

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)

ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)

platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by

emailing scholarworks-group@umbc.edu and telling us

what having access to this work means to you and why

it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Towards Effective Technical Debt Decision Making in Software
Startups: Early-Stage

Abdullah Aldaeej
Department of Information Systems

University of Maryland Baltimore County
Baltimore, MD, United States

aldaeej1@umbc.edu

ABSTRACT
Context: Technical Debt (TD) is a metaphor used to describe outstanding

software maintenance tasks or shortcuts made in the software

development to achieve short-term benefits (i.e. time to market), but

negatively impact the software quality in the long term. TD is quite

common in a software startup, which is characterized as a young

company with low resources and a small client base, aiming to accelerate

time to market. Decisions related to TD can be critical for startup success.

Objective: I aim to understand the relationship between TD decisions and

the success or failure of software startups, and explore the best practices

related to TD decisions that would better contribute to the startup success.

Method: I plan to apply multiple retrospective case studies in different

software startups that succeed or failed to pass the startup period and

become a mature organization. Semi structured interviews will be used

to collect data from the team who was involved in the software

development in the startup era. Contribution: The outcome of this study

will help software founders/entrepreneurs to make effective TD decisions

during the startup timeframe; that can better contribute to the startup

success and decrease the risk of the startup failure.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:

Software Management – software maintenance.

Keywords
Technical debt, Decision making, Software startups.

1. INTRODUCTION
A startup is a new company initiated by founders or entrepreneurs to seek

profitable and scalable business model. It refers to the process of creating

a new business, starting from an idea until a well-established company.

The software startup is a startup that involves software development

activities during the startup evolution cycle. In this type of startups,

software is considered as a major component and a prerequisite to create

the business, where the business model depends on the software. The

software startups would result in different forms of companies with

different business models.

Startups are an important driver for economic growth [1]. The revolution

of advanced technologies has created a new market opportunity and

various business models. As a result, the number of software startups has

increased significantly in the past decade. Despite the presence of a large

number of software startups, 90 percent of them fail due to self-

destruction rather than competition [2],[3]. These failures come from

different factors such as financial, marketing, or team organization. Some

examples are insufficient funding to operate the activities, failure to find

the appropriate product-market fit, and failure to build an effective team

[4]. In addition to these factors, there are some unique challenges related

to software development that can lead to startup failure [3]. These

challenges increase the attention toward investigating software

engineering activities in the startup context; and one of these activities is

TD management [1].

TD is an essential concept in the context of software startup. In this

context, the development speed is vital in order to quickly experiment

with the software product and respond to customer feedback. In addition,

software startups usually suffer from lack of human resources and

experience. Thus, software startup is highly vulnerable to large TD

accumulation. Quality Assurance (QA) activities and testing are mostly

skipped, and testing is only conducted from the perspective of customer

acceptance [1]. Although accumulating TD can bring some short-term

benefits to startups (i.e. faster development to receive customer feedback

quickly), the presence of TD can negatively affect software quality in the

long term. At some points in the software startup evolution, the software

product scales up significantly in terms of the number of new features

and the size of the user base. Some of the software development issues in

startups (such as team member shortage, lack of experience, high

dependency in third party platform, and lack of well-established process)

can lead to startup failure [3]. These issues are also part of the main

causes that lead to accumulating TD [5].

The main goal of this dissertation is to understand the effect of TD

decisions on the software startup success; and explore best practices

related to TD decisions that can effectively contribute to the startup

success. In general, startup success means the successful transformation

from a startup to a mature company (i.e. achieving the startup short-term

goals in terms of the required net-profit, market-share or growth rate,

etc.). Each software startup might have different measures of success.

The research questions are formulated as follows:

RQ1: How TD decisions affect software startup success?

RQ1 Rational: the purpose of this question is to investigate the impact

of TD decisions on the startup success. The answer to this question will

shed the light on the decision consequences, and how these consequences

led to either success or failure. It will also provide insight about the

relationship between TD decision and startup success.

RQ2: In which ways can TD decisions effectively be made during the

evolution of software startups?

