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ABSTRACT The Internet of Things (IoT) has created a novel ecosystem for sensing and actuation throughout

our world, enabling intelligently controlled autonomous systems to conserve energy, water crops, manage

factories, and provide situation awareness on an unprecedented scale. As IoT progresses, the interest in IoT

search engines, that is, search engines to find IoT devices and retrieve IoT data, has grown. While basic

examples of IoT search engines exist, considerable challenges prevent the full realization of an efficient

and intelligent IoT search engine that provides universal data service, scalable data communication and

retrieval, and efficient querying of massively distributed heterogeneous devices and data. In this article,

we first propose a generic framework for the IoT search engine, and then present a naming service for

the IoT system, an essential component for an effective IoT search engine. We also outline some research

challenges and possible solutions for building efficiency and intelligence in the IoT search engine. Further,

we present a case study and seek to address a particular aspect of the query process for IoT search, namely

efficient and timely query processing. Given the now obvious advances in machine learning, the potential

for deep learning-based prediction to improve resource use, and thus query retrieval, is clear. In detail,

we utilize Long-Short-Term Memory (LSTM) neural network architecture to predict aggregated query

volumes to be preemptively applied and stored for immediate response. Combining several realistic IoT

datasets, we explore the efficacy of simultaneously predicting multiple targets for predictive query retrieval.

INDEX TERMS Machine learning, Internet of Things, search engine, edge intelligence, applications.

I. INTRODUCTION

The Internet of Things (IoT) has become integral to improv-

ing situation awareness [1]–[6], remote automation and actu-

ation [7]–[9], and data collection [10]–[13], with implications

for nearly every industry [14], [15]. The key to this success

has been the proliferation of low-cost networked computing

devices (i.e., IoT devices) that can be deployed in massive

quantities, remotely managed, and power-cycled, to achieve

unprecedented data collection and transmission, and the abil-

ity to act on remote environments. Such devices, while often

limited in computing capabilities, can nonetheless complete

complex tasks such as object detection and facial recogni-

tion [16], [17], can be equipped with critical features [18]
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and chips such as temperature and power sensors, and can

be embedded in remote locations where resources are scarce

but their proper functioning remains highly critical [19], [20].

Moreover, IoT has been envisioned and applied in critical

infrastructures to enable cyber-physical systems (CPS) like

smart electrical power generation, in consumer devices for the

smart home (e.g., smart thermostats, smart wall outlets, and

smart light bulbs) to reduce personal energy consumption,

in self-driving vehicles for smart transportation for improving

traffic efficiency, and in commercial and private industries

for efficient and automated manufacturing and production,

ushering in the next great industrial revolution, otherwise

known as Industry 4.0 [21]–[23].

Despite these achievements, significant work is left to be

done to fully realize all the promises of IoT. Remaining

challenges include the security of IoT systems, which have
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been demonstrated time and again to be vulnerable [24]–[27].

This includes highly-needed device security, as well as secu-

rity evaluation for various network protocols that enable IoT

(constrained application protocol (CoAP), etc.) [28]–[30].

In addition, redundant IoT systems (weather, temperature,

atmosphere, etc.) maintained by various disparate organiza-

tions in private intranets indicate a waste of resources more

broadly. Thus, how to increase the use of IoT data while

addressing security and privacy of data sharing has been a

growing area of research [31]–[35]. The potential to integrate

IoT systems in a manner similar to the traditional Internet as

it exists today can enable all businesses, organizations, and

individuals to search and discover data on an unprecedented

scale, and to transform that data for the next generation of

technological advancements. To enable such universal data

access, a unified and accepted IoT search framework, or IoT

search engine, would need to be designed, implemented, and

subscribed to.

While the concept of IoT search and search engines may

not be totally new [36]–[40], the increasing deployment and

redundancy of IoT systems has increased the need for a

fully-realized IoT search engine. This can be coupled with

advancements in a variety of related technologies, such as

big data and deep learning, which can aid in the achieve-

ment of this goal. Clearly, the capacity to store and ana-

lyze massive volumes of data has increased dramatically,

and advanced machine learning enabled by complex neural

networks, denoted as deep learning, has advanced analytical

capabilities beyond those of individual humans in a variety

of areas [21], [41]–[43]. When combined, these technologies

can provide the backbone for an advanced data framework,

which can leverage existing infrastructures, incentivize par-

ticipation through data markets and subscription services, and

universalize data of all types for ubiquitous use.

The potential for the IoT search engine is real, and early

examples exist, yet barriers to a fully satisfactory IoT search

engines still persist. These include the heterogeneity of

devices, networks, communication, data, and storage; device

ownership, participation incentives, and security; and func-

tional implementation aspects such as distributed architec-

tures, communication protocols, query systems, and quality

of service (QoS), among others. In this work, we thus first

consider an IoT search engine framework, as laid out in [36],

which considers the basic structures and heterogeneity of

IoT. This framework layers Quality of Service (QoS), Query

Engine, Indexing, and Devices, and allows for interchange-

able software modules to optimize and facilitate the Query

Engine.

Based on the outlined framework, we then investigate

the naming service for IoT systems, which is an essential

component to enable the IoT search engine. After investi-

gating existing solutions for naming services and understand

their limitations, we enhance the existing naming service

in the Internet to design a naming service for IoT sys-

tems, and provide examples to demonstrate its application

to real-world IoT systems. Further, we outline some research

challenges, potential solutions, and future research directions

with respect to enabling efficient and intelligent IoT search

engine. In addition, we carry out a case study and consider

mechanisms to optimize query retrieval and QoS through a

generic and interchangeable deep learning-based query mod-

ule. Specifically, we consider the potential for query predic-

tion to improve QoS for high-volume users and real-time

applications. Utilizing query aggregation to combine mul-

tiple equivalent queries to improve retrieval, we consider

the potential for using deep learning techniques to predict

aggregated query volume, which can then be leveraged for

predictive query retrieval and data caching. To be concrete,

the case study presented in this article is to design a functional

query prediction module for the IoT search engine that, when

combined with query aggregation, can provide more rapid

service to users. By applying ahead-of-time querying, partic-

ular user groups or subsets can be better served by reducing or

removing the query latency they would otherwise experience.

In detail, the contributions of this work are summarized as

follows:

• Framework: We consider a generic framework for the

IoT search engine. This framework includes a variety of

inherent mechanisms, as well as interchangeable soft-

ware modules. These modules can perform a variety of

tasks, including: (i) aggregate queries, and (ii) assess

historical query data to predict queries ahead of time.

• Naming Service: We design a naming service for

the IoT search engine. Particularly, we first com-

pare the benefits and limitations of existing solutions:

domain name service (DNS) and named data networking

(NDN), which is either not designed for IoT data service

or not efficient in existing IP-based networks. We then

enhance the DNS and design a naming service for IoT

systems.We also provide some examples to demonstrate

its use in real-world IoT systems.

• Open Research Problems: To enable efficient and

intelligent IoT search, we outline major research chal-

lenges, potential solutions, and future work that is

needed. In terms of efficiency in IoT search, we dis-

cuss issues related to the design of query processing,

data discovery, and data retrieval, as well as improving

the scalability of the IoT search engine given limited

resources in the system, and conducting joint resource

management. In terms of enabling intelligence in IoT

search, we discuss the integration of state-of-the-art data

mining and machine learning techniques.

