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Abstract

The Internet of Things (IoT) emerges as a myriad of devices and services that interact
to build complex distributed applications. Interoperability and standardization are im-
perative for the realization of this vision. Machine-to-Machine (M2M) communications
standards provided by the European Telecommunications Standards Institute (ETSI) can
be the middleware that glues together the IoT. However, standards are highly complex
and require a large amount of interpretation, deployments are currently scarce, and per-
formance evaluations are simplistic or speculative, though the envisioned interoperability
can greatly reduce the development and deployment costs. [oT applications are currently
exploiting the growing number of smartphone users as well as the smartphone’s enhanced
connectivity powered by the ubiquity of mobile networks and sensing capabilities. In
mobile M2M communications, smartphones are the natural choice to act as M2M gate-
ways (GWs), working as proxy for nearby devices with constrained resources and limited
connectivity, and used as sensors themselves. However, the use of smartphones as M2M
GWs can have an impact on the smartphone usability and introduce undesirable battery
depletion due to network accesses. From a usability perspective, any additional battery
depletion caused by the GW functionality should remain unnoticed, or nearly so. This
means that transmission of sensor information should be the most energy efficient as
possible. Nevertheless, each transmission can be performed with several different tech-
nologies, each with different power consumption profiles as well as quality of service
guarantees. The work presented throughout this dissertation seeks to characterize, evalu-
ate, and improve the performance of mobile GWs in M2M communications, investigating
the benefits of the interoperability introduced by standards, of the concurrent use of dif-
ferent networks in heterogeneous networks scenarios as well as of the exploitation of
opportunistic transmissions and the use of network coding techniques.

First, as a motivating exploratory experiment, we deploy and evaluate an IoT service
composition with mobile GWs to understand how do current [oT applications perform
using M2M middleware. We design and implement a mobile e-health application on top
of rising standards of the Information and Communication Technology (ICT) infrastruc-
ture: ETSI M2M for interconnecting devices and services, and open Electronic Health
Record (EHR) for data semantics, storing, and making data available. As it plays a key
role in the system, we also report the design, development, and performance evaluation
of an ETSI M2M GW, consisting of an M2M GW Service Capability Layer (GSCL) and
an M2M GW Application (GA), instantiated in a smartphone. We use nearly 480 hours
of data from a pilot in which 10 people were remotely monitored for 3 weeks. We mea-
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sure latency between system components and quantify application protocol overheads to
assess the capabilities and limitations of a standard M2M middleware. Our results show
that, while the latency added by a broker lies around 25 ms, the device-to-final service
latency can exceed 1 second when using cellular networks, becoming a problem for in-
teractive applications. Moreover, we observe that the largest part of the end-to-end (E2E)
latency lies between the GW and the broker, even for different networks, mainly due to
the interface state transition delay.

Second, we present a packet transmission scheduling model that exploits the concur-
rent use of multiple technologies in heterogeneous networks scenarios while guarantee-
ing time requirements. We model the system, including detailed network interface power
consumption and latency, using linear programming (LP), thus building a useful tool for
analyzing and comparing network performance under different configurations. The model
allows to understand the factors that might cause a network to become more competitive,
or to assess the impact of modifications in the network interface performance. For a given
set of packets to be transmitted and a given set of networks available, the model decides
the best scheduling according to a cost function and ensuring that no deadline is missed.
Additionally, this model can be used to inform packet scheduling heuristics that improve
the usability of smartphone GWs. We use a set of relevant features to characterize the
optimal scheduling decisions when the objective is to minimize the energy consumption
in order to devise a packet transmission heuristic. This heuristic has far less complexity
than the model, generating solutions in polynomial time. Schedules obtained from the
heuristic show similarities to the energy-optimal schedules obtained from the model with
respect to the packet allocation and the network interfaces state behavior. For a wide set
of different scenarios, on average, schedules obtained from the energy minimization prob-
lem can reduce the energy consumption in 7% when compared to Earliest Deadline First
(EDF) schedules, and reduce nearly 3% when compared to schedules from an energy-
aware heuristic based on EDF, thus allowing smartphones to achieve longer battery life.
The trade-off is an increase of the packet waiting time. Our heuristic that takes into con-
sideration the knowledge obtained from the model is outperformed by only 0.03% by the
energy-optimal decisions, but it runs considerably faster.

Lastly, mechanisms that can cope with unreliable wireless channels in an efficient
manner can be crucial for resource constrained GWs. Concurrent use of technologies is
instrumental towards improving services to mobile devices in heterogeneous networks.
We develop an optimization framework to generate channel-aware transmission policies
for multi-homed devices under different cost criteria. Our formulation considers network
coding as a key technique that simplifies load allocation across multiple channels and pro-
vides high resiliency under time-varying channel conditions. We explore the parameter
space and identify the operating regions where dynamic coded policies offer most im-
provement over static ones in terms of energy consumption and channel utilization. We
leverage meta-heuristics to find different local optima, while also tracking the intermedi-
ate solutions to map operating regions with gains above 3 dB and 5 dB. Our results show a
large set of relevant configurations where high resource usage efficiency can be obtained
with the proposed transmission mechanisms.



Keywords: Internet of Things (IoT), Machine-to-Machine (M2M) communications,
Mobile gateways (GWs), Heterogeneous Networks, Multi-homing, Wireless networks,
Resource usage efficiency, Smartphones, Network Coding, E-health, Heuristics, Trans-
mission scheduling, System modeling, System performance.






Resumo

A Internet das Coisas (IoT) emerge como um grande nimero de dispositivos e servigcos
que interagem de forma a construir complexas aplica¢des distribuidas. Interoperabili-
dade e standardizacdo sdo imperativas para a realizacdo desta visdo. Standards de co-
municagdes Mdquina-a-Maquina (M2M) fornecidos pelo European Telecommunications
Standards Institute (ETSI) podem ser a camada que liga a IoT. No entanto, standards sdo
extremamente complexos e requerem uma grande quantidade de interpretacdo, implemen-
tacdes sdo escassas, e avaliagdes de desempenho sdo simples ou especulativas, apesar da
interoperabilidade prevista poder reduzir enormemente os custos de desenvolvimento e
implementagdo. Aplicagdes IoT estdo atualmente a explorar o niimero crescente de uti-
lizadores de telemdvel, assim como a conectividade aumentada dos telemdveis potenciada
pela ubiquidade das redes moveis, e as capacidades sensoriais. Nas comunicacdes M2M
moveis, smartphones sdo a escolha natural para atuarem como gateways (GWs) M2M,
funcionando como representante (proxy) para dispositivos nas imediagdes que tenham
recursos restritos, e usados eles préprios como sensores. No entanto, o uso de smart-
phones como GWs M2M pode ter um impacto na usabilidade do smartphone e introduzir
consumo de bateria indesejavel devido aos acessos de rede. Numa perspetiva de usabili-
dade, qualquer consumo de bateria adicional causado pela funcionalidade de GW deveria
passar despercebido. Isto significa que a transmissdo de informacgdo de sensores deve-
ria ser o mais energeticamente eficiente possivel. De qualquer forma, cada transmissao
pode ser feita usando vérias tecnologias diferentes, cada uma com diferentes perfis de
poténcia usada assim como diferentes garantias de qualidade de servigo. O trabalho apre-
sentado ao longo desta dissertacdo procura caracterizar, avaliar e melhorar o desempenho
de GWs moveis em comunicacdes M2M, investigando os beneficios da interoperabilidade
introduzida pelos standards, o uso concorrente de diferentes redes em cendrios de redes
heterogéneas, assim como a exploragdo de transmissdes oportunisticas e o uso de técnicas
de codificacdo em rede.

Primeiro, implementamos e avaliamos experimentalmente uma composi¢ao de servi-
cos IoT com GWs méveis para compreender qual o desempenho das atuais aplicacdes
IoT usando a camada M2M. Projetamos e implementamos uma aplicacdo mével de saide
eletrénica no topo de standards em ascensdo da infraestrutura de Tecnologias de Infor-
macao e Comunicacdo (ICT): ETSI M2M para interconectar dispositivos € servi¢os € o
registo eletrénico de satide (EHR) aberto para a semantica, armazenamento e exposi¢ao
dos dados disponiveis. Como é uma parte fundamental do sistema, também descreve-
mos o desenho, desenvolvimento e avaliacdo do desempenho duma GW ETSI M2M,
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consistindo numa camada de capacidade de servico GW (GSCL) e numa aplicacio GW
M2M (GA), instanciada num smartphone. Usamos aproximadamente 480 horas de dados
dum piloto no qual monitorizdmos 10 pessoas durante 3 semanas. Medimos a laténcia
entre componentes do sistema e quantificamos os overheads do protocolo de aplicagdo
para avaliar as capacidade e limitacdes duma camada standard M2M. Os nossos resul-
tados mostram que, enquanto a laténcia adicionada por um broker ronda os 25 ms, a
laténcia entre dispositivo e servico final pode exceder 1 segundo quando redes celulares
sdo usadas, o que se torna um problema para aplicac¢des interativas. Para além disso, ob-
servamos que a maior parte da laténcia ponta-a-ponta (E2E) reside entre a GW e o broker,
mesmo para diferentes redes, devido principalmente ao atraso da transi¢dao de estado da
interface.

Em segundo lugar, apresentamos um modelo de escalonamento de transmissdo de
pacotes que explora o uso concorrente de multiplas tecnologias em cenérios de redes het-
erogéneas enquanto garante requisitos de tempo. Modelamos o sistema, incluindo con-
sumo de poténcia e laténcia detalhados das interfaces de rede, usando programagao linear
(LP), de forma a construir uma ferramenta util para a andlise e comparacdo do desem-
penho de redes com diferentes configuragdes. Esta ferramenta permite compreender os
fatores que podem levar uma rede a tornar-se mais competitiva, ou verificar o impacto de
modificacdes no desempenho da interface de rede. Para um conjunto de pacotes a serem
transmitidos e um conjunto de redes disponiveis, o modelo decide o melhor escalona-
mento de acordo com uma funcdo de custo e assegurando que nenhum prazo de entrega
¢ falhado. Adicionalmente, este modelo pode ser usado para construir heuristicas de
escalonamento de pacotes que melhoram a usabilidade de GWs em smartphones. Usamos
um conjunto de caracteristicas relevantes para caracterizar as decisdes de escalonamento
6timas quando o objetivo € minimizar o consumo de energia de forma a arquitetar uma
heuristica de escalonamento de pacotes. Esta heuristica tem uma muito menor complex-
idade que o modelo, gerando solu¢des em tempo polinomial. Escalonamentos obtidos
da heuristica mostram semelhancas aos escalonamentos 6ptimos obtidos do modelo em
relacdo a alocagdo de pacotes e ao comportamento do estado da interface de rede. Para
um largo conjunto de cendrios, em média, escalonamentos obtidos do problema de mini-
mizacdo de energia podem reduzir o consumo de energia em 7% quando comparados com
escalonamentos "primeiro o prazo de entrega mais proximo" (EDF) e reduzir quase 3%
quando comparado com escalonamentos duma heuristica baseada em EDF mas ciente do
consumo de energia. Por isso, permitindo os smartphones utilizarem a bateria por perio-
dos mais longos sem carregamento. Em troca, hd um aumento do tempo de espera dos
pacotes. A nossa heuristica que tem em consideracdo o conhecimento obtido do modelo
¢ superada apenas por 0.03% pelo 6timo, mas corre muito mais rapidamente.