RQ2 Rational: I aim to investigate how TD decisions should be made in

a way that better contributes to the startup success. The answer to this

question will identify the best practices related to TD decisions. For

example, the type of TD that needs to be accumulated and when. What is

the best time to repay TD, and the common types of TD that should be

repaid during the startup evolution period.

2. BACKGROUND AND RELATED WORK
In this section, I will provide some background about TD decision

making. Then, I will discuss the software startup, its life cycle, and some

related works about TD in software startups.

2.1 TD Decision Making
TD literature provides different approaches to support TD decision

making. One approach supports TD decisions via quantifying the value

of TD by estimating TD principal and interest [6],[7],[8]. TD principal is

the estimated effort to fix TD, whereas TD interest reflects the extra cost

that results from the presence of TD. In this approach, the decision can

be made based on the proportion of TD interest to the principal. Another

approach focuses on visualizing TD using some risk assessment methods

[9]. This approach emphasizes on analyzing the impact and assessing the

DOI: 10.1145/3356773.3356793
http://doi.acm.org/10.1145/3356773.3356793

ACM SIGSOFT Software Engineering Notes Page 1 July 2019 Volume 44 Number 3

severity of TD. It supports TD decisions by prioritizing TD based on

severity. Another approach supports TD decision through using some

optimization methods [10]. In all these approaches, TD decisions are

supported primarily by providing TD information, but without examining

the comprehensive view of the decision-making process [11].

2.2 Software Startup Definition
There is no consensus on the definition of software startup. Some

researchers consider software startups as organizations that develop

cutting edge software product [12],[13]. The software startups are viewed

as a product-oriented where the product is developed with little or no

operating history, aiming to rapidly scale their business. Sutton [14]

characterizes software startups as a young and inexperienced

organization that work with very limited resources, immaturity, and

dynamic technologies and markets. Additionally, Coleman and

O’Connor [15] define software startup as unique organizations that

develop software without a prescriptive methodology. Despite the lack of

consensus, the previous definitions of software startups share some

common characteristics as follows:

• Extreme uncertainty

• Young and inexperienced organization

• Scarce resources

• Little to no operating history

• Little to no customer base

• Seeking sustainable and scalable business model

In contrast to mature software companies, a software startup is a

temporary organization that seeks a scalable and profitable business

model [16]. Software startups have some unique characteristics as

compared to other software development environments. In the startup

context, the focus is more on what product to develop rather than how to

develop the product. This involves high uncertainty about the software

requirements. The development teams search for a suitable product that

can achieve a sustainable and scalable business model. In addition,

software startups operate with no customers and operating history,

following a market-driven approach that intensively focuses on collecting

customer feedback and attaining customer needs.

In this dissertation, my definition of software startup will adopt the

common characteristics of the software startups. It will also include any

startups where the software development is the major activity; that the

startups’ business model depends heavily on the developed software.

This definition will include any company that generate money from the

developed software. Examples of such company are Social network

applications (i.e. Facebook, Snapchat), E-commerce applications (i.e.

Amazon, Groupon), Digital marketing applications, Game applications,

etc.

2.3 The Evolution of Software Startups
Crowne [3] depicts the evolution of product development in software

startups into four stages: Start-up, Stabilization, Growth, Maturity. Each

stage has some critical development issues that can lead to the company

failure. The startup stage reflects the timeframe from identifying the

product idea until the first release. This stage is characterized as

developing the business concept with no well-defined requirements.

During the startup stage, the focus is to develop a simplest form of the

product idea which is called Minimum Viable Product (MVP). So, the

product is developed as quickly and simply as possible. Also, this stage

considers the use of inexperienced developers to minimize the

development cost.

The second stage is ‘Stabilization’ which refers to the time between the

first release (MVP) until the product is ready to be commercialized

without causing any overhead on the product development. This stage is

characterized as proving the business concept. During this stage, the first

release is validated with customers and the customer feedback is

collected. The product goes through a series of experimentations until

finding the good market fit. Some development issues might arise during

this stage such as high volume of new feature requests and complex

defects that could be revealed due to the MVP shortcuts.

