
Towards Effective Embedded Processors in Codesigns:
Customizable Partitioned Caches �

Peter Petrov
University of California at San Diego

CSE Department
ppetrov@cs.ucsd.edu

Alex Orailoglu
University of California at San Diego

CSE Department
alex@cs.ucsd.edu

ABSTRACT
This paper explores an application-specific customization technique
for the data cache, one of the foremost area/power consuming and
performance determining microarchitectural features of modern em-
bedded processors. The automated methodology for customizing
the processor microarchitecture that we propose results in increased
performance, reduced power consumption and improved determin-
ism of critical system parts while the fixed design ensures pro-
cessor standardization. The resulting improvements help to en-
large the significant role of embedded processors in modern hard-
ware/software codesign techniques by leading to increased proces-
sor utilization and reduced hardware cost. A novel methodology
for static analysis and a field-reprogrammable implementation of a
customizable cache controller that implements a partitioned cache
structure is proposed. The simulation results show significant de-
crease of miss ratio compared to traditional cache organizations.

Keywords: embedded processors, data cache, reprogrammable
customizations

1. INTRODUCTION
Embedded processors play a significant role in the modern hard-

ware/software codesign systems. Yet a number of drawbacks, par-
ticularly reduced performance and excessive power consumption,
haunt processor-centric implementations and limit the applicability
of embedded processors, resulting in satisfaction of performance
requirements only through unnecessarily large codesigns.

Processor performance, power-consumption, and deterministic
execution time play a significant role in modern hardware/software
co-design systems [1]. The partitioning of hardware and software
is a major issue in these systems [2]. Implementing larger parts of
the system as software results in reduced cost, improved time-to-
market, system maintainability, and flexibility. However, reduced
performance and increased power-consumption are typically ob-
served due to the nature of the general-purpose processors. Yet
processor cores with all their attendant benefits of flexibility, main-
tainability, and high volumes are natural candidates for further uti-
lization, if the performance and power limitation are alleviated.
�This work is supported through an IBM fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

In this paper, we propose a methodology for application-specific
customization of the data cache, one of the foremost performance
and power determining components of modern, high-end embed-
ded processors. We present an architecture capable of incorpo-
rating the application-specific information in a post-manufacturing
fashion, utilizing a reprogrammable datapath.

Application-specific customization of embedded processor mi-
croarchitectures is a novel technique that transfers application in-
formation to the processor microarchitecture. In this case, the mi-
croarchitecture can perform informed decisions as to how to han-
dle various architecture-specific actions. Fundamentally, this ap-
proach extends the communication link between compiler and pro-
cessor architecture by transferring application information directly
to the microarchitecture without modifying the existent instruction
set. Consequently, traditional mainstream compiler algorithms re-
main unaffected by the proposed customization technique. The
static analysis information transfer is accomplished by utilizing a
reprogrammable datapath. The reprogrammable implementation
we propose allows application changes to be applied in field by
loading the new application information, in a manner similar to
program reloading.

In this paper, we present a methodology for application-specific
customization of the cache subsystem of embedded processors. The
problem of high memory latency is a well-known performance bot-
tleneck in modern processors. In the embedded system world, the
main memory typically resides on the system bus. This bus is used
by various ASIC peripherals that perform system-specific tasks.
High system bus utilization due to frequent memory accesses leads
to increased bus congestion and reduced data transfer speed be-
tween the ASIC peripherals and processor cores, thus hindering
overall system performance. Moreover, increased system bus traf-
fic leads to power consumption overhead, which is a significant
drawback in embedded systems.

The domain of numerical algorithms, the cornerstone of image
and voice processing and various wireless applications, suffers from
significantly elevated cache miss rates, as associated algorithms op-
erate on a number of arrays of data with large volume. Conse-
quently, high interference amongst memory references, frequently
residing in nested loops, and cache pollution caused by sequential
array references are typically observed. New, more sophisticated
caching schemes are needed, capable of utilizing application in-
formation for the particularities of the specific memory reference
pattern.