Por dltimo, mecanismos que podem lidar com canais sem-fios instdveis de uma forma
eficiente podem ser cruciais para GWs com recursos limitados. O uso concorrente de
multiplas tecnologias de comunicacdo € instrumental para melhorar servicos em dis-
positivos moéveis em cendrios de redes heterogéneas. Desenvolvemos uma estrutura de
otimizacao para gerar politicas de transmissdo, que tém em conta os estados dos canais,
para dispositivos sob diferentes critérios de custo. A nossa formulacdo considera codifi-
cacdo em rede como uma técnica fundamental que simplifica a alocagdo de carga ao longo
de multiplos canais e fornece alta resiliéncia sob condi¢cdes de canal varidveis ao longo
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do tempo. Exploramos o espago de parametros e identificamos as regides de operacao
onde politicas de codificacdo dinamicas oferecem o melhor em termos de consumo de en-
ergia e utilizacdo de canal em comparacdo com politicas estdticas. Fomentamos o uso de
meta-heuristicas para encontrar diferentes 6timos locais, enquanto procuramos solugdes
intermédias para mapear regioes de operacdo com ganhos acima de 3 db e 5 db. Os nossos
resultados revelam um largo espectro de configuracdes relevantes onde uma alta eficiéncia
do uso de recursos pode ser obtida com 0s mecanismos de transmissao propostos.

Palavras-chave: Internet das Coisas (IoT), Comunica¢des Maquina-a-Méquina (M2M),
Gateways (GWs) moveis, Redes heterogéneas, Multi-homing, Redes sem-fios, Eficiéncia
do uso de recursos, Smartphones, Codificacdo em rede, Sadde eletronica, Heuristicas,
Escalonamento de transmissdo, Modelacao de sistema, Desempenho de sistema.
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Chapter 1

Introduction

1.1 Motivation

Machine-to-Machine (M2M) communications describe mechanisms, algorithms, and tech-
nologies that enable networked devices, wireless and/or wired, and services to exchange
information or control data seamlessly, with reduced to none explicit human intervention.
In this context, a machine is a device or piece of software, as opposed to a human [PA14].
M2M communications are expected to revolutionize telecommunication operators’
business due to the emergence of new networked applications, which will attract new
clients and increase the data flowing in their networks, creating more billing opportuni-
ties. Recently, several Internet of Things (IoT) services are rising using M2M to connect
devices. Perhaps the most known examples for IoT/M2M are e-health, intelligent trans-
portation systems, smart grids, smart home, and smart city [ETS13c, ETS13b, ZYXT11,
FHK14, CDBNO09]. The IoT with its unlimited range of applications that rely on every-
day objects becoming intelligent connected devices is a major driver for M2M applica-
tions [GIMA10]. The National Intelligence Council foresees that food packages, furni-
ture, and even paper documents can be Internet nodes by 2025 [NCIO8]. IDC envisions
212 billion "things" by the end of 2020, where 30 billion are expected to be connected au-
tonomously [IDC13]. Ericsson forecasts say that nearly 29 billion connected things will
be in use worldwide in 2022, of which around 18 billion will be related to IoT [Eril6].
Mobile M2M communications will certainly play a significant role in the M2M ecosys-
tem. The Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update es-
timates that in 2013 mobile M2M communications represented 1% of all mobile data with
4.9% of all connected devices, and by 2018 mobile M2M communications will represent

6% of all mobile data with 19.7% of all connected devices [Cis14].
Key challenges in mobile M2M will be the support of a large variety and diversity of
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devices, most of them with resource constraints (energy, bandwidth, memory, processing,
etc.), and the traffic volume and traffic pattern they generate. M2M traffic differs from
Human-to-Machine (H2M) or Human-to-Human (H2H) by the large number of short
payload transactions [DHVV12]. The uplink traffic will be dominant in the first since
M2M devices will rather be data generators, data resulted from monitoring or sensing
application, than data consumers. Furthermore, downlink traffic in M2M is expected to
be mainly actuation commands, typically few and short when compared to sensing data.
The communication model in H2H is predominately request-response, while for M2M it
is expected a partition between request-response and publish-subscribe.

The current demand for standardization, where products have their integration with
current technologies or infrastructures guaranteed, allows hardware and software man-
ufacturers to concentrate in developing new products and improve their performance.
Furthermore, standardization can foster the acceptance and deployment of IoT applica-
tions, attaining the interoperability among devices and services outside application silos,
while avoiding market fragmentation. By using common building blocks and network re-
sources, mobile systems can reduce costs and data redundancy using standardized M2M
communications. The European Telecommunications Standards Institute (ETSI) M2M
architecture [ETS13e] was the leading vision for global, end-to-end (E2E), standardized
M2M communications, and has been adopted by oneM2M for evolving into a worldwide
standard [oned]. However, interpretation, implementation, and evaluation of standards is
a cumbersome task.

A promising use case for mobile M2M communications is its application in healthcare
for remote monitoring of patient vital signs, e.g., activity level, blood pressure, heart rate,
temperature, either for ambulatory monitoring of chronic conditions, or for prophylac-
tic reasons, in order to minimize the number of visits to the doctor [ETS13b, MPZ"13].
In the latter scenario, there are wearable sensors that continuously collect physiologic
information and send it to a remote service to be processed and acted upon. Mobile
e-health is a perfect use case for analysis because available solutions tend to be propri-
etary. This leads to closed and inefficient vertical silos that have difficulty in scaling
and cause dispersion due to the impossibility to share resources [WTJT11, UAH'12].
Interoperability and standardization are key for general recognition and acceptance of
e-health [SEM13, KN10, CCVMF'07].

On the other hand, the sensing and connectivity capabilities of smartphones and their
pervasiveness in people’s lives make them critical pieces of this IoT and future applica-
tions. Besides that, smartphones are less resource constrained than specialized sensors.
Although M2M communications have been thoroughly addressed for healthcare applica-
tions [Che12, DHJIT ™10, MPZ " 13, FHK 14, JMC13], most of the literature for healthcare
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still focus on Body Area Networks (BANs) of sensors, and do not explore scenarios en-
hanced by the use of smartphones. In mobile M2M communications, smartphones are
the natural choice to act as M2M gateways (GWs) [PA14]. They are equipped with wide
environment and context sensors, as well as with multiple personal, local, and wide area
communication capabilities, namely Near Field Communication (NFC), Bluetooth (BT),
Zigbee is expected in the near future, Wi-Fi, and several cellular technologies. They will
likely be used as sensors themselves and as data relays or proxies for other nearby devices
with more limited connectivity like health sensors in a personal area network [Chel2] or
domotic sensors and actuators in a home automation environment [ZYX"11]. The use
of smartphones for transmission of sensing data, their own or relayed, can lead to faster
battery depletion, undesirable for the users as they use their smartphones mainly for other
purposes such as phone calls, Short Message Service (SMS), Web browsing, or social
networking. Therefore, an assessment of the impact of using smartphones as M2M GWs
is called for.

Transmission frequency and data time-requirements can play a key role in the smart-
phone’s battery consumption and the number of battery recharges necessary. For the user,
it might be desirable to recharge the smartphone only during the night when the smart-
phone is no longer needed, which means that the collection, processing and forwarding of
data should not exceed a certain amount of energy consumption during the day, in order
for the battery to last at least 12 h, e.g., from 08:00 to 20:00. Several studies have been
conducted on recharge patterns [FDK11, BRCT07, TSLX14, RQZO07]. Battery recharges
are triggered either by the current battery level, or by the context, which includes location
and time of day. Users that recharge battery based on battery levels notice differences
in the recharging cycle of the phones, and tend to be irritated by the increase of energy
consumption [TSLX14]. In [PA14], we observed that different transmissions frequencies
could lead to considerable differences in the battery life. We showed that frequent trans-
missions of small size data can have an undesired effect in the expected depletion time of
a smartphone’s battery in mobile M2M communications. Maximizing the collection of
data necessary to be forwarded from nearby sensors and maximizing the intervals between
transmissions should be imperative for the use of smartphones as M2M GWs. However,
IoT applications have time-requirements that need to be met, and certain transmission fre-
quencies might be required. More research is required to devise energy efficient transmis-
sion mechanisms that enable the use of smartphones as mobile GWs. Techniques such as
transmission scheduling or the concurrent use of technologies leveraging heterogeneous
networks can enhance smartphones’ capabilities acting as GWs while easing their energy

consumption problems.
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1.2 Research Questions

The paradigm shift introduced by standardized M2M communications and IoT applica-
tions as well as the use of smartphones as M2M GWs lead to new research questions.
Overall, this work seeks to study and improve the feasibility and the resource usage ef-
ficiency in multi-homed smartphones as mobile M2M GWs. The research questions that

we seek to answer in this work can be formulated as follows:

1. What is the performance of current IoT applications settled in state-of-the-art stan-
dards with mobile GWs?

2. What improvements can packet transmission scheduling bring to multi-homed GW's

in 10T applications?

3. When are network coding based dynamic techniques beneficial for multi-homed

GWs in loT applications?

First, we focus on the experimental evaluation of an IoT service composition with
mobile GWs to analyze the system performance, capabilities, and limitations, specially
under volatile environments as experienced when using mobile networks. We need to
design and implement the system and understand what impact does M2M traffic introduce
in common smartphones as M2M GWs and what Quality of Service (QoS) requirements
can be fulfilled.