The third stage ‘Growth’ begins when the product is ready to be

commercialized until the market share and growth rates have been

established. During this stage, the company pays more attention to

growing its market share and attaining new customers. The software

product grows in terms of functionality and user base. Some development

issues might occur due to team shortage, high dependency on third-party

platform, and no well-established process [3].

The last stage ‘Maturity’ is attained when the product achieves the

required market share and growth rate. At this point, the startup is

successfully transformed to a mature company. The mature stage is

characterized as having a well-established team and all necessary

processes to support the product development.

2.4 Technical Debt in Software Startups
Software startups are highly prone to TD due to their unique

characteristics. Time to market is vital in this context. The software is

developed with a fast evolutionary delivery approach in order to validate

the product in the market as soon as possible. With the high uncertainly

in this context, the quick release is important to collect customer feedback

early and find the market niche for the product. The rapid evolution and

high uncertainty are the key characteristics for software startups [13].

These characteristics are among the main organizational factors that

influence the accumulation of TD [17].

Giardino et al. [18] investigated the software development strategy

employed by startups using the grounded theory approach. Based on the

empirical findings from 13 startup cases, they created an abstract model

called ‘Greenfield Startup Model (GSM)’ that depicts the main themes

characterized by software development in startups. Sped-up development

is found as the core theme which illustrates the importance for startups to

release the product as quickly as possible. Also, the study found a causal

relationship between sped-up development and TD accumulation, i.e.

that the requirement to develop faster influences the startups to incur TD

as an investment, whose repayment may never come due. The study finds

that the negative impacts of TD in startups would be on morale,

productivity, and product quality.

Yli-Huumo et al. [19] study the relationship between business model

experimentation and TD, in order to explore if conducting the business

model experimentation impacts the amount of TD incurred. The business

model experimentation is a technique used to validate assumptions made

about a product with real customers, before creating the actual product.

The result shows that the relationship between business model

experimentation and the occurrence of TD has a U-shaped curve, that the

use of experimentation reduces the amount of TD. But focusing too much

on the experimentation decreases the effort on TD repayment which can

have negative consequences on the product quality.

In addition, software startups have immature teams, which may influence

the accumulation of TD. Klotins et al. [20] explore the antecedent

associated with TD in startups. They found that team size and experience

of the start-up is a leading precedent for accumulating TD. The

development team in startups is typically very small, who handle multiple

diverse roles ranging from software engineering, to marketing and sales

[18]. So, the startup team works under extreme time pressure, which may

lead to incurring TD. Moreover, startups usually hire young and

inexperienced developers because of the limited resources. The lack of

knowledge and experience of the development team is one of the main

causes for TD accumulation [5], [21], [17].

Software startups usually grow at a faster rate once the market niche is

found. During the growth stage, the startups scale up in terms of the team

size, the number of clients or users, and the number of features. TD

becomes more severe in this startup evolution stage [20]. With the

presence of TD, scaling up the software product becomes a barrier that

ACM SIGSOFT Software Engineering Notes Page 2 July 2019 Volume 44 Number 3

might prevent the startups from delivering new features faster, and

gaining new clients. Thus, it is important at this startup stage to consider

TD repayment before adding new features [20].

Gralha et al. [22] use the grounded theory approach to study 16 startups

with an emphasis on the requirements evolution. They characterize the

evolution of requirements practices in software startups into six main

dimensions, and one of them is TD. They identified three phases

regarding TD decisions as well as the trigger points that cause the

transition from one phase to the next. In the first phase, TD is

acknowledged and accepted. Then, when the size of the team and the

number of features is increased, it causes the transition to the next phase,

which is tracking and recording TD. After that, when the customer

retention rate decreases, or the amount of negative feedback increases, it

causes startups to move to the third phase, which is manage and control

TD. The results of this study support TD decisions in startups by

identifying the conditions where incurring or repaying TD is important.

However, this study focused primarily on TD from the requirements

perspective.