• LSTM-based Query Prediction: We conduct a case

study to demonstrate the efficacy of IoT search based

on LSTM neural network model. Particularly, we first

identify existing open source IoT data, which we sup-

plement with our own novel collected data. We then use

said data as an analog for query volume in evaluating

the potential for query prediction. Using deep learning

techniques, we train and validate a variety of predictive

regression models based on the LSTM. We additionally

consider the overhead and complexity to develop and
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maintain such models, and draw conclusions as to their

viability.

The remainder of this article is as follows. In Section II,

we outline the basic framework of the IoT search engine,

globally, and consider the target aggregation and query pre-

diction components in detail. In Section III-B, we present

the naming service for IoT systems, which is an essential

component for IoT search. In Section IV, we outline chal-

lenges and research directions of realizing an efficient and

intelligent IoT search. In Section V, we carry out a case study

toward achieving intelligence in IoT search via LSTM-based

query prediction, introducing the datasets used, the prepro-

cessing considerations for our evaluation, our workflow, and

the implemented learning modules. In Section VI, we present

our evaluation methodology, environment and results, detail

the process of training and validating our models, and

demonstrate the results of our LSTM-based query prediction.

In Section VII, we evaluate the breadth and depth of existing

research on IoT search and search engines, generic search

engine mechanisms, and machine learning for time-series

prediction, in general. Finally, we provide some concluding

remarks in Section VIII.

II. FRAMEWORK

In this section, we consider a generic framework for an IoT

search engine as the basis for our study. We outline this

framework in general, and then detail several Query Engine

modules, the first of which is critical to the optimal and

efficient functioning of the search engine.

A. IoT SEARCH ENGINE

For the purposes of this work, we adopt the IoT search

engine framework as outlined in [36]. Under this framework,

we consider a number of factors that are critical to searching

and retrieving IoT devices and their data. At the lowest level,

we consider that IoT devices are reachable and address-

able utilizing an IoT search address protocol, which features

gateway addresses for geolocation services, as well as tags

for the descriptions of device identifiers, types of services,

etc. As demonstrated in [36], using a variety of network

communication protocols, a system can be established that

allows for open registration of IoT devices and their data for

cross-platform sharing.

All IoT devices are registered to their local gateways,

which themselves are registered to a higher-level gateway

(i.e., global gateway), as well as registering other neighbor-

ing gateways. In this way, gateways have domain over their

local set, and all devices and gateways are reachable in a

hierarchical structure. Note that we consider hierarchical tree

as the structure in this article, but other complex structure

such as graph can be considered as well. In addition to

gateways and IoT devices, components that mirror traditional

Internet search include crawlers and databases for continu-

ous automated retrieval and storage, respectively. Moreover,

query engine components take as input queries from human

and machine users through a publicly available application

FIGURE 1. A generic framework for the IoT search engine.

programming interface (API), utilize various internal soft-

ware modules, the crawlers, and the databases, and return as

output query results in either finite or ranked format.

Searches can be conducted in a number of ways, including

by location and by device function or service type. Query

processing should be concerned with the type of resources to

retrieve (real-time, periodic, event-based, etc.), the privilege

and urgency of the users (safety-critical/real-time need vs.

best-effort vs. time-independent), and the ranking mecha-

nism (location, device reachability/reliability, search accu-

racy, etc.), among many others. These factors should be taken

into account in order to provide optimal QoS. Yet, to enable

such QoS, additional software modules must be applied to

assist the Query Engine in processing the massive volume of

data available in an IoT search engine system.

B. MODULES

As mentioned, one of the most critical components for

achieving IoT search is the Query Engine. This is what

processes queries received from human and machine users

and retrieves the requested services. The Query Engine must

be able to translate both literal direct queries and human
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language queries into the required query language, and must

interface with the indexing scheme for IoT devices, crawlers,

databases, and third party services. In addition, the Query

Engine should be able to provide ranked results based on

any number of criteria, including the time properties of

the data (real-time, cyclical, event-based), the type of data

(streaming, non-streaming), target categories (video, image,

weather, temperature, etc.), location, and accuracy of the

results, among others.

To achieve the effective operation of the Query Engine,

interchangeable software modules are considered. These

modules would allow for the rapid adoption of search opti-

mization algorithms, as well as natural language process-

ing of human language queries, aggregation of high-volume

queries, and the potential for machine learning-based opti-

mizations, such as query prediction, among others.

1) AGGREGATION

Designed to aid in balancing resource loads, query aggrega-

tion can be utilized to combine equivalent queries and reduce

the overall load on the system, by reducing the number of

query retrievals of the same data. A number of strategies

have been considered and implemented to achieve query

aggregation [44]–[49], applied to a number of different sce-

narios and settings, and which depend on a variety of factors,

such as QoS, the data to be retrieved, complexity of queries,

etc. Another critical function of aggregation is the ability to

analyze the volume of equivalent queries, which can in turn be

used for additional analytical assessment. Such assessments

can be used in time-series prediction to allow for query

execution ahead of time, as well as for attack detection against

the query engine, among others.

2) QUERY PREDICTION

As the primary target of this research, we assume some

query aggregation is in place, and collection of the query

volume is likewise. In this way, we can assess the volume

of queries deemed ‘‘equivalent’’ by the query engine and

use this information to attempt to predict the query volume,

providing more rapid service to the query user. We con-

sider that automated queries by machine users will likely

follow a predictable pattern and have predictable volume

based on the number of machine operators generating the

queries. Likewise, human users follow predictable patterns

as well, such as daily and weekly traffic patterns, eating

schedules, etc. In these contexts, whether initiated by human

or machine users, we consider the query patterns and vol-

umes predictable globally and within some margin of error.

To accomplish query prediction, we can leverage deep recur-

sive neural networks (RNNs) to conduct time-series fore-

casting. Indeed, a significant amount of work has gone into

improving time-series prediction, and the technology is now

used in any number of applications, including predicting

stock prices [50], [51], network traffic [52], [53], electricity

load in power grids [54]–[56], and more.

III. NAMING SERVICE FOR IoT SYSTEMS

In order to provide data-oriented service for IoT systems such

as the IoT search engine, an appropriate and effective naming

service is essential. In the following, we first review existing

network naming frameworks, and then propose our naming

service for IoT systems.

A. EXISTING APPROACHES

As the number of IoT devices in IoT systems is large, how

to effectively manage them and support IoT search are chal-

lenging problems. This calls for designing a naming service

for IoT systems. There are two existing approaches to provide

naming services. One is to leverage the existing domain name

service (DNS) in Internet based on TCP/IP protocols that

maps user friendly names to IP addresses [57]. The other is

to leverage named data networking [58], [59], which names

the devices with content chunks instead of IP addresses. The

DNS is one of the fundamental components of the Internet,

providing a directory of combined host-names and domain

names that match to IP addresses. Note that the combination

of host name and domain name comprises the majority of a

Universal Resource Locator (URL) [60]. The URL is not only

used to find the target device’s IP address, but can also locate

the resources on a specific device to retrieve data. However,

DNS was not originally designed to provide data-oriented

services.