To answer the second research question, we first seek to model packet transmission
scheduling in current wireless network interfaces. This includes detailed network in-
terface power consumption and latency. We evaluate the performance and the possible
improvements that different transmission scheduling can bring to multi-homed GWs in

IoT applications.

Our last research question seeks to understand if, and under which conditions, network
coding based dynamic techniques can be a useful technique to provide further efficiency
in multi-homed GWs. For that, we seek to devise an optimization framework that can
fully exploit the use of network coding, and we compare the performance of dynamic
policies with the performance of static ones. We also seek to find efficient ways to explore
the parameter space of the framework and search regions of the highest resource usage

efficiency gains.
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1.3 Contributions

This dissertation focus on resource usage efficiency in IoT applications with mobile GWs
exploiting heterogeneous networks or simultaneous communication routes. Our inital
results, presented in Section 2.3.3 and in [PRP"16], show that, although M2M com-
munications can increase efficiency when using several IoT applications thanks to the
interoperability of the standardization efforts, smartphones as M2M GW can introduce
undesirable battery depletion under certain conditions, becoming unfeasible in terms of
a normal depletion time, and thus additional improvements or techniques are necessary
to achieve longer battery life. On the other hand, as IoT applications provide QoS to
guarantee that data meets specific service requirements like deadline, there is a trade-off
between energy consumption and time.

Real performance of M2M standards with respect to a QoS evaluation in a context
of IoT applications, to the best of our knowledge, is not present in literature. We start
by designing and implementing an e-health mobile IoT application, which consists of
several M2M entities. We deploy the system and evaluate its performance using a mobile
pilot with 10 people during 3 weeks. We quantify overheads introduced by M2M and
perform a comprehensive characterization of the E2E latency in wireless environments

under mobility. This work have been peer-reviewed and published at:

e [PA14] C. Pereira and A. Aguiar. Towards efficient mobile m2m communications:
Survey and open challenges. Sensors 14(10):19582—-19608, October 2014;

e [PFB'14] C. Pereira, S. Frade, P. Brandio, R. Correia, and A. Aguiar. Integrating
data and network standards into an interoperable e-health solution. In 2014 IEEE
16th International Conference on e-Health Networking, Applications and Services
(Healthcom), pages 99—104, October 2014;

e [PRP"16] C. Pereira, J. Rodrigues, A. Pinto, P. Rocha, F. Santiago, J. Sousa, and
A. Aguiar. Smartphones as m2m gateways in smart cities iot applications. In 2016

23rd International Conference on Telecommunications (ICT), pages 184—190, May
2016;

e [PPR'16] C. Pereira, A. Pinto, P. Rocha, F. Santiago, J. Sousa, and A. Aguiar. Tot
interoperability for actuating applications through standardised m2m communica-
tions. In 2016 IEEE 17th International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), pages 1-6, June 2016;
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e [PPFA17] C. Pereira, A. Pinto, D. Ferreira, and A. Aguiar. Experimental char-
acterization of mobile iot application latency. [EEE Internet of Things Journal,
4(4):1082-1094, August 2017.

We model packet transmissions in Linear Programming (LP) to assess what improve-
ments could packet transmission scheduling contribute to M2M GWs. We explore the
multi-homing capability of current mobile devices and leverage the concurrent use of dif-
ferent network interfaces in heterogeneous networks scenarios. This model also allows
to understand the factors that might cause a wireless network to become more competi-
tive, or to analyze the impact of modifications in the network interface performance. By
taking into consideration the knowledge obtained from the model, we design a energy-
aware heuristic that simplifies the decision process of packet scheduling and we compare
its performance and behavior to the optimal scheduling. We evaluate the performance
and trade-offs of different scheduling schemes with respect to energy consumption and
time-related metrics, namely, packet waiting time, packet slack time, and execution time.

A part of this work have been peer-reviewed and published at:

e [PA17b] C. Pereira and A. Aguiar. Modelling and optimisation of packet transmis-
sion scheduling in m2m communications. In 2017 IEEE International Conference
on Communications Workshops (ICC Workshops), pages 576-582, May 2017,

and an extended version is currently under revision at:

e [PA17a] C. Pereira and A. Aguiar. Energy-aware scheduling for mobile iot gate-

ways on heterogeneous networks. IEEE Internet of Things Journal.

Finally, we research other techniques and mechanisms that can add efficiency. We
devise a framework that considers network coding as a key technique that simplifies load
allocation across multiple channels and provides high resiliency under time-varying chan-
nel conditions. We assess the advantages of resource allocation policies that dynamically
adapt the fraction of offered load to be transmitted on each interface, and we explore
the parameter space using meta-heuristics to search the operation regions of resource us-
age efficiency gains. Thus, finding when network coding based dynamic techniques are
beneficial for multi-homed mobile IoT GWs. This work have been peer-reviewed and
published at:

e [PALI13]C. Pereira, A. Aguiar, and D.E. Lucani. Dynamic load allocation for multi-
homing via coded packets. In 2013 IEEE 77th Vehicular Technology Conference
(VTC Spring), pages 1-5, June 2013;
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e [PAL16] C. Pereira, A. Aguiar, and D. E. Lucani. When are network coding based
dynamic multi-homing techniques beneficial? Computer Networks, 108(C):55-65,
October 2016.

In summary, the main contributions of this dissertation are the following:

e (1: Design, implementation and evaluation of an e-health mobile IoT application

settled on M2M communications;

e (C2: Model, optimization, and evaluation of packet transmissions scheduling in LP
to improve smartphone usability as M2M GWs. Design of a heuristic that approxi-
mates optimal packet scheduling. Evaluation of the performance of different trans-

mission scheduling;

e (3: Devisal of a framework that considers network coding in order to simplify load
allocation across multiple channels. Assessment of the advantages of dynamic re-
source allocation policies. Exploration of the parameter space using meta-heuristics

to search the regions of highest resource usage efficiency gains.

1.4 Organization

The remaining of this dissertation is organized as follows. Chapter 2 presents an overview
of IoT and M2M communications. We focus our literature review on wireless and cel-
lular networks, ETSI M2M standards, as well as the resource usage efficiency problem,
to address the main concerns of this work. The design and evaluation of the mobile
IoT application settled on ETSI M2M is presented in Chapter 3. Chapter 4 contains the
modeling and heuristic design of packet transmission scheduling. Chapter 5 presents the
framework using network coding. Finally, Chapter 6 presents the main conclusions of

this dissertation, and discusses several research lines that can be pursued in the future.






Chapter 2

IoT and M2M communications

2.1 Services in IoT

Services are a main building block of IoT. Recently, several IoT applications appeared
using M2M as a key enabler to connect devices. Some examples are e-health [FHK 14,
Chel2, ETS13b, KLAT14], intelligent transportation systems [GLPL14, YDWX12], smart
grids [YQST13], smart home [ARA12, KPP14], and smart city [CDBNO09]. E-health aims
to monitor and track patients/users by means of sensors, where personal data is collected
and remotely analyzed by medical or processing centers. Intelligent transportation sys-
tems, or vehicular telematics, aim for efficiency and safety of the transportation systems.
They rely on devices in the vehicle, and the monitoring and security systems. The aim
of smart grids is to leverage telemetry and increase the energy efficiency of house and
buildings, while connecting billions of metering devices that collect and monitor the en-
ergy consumption, allowing its management. Smart home appliances can be monitored
and actuated upon using smart home services. Heating devices, televisions, etc., can be
shut on or off according to the users will. Finally, smart city is a concept from the service
ubiquity to improve the quality of life in the city.

E-health services include, among others, ambient assisted living for aging and in-
capacitated individuals [SBMAVJ13, PUt" 14], detection of allergies and fatal adverse
drug reaction [JBA'10], or children’s health awareness by tracking their daily activi-
ties [VBNCNH ™ 12]. Other e-health concept frameworks for collection and interoperation
exist [XXC* 14, AFBC14, MS10]. In [JZS12, DBN14, MLC14, CADM*15, YXM ™ 14],
GWs are used to interact with personal clinical devices, collecting and transmitting sig-
nals. For example, in [YXM™14] an intelligent medicine box (iMedBox) acts as a GW,
with several connection possibilities and capable of connecting to various wearable sen-

sors. It sends data to a cloud, enabling clinical diagnosis, while the GW itself can analyze

9
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and display all collected data.

The combination of smartphones and the ubiquity and availability of cellular networks
are driving IoT applications. Mobile phones have acquired powerful capabilities, in terms
of connectivity, battery, memory, and processing, and they are becoming an important
platform for the proliferation of health-related applications [BWTJ11]. Several applica-
tions have been proposed for tracking health-related information, e.g., heart rate, blood
pressure, blood oxygen saturation, stress levels, detection of asthma, chronic obstructive
pulmonary disease, cystic fibrosis, coughing, allergic rhinitis, nose-related symptoms of
the respiratory tract, melanoma, and the analysis of wounds in advanced diabetes pa-
tients [RIKHK " 15], or for encouraging physical activity [CKM™08]. For example, the
eCAALY X mobile application [BWTJ11] aims at building remote monitoring for senior
citizens with multiple chronic diseases. The mobile application acts as intermediary be-
tween the wearable health sensors and the healthcare facility’s Internet site by transmitting
the health-related measurements and position, or potential alerts.

Those applications keep using proprietary and closed solutions, neglecting the pos-
sible positive effects that standardization could bring to the commercialization of such
applications. Current services and applications abstract standards, either M2M or health-
related. Although some provide E2E interoperation, the lack of using known standards

reduce the possibilities for integration with other systems.

2.2 Challenges in mobile M2M communications

Mobile M2M communications face many technical challenges despite the promising ben-
efits in terms of revenue opportunities and cost reductions in maintenance and resources
[Hat]. Many challenges are introduced by M2M devices, which are usually constrained
in, among others, energy, bandwidth, or processing and memory capabilities [ZYX " 11].
The potential booming of M2M applications can exponentially increase the number and
diversity of devices and traffic in the next years, which shall introduce further challenges
to communications as it will be necessary to support both legacy and new services and
devices. Traffic volume and pattern envisioned for M2M demands for capacity planning.
The superposition of Human-based traffic with M2M traffic can expose network limita-
tions in terms of the maximum capacity of network.

Current mobile M2M communications research focuses on performance evaluation
and improvement, either in terms of latency or resource usage efficiency. In this section,
we survey relevant literature and structure current research areas. Table 2.1 summarizes

the main contributions of the literature presented here.
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Table 2.1: Summary of survey of literature and challenges.