The aforementioned studies reveal that software startups have many

contextual factors that increase the accumulation of TD. According to the

research agenda by Unterkalmsteiner et al. [1], there is a need to explore

TD management and decision making in the startup context. There is a

lack of strategies that support dealing with TD during the startup

timeframe. This dissertation will address this gap by exploring TD in the

startup context in order to support effective TD decision making in this

context.

3. METHODOLOGY
In order to achieve the research goal, I plan to conduct multiple

retrospective case studies for different software startups that are

established within the past five years. The retrospective studies will be

based on in-depth analysis of major TD decisions made during the

software startup evolution; starting from the development of the initial

version (MVP) until the startup either success or fail. I decide to use the

retrospective approach because software startups take an average of 3

years to be a mature company [23], which is beyond the PhD dissertation

timeframe. The use of retrospective case study methodology will allow

me to quickly explore the entire startup evolution period that occurred in

the past.

3.1 Case Selection
The selection of the cases will be based on convenience sample [24],

selecting the cases that I know their founders or CEOs. I will also consult

some researchers who previously interviewed software startup teams. In

the initial step, I will contact the founders/ CEOs whom I know. The

purpose of this initial contact is to assess their willingness to participant

in the study. Also, to verify the possibility of reaching other team

members who involve in the startup software development. Furthermore,

the initial contact will verify the time when the software startup

development began. Since the period of software startups is an average

of 3 years [23], the population of this study will be the software startup

that are established within 3 – 5 years. This time bound is also adopted

from [17]. It is important for the selected case to spend at least three years

in order to better understand whether the startup succeed or failed. Also,

it is better to select the startups that succeed or failed recently (not long

time ago) to facilitate recalling past startup experience. So, using five as

a maximum year age of the startup can be a reasonable criterion to satisfy

that. However, this maximum can be subject to variation depends on the

case availability. Finally, the initial contact will help me to refer to other

cases (snowballing) that can be suitable for the study.

Since most of the software startups that I know have web or mobile based

product, the software startup cases in this dissertation will be more

specific to web/mobile application. Although this selection procedure

brings an issue in the external validity, it will provide more confidence

results for a specific software startup context (web/mobile app).

After completing the initial step, the final selection of the cases will be

based on the following criteria:

• The case age should be at least three years, since the start of

developing the initial software product (MVP).

• There should be a possibility to interview at least three

persons per case.

Additional ‘optional’ criteria would be:

• The interviewees in a case should have different roles.

• The case age should not be far longer than 5 years.

• There should be a possibility to access the startup project

documents (i.e. issue tracking, communication tool, meeting

minutes, etc.).

Once the cases are selected, an invitation message will be sent to a

founder or CEO in each case. The invitation message will include the

purpose of the study, a brief definition of TD and its related decisions,

and the consent form. The brief TD definition adopts the Dagstuhl’s

definition [25] that TD is ” a collection of design or implementation

constructs that are expedient in the short term but set up a technical

context that can make future changes more costly or impossible. It

presents a liability whose impact is limited to internal system qualities,

primarily maintainability and evolvability.” This definition is further

illustrated utilizing McConnell’s [26] definition that “TD is a metaphor

used to represent outstanding tasks that could not be implemented in the

present, but it may be implemented later with additional cost. Example of

outstanding tasks would be violations of architecture/code design best

practices or pending maintenance tasks (such as bug-fixing, testing,

document update, etc.).” The founder or CEO in each case will be asked

to forward the invitation message to their team members who involved in

the startup development.

In addition, our TD definition includes some decision scenarios that

relate to TD decisions as listed below. The first two scenarios are related

to the decision to accumulate TD, whereas the last two scenarios are

associated with the decision to payoff TD. These examples help clarify

what is meant by a “TD decision”:

• Purposefully make a design or implementation shortcut that

does not fulfill the quality standard.

• Purposefully delay a maintenance task (i.e. delay the fix of an

identified bug, delay the fix of a design rule violation, delay the

testing of a software change, delay document update, …).

• Implement an outstanding maintenance task that was delayed

before.