The NDN, in contrast to DNS, aims to develop a new

Internet architecture, which can leverage the strengths and

counteract the weaknesses of the Internet’s current host-based

communication architecture [58], [59], [61]. With NDN,

emerging patterns in communication can be accommodated.

Moreover, NDN-related projects have investigated a number

of technical challenges, including routing scalability, data

fast-forwarding, secure and trustworthy network, data protec-

tion and privacy, and fundamental communication theory, and

have developed a variety of solutions. Under NDN, a name

can be anything: a node, a movie, or an IoT sensor. In addi-

tion, users and machine devices retrieve information through

the use of Interest packets and Data packets. However, while

the NDN has a built-in DNS function and simplifies the

process of device and information discovery, exchanging data

on the network layer may not be as efficient as the exist-

ing IP-based network architecture. Furthermore, according

to [59], NDN leverages a name-prefix based routing proto-

col called Forward Information Base (FIB). Such a routing

protocol may be not supported by the existing IP routers.

Thus, NDN needs to operate through overlay over existing

IP networks.

B. NAMING SERVICE FOR IoT SYSTEMS

Based on RFC 2141 that specifies the Uniform Resources

Name (URN) [62], we design a URL-like naming structure

specifically for IoT systems. The URN syntax provides a way

of encoding character data that can be transmitted in existing

protocols. Note that URN is intended to serve as persistent
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and location-independent resource identifiers. With URN,

we can easily map other namespaces sharing the properties

of URN into URN-space.

C. UNIFORM RESOURCE NAME (URN)

First, we note that a URN is a Uniform Resource Identi-

fier (URI) that uses the URN mechanism. URNs are glob-

ally unique and persistent identifiers, which are assigned

within defined namespaces so that they will be avail-

able for a long period of time, even after the resource

that they identify does not exist or becomes unavailable.

URNs cannot be used to directly locate an item and need

not be resolvable. In this case, we always use URL to

locate a resource. As an example, URN was proposed as

a naming policy for IoT devices [63]. One example of the

defined URN naming strategy is as follows: <URN>: :=

‘‘urn:’’<namespace>‘‘:’’<type>‘‘:’’<name>‘‘:’’ <value>

[‘‘:’’<vendor-product>‘‘:’’<version>]. Here, the names-

pace component is used to define the wireless type, which the

device is using (Bluetooth, WiFi, etc.). The type component

determines the kind of device that it belongs to. The name

represents the device name. The value is theUUID (unique ID

number) of the target device. The vendor-product represents

the model name and manufacture name of the device. The

version tells the product version. As an example, if the target

device is an electronic fan, the URN might be urn:miot-spec-

v2:service:fan:00007808. Here, fan is a WiFi device and its

UUID is 00007808. However, using only the URN, it is not

easy to identify the device location andwhich zone this device

belongs to. Thus, based on the URL and URN, we need to

design a new naming structure for IoT systems.

D. STRUCTURE

To make the IoT systems easy to connect to existing Internet

architecture, our proposed IoT naming system structure is

based on the DNS inverted tree. While the naming system

structure may be formed via complex structures such as graph

or its combinationwith tree via peer-to-peermanner, we focus

on the tree structure in this article. Fig. 2 represents the archi-

tecture of our IoT naming system. Here, multiple gateways

are designed to better fit the operation of IoT devices. In the

DNS system, we have a root name server, top-level domain

server, authority name server, and local name server. In the

IoT naming system, we can have similar server structures.

Using a nationwide IoT search engine system as an exam-

ple, a root gateway is designed to store the IP addresses of

the nationwide gateways, as well as the IP address of the

root gateway. The state-wide gateways store the IP addresses

of the county-wide gateways, as well as the root gateway

and the country-wide gateway. The county-wide gateway

stores the IP addresses of the city-wide gateways and the

state-wide, country-wide, and root gateway. The city-wide

gateways store the IP addresses of the local gateways and the

upper-level root, country-wide, state-wide, and county-wide

gateways. The local gateways store the IP addresses of the

IoT sensors and actuators (i.e., typical IoT devices) under

FIGURE 2. Example of IoT naming structure.

their converge, as well as all IP addresses of its upper-level

gateways.

The IoT naming system is designed specifically for

IoT devices, making the search of target devices easier.

As an example, in our prior work [64], the naming struc-

ture we developed is as follows: ‘‘< DeviceType >:

// < ResourceType > @ < LocalGatewayName >

. . . < City− wideRegionalGateway > . . . <

County−WideRegionalGateway >:< IoTAttribute >:<

Pub− Sub >’’. Here, the type of IoT resource can be defined

before the symbol ‘@’. The hierarchical architecture of IoT

devices can be defined after ‘@’ from local to county. Also,

pub-sub field of IoT attribute tells whether the IoT device

supports the pub-sub mechanism or not.

Similar to DNS, the IoT naming system can use either

recursive query or iterative query. The recursive query is

often used when the IoT device is initializing a query to the

local gateway. If the local gateway does not know the target

device’s IP address, the local gateway will act as a client

and send a query to its upper-level gateway. On the other

hand, the iterative query is commonly used when the local

gateway sends a query to the root node. When the root node

receives the query, it will send the target IP address to the local

gateway or guide the local gateway to process the query.

In addition, the publishing and subscription (pub-sub)

mechanism can be implemented in this IoT search system.
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Under specific circumstances, user devices need streaming

data from selected IoT devices. For example, an autonomous

vehicle needs to obtain the real-time traffic data on its path to

the destination. In Fig. 3, we can see that at each local gate-

way, we have two extra components to achieve the pub-sub

mechanism. One is the caching storage and the other one

is the sensor status table. The caching storage is used when

the user subscribes a sensor, which will continue delivering

its data to the caching area. The data will then be retrieved

by the user from the local gateway. Since the IoT data is

time sensitive, outdated data will be discarded from the cache

immediately. Also, sensor status (sensor availability, sensor

type, pub-sub availability, and pub-sub status, among others)

will recorded and stored.

FIGURE 3. Pub-sub of IoT naming system.

E. EXAMPLES

To demonstrate the use of our proposed naming service in

IoT systems, we now present three examples in smart trans-

portation, smart parking, and autonomous/self-driving vehi-

cles. The examples we consider are specific to the Towson,

Maryland area, but can be generalized to any other locale.

First, Smart Transportation is a typical IoT system that

supports real-time traffic information reporting [22], [65].

Assume a vehicle is traveling from Towson University to the

nearest local Micro Center (electronics store). There are three

local gateways on its route, as shown in Fig. 4. Before the

FIGURE 4. Applying naming service in smart transportation.

vehicle departs, it will send a request to gateway gw-01 to

register itself and request the traffic information of all the

possible routes that it might take to reach the destination.

Gateway gw-01 will query the city-wide gateway about the IP

address of all the corresponding gateways, which are gw-02

and gw-03. After obtaining the IP addresses, gw-01 will

query the traffic sensors corresponding to its coverage area.