Contributions Reference
Human-based vs. M2M Communications Lien et al. [LCL11], Laya et al. [LAAZ14]
Technical Challenges Wu et al. [WTIT11], Zhang et al. [ZYX " 11], Chen [Chel2], Lien et al. [LCL11]
Requirements Lu et al. [LLL"11], Zhang et al. [ZYX " 11], Lien et al. [LCL11]
Chen [Chel2], Dawson-Haggerty [DHJT " 10], Marwat et al. [MPZ " 13],
Healthcare
Fan et al. [FHK14], Jung et al. [JMC13], Kartsakli er al. [KLA™14]
Smart city Caragliu et al. [CDBN09]
Applications Smart grids Yan et al. [YQSTI13]
Smart home Alam et al. [ARA12], Komninos et al. [KPP14]
. Booysen et al. [BGZR12], Plass et al. [PBH12],
Telematics
Gerla et al. [GLPL14], Yongfu et al. [YDWX12]
Mobility Booysen et al. [BGZR12], Lee et al. [LCG12], Kellokoski ef al. [KKNH12]
Interference Costantino et al. [CBCM12]
Performance Evaluation QoS provision Marwat et al. [MPZ*13]
Throughput Marwat ef al. [MPZ"13]
Access Delay Lien et al. [LLKC12], Gallego et al. [VGAZA13]
Energy Efficiency Gallego et al. [VGAZA13]
Channel Access
Latency Zhou et al. [ZNKB12]
QoS provision Zhang et al. [ZYX T 11]
o . Latency Yunoki et al. [YTL12]
Transmission Scheduling
Schemes Power Consumption Paulset et al. [PKNT13]
Delay Lo et al. [LLJ13]
Data Aggregation Packet Collisions Matamoros et al. [MAH12]
Throughput Lo et al. [LLJ13]
Mobile M2M GW Wu et al. [WTJ*11], Zhang et al.[ZYX 1 11]

2.2.1 M2M Traffic

It is important to distinguish mobile M2M communications from mobile Human-based
(H2H or H2M) communications. Small and infrequent data transmissions will be more
common in M2M [LCL11, LAAZ14], and thus the knowledge developed for Human-
based traffic, which is mostly bursty (web browsing), bulky (file transfer), or constant or
variable bit rate streams (Voice over Internet Protocol (VoIP) or video) can be difficult
to apply directly to M2M. Laya et al. [LAAZ14] mention that M2M and Human-based
traffic differ further in traffic direction, since M2M traffic direction will be mainly uplink,
while Human-based traffic is either balanced or mainly downlink. M2M applications will
be duty-cycled and should have very short connection delay to guarantee fast access to
the network when waken up, while Human-based applications tolerate longer connec-
tion delays but are very demanding once connections are established [LAAZ14]. M2M

applications might require very high priority with a detailed level of granularity due to
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the transmission of critical information, whereas priority for Human-based applications is
mainly among applications for each user and not between different users [LAAZ14]. Fi-
nally, M2M will have higher number of devices and may be required to operate for years

or decades without maintenance, but users can recharge/replace batteries [LAAZ14].

2.2.2 M2M Support in Wireless Networks

M2M devices using radio technologies will face well-known problems from wireless and
cellular networks. Potential issues on the air interface including channel interference,
channel quality fluctuation, and noise will be very common due to the multitude of de-
vices and the characteristics of M2M traffic [ZYX 11, LCL11], and they can introduce
coordination problems in the medium access. According to Lu et al. [LLL"11], relia-
bility is critical for general acceptance of M2M, since unreliable processing, sensing, or
transmission leads to false or lost data, and ultimately to M2M communications’ fail-
ure from the user’s perspective. Although E2E service reliability is being addressed by
standardization efforts, it is still a challenge.

As the number of devices competing for the same channel increases, the number of
simultaneous accesses will increase, and packet collisions, and signal interference in gen-
eral, will be more common and result in more packet/data loss. Optimizing the uplink
channel access and radio resource allocation is a way to achieve further improvement
in performance and resource usage efficiency, avoiding constant transmission deferrals
originated from the packet collision avoidance mechanisms and data loss originated from
packet collisions, or providing general QoS guarantees. Gallego et al. [VGAZA13] in-
troduce contention-based Medium Access Control (MAC) protocols for sensor-to-GW
communications in wireless M2M, and analyze them in terms of latency and energy ef-
ficiency. The authors consider an M2M wireless network composed of a large number
of devices that periodically wake up their radio interfaces to transmit data to a coordina-
tor, that is, to a GW. Zhang et al. [ZYX ' 11] propose a joint rate and admission control
scheme for QoS provision in M2M communications, using an Institute of Electrical and
Electronics Engineers (IEEE) 802.11 network, by exploiting heterogeneous networks and
accurate predictions of QoS. Wireless networks usually use solely collision avoidance
mechanisms, which introduce well-known problems, such as the hidden node problem
or the exposed node problem, that other networks do not face, such as cellular networks.
Further work needs to be carried using wireless networks in order to take advantage of
the high data rate and low latency common in those networks.

Techniques that efficiently aggregate the data to be transmitted can be explored to fur-

ther optimize bandwidth utilization and energy consumption in M2M communications.
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Two data aggregation schemes based on the Karhunen-Loeve transform for M2M in a
wireless network are proposed by Matamoros et al. [MAH12]. Their system includes
several sensors, one GW, and one application server. The sensors transmit the data to
the GW, which transmits all the data to the application server. While GW-to-application
server communications use a reservation-based MAC protocol, the sensor-to-GW com-
munications use a contention-based MAC scheme and, thus, packet collisions may occur.
They determine the optimal duration of the sensor-to-GW and GW-to-server transmission
phases, in such a way that the best trade-off between the number of packet collisions and

compression level from data aggregation is attained.

2.2.3 M2M Support in Cellular Networks

Nowadays, cellular networks offer wide coverage areas, high data rate, and decreasing
latency. Therefore, they are a key enabler of M2M communications. The challenges
associated with mass-scale M2M networks can be resumed to the multitude and diversity
of devices, the scalable connectivity, and supporting of both legacy and new services and
devices [WTJ"11]. Marwat et al. [MPZ" 13] argue that, even in the presence of regular
Long Term Evolution (LTE) traffic, mobile M2M traffic cannot be considered negligible,
and it can have a dramatic impact on the LTE network performance in terms of QoS and
throughput.

Costantino et al. [CBCM12] evaluate the performance of an LTE GW using the Con-
strained Application Protocol (CoAP) and representative M2M traffic patterns and net-
work configurations through simulations. The authors argue that traffic patterns depend
very much on the single application considered, and, therefore, do not describe or jus-
tify their choices. The scenario consists of a single LTE cell where the evolved NodeB
(eNB), the only mandatory node in the radio access network (RAN), serves one LTE
M2M GW and a variable number of terminals with traditional Internet traffic, called H2H
User Equipments (UEs). The LTE M2M GW, in turn, serves a variable number of smart
objects. The results showed that LTE is sensitive to both intra-UE and inter-UE signal in-
terference, which results in a high latency or packet loss when the number of smart objects
served is greater than a few tens or the cell throughput approaches its limits. Tesanovic
et al. [TBCO12] describe algorithms for device management to mitigate interference and
device co-existence in LTE.

Similar to wireless networks, M2M communications for cellular networks can benefit
from improvements on channel access or by introducing data aggregation techniques. A
contention based uplink channel access for M2M in an LTE network is proposed by Zhou

et al. [ZNKB12]. With contention based access, UEs select resources randomly without
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indications from eNB, which saves signaling overhead and, hence, latency is reduced.
Simulation results showed that a network coordinated random access stabilization scheme
used to control the expected number of simultaneous access to a common random access
channel (RACH) can effectively improve the access delay in LTE-Advanced [LLKC12].

Lo et al. [LLJ13] study the impact of data aggregation in M2M on throughput and
packet waiting delay in a cellular network. They motivate the use of an M2M relay as
an M2M data aggregator to improve uplink transmission efficiency in LTE-Advanced due
its overheads. They propose a tunnel-based aggregation scheme in which only M2M data
units destined to the same tunnel exit point are aggregated at the tunnel’s entry point, ac-
cording to priority classes. The results show a significant reduction in protocol overheads.
Furthermore, the results show that aggregation, as expected, increases the delay per unit in
the delivery, but the global delay can rapidly decrease with the increase of M2M devices.

Transmission scheduling schemes can be introduced in mobile M2M communica-
tions to reduce latency or to achieve higher energy consumption efficiency. Yunoki et
al. [YTL12] achieves a latency reduction in a remote monitoring system by using a trans-
mission scheduling scheme used in an Evolution-Data Optimized (EVDO) and in a Wide-
band Code Division Multiple Access (W-CDMA) networks. They achieve a probability
of sensor status not reaching a monitoring center within a latency of 6 s lower than 107°
compared to the probability of 10~ for a best-effort effort scheme. This transmission
scheduling scheme achieved more than 85% of average throughput compared to the best-
effort scheme for the W-CDMA network, while having a similar performance for the
EVDO network.

Pauls et al. [PKN™13] study the viability of using the General Packet Radio Service
(GPRS) for a low data rate long-lasting battery powered operation of M2M devices. The
authors evaluate optimization of data transmission procedures to reduce the power con-
sumption of GPRS connections, for transmitting small size and latency tolerant user data.
For applications that require frequent transmissions, it is better that the devices are always
turned on, but, for applications that do not require frequent transmissions, dramatic sav-
ings in power consumption (93%) can be obtained if the devices are turned off during the

periods that do not transmit.

2.2.4 Energy Efficiency

Resource usage efficiency is one of the most important requirements for mobile M2M
communications when using radio technologies, due to lower available bandwidth, higher
link failure, and higher energy consumption. The amount of devices and the requisite

that they might have to operate for many years with the same battery, or consuming the
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least possible energy, demands for energy efficiency in M2M communications [LLL*11,
ZYXT11]. Lu et al. [LLL"11] argue that M2M communications cannot be widely ac-
cepted as a promising communication technology, if energy efficiency is not met.

The concept of using a mobile M2M GW device as an intermediary node to collect
and process data from neighbouring sensors is approached by Wu et al. [WTJ*11], who
name it a smart M2M device, and Zhang et al. [ZYX " 11], who name it a cognitive GW.
Both works argue that connecting devices through a GW should be preferred when they
are sensitive to cost or power. The use of M2M GWs shall have a direct impact in the
reduction of devices accessing and using the channels for communications, reducing in-
terference and contention, and increasing the efficiency. Reducing the number of devices
in networks also translates into easier to deploy and less complex transmission scheduling
schemes, and eases the problem of the depletion of the pool of unallocated IP addresses.