• Perform an internal improvement of the code understandability

or maintainability (i.e. code refactor or redesign).

3.2 Data Collection
The data will be collected using semi-structured interviews. The

interviews will be either in-person or online, depends on the geographic

location of the participants, and it is expected to take about 60 minutes.

The data collection will be performed in two rounds in order to facilitate

top-down analysis of TD decisions in each case. In the first round, I will

interview the founder or CEO in each of the selected cases. The first-

round interviews will help to understand the major TD decisions made

throughout the startup timeline. The founders are the best person that

oversee the entire startup stages; and are the main decision makers in the

startup. Also, the founders usually know the success criteria related to

their startups. So, the major TD decisions identified in this round can be

better related to the startup success.

The second-round interviews will target other team members (i.e.

developers) who involve in the startup development. The major TD

decisions identified in the first round will be used to further collect

ACM SIGSOFT Software Engineering Notes Page 3 July 2019 Volume 44 Number 3

additional perspective about the major TD decisions. Participants will be

asked to discuss only those major TD decisions that they involved in,

since developers might join the startup at different time. For example, the

developers might be hired in the earlier stage (when developing the

MVP), or they might join the team during the MVP experimentation or

during the MVP expansion and grow. In addition, participants will be

given an opportunity to identify and discuss other TD decisions that are

not identified in the first round.

The interview guide will apply the Critical Decision Method (CDM) [27],

in order to better simulate the discussion of the previous TD decisions

made. The CDM is a retrospective semi-structured interview that

employs a set of probes about an incident or task that required subjective

judgment. It is used as a knowledge engineering approach to elicit expert

knowledge and decision strategies for decisions that rely heavily on

experience and gut feeling. Using CDM format, the participants will be

asked to describe some TD decisions during the startup era. Then, for

each decision, some probe questions will be asked which are guided to

answer the research questions.

During the interviews, I will first briefly explain to the participants the

definition of TD and its related decisions to confirm that we have the

same understanding of the TD concept before proceeding the interview.

At the beginning of the interview, I will ask some demographic questions

related to the case context which include general information about the

context (i.e. case domain, programming languages used), the project

characteristics at the decision time (i.e. size of the team, team

distribution), and participant characteristics (i.e. education background,

experience, roles in the project).

After the demographic questions, the interview questions will slightly

vary based on the interview round, In the first-round interviews, the

participants will be asked an open question that allow them to tell their

startup story since the beginning of the startup idea. The discussion will

follow a chronological order based on three main startup stages [3]; 1)

developing the MVP 2) experimenting the MVP, expanding and growing

the MVP. Then, I will narrow down the discussion to major TD decisions

made during the startup evolution stages. On the other hand, participants

in the second-round interviews will be asked when and how long they

join the startup. Then, the discussion will be limited to the timeframe of

their involvement in the startup. The participants will be asked about

those major TD decisions (identified in the first-round) that they involved

in them. In addition, they will be asked to identify and discuss additional

TD decisions that they involved in them.

In both interview rounds, the discussion about TD decisions will be in a

sequence chronological order, starting with the first TD decision then

moving forward. For each decision, participants will be asked about the

reason and the consequences of the decision, and how these

consequences contributed to the success or failure of the startup. In the

last part of the interviews, the participants will be asked about their

opinions about the decisions made; and how they should have been made

to better contribute to the startup success.

3.3 Data Analysis
The data collected from the interviews will be audio recorded,

transcribed, and then analyzed using the NVivo tool1. The analysis will

follow deductive and inductive approaches. Using a top-down process for

the data coding, the core (top) categories will be identified based on the

research questions as follows: decision impact and decision best

practices. First, the interview transcripts will be used to extract quotes

and chunks, which will be assigned to their corresponding core

categories. Then, I will perform open coding on the extracted chunks;

after that, axial coding will be used to organize the data into meaningful

groups within each core category. Finally, I will use constant-comparison

1 https://www.qsrinternational.com/nvivo/home

and cross-cases analysis to generate the conclusions that would address

the research questions.