Meanwhile, it will send queries to gw-02 and gw-03 to obtain

their traffic information. After gw-01 receives all the traffic

information, it will send the combined data packets to the

vehicle. Based on the data, the vehicle can determine which is

the best route to choose. In addition, before the vehicle leaves

the coverage area of gw-01, the gatewaywill register the vehi-

cle to gateway gw-02. When the vehicle leaves the coverage

area of gw-01, it will unsubscribe from the traffic information

of gw-01, unregister itself from gw-01, and register to gw-02.

The vehicle will continue to follow these steps until it reaches

the destination.

Second, Smart Parking is an important IoT application

in smart cities, enabling efficient utilization of parking

resources [66], [67]. Parking lots are considered valuable

resources in metropolitan areas, as either public or private

lots, they support travel, tourism, and the local economy,

generating revenue. Smart parking can improve the driving

experience by making it easier to find a parking lot while

driving in a city. Generally, smart parking is necessary at

the vehicle destination, and thus, for most cases, the vehicle

will only need to communicate with one local gateway in

the area surrounding the destination. When the vehicle is

close to the destination, the local gateway gw-03 will find

the nearest available parking lot and send its information

to the vehicle, including the number of remaining parking

spaces, the parking price, etc. Also, the local gateway gw-03

can predict whether the vehicle will arrive at the parking lot

before other competitors based on the historical data of the

sensors in the parking lot. If the vehicle will not arrive in time

to find a parking space, the gateway gw-03 will recommend

another available parking lot for this vehicle in real time.

Third, Autonomous Driving is able to greatly improve

traffic efficiency [68], [69] through analysis of a collection

of relevant data. To achieve efficient autonomous driving,

we need to collect information about traffic, weather, parking

lots, date and time, etc. Before the vehicle departs, it will

first check the weather and then choose the best drive mode

accordingly, such as driving slower and more cautiously

in inclement weather. In addition, it will query the traffic

information for the optimal route to the destination, taking

weather information into consideration to avoid potentially

increased traffic and accidents. Moreover, autonomous vehi-

cles may communicate with one another through the local

gateway should the sensors on one road stop working. The

local gateway can also leverage cameras installed on the

autonomous vehicles and traffic intersections to estimate

the state of real-time traffic against other the information.

The traffic can also be influenced by the state of electrical

charge or volume of gasoline in the vehicles, their need to
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charge or refuel, the locations of charging and gas stations,

and the potential for congestion in these areas, among others.

To avoid such problems, the local gateway can aid in finding

the best charging station with least waiting time and fastest

route to the destination.

IV. OPEN RESEARCH PROBLEMS

As a novel topic, research on the IoT search engine is sparse,

and further investigation is necessary. Such research, to fully

realize real-time response and quality of service, should

include at least the following aspects: building efficiency and

intelligence in IoT search. Note that security and privacy

issues in IoT search are also important, which is beyond the

focus of this article.

A. EFFICIENCY

Consider that, compared with traditional web-content search,

it is much more challenging to search for IoT data. On one

hand, limited computation capabilities and energy capacity

make IoT devices cheap and widely available to deploy

globally. On the other hand, from a search perspective,

the required resources from IoT systems and the data gen-

erated by IoT systems engender redundancies. Thus, how to

design methods to enable efficiency in the deployment and

use of IoT search is an important issue.

According to the generic IoT search engine framework

that we proposed in our prior work [64], the execution of an

IoT search engine can be categorized by three major proce-

dures: (i) query processing, (ii) data discovery, and (iii) data

retrieval. Generally speaking, query processing is the pro-

cedure by which real-time queries are analyzed and redis-

tributed, and the workload of this procedure is determined by

the density and complexity of they queries. The data discov-

ery is the process of collecting and identifying information

from the IoT devices either in real time or at some other rate.

The workload of data discovery is determined by the scale of

the IoT systems and their dynamically generated data. Lastly,

the data retrieval is the procedure of preparing, aggregating,

and formatting the target data to satisfy the query. Despite

a variety of algorithms and strategies that are deployed to

improve the performance of IoT search, the workload for data

retrieval to the system is determined by the query content

and the structure of the search network. The query content

will determine the location of data and its amounts while the

structure of the search network will affect the performance of

data delivery.

Thus, addressing the efficiency of the IoT search engine

should aim to optimizing the workloads of the above proce-

dures. Furthermore, the optimizations can be achieved from

two aspects. The first is the design of algorithms or strategies

that enable more efficient processing per-unit workload for

each procedure individually, which could minimize the con-

sumption of time and resources. The second is to focus on

the scalability of the system, the efficiency of the interactions

between the procedures and the underlying technologies,

enabling and extending a system with limited resources to

deal with increasingly large workloads (queries, data, etc.),

and enabling the search engine to process as many queries or

cover as many as IoT devices as possible.

In our prior work [64], we proposed a search engine frame-

work, implemented its prototype, and demonstrated its funda-

mental effectiveness via emulation with real-world datasets.

Based on our study, we now discuss potential optimizations

for improving the per-unit workload processes of query pro-

cessing, data discovery, and data retrieval in detail.

• Query Processing Optimization:With regard to query

processing optimization, the objective is to reduce the

processing cost for received queries. One viable method,

which can reduce the overhead of redundant queries

targeting similar resources or data, so that the average

processing cost of each query will be reduced, is query

aggregation. For example, if several queries that target

the same data are received at the same time or within

a specific time window, these queries can be merged

to avoid fetching the same data repeatedly. In addition,

it is important to design algorithms that are capable of

deconstructing complex queries that have multiple tar-

gets into smaller sub-queries, which can then be further

combined and aggregated to achieve multiple simulta-

neous aggregated results. Thus, the restructured queries

increase the per-unit efficiency of the query processing

without changing the response to the user.

• Data Discovery Optimization: For data discovery opti-

mization, the optimization goal is the reduction of the

overall query latency or response time by proactively

preparing the data and making it available as close to

the users as possible. Viable strategies include proactive

data preparation, query ranking, and data aggregation.

The proactive data preparation is to have data ready at

the buffer, which is closer to the users, by predicting fre-

quent queries before they arrive. Thus, the respond time

to an incoming query is reduced as the data is available

immediately. Moreover, the prediction can be enabled

and enhanced by applying query ranking, which is based

on the performance benchmarks of the data sources.

On the other hand, for handing the inquiry for the sum-

mary form derived from several groups of raw data,

data aggregation can be performed at the nodes, which

are more close to the data sources before being sent to

respond to the query. By doing this, the overhead in data

transmission can be reduced. As an example, if the query

is looking for the average value of several groups of data

from different data IoT collectors, it is more efficient that

each IoT data collector responds to only the average and

count of its own data, instead of sending the raw data.

For the foreseeable future, methods driven by machine

learning and artificial intelligence can be leveraged in

developing algorithms and strategies for optimization.

• Data Retrieval Optimization: As for data retrieval

optimization, the objective is to optimize both the

speed and accuracy of locating resources. While it may

not be viable for the IoT sensors with constrained
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capabilities to continuously send relevant data about

their status and identification, it may be possible and

more efficient to maintain a list with accurate meta-data

and keywords for registered sensors in the data center in

a publishing-subscription manner.