An algorithm is demonstrated that partitions the memory access
instructions of a nested loop into groups. Each group corresponds
to a set of load instructions exhibiting data reuse amongst them and
is mapped to acache partitionwithin apartitioned cachestructure.
The size of the cache partitions is determined according to the type

of reuse and space needed to exploit it. We complement this pa-
per with a discussion of an efficient hardware implementation for
partitioned caches. Not only is the proposed implementation ef-
ficient but is also reprogrammable, thus providing high flexibility
to re-customize the embedded processor in field. Hence, the pro-
posed implementation constitutes a unified microarchitectural so-
lution that is not confined to a particular application, but is capable
of handling diverse workloads through in-field re-customization.

2. RELATED WORK
Various techniques have been proposed in the compiler and com-

puter architecture communities to attack the problem of cache con-
flicts and cache pollution for data-intensive applications. Loop
interchange, skewing and tiling [3, 4, 5] all constitute compiler
optimization techniques for improving data locality in loop nests.
While useful in exploiting a large amount of inherent reuse, con-
trolling the data interference inside the tile is still a significant chal-
lenge [6]. Loop transformations introduce extra control code as
well, which may preclude their usage in applications with stringent
time and power budgets.

Architectural support for distinguishing between memory ref-
erences that exhibit spatial, temporal or no reuse whatsoever, has
been proposed through the introduction of the dual data cache [7].
The approach results in improved cache utilization, but the cache
interference problem still remains. A static analysis approach for
avoiding data cache interference is presented in [8]. Therein, mem-
ory references that can cause cache conflicts are annotated as non-
cacheable. Additionally, a cache volume analysis for facilitating
the feasibility of exploiting particular data reuse is described in [8].

A reconfigurable cache design has been presented in [9]. This
approach allows the cache array to be divided dynamically into par-
titions that can be utilized by the processor for various purposes. In
a similar vein, [10] proposes a cache organization that dynamically
partitions and shuts down parts of the cache according to appli-
cation demand, hence trading off performance for reduced power
consumption.

3. MOTIVATION
A typical numerical algorithm consists of matrix and/or array

operations grouped in several nested loops. For example, figure 1
shows an excerpt from theswimSPEC95fp benchmark. One can
notice that the references to U and V exhibit only spatial locality.
All references toPSI utilize spatial locality as well, but there is
also a temporal locality betweenPSI[i; j+1] andPSI[i+1; j+1].
These references reuse a row from the matrixPSI along the outer
loop i.

for i=1 to N
for j=1 to M

U[i,j+1]=-(PSI[i+1,j+1]-PSI[i, j+1])/DY;
V[i+1,j]= (PSI[i+1,j+1]-PSI[i+1,j])/DX;

endfor
endfor

Figure 1: An excerpt from the swimbenchmark.

A conventional cache organization suffers from the inability to
distinguish different types of reuse along the loop iterations. All
references are treated identically; thus significant interference be-
tween unrelated arrays and cache pollution is introduced. Caching
the data intelligently by avoiding interferences and minimizing the
effective cache size needed to exploit the existent reuse is a rather
difficult task for a general-purpose cache controller.

Consider, for example, the write references to U and V. They are
brought into the cache and a new cache line is used when the pre-
vious one is filled. This situation occurs when an array (or matrix)
is traversed sequentially. In this type of access only spatial locality
exists and it is not necessary to use more than one cache line to cap-
ture this locality. Such reference behavior leads to significant cache
pollution and interference with the remaining working set, as using
more than one cache line leads to no benefits in terms of reuse. The
inherent spatial reuse can be exploited using a single cache line, if
a more sophisticated caching technique were to be utilized.

On the other hand, the group of references to matrixPSI ex-
hibits temporal reuse along iterationi. Namely, the usage of rows
PSI[i] andPSI[i+ 1] is overlapped in the computation process.
In order to exploit this reuse, the rows need to be protected from
interferences by U and V that might affect them during iterationj.
Due to interference and volume limitations, a conventional cache
organization fails to exploit this reuse. The significant miss rates
for theswimbenchmark for a typical direct-mapped cache [8] are a
salient indicator of such limitations.