New applications and business opportunities will come along with mobile M2M com-
munications. For example, the innovative idea of using the already existing scheduled
airliners as relays between ground devices and satellites, providing a new and comple-
mentary M2M infrastructure, is presented in [PBH12]. Mobile M2M devices in airplanes
can act as M2M GWs by forwarding data received from M2M ground terminals to satel-
lites, and vice versa. With this approach, there is no need for M2M terminals in satellites
to have a very powerful amplifier or large dish antennas to send or receive messages, and,
thus, the operational costs should be lower. Furthermore, this solution addresses the chal-
lenge of connectivity, eventually relieving traffic from cellular networks. However, one

should expect important challenges originated from transmission scheduling and mobility.

2.2.5 Device Mobility, Autonomy, and Security

Devices that are able to connect to multiple different networks will have, nevertheless,
significant signaling traffic overheads for vertical handovers. Furthermore, devices in
vehicles might face constant vertical handovers originated from the vehicles’ mobility.
Discussion on the necessity of improving vertical handovers in M2M communications
are presented in [LCG12]. Kellokoski et al. [KKNH12] propose an energy efficient algo-
rithm for vertical handovers between an IEEE 802.11 and a 3rd Generation Partnership
Project (3GPP) network for M2M communications. The connectivity and cross-platform
networking originated from the vehicles’ mobility and positional distribution should also
be a concern.

M2M communications should operate seamlessly without human intervention, and
therefore self-configuration, self-management, and self-healing are important challenges

[ZYX"11]. Envisioned applications for mobile M2M communications require autono-
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mous data collection and aggregation, transmission and distribution of aggregated data,
and storing and reporting of information [BGZR12]. Further, the total absence of, or
limited, human intervention in many M2M applications can occasion physical attacks
from malicious attackers, disrupting communications. Security for M2M communica-
tions is discussed in [BGZR12, LLL 11, WTJ*11]. Security is a major aspect for, as an
example, vehicular collision-avoidance applications [BGZR12] or for healthcare applica-
tions [Chel2].

2.2.6 M2M Application Protocols

M?2M application protocols take a fundamental role in communication efficiency: proto-
col overheads, necessary number of management/control and information messages, reli-
ability, security, efc., all impact the number and size of transmissions and, consequently,
the energy consumption and bandwidth utilization in a mobile device.

The technical plenaries of the oneM2M Partnership Project [onea, onec] came to an
agreement to take into account CoAP, Hypertext Transfer Protocol (HTTP), and Message
Queuing Telemetry Transport (MQTT) for communications, strengthening the idea that
these protocols are the de facto protocols for mobile M2M communications. In the fol-
lowing sub-sections, we describe CoAP [SHB] and MQTT [MQTa]. We do not review
HTTP due to the vast literature already available [TGST02, Won00, ThoO1]. Although
there are other application protocols that can be used for M2M, such as the Advanced
Message Queuing Protocol (AMQP) [AMQ)], or the Extensible Messaging and Presence
Protocol (XMPP) [Fou], CoAP and MQTT specifically target constrained networks and

devices, relying in an effective reduction of protocol overheads.

2.2.6.1 HTTP and CoAP

CoAP is a lightweight protocol that complies with the Representational State Transfer
(REST) paradigm [SHB], and is designed for the use in constrained networks and nodes
in M2M applications. REST is described with more detail in Section 2.3. In REST
architectures, as in HTTP, clients perform operations on resources stored at a server by

means of request and responses exchanges. There are four types of requests for the clients:

e GET - gets/retrieves the content of an existing resource;
e POST - creates a new resource;
e PUT - changes/updates the content of an existing resource;

e DELETE - deletes/removes an existing resource.
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An Uniform Resource Identifier (URI) is used to identify resources, as in HTTP. CoAP
easily translates to HTTP for integration with the Web, while accomplishing specialized
requirements such as multicast support, built-in resource discovery, block-wise transfer,
observation, and simplicity for constrained environments. CoAP also supports asyn-
chronous transaction support. Like in HTTP, the clients do not need to maintain state,
i.e., clients can be stateless [SHB].

CoAP is conceptually separated into two sub layers: a messaging layer that provides
asynchronous messaging services over datagram transport, and a request-response layer
that provides handling and tracking of requests and responses exchanged between a client
and service side application endpoints. The request-response layer provides direct sup-
port for web services. The CoAP request-response semantics are carried in CoAP mes-
sages, and a token is used to match responses to requests independently of the underlying
messages. Every response message can be returned within an ACK message, that is,
piggybacked.

CoAP also supports asynchronous responses, for the cases when the service side
knows that it will take long to answer a request. If a client knows at start that an asyn-
chronous response is expected or tolerated, then it includes a Token Option in the message.
If the service side knows it might need a longer time to fulfill a request from a client, then
it might ask for the client to add a Token option again to that message.

The messaging layer implements the publish-subscribe model, which is described
with more detail in Section 2.3 as well. This part of the protocol extends the CoAP core
protocol with a mechanism for a CoAP client to constantly observe a resource on another
CoAP entity, thus termed CoAP observer design pattern [SHB]. This observer model re-
quires that each M2M entity has a client and a server. To use the same terminology as in
publish-subscribe, from now on a client is a subscriber and the observation is a subscrip-
tion. The subscription is made with an extended GET message. With the subscription,
each subscriber that has an observation relationship with the event is notified by the pub-
lisher where it made the subscription, see Figure 2.1. In this observer model, the publisher
also acts as a broker. As long as subscribers send acknowledgments of notifications sent
in Confirmable (CON) CoAP messages by the publisher, the subscriber remains on the
list of observers. If the transmission of a notification times out after several attempts or
the subscriber rejects a notification using a Reset (RST) message, then the subscriber is
removed from the list of observers. The observer model follows a best-effort approach
for sending new representations to subscribers because, if the network is congested or
the state changes more frequently than the network can handle, the publisher can skip
notifications for any number of intermediate states.

The observer model provides consistency between the actual resource state at the pub-
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Figure 2.1: CoAP observer design pattern.

lisher and the state observed by each subscriber, thus keeping the architectural properties
of REST. Resource discovery is performed by sending a Confirmable GET request to the
resource "well-known/core" at the server.

In order to make CoAP suitable for constrained devices (energy consumption, band-
width, memory, and processing restrictions), the User Datagram Protocol (UDP) is the
preferred transport protocol due to less protocol overheads than the Transmission Control
Protocol (TCP), and CoAP’s header can be reduced to 4 Byte. CoAP provides two types
of application reliability to the delivery of publish messages: a CON message, where the
message is retransmitted if no delivery acknowledgement was received, using a simple
stop-and-wait retransmission reliability with exponential back-off for congestion control;
and a Non-Confirmable (NON) message, where there is no need to acknowledge the mes-
sage. There is also a duplicate detection for both Confirmable and Non-Confirmable
messages. There are two additional types of messages: Acknowledgment (ACK) or RST
messages. The ACK message is used to acknowledge CON messages, and the RST mes-
sage either notifies the other endpoint that a CON message was received but some context
is missing, or it is used to cancel subscriptions.

Since UDP is used, the use of multicast IP destination addresses is supported, and can
be useful in case of notifications. Security can be implemented by the Internet Protocol
Security (IPsec) or Datagram Transport Layer Security (DTLS), although the last option
shall be preferred. According to [SHB], DTLS will introduce at most 13 Byte overhead
per packet, not including initialization procedures. Recent work identified this as a poten-
tial problem and there is a proposal for reducing the packet size overheads of DTLS by
means of 6LoWPAN header compression saving at least 14% [RSH*13].

According to Davis ef al. [DCD13], CoAP enables high scalability and efficiency
through a more complex architecture which supports the use of caches and intermediaries

(proxies), similarly to HTTP. The protocol supports the caching of responses in order to
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efficiently fulfill requests. This caching can be provided by a node in an endpoint or an
intermediary. Another important mechanism in the protocol is the proxy functionality.
Proxying is useful in constrained networks to improve performance or network traffic
limiting, since, for example, proxies are not as limited, in bandwidth or battery, as other

nodes. A GW is considered to be a form of proxy or intermediary.

2.2.62 MQTT

MQTT, developed by IBM, is a lightweight broker-based publish-subscribe messaging
protocol designed to be open, simple, lightweight, and easy to implement [MQTa]. The
authors claim that MQTT’s characteristics make it ideal for use in constrained environ-
ments, where, for example, the network is expensive, has low bandwidth or is unreli-
able, or when it runs on embedded devices with limited processing or memory capacities.
MQTT does not comply with REST.

MQTT is an asynchronous protocol. Some MQTT messages contain a variable header,
present after the fixed header and before the payload, that contains, for instance, the pro-
tocol name, the protocol version, and flags. There are 14 different message types defined
in MQTT, including CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE, DISCON-
NECT, and PINGREQ and PINGRESP. Several of these messages have dedicated ac-
knowledgement messages. For example, if an MQTT subscriber wants to subscribe to
a topic, the subscriber sends a SUBSCRIBE message, and waits for the correspondent
SUBACK response from the broker (server).

Even though the use of MQTT implies the use of a reliable connection oriented trans-
port protocol, like TCP, MQTT supports three types of application reliability to the deliv-
ery of publish messages:

e Level 2 - deliver message exactly once, which guarantees that messages arrive ex-
actly once;

e Level 1 - deliver message at least once, which guarantees that messages arrive, but
duplicates may occur;

e Level O - deliver message at most once, where messages arrive according to the
best efforts of the underlying TCP/IP network, which means that message loss or

duplication, introduced by software or other causes, can occur.

These options are selected in the QoS flag present in the header of each MQTT mes-
sage.

The protocol has a small header whose fixed-length is just 2 Byte, and protocol ex-
changes are minimized to reduce network traffic. The standard does not specify security

mechanisms and, therefore, IPsec or TLS can be used.
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Figure 2.2: Transparent and aggregating GWs in MQTT.

MQTT for Sensor Networks (MQTT-S) [SCT] is an extension of MQTT. MQTT-S is
optimized for the implementation on low-cost, battery-operated devices with even more
limited processing and storage resources, such as wireless sensor devices. While MQTT
is based on the TCP/IP stack, MQTT-S operates on any network technology that provides
a datagram service, like UDP. MQTT-S is aimed at minimizing network bandwidth and
device resource requirements while targeting reliability. Additionally, an MQTT-S GW
can be integrated in the broker to translate between MQTT-S and MQTT.