In the second aspect, scalability, the key issue is the

capability of dealing with increasing workloads by investing

resources into the system at a similar or lower rate. The

growing workload may include the increase in the number

of search targets, the number of independent IoT systems,

the scale of data sources, and the number of concurrent

queries. A potential solution is to leverage node/server

clusters with well-designed load-balancing strategies. More

specifically, deploying layers of multiple nodes/servers

(e.g., clusters, groups of clusters, inter-groups), in which

each single node/server is implemented with the fundamental

functions of either query processors or data centers. On the

data side, the scale of the covered IoT systems would be

handled by the nodes/servers from the clusters of data cen-

ters with well-designed indexing strategies. On the query

side, overflows of concurrent queries will be handled by the

load-balancer that assign nodes/server with vacant capabili-

ties, or forward queries to other clusters if necessary.

Furthermore, unlike traditional content-based web search

engines, IoT search ismore dynamic. Not only is the data gen-

erated by individual sensors updated much more frequently,

but the IoT devices also change locations and statuses (wake,

sleep, etc.) over time. As a result, the traditional techniques of

web crawling and web indexing may not function efficiently

in the IoT search environment. Meanwhile, the search space

for IoT search engines may also be large due to the large

volume of low-cost IoT devices and the hierarchy of the

deployed devices in different IoT systems. The computing,

networking, and energy resources are also limited in IoT

search systems. Thus, how to allocate the limited resources

in the IoT search engine is one of the key problems to design

cost-effective search engine systems. In detail, some queries

to the IoT search engine will be time-sensitive and non-

preemptive. Furthermore, limited network resources cannot

handle the increasing number of queries. Thus, this calls

for designing network resource management schemes so that

network resources can be allocated efficiently. Further, due

to the complexity of query and IoT data, one query may

involve multiple computing resources. Therefore, one impor-

tant problem in IoT search is how to deploy and schedule

computing and network resources to satisfy the performance

requirements of queries, which may have different QoS

requirements. Moreover, how to conduct joint optimization

and design of computing, networking, and energy resource

management remains a challenging problem.

B. INTELLIGENCE

Based on the architecture of IoT search that we men-

tioned above, realizing intelligence in the search process is

one of the key requirements in IoT search. To fulfill this

requirement, it is important to integrate state-of-the-art data

mining andmachine learning techniques into IoT search. One

of the major purposes of using IoT search is to utilize the

massive amount of data generated from a variety of IoT

systems. On one hand, data mining could play a critical role

in data analysis. Considering the differences between IoT

datasets and traditional datasets from a data mining perspec-

tive, we see that IoT data is more dynamic and originates

from more divergent sources. Whether existing data mining

techniques could be applied to IoT search becomes a very

interesting problem. In future research for IoT search engines,

there is significant potential to apply data mining techniques

for the preprocessing, storage, analysis, etc. of massive IoT

data. Such data mining approaches need to consider the size

and scope of IoT data and will likely include the revision of

tested mechanisms, as well as the development of novel data

mining methods to meet the requirements of IoT environ-

ments. In addition, data mining techniques can be leveraged

to improve the security of the IoT search engine through the

analysis of queries and anomalies.

On the other hand, machine learning, as a powerful data

analysis tool, employs algorithmic analysis of input data to

produce statistically generated models, which can be used

to perform tasks without explicit instructions. These tasks

can include classification, evaluation, segmentation, com-

pression, generation, and organization, among others, and can

be implemented in ways that exceed human capabilities at the

target task. Moreover, machine learning is a stepping stone to

full artificial intelligence. Machine learning models trained

on sample data are used to make predictions and decisions on

entirely new input, and are used in a wide variety of appli-

cations, including spam filtering, computer vision, anomaly

detection, and malware analysis, and are especially useful

in areas where it is very difficult, very costly, or infeasible

to develop a conventional algorithm to perform the complex

task [41]. Machine Learning can be applied to a number of

areas of the IoT search framework, and could play a critical

role in optimizing performance [41], [70], [71]. For example,

machine learning could be applied to predict the density of

queries such that the system could dynamically adjust the

time interval, over which queries are aggregated to avoid

large query latency. Meanwhile, applying machine learning

in query ranking could help to optimize data preparation and

reduce network traffic.Withmachine learning, we can greatly

reduce data size and use trained models to predict traffic

over some projected period, validating against real data from

sensors to ensure the predicted results are accurate.

Deploying machine learning algorithms to the IoT search

engine comes with a variety of challenges. First, machine

learning algorithms require high computing capabilities to

train on and analyze massive amounts of data, and are thus

generally deployed in the cloud server clusters. In addition,

to obtain highly accurate results, machine learning algorithms

require an appropriately large volume of data to train on.

Thus, if machine learning algorithms are deployed in cloud

server clusters, the data collection process leads to massive

data exchange between servers and IoT devices, which can
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occupy the limited network resources and degrade the per-

formance of IoT searches that are latency-sensitive. Although

deploying machine learning algorithms to distributed com-

puting environment (e.g., edge computing nodes) is a viable

solution, this has its own challenges in terms of the lim-

ited computing capacity of distributed computing nodes,

the coordination of multiple computing nodes, and secu-

rity and privacy of data sharing and distributed computing,

among others. Indeed, how to optimize machine learning

algorithms to reduce computation requirements and deploy

the machine learning algorithms to distributed computing

nodes are important problems [72].

Machine learning algorithms traditionally require massive

amounts of data to be stored and processed to train the

learning models in order to satisfy the accuracy requirements

of a production system. Nonetheless, the training process

could still be very long, making the system unable to sat-

isfy the requirement of timeliness for the IoT search engine.

To address this issue, online continuous learning strategies

have the potential to reduce training time. In a dynamic IoT

search environment, online continuous learning allows the

use of dynamically incoming data chunks to continuously

train the machine learning model. By doing this, the learning

model can be continuously updated to improves the accuracy

of the model. Compared to the traditional machine learn-

ing pipeline, online continuous learning carries our training

process using arriving data, instead of waiting for all data

collected [56]. By updating the learning model, the online

continuous learning strategy can improve the accuracy of

machine learning models over time. By doing this, the online

continuous learning strategy can reduce training time and cost

while a level of training model accuracy can be achieved,

which is particular important to latency sensitive systems.

As an example, the IoT naming system can assist an

autonomous vehicle in finding the resources that it needs.

In such an system, the autonomous vehicle must interact

with drivers or passengers and understand their destination

and goals. This can be achieved through the use of nature

language processing (NLP), which can assist the IoT search

engine in automatically translating a URL from human lan-

guage. Generally speaking, NLP is a technique that can help

computers understand, interpret, and manipulate human lan-

guage [73] through tasks such as translation, summarization,

named entity recognition, relation extraction, speech recogni-

tion, and topic segmentation, among others. Moreover, a vari-

ety of tools have been designed and implemented to carry

out natural language processing, such as spaCy and Nature

Language Toolkit (NLTK) [14], [74]. Meanwhile, multiple

pre-trained models like BERT, Roberta, and GPT-3, among

others act as libraries in spaCy called ‘‘spacy-transformers’’,

which improves the accuracy for NLP [75].

To demonstrate the use of NLP in the IoT search

engine, we return to our smart parking as an example,

as shown in Fig. 5, a vehicle is arriving to its destina-

tion (Micro Center) needs to find a parking lot. Since

the autonomous vehicles are manufactured by different

FIGURE 5. Smart parking.

producers, they might send out the request in unformatted

machine message or leverage the human language directly.