Cache interference and pollution problems can be resolved in
an application-specific environment, wherein more precise infor-
mation about the inherent reusability can be provided to the cache
controller. If the memory instructions were to be grouped according
to the inherent reuse characteristics amongst them and each group
subsequently mapped to a dedicated cache partition, behaving in
the same way as a distinct cache, all conflicts would be obliterated
and effective cache volume needed to exploit a reuse would be re-
duced. By partitioning the cache in this way, significant amounts
of interference are avoided. The size of each cache partition can
thus be reduced to no larger than the minimal sufficient size for ex-
ploitation of the inherent reuse for that particular group of instruc-
tions. The combination of a novel compile time analysis together
with reprogrammable, partitioned cache architectures provides an
effective solution for alleviating the aforementioned problems.

4. REFERENCE ANALYSIS
The proposed partitioning analysis utilizes information about the

type of reuse exhibited by each reference. Analysis of the inherent
reuse in a loop nest can be used to group memory instructions and
to associate each group to a cache partition. A formal methodol-
ogy for determining the reuse type of array references with affine
indices is presented in [4]. Since the methodology we propose uti-
lizes information about reuse type in a loop nest, we briefly review
the relevant terminology.

A memory reference instruction is said to haveself-temporal(st)
reuse if in a later loop iteration it accesses the same memory ad-
dress. Aself-spatial(ss) reuse refers to an instruction that accesses
data inside a single cache line in two subsequent loop iterations.
Two load/store instructions are said to havegroup-temporal(gt)
reuse if both of them access the same memory address; they are
denoted asgroup-spatial(gs) if both access memory addresses that
map to the same cache line.

The type of reuse can vary across loop dimensions. A reuse oc-
curs in a particular loop dimension and is qualified by the number
of iterations within which the reuse is exploited. Figure 2 shows
the reuse types for all memory access instructions in the example
in Figure 1.

The reference analysis that we present in this section works on a
loop nest and it assumes that all the references to a data array in a
loop nest have indices with the same multiplicative coefficient (for
example, references A[i] and A[i+3], but not A[i] and A[3*i+2]).
In the case of differing multiplicative coefficients, the correspond-
ing load/store instructions are not targeted for partitioning and are

Memory Iteration Iteration
Instruction i j
U[i,j+1] no reuse ss
V[i+1,j] no reuse ss

PSI[i,j+1] gt ss
PSI[i+1,j] gt ss, gt

PSI[i+1,j+1] gt ss, gt

Figure 2: Data reuse

cached into a special cache partition that is dedicated for all unpar-
titioned references. In any case, references of the latter type are
in practice quite uncommon. The identical multiplicative coeffi-
cients, the inherent characteristics of the partitioning algorithm we
present, and the usage of a write-through caching policy eliminate
the need for data consistency considerations.

We capture the information about the inherent reuse for a partic-
ular loop dimension by constructing a Data Reuse Graph (DRG).
Each node in the DRG corresponds to a particular load/store in-
struction or to an already formed group of load/store instructions.
The edges in the DRG represent data reuse between the correspond-
ing nodes. A connected component in the DRG corresponds to a
set of memory references to a particular array. Each edge is anno-
tated with the particular types of reuse it represents. Additionally,
an integerk is associated to every temporal reuse denotation, rep-
resenting the number of iterations needed to exploit the temporal
reuse denoted by the edge. The number of iterations in turn deter-
mines the cache volume needed to exploit the reuse.

The optimal cache partition size, CV (cache volume), varies de-
pending on the type of reuse. It is evident that a self-spatial reuse
necessitates only a single cache line. It can be shown that a group-
spatial reuse requires only one cache line as well by noting that it
is equivalent to a group-temporal reuse with the distance between
the referred data addresses being less than a cache line size. In the
case of temporal reuse (self or group) though, a fixed (but varying
amongst memory instructions) number of cache lines are needed in
order to exploit the reuse. More generally, the cache volume (num-
ber of cache lines) needed to exploit a group-temporal data reuse
(denotedCV (g)) is calculated by formula (1), withl denoting the
cache line size,k the number of loop iterations in which the reuse
occurs,j the loop dimension, anddi the size of theith loop dimen-
sion. Equation (2) defines the cache volume for self-temporal reuse
(denotedCV (s)).