In order to provide better insight in the analysis, I will use the coding

scheme (Table 1) to extract additional context information about TD

decisions. For each TD decision, I will code the type of TD and the type

of decision as well as the startup evolution stage where the decision is

made. The type of TD will be coded based on the classification in [28]

which classified TD into different types (i.e. architecture debt, test debt,

defect debt, etc.). The TD decisions will be coded as either accumulating

TD, or repaying TD, or both; based on which TD decision scenario (that

were given to the participant in the invitation message) are associated

with the decision described. Also, the startup evolution stages in [3] (i.e.

startup, stabilization, and growth) will be leveraged to code the stage

when the TD decisions are made.

Table 1. Coding scheme for TD decisions

TD decision

Dimension
Code

TD type
Based on the TD type classification in

[28]

TD decision

type

Based on the TD decision scenarios given

to participants

Startup stage
Based on the classification of startup

evolution stages in [3]

3.4 Evaluation Plan
One of the selected cases will be used, at the end, to evaluate the study

result. Given that, all the selected cases (except one) will be used as

exploratory cases to answer the research questions and propose TD

decision making best practices. After that, the last case will be conducted

to evaluate the study results. The effective way to evaluate the result

would be to apply the proposed best practice on an actual software

startup, and then verify whether it improves the success rates of the

startup. However, this process needs a long time (about 2-3 years) in

order to observe the results. An alternative approach would be to

retrospectively evaluate the result on either a succeed or failed startup. In

this approach, the evaluation case will resemble the process of the

previous exploratory cases. However, the last part of the interview (about

how the decisions should be) will be approached differently. I will show

the generated best practices to the participants; and then ask them whether

applying it would have better contributed to their startup success.

3.5 Timeline and Milestones
Figure 1 shows the timeline plan for the study with milestones. Level 1

depicts the high-level overview of the study timeline. Initially, I am

currently conducting an empirical study in TD decision making. This

study is designed to explore a comprehensive view of the decision-

making process related to TD. The preliminary findings from this study

indicate one important factor, named ‘market condition’ that is a core

precedent of other factors that influence TD decisions. One of the market

conditions revealed in the study was software startups. This motivates me

to search for TD in the startup context. Then, I found that this context is

more important to be explored in terms of TD decision making; since it

incorporates many contextual factors that lead to TD accumulation. As a

result, I have revised the study design to focus on TD decision making in

the software startup context. The new study design is planned to be

presented in IDoESE (Sep 2019) to receive valuable feedback from ESE

researchers. After that, the study design will be updated, considering the

received feedback. Then, the final proposal is planned to be defended by

Dec 2019.

The implementation of the study is planned to begin in Jan 2020. The

data collection and analysis phase would take 6-8 months. The level 2 in

ACM SIGSOFT Software Engineering Notes Page 4 July 2019 Volume 44 Number 3

Figure 1 further illustrates the data collection and analysis. In this phase,

I will select the study cases (as described previously in section 3.1). One

of these cases will be used later for the evaluation. So, the exploratory

cases will be used to generate the study result. After that, the evaluation

case will be conducted to validate the research results.

Figure 1. The study timeline plan.

3.6 Possible Threats to Validity
One of the threats will be related to external validity. Since the study

sample is expected to be small, the result cannot be generalized to all

software startups. Despite this issue, the selected cases would have a very

specific context in the software startup which is web and mobile

application. Specifying the cases to this type of software startup would

provide more confident result related to this particular context.

Other issues are related to internal and construct validity. First, the result

evaluation is based on the participants’ opinions. Due to time constraint,

the study result will be evaluated retrospectively by providing a

qualitative evidence from interviews. Second, there will be a lack of

number of participants (around 3 participants per case). This is inevitable

since the team size of software startup is small (around 2-5 individuals).

Unlike well-establish companies, software startups operate with a very

small team. Thus, the number of participants in each case is expected to

be low. To ensure adequate number of participants in each case, at least

three participants needed in order to select any case. I may consider using

an incentive approach to recruit participants to improve the participant

rate.

