studies, these differences (rather than their absolute values
determined at specific time instants) can be used in a classification framework
to discriminate AD patients from normal controls.

It is worth pointing out that, although useful in the evaluation of the disease
progression, in practice, obtaining longitudinal data implies waiting for at least
some months to be able to extract meaningfully changing biomarkers, which
may be disadvantageous considering the ultimate goal of diagnosing AD at its
initial stages.
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