CV
(g)(k; j) =

1

l
(k + 1)

Y

i<j

di (1)

CV (s)(j) =
1

l

Y

i<j

di (2)

For example, the pair of loads A[i] and A[i+k], representing ar-
ray traversal with loop indexi, requiresk=l cache lines to exploit
the group-temporal reuse between these references. If the reuse
occurs in the outer loop iterations, such asPSI[i + 1; j + 1] and
PSI[i; j +1] from the example in Figure 1, all data referred along
iterationj by both instructions need to be preserved. Intuitively,
this corresponds to keeping thePSI[i] row in the cache while
PSI[i+ 1; j + 1] is “pre-fetching” the next row.

The main objective of the partitioning algorithm is to group load
and store instructions with data reuse amongst them and map this
group to a cache partition with appropriate size. The cache is direct-
mapped and virtually partitioned into subcaches. Since the goal of

for i=1 to N
f(A[i],A[i+1],A[i+4],

A[i+7],A[i+8],A[i+12]);
g(B[i],B[i+2]);
h(C[i],C[i+3]);

endfor

Figure 3: Example of group temporal reuse.

the cache partitioning is avoiding interference, no set associativity
is required within the partitions.

From a DRG perspective, the suggested methodology implies
grouping of connected nodes together in a partition with no un-
connected nodes present; interference and cache pollution is thus
prevented. Since the goal is to exploit as much as possible of the
existing data reuse, the number of edges from the DRG covered by
partitions needs to be maximized. The total amount of available
cache memory in a particular processor implementation cannot be
exceeded in the process. Since every data reuse (edge in DRG) has
a particular requirement for cache volume, the partitioning algo-
rithm needs to judiciously select edges so as to meet the aforemen-
tioned goals and constraints.

The algorithm starts from the innermost loop dimension, as the
frequency of the data reuse there is maximal (equal to the product of
the size of all loop dimensions). The data reuse frequency wanes as
the traversal proceeds towards the outermost dimension. Therefore,
the algorithm proceeds iteratively on the loop dimensions starting
from the innermost loop. It commences forming partitions of sin-
gle nodes with a self-spatial reuse edge or by combining a pair
of nodes. Spatial reuse requires a minimum of cache volume, i.e.
one cache line. For the group-temporal reuse, which is typically
the prevalent reuse, more sophisticated approaches are needed as
shown below.

An example of group-temporal reuse can be seen in Figure 3. We
assume a cache line size of one word to simplify the explanation.
Figure 4a shows the DRG for the example in Figure 3. The number
of cache lines needed to capture the corresponding group reuse is
shown. If we assume an available cache volume of 9 cache lines, a
direct greedy approach leads to the result shown in Figure 4b. The
solution produced consists of three partitions, covering only three
edges with a total of 7 cache lines used. It is evident though that
a solution consisting of a single partition covering all references to
the array A but the last one of A[i+12] is superior. It covers four
temporal reuses in A and utilizes all 9 cache lines exactly. The latter
solution evidently constitutes an improvement, as a combination of
two edges with a common node in a single partition “saves” the
storage of the overlapping node. As the counterexample illustrates
that the straightforward, greedy approach is inadequate in attaining
a consistently optimal result, we proceed to outline an improved
model of representation that relies on separating the edges in the
DRG and updating their CVs and overlap information. The overlap
is one cache line for the innermost loop dimension or a unit cache
volume for the outer loop dimensions.