In addition, the study depends solely on the interview as the data

collection method. This might affect the reliability of the collected data.

However, I will mitigate this issue by interviewing participants from

different startups and different roles. Also, I will try to access the project

documents (if possible) to support the interview data. The case that grant

access to its documents will be given high priority in the selection

process.

Finally, the understandability of the TD concept can threaten the validity

of the result; since this concept might be interpreted differently by

different participants. To mitigate this issue, I will send a brief TD

definition and its related decisions as part of the invitation message. In

addition, I will verbally explain TD and some scenarios related to TD

decisions at the beginning of the interview. This would help ensure a

common understanding of the TD concept.

4. PROGRESS OF THE STUDY
This dissertation study is a result of insights I am gaining from my current

interview study. The purpose of the interview study is to explore how TD

decisions are made and identify ways to improve TD decision-making

practices. So far, I have interviewed seven software practitioners from

seven different organizations during January – April 2019. The

preliminary results show some factors that influence TD decisions. One

of these factors led me to narrow down the research topic to a specific

context (software startups). After an ad-hoc literature search about

software startups and technical debt, I found an interesting research

direction where TD decision making needs to be explored.

Although I made progress from conducting the initial interview study,

shifting the focus to the software startup context entails some changes in

the research questions and the study design. In this dissertation, I focus

more on the TD decision outcomes and how it could impact the startup

success. In addition, the study design is changed to be retrospective

software startup cases. Instead of centralizing the interview discussion

around one TD decision, this dissertation addresses a series of TD

decisions throughout the startup life cycle. As a result of these major

changes, I would consider this proposal an early stage proposal. The

progress made would be the ad-hoc literature review on software startup

which help me to refine the study design.

5. THE EXPECTED CONTRIBUTIONS
The outcome of this study is expected to help software

founders/entrepreneurs when making TD decisions during the startup

period. The expected contribution can be in a form of TD decision best

practices that would guide the software founders/entrepreneurs toward

effective TD decisions that better contribute to startup success.

6. REFERENCES
[1] M. Unterkalmsteiner et al., “Software Startups – A Research

Agenda,” e-Informatica Software Engineering Journal, vol. Vol.

10, no. nr 1, 2016.

[2] M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley,

and S. Blank, “Startup genome report extra: Premature scaling,”

vol. 10, pp. 1–56, 2011.

[3] M. Crowne, “Why software product startups fail and what to do

about it. Evolution of software product development in startup

companies,” in IEEE International Engineering Management

Conference, 2002, vol. 1, pp. 338–343 vol.1.

[4] C. Giardino, S. S. Bajwa, X. Wang, and P. Abrahamsson, “Key

Challenges in Early-Stage Software Startups,” in Agile Processes in

Software Engineering and Extreme Programming, 2015, pp. 52–63.

[5] N. Rios, R. O. Spínola, M. Mendonça, and C. Seaman, “The Most

Common Causes and Effects of Technical Debt: First Results from

a Global Family of Industrial Surveys,” in Proceedings of the 12th

ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, New York, NY, USA, 2018, pp.

39:1–39:10.

[6] C. Seaman and Y. Guo, “Measuring and Monitoring Technical

Debt,” in Advances in Computers, vol. 82, 2011, p. 22.

[7] K. Schmid, “A Formal Approach to Technical Debt Decision

Making,” in Proceedings of the 9th International ACM Sigsoft

Conference on Quality of Software Architectures, New York, NY,

USA, 2013, pp. 153–162.

[8] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T.

Amanatidis, “Estimating the breaking point for technical debt,” in

2015 IEEE 7th International Workshop on Managing Technical

Debt (MTD), 2015, pp. 53–56.

[9] P. S. M. dos Santos, A. Varella, C. R. Dantas, and D. B. Borges,

“Visualizing and Managing Technical Debt in Agile Development:

An Experience Report,” in Agile Processes in Software Engineering

and Extreme Programming, 2013, pp. 121–134.

[10] N. Ramasubbu and C. F. Kemerer, “Managing Technical Debt in

Enterprise Software Packages,” IEEE Transactions on Software

Engineering, vol. 40, no. 8, pp. 758–772, Aug. 2014.