Figure 2.2 illustrates the concepts of transparent and aggregating GW. A transparent
GW sets up and maintains an MQTT connection to the MQTT broker for each connected
MQTT-S client. The GW only performs translation between the two protocols. The
implementation of this type of GWs is simpler than the implementation of an aggregating
GW. The use of an aggregating GW requires only one MQTT connection to the broker.
While connections at the transparent GW are E2E (client-to-broker), connections with an
aggregating GW end at the GW (client-to-GW) that then decides which information will
be given further to the broker [SCT]. Therefore, there is a trade-off between complexity

and scalability of the GWs’ implementation.

2.2.6.3 Protocol Comparison

The functionality of CoAP has been experimentally validated. The main functions of
CoAP, working over UDP, observe and discovery, and its interworking with HTTP have
been verified by Bormann et al. [BCS12], and the feasibility of an ETSI M2M [ETS14b]
compliant complete E2E system using CoAP is demonstrated in [BCM " 12]. The trans-
port of CoAP over SMS [BLPK] has been implemented and evaluated in [GDD"12]. A
prototype web platform, which integrates a CoAP Wireless Sensor Network (WSN) with
an HTTP web application and allows a user to visualize WSN measurements in the web
browser is described in [CSDC*11], demonstrating transparent cross-protocol resource

access by means of an HTTP-CoAP proxy. There is also an open source implementation
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of CoAP written in C often used in the literature [BB13, KBP" 11] named Libcoap [Ber],
and one written in Java named Californium [Ecl].

There are two open source MQTT implementations commonly used in experimental
validations, Mosquitto [Mos] and Paho [MQTDb]. The original developers of MQTT-S im-
plemented an MQTT-S client and GW and validated them experimentally, having several
devices forward packets received from a wireless network to a GW [HTSCOS8]. Apart
from small limitations referred in the paper, the GW was considered to be fully func-
tional. However, further testing with larger number of devices is necessary to evaluate the
protocol performance.

Table 2.2 provides a comparison of the main features of CoAP and MQTT. Although
CoAP’s header is twice as large as MQTT’s header, both can be considered very small
when compared to application protocols not specific to constrained devices, such as HTTP.
The transport layer protocol is a decisive feature in the performance of each protocol. An
experimental comparison between CoAP running over UDP and MQTT running over
TCP, using libcoap and mosquitto implementations, respectively, is provided in [BB13].
As expected, due to inherent transport layer overheads, they concluded that MQTT con-
sumes higher bandwidth than CoAP for transferring the same payload under same net-
work conditions. From these results, we expect MQTT-S to provide a similar performance
to CoAP since it also uses UDP, but this comparison has not been performed so far.

CoAP over UDP has also been compared with HTTP over TCP and UDP. The results
showed that UDP based protocols perform better for constrained networks (both CoAP
and HTTP) than TCP based protocols, due to using lower number of messages when re-
trieving resources [KBP ' 11]. However, it is preferred to use CoAP over UDP rather than
HTTP over UDP, since the first provides reliability mechanisms. For a fair comparison of
application protocols, they should use the same transport protocol, same communication
model (in this case, publish-subscribe), and similar parameter values whenever possible.
Such performance evaluations have not been made available so far in M2M contexts.

A further difference between CoAP and MQTT is their application reliability: CoAP
provides two levels of application reliability, correspondent to Level 0 and Level 1 in
MQTT/MQTT-S, which have yet another one, Level 2. The reliability mechanisms of
both protocols employ a fixed re-transmission time-out. This parameter has a direct im-
pact on protocol performance, namely packet delivery ratio and duplicated publications
when using Level 0 or Level 1 of both protocols. The increase of re-transmission time-
out leads to higher packet delivery ratio, and the effect is more visible as the number of
publisher nodes increase. Still, overall and for similar configurations, CoAP achieved
better packet delivery ratio than MQTT-S in Omnet++ simulations, mainly due to dif-

ferences in the publication discipline [DCD13]. CoAP’s non-persistent publication disci-
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Table 2.2: Comparison between main features of CoAP and MQTT.

CoAP MQTT
Communications Model Request-Response, or Pub-Sub Pub-Sub
RESTful Yes No

Transport Layer Protocol Preferably UDP; TCP can be used Preferably TCP; UDP can be used (MQTT-S)

Header 4 Byte 2 Byte
Number of message types 4 16
Messaging Asynchronous and Synchronous Asynchronous
Application Reliability 2 Levels 3 Levels
Security IPsec or DTLS Not defined in standard
Intermediaries Yes Yes (MQTT-S)

pline gives priority to sending new publications while MQTT-S attempts to re-transmit old
ones. CoAP and MQTT allow messages to be sent and received asynchronously, but only
CoAP supports synchronous messaging. Finally, only CoAP provides a request-response
protocol compliant with REST concepts.

Both CoAP and MQTT-S support the use of UDP, intermediary nodes, GWs, to per-
form requests and responses/relay messages on behalf of other nodes, do caching, ag-
gregation, efc. So, further studies, deployments and field trials need to be conducted to
assess their performance, especially in constrained devices and networks, and when a
large number of devices is present.

MQTT does not provide service discovery. The performance of CoAP service dis-
covery is discussed in [VDPAJ " 14]. In summary, CoAP discovery protocols show better
performance in terms of overhead than Domain Name System (DNS)-based discovery
protocols, since it was designed aiming at resource usage efficiency for constrained de-
vices and networks. Furthermore, based on measurements and functionalities, the authors
claim that CoAP’s resource discovery allows a more efficient and richer set of mecha-

nisms to perform lookups than DNS-based protocols.
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2.3 Interoperable M2M

Several M2M solutions have been developed to serve a specific business application,
which resulted in a dispersion of the technical solutions [0T13, ETS10]. As a conse-
quence, current M2M markets are highly segmented and often rely on proprietary solu-
tions. But for M2M communications meet the expectations of new business and revenue
opportunities while reducing maintenance and resource costs [Hat], future M2M markets
need to be based on industry standards to achieve explosive growth [WTJ " 11]. Additional
deployment obstacles include lack of market awareness, technology complexity, initial
deployment cost, operator complexity, and operator return on investment concerns [Hat].

To enable interoperability between M2M services and networks, ETSI established in
2009 a Technical Committee (TC) focusing on M2M Service level. There are two other
reference architectures for M2M: the 3GPP - Machine Type Communications (MTC) and
IEEE 802.16p M2M, focus in enhancing access and core networks, respectively. These
two architectures are complementary to ETSI M2M, and therefore it is possible to com-
bine ETSI M2M architecture with either, resulting in a cellular-centric M2M service ar-
chitecture [LLLLJ13]. To avoid worldwide market fragmentation and reduce standardization
overlap, the oneM2M Partnership Project [oned] was created in July 2012 to develop one
globally agreed upon M2M specification, initially focusing on consolidating M2M Ser-
vice Layer standard activities into oneM2M [oneb]. Most of its current specifications are
based on the ETSI M2M Service Layer, therefore we focus on ETST M2M.

At the end of this section, we show how ETSI M2M envisioned interoperability can

favor smartphones’ battery depletion in a context of 10T.

2.3.1 ETSI M2M Architecure

The ETSI M2M architecture is currently the reference architecture for global, E2E, M2M
service level communications, and is being adopted by main European telcos. ETSI de-
veloped and defined a set of standards for M2M communication middleware where it
defines entities and functions to enable the deployment of interoperable 10T applications,
agnostic of the underlying networks and technologies and provide efficient E2E delivery
of M2M services [ETS13e]. Transparency and interoperability are attained by sharing
common network resources and building blocks, claiming at the same time to simplify
development and deployment. The system architecture is based on current network and
application domain standards, and it is extended with M2M Applications and generic
Service Capabilities Layers (SCLs). SCLs are Service Capabilities (SCs) on the Network
domain, M2M Device, or M2M GW. SCs are functions shared by all entities in the M2M
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Figure 2.3: ETSI M2M high level system overview. There are two domains: Device and
Gateway Domain and Network Domain.

ecosystem, and communications are made using defined reference points (interfaces). The

functions include: communication management, application management, service and de-

vice discovery and registration, device management, data processing, security, etc.
Figure 2.3 shows the high level ETSI M2M system architecture as defined in ETSI
Technical Standard (TS) 689 [ETS13d]. The key entities in M2M are [ETS13a]:

M?2M Device: a device that runs application(s) using M2M capabilities and network
domain functions;

M2M GW: guarantees M2M devices interconnection to the network and their inter-
operability;

M2M Applications: applications that run the service logic and use Service Capa-
bilities accessible via reference points;

M2M Area Network: provides connectivity between M2M devices, compliant and
non-compliant with ETSI M2M, and ETSI M2M GWs;

M2M Network and Application Domain: provides connectivity between the M2M
GWs and M2M applications;

M2M Network Applications: applications, in the Network and Applications do-
main, that run the service logic and use Service Capabilities accessible via open

interfaces.

The Network and Application Domain is formed by the Access Network, the Trans-

port Network, and the M2M Core. The Access Network provides connectivity between
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the M2M Device Domain and the Core Network, and the Transport Network provides
connectivity within the Network and Application Domain. Satellite, Universal Mobile
Telecommunication System (UMTS) Terrestrial Radio Access Network (UTRAN), Wire-
less Local Area Network (WLAN), Ultrawideband (UWB), or Worldwide Interoperability
for Microwave Access (WiMAX) technologies are used in the Access Network. The M2M
Core is composed by the Core Network (CN), M2M Network SCs, and M2M Network
Applications (NAs). The CN provides IP connectivity, interconnections, and roaming ca-
pabilities within the M2M Core. Technologies provided by, for example, 3GPP can be
used in the CN. The Network SCL (NSCL) manages the data, including the access con-
trol, message routing and acts as message broker in the publish-subscribe communication
model. M2M NAss are applications in the M2M Network Domain that run the application
logic using M2M capabilities. Applications can control and send commands to other ap-
plications or devices, as long as they have permission for that, like for example NAs can
send messages or control commands to M2M GWs as shown later in this document.