When the algorithm proceeds onto the next (outer) loop dimen-
sion, the overlap between the nodes in the DRG corresponds to
the size of the previous loop dimension, i.e. the memory volume
needed for an iteration of the inner loop dimension. In terms of
matrix traversal, the overlap corresponds to one row from the ma-
trix as can be seen in Figure 4c. The algorithmic framework can
be simplified if we work with a unit overlap system throughout;
consequently, at every level, CV values are presented as multiples
of the overlap at this level. Of course, these values will have to be

A[i+4] A[i+7]A[i] A[i+1]

5

A[i+12]e

B[i]

3CV CV

B[i+2] C[i]

2 4 4 2
CV

a b dc
A[i+8]

a)

p q C[i+3]

4

A[i+4] A[i+8]A[i+7]A[i] A[i+1]

5

A[i+12]

B[i]

2 4 4 2

3

CV

CV

B[i+2] C[i]

b)

C[i+3]

4CV

c)

3

2

A[i,j], A[i,j+1]

A[i+3, j]

A[i+2,j], A[i+2,j+3]

a, 2

b, 3

c, 2

d, 2

e, 4

d)

p, 3

q, 4

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

Figure 4: DRG and ODT for the group-temporal reuse example.

retranslated to actual cache lines for cache allocation accounting.
We present an efficient algorithm that quickly finds an optimal so-
lution for a loop dimension with unit overlap between the nodes
in the DRG. As a reference we use the innermost loop dimension
for which the overlap is exactly one cache line. The partitioning
methodology consists of two steps:

Eliminating the overlap between edges with a common node in
DRG. In this phase, the algorithm separates the connected edges
while keeping track of the overlap by building Overlap Dependence
Trees (ODT) as shown in Figure 4d. Each node in the ODT corre-
sponds to an edge in the DRG. The edges in the ODT represent the
overlap relation between the corresponding edges in the DRG.

repeat
e=FindEdge with min CV in DRG;
RemoveEdgeFromDRG(e);
Decrement CV of Neighbours(e);
ODT(e)=CreateNode in ODT for e;
for all n in Neighbours(e) and n in ODT

Connect ODT(e) as a child of ODT(n);
until no edges left in DRG

If there is a tie of the minimal CV values in the DRG, then re-
duced priority is given to the edges on the boundary of the reuse
chain. A random pick otherwise is guaranteed to preserve overall
optimality. The ODT for the example in Figure 3 is shown in Figure
4d. Each node in the ODT is annotated with the updated CV.

Constructing the optimal solution. Given the ODT, the purpose
of the algorithm is to find the maximum subset of nodes subject to
constraints that the total available cache volume not be exceeded
and that overlap dependences be preserved. The following pseudo-
code defines this part of the algorithm.

CacheVolume=TotalCacheVolume;
repeat

V={v1,...,vn}=FindNodes with min CV in ODT;
for all vi in V & vi is a root

if CV(vi)>CacheVolume then exit;
Select vi; ODT=ODT-{vi}; V=V-{vi};

endfor
repeat

Find vk in V with minimal
number of ancestral nodes;

for w in Path to vk from the root
if CV(w)>CacheVolume then exit;

Select(w); ODT=ODT-{w}; V=V-{w};
endfor

until V is empty
until CacheVolume<0
Form partitions from the selected nodes;

Selecting the root from the tree that contains a minimal node with
the smallest number of ancestors maintains optimality at this instant
while paving the route for eventually incorporating the truly min-
imal CV node into the partition. The algorithm terminates when
there remains insufficient cache volume to accommodate the next
data reuse.

When proceeding to the outer loop dimensions though, the nor-
malized overlap might not be exactly a unit, as partitions may exist
in the inner loop dimension that are already accounted for. How-
ever, the partitions formed in the inner loops are typically much
smaller in size compared to the new dimension overlap unit, thus
resulting in a normalized overlap ratio quite close to unity. For
example, a few cache lines that have formed a partition for the in-
nermost loop iteration of a matrix traversal algorithm pale in com-
parison (of course only in size, but not in utility) to the number of
cache lines needed to cover a row from the matrix. The normalized
unit assumption, with insignificant variation for outer loops and ex-
act for the most useful innermost loop, ensures practical optimality,
consequently.

5. IMPLEMENTATION
The proposed partitioning methodology requires special hard-

ware support from the cache controller. The hardware needs to
be able to capture the information provided by the compiler about
load/store instruction partitioning and to effectively map these ref-
erences to the corresponding part of the partitioned cache.