Taking the human language sent by the vehicle as an example,

the vehicle may send a message to gw-03 with the con-

tent, ‘‘available parking lots near Micro Center in 1957E

Joppa Road, Towson MD’’. When gw-03 receives the mes-

sage, it will send it to the NLP module. The NLP mod-

ule will first use a convolutional neural network (CNN)

to classify the geo-location information in this sentence

and ‘‘1957E Joppa Road, Towson, MD’’ will be automat-

ically extracted from the entire sentence. Then, the NLP

module will extract words with noun tagging, which are

‘‘parking lot’’ to match the resource type database located

in the gw-03 storage. When the resource type matches,

the request will be transmitted into a URL Sensor:// Garage@

gw-03.towson.baltimore:JoppaRoad:Public:Parking. Then,

gw-03 will process the request and find an available park-

ing lot between parking-01 and parking-02 based on the

availability of parking spaces. Since the parking01 has more

parking spaces, gw-03 will send URL Sensor://Garage@

gw-03.towson.baltimore:JoppaRoad:Public: Parking-01 to

the vehicle and guide the vehicle to its destination.

C. OTHERS

Other open research problems in IoT search include the stan-

dardization of IoT search policies and protocols, as well as

investigation of security and privacy technologies. Compared

to web-based search, as mentioned above, the applications

that use IoT search engines may be automated, which means

that the interactions between users and IoT search engines are

more likely to be machine-type communications. To this end,

it is critical to develop a standardized application interface

and protocols especially for machine-type communication.

In addition, security and privacy are critical. We have

already seen significant evidence of vulnerabilities in IoT due

in part to the limitation of devices, as well as the lack of

security features in consumer devices [15], [24]. It is imper-

ative that user privacy and information not to be leaked or

exposed by IoT search engines, and that location analysis and

the extraction of search habits be prevented by key security

features in the IoT search engine.

V. CASE STUDY: LSTM-BASED QUERY PREDICTION

As there are numerous open research questions that need

resolution in order to achieve an efficient and intelligent IoT
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search engine. In the following, we present a case study that

applies a specific machine learning technique to enable query

prediction in an IoT search application. Particularly, we will

introduce our approach to predict query volumes in our IoT

search engine framework to provide ahead-of-time query

and result caching. The following discussions includes the

dataset, our workflow, and the detailed steps of our models.

A. DATASET

The data that we consider in this study comes from two pri-

mary sources. First, we utilize free open-source data available

from the Aarhus, Denmark local government and collected

in 2014 [76]. This data provides counts of the numbers of

vehicles in 8 separate parking lots located in Denmark. Sec-

ond, we supplement this data with free open-source data that

we collected from the city of Silver Spring, Maryland, USA.

This data includes the numbers of available parking spaces

in four separate parking garages in the city [77]. Ultimately,

we convert this data to a unified format (available parking

spaces), and use this data as an analog for real IoT search

engine query request volume.

1) SOURCE DATA

In further detail, we note that the Aarhus Dataset has been

used in multiple studies and for various purposes [78], [79].

It is representative of a typical IoT application, for which

users would desire up-to-date, real-time information when

making traveling decisions. At the same time, we note that

the dataset in its original time scale is limited, as half-hour

data publishing is generally not appropriate for real-time

applications.

Considering the data collected from the city of Silver

Spring, Maryland, USA, the data is more frequently pub-

lished and is likewise representative of a realistic IoT appli-

cation. In this case, we can consider the time scale to be

more closely tailored to real-time needs, as the data is pub-

lished every minute. This especially serves commuters, who

would be interested in the availability of parking near their

workplaces.

In transforming this data for our application, we consider

the volume of parking spaces (filled or vacant) as represen-

tative and analogous to the periodic increase and decreased

need for a particular resource. Thus, we analogize the parking

volume to query volume over time, enabling our evaluation of

volume prediction. In addition, we note that the differences in

frequency between datasets allow us to consider diverse needs

of machine/human users in the IoT search engine.

2) PREPROCESSING

Several steps were taken to preprocess the existing datasets,

which are described below.
• First, we deduplicated the data in the Silver Spring

dataset, which was collected at a higher frequency than

the data was generated.

• Second, the Aarhus dataset was converted to the same

format as the Silver Spring dataset. Specifically, the

volume of vehicles in the parking lots were converted to

available spaces (the format of the Silver Spring dataset).

Given that for some lots, there were more vehicles than

spaces (vehicles looking for spaces but unable to find

them), the conversion required that available spaces be

limited to no less than 0.

• Third, the Aarhus dataset was collected every 30 min-

utes, while the Silver Spring data was collected every

1 minute. This required a choice of how to combine

the data for evaluation. In this case, we chose to match

the Aarhus dataset to the Silver Spring time scheme to

provide contrasting data distributions against which to

test.

• Fourth, upon evaluation, the data of the eighth lot in

the Aarhus dataset was of a binary nature, inconsistent

with the other lots in either dataset. For this reason,

we expelled the eighth lot from Aarhus, resulting in

eleven total lots/garages.

• Finally, we can see the data, prior to normalization

in Figure V-A. Note that the first four curves are garages

from the Silver Spring dataset, and the last seven are

from the Aarhus dataset. As the last step of preprocess-

ing, we normalize our data for training our learningmod-

els. After themodels are trained and validated, the output

data must be denormalized to extract the actual values

predicted.

B. WORKFLOW

In developing our Query Engine module, we have followed

a typical data science pipeline of data ingest, preprocessing,

training, validation, and postprocessing. Our work flow is

generic, using Python and Tensorflow, and can be general-

ized to other languages (Java, etc.) and other deep learning

libraries/frameworks (PyTorch, DeepLearning4J, etc.). Data

is ingested from .csv files as dataframes for ease of bulk data

manipulation, before being conversion to numpy arrays for

input into out LSTM model.

Our deep learning model (LSTM) design is generic, and

performance is only moderately tuned, meaning additional

accuracy is achievable. More specifically, the design of the

model should be tailored to a real-world system implementa-

tion based on a number of factors.

• First, the model training of LSTM, as a typical recurrent

neural network (RNN), is computationally expensive

on consumer hardware, generally requiring Graphics

Processing Unit (GPU)/Tensor Processing Unit (TPU)

acceleration. The hardware dedicated to a distributed

hierarchical IoT search engine may be variable, and thus

the number of models trainable and deployable to the

IoT search engine must be determined with a variety

of trade-offs in mind (power consumption, number of

CPUs/GPUs/TPUs and their power, cost, etc.).

• Second, the query space may be potentially unlim-

ited, and thus the need to constrain the number pre-

dicted queries will likely arise. The training of multiple

deep recursive neural networks simultaneously for either
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FIGURE 6. Full dataset.

single value or multi-value prediction makes this prob-

lem prohibitively expensive and complex. To combat

this, we evaluate the prediction of multiple singular

time series as well as the combined prediction of all

time series, the details of which are outlined in the next

subsection.

Training of our LSTMmodels is conducted to convergence,

and accuracy validated. With the model trained, postprocess-

ing extracts the actual prediction values from the normalized

output (i.e., denormalizing occurs) for each individual query.