The M2M Device domain is formed by M2M devices, M2M Area Networks, and
M2M GWs. The M2M devices can connect directly to the Network and Application do-
main using the Access Network, or they can connect first to an M2M GW using the M2M
Area Network. In the first case, the devices run an M2M application and have an M2M
SCL. In the latter, the M2M GW runs an M2M application and an SCL, and provides
access to the Access Network for the M2M Device, acting on its behalf, since the M2M
Device has only an M2M Application running, but no SCL, and it is not compliant with
ETSI. Legacy devices do not possess M2M capabilities and do not use standardized inter-
faces, and thus cannot interact directly with the M2M ecosystem. They need to connect
first to M2M GWs that act as proxies or concentrators on their behalf. The M2M GW
run two software components, an M2M GW SCL (GSCL) and an M2M GW Application
(GA), that are required to manage sensors and data on the M2M Device & Gateway do-
main. A GW Interworking Proxy (GIP), which can be an internal capability of GSCL or
an application, allows legacy devices to connect to an SCL, This focus in the M2M GW
capabilities as proxy is depicted in Figure 2.4. The Area Network provides connectivity
between M2M devices and M2M GWs, and can be built on Bluetooth, UWB, ZigBee,
M-BUS, or IEEE 802.15.4 technologies.

The TS also specifies several reference points, shown in Figure 2.4. The mla reference
point allows an NA to communicate with the M2M SCs in the Network Domain; the dla
reference point allows a Device Application in an M2M Device to access M2M SCs in
the M2M Device, in an M2M GW, or in the Network Domain, and allows a GA in an
M2M GW to access M2M SCs in the same M2M GW; and the mld reference point allows
an M2M SC in an M2M Device or M2M GW to communicate with M2M SCs in the
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Figure 2.4: ETSI M2M ecosystem with focus on reference points and on M2M GW as
proxy/concentrator for legacy devices. Reference points (mla, dla, mld) are used for
communication between M2M compliant devices. Legacy devices and any other devices
that are not compliant are exposed to the system by Internetworking Proxies.

Network Domain.

The M2M Management functions are all the functions required to manage M2M Ap-
plications and M2M SCs in the Network and Applications Domain, and the Network
Management functions are all the functions required to manage the access, core, and trans-
port networks [BCM ™ 12]. The management functions include performance management,
configuration management, fault management and software and firmware upgrading man-
agement. M2M Application life cycle management includes installing, removing, and
upgrading applications in an M2M Device or GW. M2M service management includes
configuration management for the M2M SCs in the M2M Device or GW. M2M Area
Network management includes configuration management for the M2M Area Networks.
M2M Device management includes the configuration management of the M2M Device
or GW.

2.3.2 ETSI M2M Communication Models and Paradigms

We discuss here the underlying communication models envisioned for M2M applications
and the RESTful and publish-subscribe paradigms.

Communication among M2M entities can be categorized in two patterns: event- and
polling-based [0TAIA13]. Polling-based M2M communications follow a request-response
communication model. M2M Devices or Applications send requests for specific data, e.g.,
to actively sample measurements values. Event-based communications are triggered by

the occurrence of a particular event, like, for example, the change in value of a variable.



2.3 Interoperable M2M 27

M2M Devices or Applications send data to other entities spontaneously, i.e., not in re-
sponse to a specific request. This pattern is more adequate to M2M application scenarios
that require timeliness of reaction upon the occurrence of an event of interest, but can also
be used in other scenarios.

Event-based communication causes fewer message transmissions, as there are no ex-
plicit requests of information. This message reduction can be of extreme importance
when networks and devices are constrained. For example, a service constantly polling a
mobile device, like a smartphone and nearby sensors (M2M Devices), about the activity
level of an individual can cause unnecessary energy (and bandwidth) consumption for all
the unnecessary requests while there is no new value to be reported. A better approach in
terms of resource usage efficiency is to use event-based communications, in which only
new activity level values originate message exchange.

ETSI adopts a RESTful architecture style to organize how M2M entities communi-
cate with each other [ETS13e]. REST is a client-server based architectural style created
by Roy T. Fielding in 2000 [Fie00]. REST allows contents changing over time. The main
concepts in REST are the stateless interactions between clients and servers to manipulate
data, and the notion that a distributed application is composed of resources, that each has
a particular state, and that each is uniquely addressable using a URI. Stateless interactions
precludes that every request from a client to a server must contain all of the information
necessary for the server to understand the request, and the server cannot use any previ-
ously stored context [FieOO]. Stateless communications induce properties of reliability
and scalability, since every request can be treated independently. However, statelessness
requirement for client-server interactions of REST can be intolerable for constrained wire-
less devices and networks in mobile M2M communications, either in network bandwidth
or energy consumption, due to the required amount of information to be transmitted in
every request and response. REST uses CRUD (Create, Read, Update, Delete) methods
to manipulate resources. ETSI M2M defines two more additional methods: EXECUTE
for executing a management command and NOTIFY for reporting a notification about a
change of a resource to the subscribers of that resource. These operations can manipulate
any resource and, therefore, the same architecture can be used by several applications,
avoiding the use of dedicated infrastructures. REST foresees the use of intermediaries,
or proxies, that perform caching of information to deliver greater scalability. In ETSI
M2M, each SCL hosts resources in a hierarchical tree structure, where information is
maintained.

ETSI M2M supports two communication models: the request-response and the publish-
subscribe models. REST is inherently a request-response based architecture. But, for

event-based communications, publish-subscribe is a more reasonable choice, as sensing
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and remote monitoring makes up a large batch of IoT applications. They can be more
efficiently implemented with the latter than with the first that would forcedly be used for
polling. Publish-subscribe allows having the most recent representation of resources. It is
a one-to-many communication paradigm, in which entities, termed subscribers, state their
interest in being notified of data/events produced by other entities, termed publishers, at
message brokers. This manifestation of interest in events is termed subscription and oc-
curs only once. Publishers transmit to message brokers, and these deliver the message to
all the subscribers, whereby both communication entities do not need to be online simulta-
neously. Subscribers are notified as data/events are produced, reducing the dissemination
time and improving the scalability, when compared to request-response. Eliminating the
active requests for content, the number of messages, and thus transmissions, is reduced
as is the energy consumption of the overall system, which is of extreme importance in
scenarios where nodes and networks are resource constrained. This model introduces an
additional complexity only in the entity that manages the event notifications, which may
be largely compensated by the reduction in the complexity of the nodes. Time and space
decoupling allows greater scalability and flexibility than polling-based communications,
and allows a more dynamic topology [DCD13], as publishers and subscribers do not need
to be actively participating in the interaction at the same time, and since they do not hold
references about each other, each can change their location without being necessary to
inform the others.

ETSI M2M defines how subscriptions are made and allows subscriptions at different
levels of the hierarchical resource model, so that subscribers may only receive updates of
their interest. Subscriptions are represented and can be operated upon as resources under
the resource tree. The sclBase resource contains all other resources of the hosting SCL.

Figure 2.5 depicts the ETSI resource structure in detail.

2.3.3 Interoperability Benefits

To show a concrete example of how interoperability can introduce advantages to smart-
phones, let us assume that users have two separate applications monitoring two different
types of data: one for remote monitoring the heart rate vital signs and mobility (Health-
care app) from Zephyr HXM [Zepb] and internal smartphone’s sensors, and another to
record only the mobility data (Mobility app) from the same internal sensors. The internal
sensors of interest are Accelerometer, Gyroscope, Magnetometer, and Global Positioning
System (GPS). Both applications rely in having an application running in the operative
system of the smartphone collecting and forwarding data. Using M2M interoperability ca-
pabilities, instead of two applications on the smartphones sending the redundant internal



2.3 Interoperable M2M 29

<sclBase>
I— “attribute™
| I I I 1
— scls — Applications — Containers — AccessRights Subscriptions
[ “attribute™ —  “attribute” —  “attribute” —  “attribute” <Subscription>
— <scl= — <Application> — <Container= — <AccessRight>
'— Subscriptions —‘ '— Subscriptions —‘ ‘— Subscriptions —‘—' Subscriptions —‘
—  “attribute” — “attribute” — “attribute” — “attribute”
— Applications —  Containers — ContentInstance [—  Permissi
— ContentInstance — AccessRights '— Subscriptions — SelfPermission
— AccessRights — Subscriptions — Subscriptions

— Subscriptions

Figure 2.5: ETSI M2M resource structure.

sensors data, only one application could be used and a broker could serve as intermediary
to redistribute the data of interest for each application. The high level view is shown in
Figure 2.6.

Next, we present battery measurements of the Healthcare and Mobility apps running in
smartphones and compare them to their deployment in an M2M scenario, where they run
as M2M NAs and an M2M GW was used to transmit the data, i.e., they do not run on the
smartphone. We measured the battery life of smartphones as metric of the performance
for each scenario under different configurations. To perform the battery measurements
6 Nexus 4 [Area] smartphones running Android 4.4.4, KitKat were used, 3 for the mea-
surements of the non-M2M scenario and 3 for the measurements of the M2M scenario.
Each measurement was repeated three times under the same conditions, but with different
smartphones to calculate averages and standard deviations of the battery life. We recorded
the battery consumption and registered the amount of time that took for the smartphones
to drop to 99% of available battery and we did the same for the last change in value of the
battery level before we stopped the measurements, while making sure that every measure-
ment lasted longer than 3 hours. With these two pairs (time and battery level indicator)
we used a linear model to extrapolate and calculate how much time it would take for the
battery to reach 10% of its capacity. We refer to this time as the smartphones’ battery life.
All applications transmitted sensor data every 1 second encoded sensor data, using HTTP
over TCP/IP with TLS, and transmissions were followed by respective acknowledgments.
We use HTTP as it is the application protocol available for both scenarios. To measure
the impact of the transmission frequency we also performed measurements for transmis-

sions every 10 seconds. In this case, data was aggregated for the 10 seconds period.
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Figure 2.6: Applications in non-M2M and in M2M scenarios. On top, users have two
applications running in his smartphone: a personal healthcare monitoring and a mobility
data applications. On bottom, the use case scenarios are mapped into the M2M architec-
ture where only one application is necessary.

We also measured both scenarios for two types of networks: a Wi-Fi network compli-
ant with IEEE 802.11g, which has a maximum physical layer bit rate of 54 Mbps, and a
3G network with High-Speed Uplink Packet Access (HSUPA) and High-Speed Downlink
Packet Access (HSDPA) protocols allowing a maximum uplink bit rate of 5.76 Mbps and
a maximum downlink bit rate of 42.2 Mbps, respectively. More details of this setup can
be found in [PRP"16].