The cache is virtually partitioned into sub-caches, each of them
accommodating groups of load/store instructions. Each cache par-
tition is identified by two parameters: the number of cache lines
(size) and offset (position) in the original cache array.

In order to address a particular cache partition as a distinct cache,
a slight modification of the traditional cache indexing scheme needs
to be effected. Depending on the size of the cache partition, the
cache indexpart of the address is divided into two parts. If the size
of the corresponding cache partition is2n, thenn least significant
bits from thecache indexare used to form the new index. The
remaining most significant bits from the cache index are replaced
by a constant in the newly formedcache partition index. The value

Cache
Partition 2 n

Data Cachenn

n

Effective Address Cache Index (EACI)

CI[i]

CIT[i]

EACI[i]

C[i]

offset

. . . Cache Index (CI)

0offset

Cache Index Template (CIT)

Figure 5: Partition cache index calculation

of this constant determines the offset of the cache partition inside
the original cache as can be seen in Figure 5.

The above reasoning evinces that each cache partition with size
2n is identified by a pair of numbersfoffset, cache partition index
size(n)g. Thecache partition indexis formed by concatenating the
offsetand then least significant bits from the cache index.

Fundamentally, the hardware support for a partitioned cache has
to resolve two problems: identify the mapping between a load/store
instruction and a particular cache partition, and calculate thecache
partition indexusing the pair of numbers identifying the partition.

These goals are achieved by a hardware architecture utilizing two
tables: thePartition Mapping Identification Table(PMIT) and the
Partition Identification Table(PIT). PMIT identifies the load/store
instructions and their corresponding partitions. The PMIT structure
can be implemented in various ways. One alternative is to have as-
sociative lookup. Each entry from thePMIT in this case will con-
tain two fields: theprogram counterof the load/store instructions,
and apartition indexfield - an index that points to thePIT, which
defines the cache partitions. Another alternative is to have a larger
PMIT that will contain an entry for each possible instruction in
the loop-nest. The entries corresponding to partitioned load/store
instructions will contain an index into the PIT. Hardware cost and
power consumption must be considered in choosing the appropriate
implementation between the two suggested PMIT forms. The parti-
tion information is stored in the PIT. Each entry in the PIT contains
the pair of numbers that define a particular cache partition. The
information from this table is used to calculate the partition cache
index. PMIT and PIT contents are loaded into the processor at the
same time that the code of the embedded application is stored in
the main memory.

The lookup into PMIT and PIT is the first step in determining the
cache partition indexand is performed early in the pipeline, thus
not affecting the cache access time. Right after the load/store is
decoded, the lookup is performed in parallel with the effective ad-
dress calculation. Figure 5 shows the implementation of thecache
partition indexcalculation. The Cache Index Template (CIT) and
control signals C[i] are computed before the actual cache access
pipeline stage using the partition information found in PIT. The
CIT is defined as having theoffsetvalue in its most significant bits
and zeroes in itsn least significant bits. The control signalsC[i]
are defined asC[i] = 1 for 0 � i < n, andC[i] = 0 for i � n.
The Effective Address Cache Index (EACI) is the traditional cache
index field in the effective address. The Cache Index (CI) is com-
puted using the simple combinatorial logic depicted in Figure 5.
Only the delay of the two gates shown, insignificant for the data-
path of the cache access path, is added to the delay of accessing a
traditional data cache.

The cache partitions behave as stand-alone caches. Since a par-

ticular cache line can participate in various cache partitions for dif-
ferent loop nests, the length of the needed tag associated with ev-
ery cache line will vary. In the general case, only a fraction of the
original cache indexfrom the data address is used to calculate the
partition cache index. A conservative solution would be to increase
the size of all cache tags with thecache indexbits. An alternative
solution is to provide varying tag sizes across the cache lines. For
cache lines accommodating partitions of size2n and higher, the tag
is extended with onlybitwidth(CacheIndex) � n bits to cover
the unused bits from the original cache index part of the address.