C. LEARNING MODEL

In this work, we utilize the LSTM as our deep learning

model. The LSTM has been demonstrated to be one of the

top performers in terms of time-series prediction [80]–[105].

This is due to the capacity to retain more information over

time through a combination of forget, input, and output gates

embedded in the LSTM structure. Generalized in Figure 7,

the LSTM structure retains information in the form of cell

states C and hidden states h. The forget (first σ from left

to right), input (second σ and tanh), and output (third σ

and second tanh) gates control what old information is dis-

carded, what new information is inserted, and what is passed

along to the next LSTM unit, respectively. Each of these

gates operate through use of the sigmoid function, which

converts input to a range of 0 to 1, with 0 being unimportant

and 1 being important (i.e., keep). Likewise, the hyperbolic

FIGURE 7. Generalized LSTM structure.

tangent (tanh) acts in a similar manner, converting input to a

range of −1 to 1.

In our learning models, because we are testing several

different network shapes, we note simply that we utilize

typical LSTM RNN structures with few LSTM layers having

approximately 32 units, and a fully-connected dense output

layer to obtain our target output dimensions. This method is

generic, and can be implemented in a variety of languages and

libraries. Our specific implementation uses the Keras LSTM,

which is integrated with Tensorflow 2.

VI. PERFORMANCE EVALUATION OF LSTM-BASED

QUERY PREDICTION

Based on our approach described in Section V, we now

provide the details of our evaluation. We first detail our

15788 VOLUME 9, 2021



W. G. Hatcher et al.: Towards Efficient and Intelligent IoT Search Engine

evaluation methodology (environment, metrics, and evalua-

tion criteria) and then show our results.

A. METHODOLOGY

1) ENVIRONMENT

For our evaluation environment, we are using a single

consumer-grade custom PC/Linux computer with the follow-

ing hardware: AMD Ryzen 5 3600X (6 cores, 12 threads,

3.8/4.4GHz), 32GBRAM (DDR4-3600), RTX 2070 SUPER

(8GB VRAM), and 1000GB NVMe M.2 SSD. Our evalu-

ation environment is running CentOS 8 Linux, and exper-

iments were run in a Jupyter Notebook server running in

docker (Version 19.03.8), with NVIDIA Container Toolkit,

in a custom image built upon the official tensorflow: latest-

gpu-py3-jupyter image. The environment includes Python

3.6.9 and Tensorflow 2.1.0.

We note that our environment is constrained in several

ways in comparison to a fully realized IoT search engine.

Particularly, a real-world IoT search engine environment

would be composed of many heterogeneous servers of vary-

ing computational power, likely much more effective than the

hardware environment used herein. In addition, our goal here

is to demonstrate the viability of interchangeable software

modules in improving and expanding the performance of

an IoT search engine as described. Such modules could be

written in other programming languages or combinations of

languages, run in containers or virtual machines, and could

serve neural network models directly. Given the potential for

multiple cooperative Query Engines, we can safely assume

that a fully realized IoT search architecture would subdivide

available hardware resources for various modules and tasks

in a typical modern micro-service architecture. We thus con-

sider that our evaluation conditions are not so far from reality

as to be irrelevant.

2) METRICS AND CRITERIA

The primary metric of our evaluation is Mean Absolute Error

(MAE). This is a typical evaluation metric for time-series

prediction [103]–[105] that measures the average magnitude

of errors in a set of predictions. MAE can also be used

as the training metric which is improved upon with every

epoch. The formula for MAE is as follows:

MAE =
1

n

n∑

i=1

|yf ,i − yo,i|, (1)

where yf ,i is the i
th forecast, and yo,i is the i

th observation.

That is, |yf ,i−yo,i| is absolute error, and the mean of absolute

error is take over all predictions/observations.

B. RESULTS

We now detail the results of our experiment. In predicting the

query volumes for our simulated IoT search engine, we are

ultimately interested in accurately predicting the volumes

of all queries simultaneously. This is to reduce the load of

maintaining multiple LSTM models, one for each query, and

running them concurrently, consuming significant resources.

Thus, we now detail our various approaches to achieving

prediction of query volume. First, considering quite simplistic

models, we evaluate the training and testing of one model for

each target query. In this case, using the available parking

spaces as the volume, we end up training and validating

11 total LSTM models. We note that these models result in

the lowest error of all models.We hypothesized that providing

multiple queries as inputs for single-output and multi-output

prediction might improve accuracy (i.e., error reduction), due

to interactions between the different queries allowed in the

networks. We instead found that the addition of other queries

as input actually increased the error, as there are no strong

correlations between these data distributions.We note that the

addition of alternative data of a different yet relevant domain

has been shown in the past to increase accuracy, as in the

addition of new data modals for multi-modal learning. These

operate well due to the correlation of the added modals. For

instance, we can improve prediction on some datasets related

to travel or purchasing by adding weather and temperature

conditions, because the activities of people that generated

the datasets will have been hindered by bad weather and

seasonality. In our case, while we found that much of the data

follows similar harmonic variation, this did not translate to

improved performance.

With this result in mind, we must still make the assertion

that training and evaluating one model for each query is

highly inefficient and wasteful. Thus, we need to consider the

training and testing of multiple input data for the simultane-

ous prediction of all queries in the next time step. To achieve

this, we can modify our input shape and our output neurons

to match. Similar to the implementation of prediction over

multiple time steps, we can simultaneously predict multiple

output targets. Ultimately, we implemented first two separate

models to predict our separate datasets that represent queries

in this context, and finally we implemented a single model

to take 11 sequential sets and predict the next datapoint for

each. Note that the ‘‘G’’ represents the Silver Spring dataset,

while the ‘‘J’’ represents the Aarhus dataset.

The results of all of out outputs can be seen in Table 1.

Here, we provide the MAE for training and validation of

our models. Clearly, we encountered significantly higher

error in the Aarhus dataset compared to the Silver Spring

dataset. We can consider that the error we calculate is an

aggregate of all output targets, and thus would approximate

the combination of each individual model. However, we note

that the model with all four inputs/outputs from the Sil-

ver Spring dataset shows higher error in testing than each

of the individual models. Thus, it seems apparent that the

interactions among the models likely contribute to increased

error, instead of reduced error. Ultimately, we must consider

the trade-offs between marginally lower error and computa-

tion time/complexity. In the case of training each individual

model, while a single input model is faster than a multi-input

model, the multi-input model can be run as a single unit when
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FIGURE 8. Individual predictions for queries represented by G31, G57, and G60.

FIGURE 9. Multiple simultaneous predictions for all 11 queries represented by G31-J7. The three figures show three different predictions based on
different time windows (all of length 300). The figure shorten the time window for clarity.

FIGURE 10. Training and validation loss of final model consisting
of 11 simultaneous sequential datasets as input, and 11 output
predictions.

served to a query engine. In contrast, multiple single-input

models (11 in this case) would have to run concurrently to

achieve the same output.

VII. RELATED WORK

In this section, we consider works related to the topics of

IoT search and search engines, as well as generic search and

search engines, and advancements in deep learning.