Level 1

Level 2

ACM SIGSOFT Software Engineering Notes Page 5 July 2019 Volume 44 Number 3

[11] C. Becker, R. Chitchyan, S. Betz, and C. McCord, “Trade-off

Decisions Across Time in Technical Debt Management: A

Systematic Literature Review,” in Proceedings of the 2018

International Conference on Technical Debt, Gothenburg, Sweden,

2018, pp. 85–94.

[12] O.-P. Hilmola, P. Helo, and L. Ojala, “The value of product

development lead time in software startup,” System Dynamics

Review, vol. 19, no. 1, pp. 75–82, 2003.

[13] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and

P. Abrahamsson, “What Do We Know about Software

Development in Startups?,” IEEE Software, vol. 31, no. 5, pp. 28–

32, Sep. 2014.

[14] S. M. Sutton, “The role of process in software start-up,” IEEE

Software, vol. 17, no. 4, pp. 33–39, Jul. 2000.

[15] G. Coleman and R. V. O’Connor, “An investigation into software

development process formation in software start�ups,” Journal of

Ent Info Management, vol. 21, no. 6, pp. 633–648, Oct. 2008.

[16] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L.

Jaccheri, “Software startup engineering: A systematic mapping

study,” Journal of Systems and Software, vol. 144, pp. 255–274,

Oct. 2018.

[17] T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch,

“Embracing Technical Debt, from a Startup Company Perspective,”

in International Conference on Software Maintenance and

Evolution, Madrid, Spain, 2018, p. 12.

[18] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and

P. Abrahamsson, “Software Development in Startup Companies:

The Greenfield Startup Model,” IEEE Transactions on Software

Engineering, vol. 42, no. 6, pp. 585–604, Jun. 2016.

[19] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M.

Sainio, “The Relationship Between Business Model

Experimentation and Technical Debt,” in Software Business, 2015,

pp. 17–29.

[20] E. Klotins et al., “Exploration of Technical Debt in Start-ups,” in

2018 IEEE/ACM 40th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP),

2017, pp. 75–84.

[21] J. Yli-Huumo, A. Maglyas, and K. Smolander, “The Sources and

Approaches to Management of Technical Debt: A Case Study of

Two Product Lines in a Middle-Size Finnish Software Company,”

in Product-Focused Software Process Improvement, 2014, pp. 93–

107.

[22] C. Gralha, D. Damian, A. I. (Tony) Wasserman, M. Goulão, and J.

Araújo, “The Evolution of Requirements Practices in Software

Startups,” in Proceedings of the 40th International Conference on

Software Engineering, New York, NY, USA, 2018, pp. 823–833.

[23] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O. Pappas, and L.

Jaccheri, “Software startup engineering: A systematic mapping

study,” Journal of Systems and Software, vol. 144, pp. 255–274,

Oct. 2018.

[24] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study

Research In Software Engineering. Hoboken, New Jersey: John

Wiley & Sons, Inc., 2012.

[25] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing

Technical Debt in Software Engineering (Dagstuhl Seminar

16162),” Dagstuhl Reports, vol. 6, no. 4, pp. 110--138, 2016.

[26] S. McConnell, “Technical debt,” 10x Software Development Blog.

URL = https://www.construx.com/resources/whitepaper-

managing-technical-debt/, 2007. .

[27] G. A. Klein, R. Calderwood, and D. MacGregor, “Critical decision

method for eliciting knowledge,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 19, no. 3, pp. 462–472, May 1989.

[28] N. Rios, M. G. de Mendonça Neto, and R. O. Spínola, “A tertiary

study on technical debt: Types, management strategies, research

trends, and base information for practitioners,” Information and

Software Technology, vol. 102, pp. 117–145, Oct. 2018.

ACM SIGSOFT Software Engineering Notes Page 6 July 2019 Volume 44 Number 3

	sheet1
	Aldaeej_Towards Effective Technical Debt Decision Making in Software