The proposed methodology works on an individual loop nest
level. A typical numerically intensive embedded application con-
tains multiple loop nests. In order to be able to perform the cache
partitioning methodology for all loop nests, multiple partition map-
pings associated with each loop nest have to be stored. A straight-
forward solution is to have multiple PMITs. Each time the applica-
tion finishes with one loop nest and proceeds to another, a switch
between the PMITs needs to be performed. During the switch, the
cache content has to be invalidated because a new mapping between
load/store instructions and cache partitions is defined. The switch
of partition mappings when proceeding to different loop nests can
be controlled by software using a special control register that deter-
mines the active partition mapping. Another alternative is to have
a system level controller that switches between different partition
mappings according to the current application (or function within
an application), thus dynamically reconfiguring the cache subsys-
tem. The number of PMITs supported determines the number of
loop nests that can be handled. Usually this number is small and
limiting it to the range of 5-8 will practically satisfy any real appli-
cation.

6. EXPERIMENTAL RESULTS
We evaluate and analyze experimentally the ability of the parti-

tioned cache to reduce the total number of data cache misses. The
miss-ratio and total number of misses are examined and compared.
In this experimental study, we use benchmarks from the floating-
point SPEC95fp suite and a number of frequently used numerical
kernels. Significant improvements are suggested for large classes
of data intensive applications as the numerical kernels used are fre-
quently utilized parts of them.

We compare the performance of the partitioned cache structure
against a number of typical L1 cache configurations in modern em-
bedded processors. Specifically, our comparison configurations in-
clude: 4K direct-mapped and 2-way set-associative L1 cache with
line size of 4 words, 8K direct-mapped and 2-way set-associative
L1 cache with line size of 8 words. We include in our compara-
tive study 2-way set-associative cache configurations, as increased
cache associativity is a classical approach for reducing cache con-
flicts. Two configurations for a partitioned cache are examined:
4K direct-mapped with line size of 4 words, and 8K direct-mapped
with line size of 8 words.

The SimpleScalar toolset [11] has been used to examine the cache
behavior for the baseline cache architectures. The partitioning al-
gorithm presented in Section 4 has been performed on the source-
code level and each load/store reference has been associated to a
particular partition. The assembly code has been instrumented and
the cache simulator modified so as to take advantage of this par-
titioning information. The size of the cache partitions is provided
as separate information in a configuration file and the partitioned
cache is modeled and simulated.

Six benchmarks are used in our experiments:Matrix multiplica-
tion (mmul)of matrices with size 256x256;Matrix inversion (minv)
of a 128x128 matrix;LU decomposition (lu)[12] on a matrix with

4K DM p-cache 8K DM p-cache
#Misses MR #Misses MR

mmul 4,227,938 6.29% 2,113,983 3.14%
minv 4,394,798 17.06% 1,342,947 5.21%

lu 1,419,613 6.35% 718,029 3.21%
ej 1,479,593 16.62% 617,945 6.94%
tri 806,256 26.01% 789,412 25.47%

swim 5,280,121 14.82% 3,209,979 9.01%

Figure 6: Partitioned cache results

size 256x256;Extrapolated Jacobi-iterative method (ej)[12] on a
128x128 grid;Tri-diagonal system solver (tri), a fundamental part
of the tomcatvSPEC95fp benchmark and a major contributor to
the high miss rate for thetomcatvbenchmark, with matrix size of
256x256;Swim benchmark (swim), part of the SPEC95fp bench-
mark suit, characterized by a high cache miss-ratio due to a large
amount of interference [8].

The total number of partitions for the examined benchmarks is
relatively small ranging from 3 formmulto 25 forswim. Figure 7
depicts a graphical comparison for the miss-ratio of the base con-
figurations and the partitioned cache configurations. Formmul,
minv, and lu, the 2-way set associative cache leads to a signifi-
cant decrease in the number of misses. Yet, fortri andswim, set-
associativity does not help to the same extent due to the high level
of cache pollution for these benchmarks. Figure 6 shows the re-
sults for the partitioned cache. A significant improvement in the
miss-ratio can be observed forminv, tri , ej andswimcompared to
both the DM and the 2-SA caches from the base configurations.
Themmulandlu benchmarks show significant improvements com-
pared to DM base configurations, while for 2-SA,mmulexhibits a
relatively small decrease in the miss-rate and the miss-ratio forlu is
unchanged for the 2-SA cache configurations. This small decrease
in miss-rate is due to the relatively small amount of interference
in these applications, which can be accommodated to some extent
with increased associativity. As expected from the theoretical anal-
ysis of the partitioning algorithm, the miss-ratio is significantly re-
duced for applications with large working sets and high amount of
cache pollution and interference.