A. IoT SEARCH AND SEARCH ENGINE

Search engines for IoT and general search of IoT systems

and devices have been considered for some time. However,

TABLE 1. Mean absolute error (MAE) results for training and validation of
neural network models.

research dedicated to framework design and practical imple-

mentation of IoT search systems has been relatively sparse.

For instance, as far back as 2012, Ding et al. [38] proposed

a hybrid search engine framework, which they denoted their

IoT-SVK. Here, SVK stands for Spatial-Temporal, Value-

based, and Keyword-based search conditions. In their frame-

work, they proposed a three-layer architecture of devices,

storage, and indexing. In addition, they provided some

algorithmic optimizations for optimizing search over their

indexing method using various B+- and R- tree struc-

tures. Lunardi et al. [39], in 2015, constructed a different

framework for IoT search, which they named COBASEN

(COntext BAsed Search ENgine), based upon COMPaaS

(Cooperative Middleware Platform as a Service). Their

concept was based around a service-oriented architecture

approach, and was composed of two main constituents: con-

text module and search engine. In their work, they developed

a prototype system, and evaluated its capacity to scale with

device volume.
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Barnaghi and Sheth [40], in 2016, presented a collection

of requirements and challenges to IoT search. The challenges

include the heterogeneity of network interfaces, heterogene-

ity of devices, heterogeneity of data, and many classical

big data challenges (volume, velocity, variety, security, and

automation). The requirements are many, and include fre-

quent updates, machine interpretable structures and queries,

efficiency and scalability in indexing, and search and discov-

ery of distributed resources, among others. Ma and Liu [37],

in 2018, proposed a series of broad IoT search characteristics

and challenges, and observed IoT systems from the per-

spectives of data acquisition, analysis, and utilization. They

also provided two case studies: progressive vehicle search

and progressive person search, which they evaluated using

their developed prototype progressive search system, denoted

PROVINS.

B. QUERY AGGREGATION AND PREDICTION

Research targeting the aggregation of queries and the predic-

tion of queries has been relatively prolific, and have sought

to improve and optimize the performance of search, index,

and storage systems [44], [45], [106]. With respect to query

aggregation, An [44] developed a method for query aggrega-

tion in wireless sensor networks that combines query simpli-

fication and merging. In addition, Sarode and Nandhini [45]

developed adaptive pruning and data aggreagation (APDA)

for query-based wireless sensor networks. Their work seeks

to minimize query response time by establishing Domina-

tor nodes that perform adaptive pruning and aggregation to

perform the task of finding the highest-K values (application

dependent) and source sensor IDs.

There are several types of queries in query process-

ing and aggregation, including location-based query [107],

content-based query [108], and heterogeneous query [109].

Note that the location information of IoT data is impor-

tant and queries to IoT systems could be interested in

data related to certain geographical area. The query can be

content-based if the query should be conducted based on the

data content [110]. Heterogeneous query includes semantic or

ontology-based search and resource or service retrieval [111].

In the case of query prediction, a variety of works have

been proposed, though the topic is not as vibrant. For

instance, Akdere et al. [112] evaluated predictive modeling

techniques for Query Performance Prediction (QPP) on via

support vector machine (SVM) and Kernel Canonical Corre-

lation Analysis (KCCA) on plan-level modeling, and multi-

ple linear regression (MLR) operator-level modeling. Also,

He et al. [113] proposed a web recommendation method

based on sequential query prediction. In their work, they

evaluated N-gram and Variable Markov Models (VMM), and

proposed a Mixture Variable Markov (MVMM) Model as

well.

C. MACHINE LEARNING ON SEQUENTIAL DATA

Significant work has been done in every variety of appli-

cations to apply and improve deep learning. Regarding

time-series prediction specifically, a variety of research has

been conducted. For instance, Song et al. [80] combined

LSTM and Kalman Filter models for air quality predic-

tion, achieving lower RMSE than the representative LSTM

alone. Hajiaghayi and Vahedi [87] utilized LSTM models

prediction and pattern extraction of code failure. In addi-

tion, Shu et al. [82] proposed a multi-LSTM or LSTM-in-

LSTM mechanism for group activity recognition. Denoted

as GLIL (Graph LSTM-In-LSTM), they utilized LSTMs for

person-level activity recognition, which reside in a global

graph LSTM for group-level recognition.

Heryadi and Warnars [84] utilized a variety of CNN and

LSTM models for fraudulent transaction detection through

learning short- and long-term representations of transaction

history. Their data was highly imbalanced, with binary labels

(fraud/not fraud), and their results showed the CNN result

in the best AUC/ROC characteristics and the highest testing

accuracy, while the LSTM and hybrid CNN-LSTM models

achieved the highest training accuracy, despite poorer test-

ing performance. Li et al. [89] utilized LSTM to predict

channel state information, accelerating performance through

the use of stochastic computing. They developed stochastic

implementations for input processing, a universal gate (which

can implement forget, inputs, and output gates), multiplier,

adder, and output processing. In addition, experiments on a

Xilinx FPGA chip platform demonstrate resource consump-

tion of both the traditional and stochastic LSTM implemen-

tations, with the stochastic method consuming significantly

less resources. Li and Lu [85] developed a distributed denial

of service attack detection mechanism based upon LSTM and

Bayes.

Xie and Wen [90] proposed LSTM-MA, an LSTM model

that includes multi-modality and adjacency constraints for

segmentation of human brain MRI images. Their model uses

pixel-wise and super-pixel-wise constraints, and has been

implemented in LSTM and BiLSTM (bidirectional), both of

which demonstrated superior performance over a variety of

traditional algorithms, though other neural network models

were not compared. Jo et al. [88] designed an LSTM imple-

mentation scheme to reduce power consumption. Specifi-

cally, taking the DeepSpeech network as a baseline model,

they selectively implemented the LSTM nodes as strong and

weak in the bidiractional LSTM structure, where strong nodes

use 19-bit fixed point encoding, and weak nodes use 7-bit

fixed point encoding. Kumar and Subha [83] applied LSTM

to predict periods of depression in patient EEG signals.

Akandeh and Salem [81] developed ‘‘slim’’ LSTM model

designs, which require less computational resources through

the implementation of constant gate signals and reduced

adaptive parameters. Likewise, Chakraborty et al. [86]

studied the effect of the number of LSTM cells used to

construct a model on performance in character prediction.

They found that convolutional LSTM models are generally

much more stable (less prone to over-fitting) than traditional

LSTM models, and that the traditional LSTM models they

use clearly begin to overfit at approximately 100 nodes.
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VIII. FINAL REMARKS

In this article, we have considered a generic framework for

the IoT search engine, and studied potential modules that

would improve performance, enabling the IoT search engine

to cope with the massive volume of requests expected from

human andmachine users.We have also proposed the naming

service for IoT search engine, and presented challenges and

potential research directions for designing efficient and intel-

ligent IoT search engine. Further, as a case study, we have

designed the LSTM-based query prediction for improving

the IoT search engine. Particularly, reducing the load caused

by massively replicated equivalent queries can be achieved

through the use of query aggregation in combination with

predictive query execution. To achieve such a query predic-

tion, we have implemented LSTM RNNs to simultaneously

predict multiple queries. While less accurate than individual

networks for each predicted query, simultaneous prediction

reduces computation overhead, while still affording relatively

low error.
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