7. CONCLUSION
We have presented a novel methodology for application-specific

customization of the cache subsystem of embedded processors in
this paper. A precise static analysis of the application has been
demonstrated to be capable of identifying the optimal solution for
grouping memory access instructions and mapping them to cache
partitions with optimal size. Preventing cache interference and
cache pollution by utilizing precise application information have
been the main objectives of the proposed methodology. The achieve-
ment of these goals has been confirmed by extensive experimental
results. A significant increase in the cache hit rate has been demon-
strated by a representative set of simulation results. The proposed
technique has significant implications in SOC designs utilizing em-
bedded processor cores, as it significantly reduces the number of
system bus transactions, thus resulting in higher system perfor-
mance and reduced power.

Customizing the embedded processor architecture utilizing a re-
programmable hardware promises to be a powerful technique to-
wards lower power consumption, and higher and deterministic per-
formance in hardware/software systems. At the same time, it re-
tains the processor-centric paradigm and extends its advantages to
a large class of modern codesign applications.

4K cache 8K cache
0

5

10

15

20

mmul

M
is

s
 R

a
te

 (
%

)

4K cache 8K cache
0

10

20

30

40

minv

M
is

s
 R

a
te

 (
%

)

4K cache 8K cache
0

5

10

15

20

lu

M
is

s
 R

a
te

 (
%

)

4K cache 8K cache
0

10

20

30

40

ej

M
is

s
 R

a
te

 (
%

)

4K cache 8K cache
0

10

20

30

40

tri

M
is

s
 R

a
te

 (
%

)

4K cache 8K cache
0

10

20

30

swim

M
is

s
 R

a
te

 (
%

)

Direct−mapped
2−way set−associative
Partitioned cache

Figure 7: Comparative benchmark miss ratios

8. REFERENCES

[1] W. H. Wolf, “Hardware-Software Co-Design of Embedded
Systems”,Proceedings of the IEEE, vol. 82, n. 7, pp. 967–
989, July 1992.

[2] J. Henkel and R. Ernst, “A Hardware/Software partitioner us-
ing a dynamically determined granularity”, in34th DAC, pp.
691 – 696, June 1997.

[3] M. S. Lam, E. E. Rothberg and M. E. Wolf, “The Cache Per-
formance and Optimizations of Blocked Algorithms”, in4th
ASPLOS, pp. 63–74, April 1991.

[4] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Al-
gorithm”, in PLDI, pp. 30–44, June 1991.

[5] M. J. Wolfe, “More Iteration Space Tiling”, inSupercomput-
ing, pp. 655–664, November 1989.

[6] O. Temam, C. Fricker and W. Jalby, “Cache awareness in
blocking techniques”, inJournal of Programming Languages,
1998.

[7] A. Gonzalez, C. Aliagas and M. Valero, “A data cache with
multiple caching strategies tuned to different types of lo-
cality”, in International Conference on Supercomputing, pp.
338–347, July 1995.

[8] J. Sanchez, A. Gonzalez and M. Valero, “Static Locality Anal-
ysis for Cache Management”, inPACT, pp. 261–271, Novem-
ber 1997.

[9] P. Ranganathan, S. Adve and N. P. Jouppi, “Reconfigurable
Caches and their Application to Media Processing”, in27th
ISCA, June 2000.

[10] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation”, in32nd MICRO, pp. 248–259, Novem-
ber 1999.

[11] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0”, Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[12] S. Nakamura,Applied Numerical Methods with Software,
Prentice-Hall, Englewood Cliffs, N.J., 1991.