For a matter of simplicity, we present the results regarding the impact of sending
only one type of data on the performance of the smartphones’ battery life. We measured
both scenarios where only the mobility data was transmitted (Accelerometer, Gyroscope,
Magnetometer, and GPS data). Therefore, for the non-M2M scenario the only application
running was the Mobility application. Figure 2.7 shows that battery life for the non-
M2M measurements is very similar to the one obtained by the M2M GW in the M2M
measurements, both for Wi-Fi and 3G, taking into consideration the standard deviation
(Crowd 1s and Crowd 10s scenarios). The M2M system (REST and M2M verbosity)
did not translate to an increase of battery consumption of M2M due to the large size of
the payload data as both scenarios have similar battery life values. The aggregation of
data (Mob 10s scenario), and the consequent decrease in the number of transmissions, led

to the increase of the battery life when compared to the higher transmission frequency
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Figure 2.7: Comparison between performance of Mobility and Healthcare applications
in a non-M2M and M2M scenarios. The higher the bars are the higher the battery life
is. There is an increase of the measured battery life of the smartphones when M2M is
used and two or more applications use the same data. The use of 3G severely depletes the
battery when compared to the use of Wi-Fi.

scenarios (Crowd Is scenario) of 28% when using Wi-Fi and 51% when using 3G for
the M2M scenarios, and increase of 29% when using Wi-Fi and 70% when using 3G for
the non-M2M scenarios. The results show that the use of 3G for smart city applications,

either using M2M or not, can hold undesirable battery depletions.

Now, we consider the scenario where both types of data are collected. For the non-
M2M scenario, Mobility and Healthcare were both running simultaneously, but sepa-
rately, collecting and transmitting individually their data. Adding an application led to
the decrease of the average battery life since an additional application is transmitting re-
dundant data. Using Wi-Fi the Mob+Health 10s M2M scenario exhibited an increase
of the average battery life when compared to the Mob 10s M2M scenario; however, if
we consider the standard deviation the battery life is similar. Although all measurements
lasted longer than 3 hours, since the use of 3G depletes more battery than Wi-Fi, the mea-
sured battery life values when using 3G reached closer to the threshold assumed as battery

life (10%) than Wi-Fi, and thus can explain the lower deviation observed for 3G.

We can observe that now there are relevant differences between the non-M2M and
the M2M scenarios, especially for Wi-Fi. The M2M scenario transmitted less sensor data
than the non-M2M scenario, derived from the avoidance of transmitting duplicated data
of the first, which led to an increase of battery life of the smartphones. The impact of
adding even more applications running at the same smartphone, transmitting the same

data, should introduce even further differences in the battery life between the two scenar-
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i0s, and M2M should bring even more efficiency.

The use of aggregation led to the increase of the battery life (Mob+Health 1s vs
Mob+Health 10s) of 46% when using Wi-Fi and 53% when using 3G for the M2M sce-
narios, and increase of 25% when using Wi-Fi and 42% when using 3G for the non-M2M
scenarios. Data aggregation can be an important factor to take in consideration when
using smartphones, or any resource-constrained devices in general, as GWs.

Please note that here we were not considering the depletion that would naturally oc-
cur when collecting from internal or external sensors. Therefore, in such scenarios, the
battery life would be even smaller for both Wi-Fi and 3G networks. Exploiting the in-
teroperability introduced by standardized ETSI M2M communications can, nevertheless,
improve the battery life of smartphones acting as M2M GWs by avoiding transmitting
duplicated data. However, a comprehensive performance evaluation of the capabilities
and limitations of the system must be performed, specially in terms of the offered QoS.

We will address this in the next chapter.



Chapter 3

Design and Evaluation of an

interoperable M2M ecosystem

M2M communications’ standards foster the emergence of [oT applications by providing
interoperability among devices and services outside application silos. Currently, many of
these applications exploit the massive use of smartphones as well as their connectivity
and sensing capabilities, e.g., for monitoring health-related information or intelligent mo-
bility [PRP"16]. Interoperability could guarantee that devices can be integrated with in-
frastructures and services, and that services can be composed into complex applications in
which each stakeholder focuses on his specific know-how. Mobile e-health is a perfect use
case because available solutions tend to be proprietary. This leads to closed and inefficient
vertical silos that have difficulty in scaling and cause dispersion due to the impossibility
to share resources [WTJ 11, UAH'12]. Interoperability and standardization are funda-
mental for recognition and acceptance of e-health [SEM13, KNI10, CCVMFT07]. The
promise to improve the quality and efficiency of health services is driving the emergence
of e-health as IoT applications, surpassing what was initially expected [vGPWCO12].
E-health is being adopted for self and home-monitoring, hospital systems, and many oth-
ers [KN10], either for ambulatory monitoring of chronic conditions, or for prophylactic

reasons, in order to minimize the number of visits to the doctor [ETS13b, MPZ"13].

To further motivate this work, let us consider the following storyboard, also used in the
context of the Future Health project which was part of the I-CITY Integrated Research
Program and "ICT for Future Cities" Research Line [iP]. We envision that individuals
are advised by a primary healthcare unit to have their lifestyle remotely monitored using
a wearable system that collects their heart rate and mobility [PFB* 14, PRP"16]. This
storyboard is implemented as an interoperable mobile e-health application, and the appli-

cation overview is presented in Figure 3.1. Users follow a daily routine: every morn-

33
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Figure 3.1: Overview of the mobile e-health application. Arrows represent user data flow.

ing, before leaving home for school or work, they put on a BT wearable device and
start an application on their smartphone, which they stop at the end of the day. The
smartphone continuously uploads the sensor data using wireless or cellular networks to
a service, the Data Processor, which extracts several heart rate and mobility indicators
and verifies whether daily and weekly physical recommendations are met. This service
also formats data according to the semantics required for the correct interpretation by an
openEHR interface service that runs in the healthcare unit. The processed data is sent
to the openEHR interface service, which is responsible for storing and making the data
available to care takers. Medical personnel can analyze the users’ lifestyle information
through their EHR. Communications between services and devices are made via M2M

middleware in a publish-subscribe communication model using a message broker.

Latency, defined as the time for data to travel from one given point to another, is a crit-
ical metric of service composition performance [LL11], and, thus, M2M middleware per-
formance. Critical applications respond to event alarms and emergency situations, which
depend on timely data transfer, and many other envisioned applications are of interactive
nature. Interactivity might not only be user-related, where users need to acknowledge or
validate data, but also service/machine-related in the form of alarm, prevention, or advi-
sory systems related to physiological data in a remote actuation scenario. Furthermore,
future micro- or even nano-size wearable devices can bring additional use case scenar-
ios (and, thus, applications) where sub-second time requirements might also need to be

guaranteed.

Because data usefulness decays after a deadline, M2M middleware must guarantee
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not only interoperability, but also predictable and measurable E2E QoS. However, this
aspect has received little attention so far, likely due to lack of available implementations
of such platforms and applications on top of them. We aim to understand if standardized
M2M communications are able to provide time-requirement guarantees in a context of an
IoT service composition using mobile networks.

In this chapter, we report the design and implementation of a mobile e-health appli-
cation on a standard M2M middleware, and experimentally evaluate its latency perfor-
mance for service composition in a 3 week mobile pilot with 10 participants. Our frame-
work relies on top of rising standards of the Information and Communication Technology
(ICT) infrastructure: ETSI M2M communications [ETS13e] as scalable and reliable in-
frastructure for interconnecting devices and services, and openEHR [Opeb] for storing
and exposing health records. To the best of our knowledge, providing this use case on
standard interoperable systems is also novel, thus we dedicate some space to describe our
implementation and to characterize application data. We quantitatively evaluate the E2E
latency as well as latency between system components and response times of the system
which acquire a special flavor under dynamic and volatile environments characterized by
mobile networks. Performance evaluation of latency in e-health applications using cel-
lular networks exist in terms of simulations [VMKO07, KWH™15], but the systems are
limited and use very simplistic models. On the other side, real testbeds implementation
also exist, but performance is left out [MKSL10, JMC13]. To the best of our knowledge,
performance of M2M in a context of IoT is not present in literature. Works involving
latency performance in M2M middleware only include estimations for a specific set of
examples [NK11] or methodologies for measurement between two hosts [FZ15], and fail
to capture realism of measurements.

We summarize the contributions of this chapter as follows:

1. We detail the design and implementation of an 10T e-health application (remote
monitoring) as an [oT service composition on top of standard technologies ETSI
M2M and openEHR;

2. We report the design, development, and performance evaluation of an ETSI M2M
GW instantiated in a smartphone. We also present libraries to ease the deployment
of 10T applications using the ETSI M2M ecosystem with reduced development

costs;
3. We quantify application protocol overheads;

4. We measure latency between system components using nearly 480 hours of data

collected from a 3 week mobile pilot with 10 users. We show that the latency be-
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tween a smartphone gateway and the openEHR interface service can exceed 1 sec-
ond when using cellular networks, and we quantify the impact of the middleware.
Among other findings, we show that there is a correlation between the distance

traveled by each user and the latency measured between its gateway and the broker;

5. We find that the largest part of the E2E latency lies between the gateway and the
broker, even for different wireless networks. Its magnitude is greatly dependent of
the gateway’s network interface state at the moment when the application schedules
transmissions due to the promotion delay. An Idle state requires time for allocation

of network resources to the interface.

The rest of the chapter is structured as follows. Next, we present the system archi-
tecture, system setup and implementation. We discuss the challenges concerning latency
measurements and how we address them in Section 3.2. Section 3.3 presents the per-
formance evaluation and results. We discuss the results in Section 3.4, and we compile

important observations for researchers in Section 3.4.2.

3.1 System Design and Implementation

In this section, we describe the design and implementation of the system for providing
the mobile e-health application. Next, we review a few important concepts of openEHR.
We model our storyboard as a service choreography and map it into standard M2M mid-
dleware in Section 3.1.2. Section 3.1.3 summarizes the information that is collected and
processed from participants for exhibition on users” EHR. In Sections 3.1.4 and 3.1.5 we
describe the design of M2M GWs and NAs, respectively. Implementation details and the

pilot deployment are presented in Section 3.1.6.

3.1.1 Background on EHR

OpenEHR [Opeb] is a non-proprietary standard architecture in health informatics aiming
at interoperability in e-health. OpenEHR allows the standardization of EHR architecture
following a multi-level modelling approach, which separates information from know-
ledge [BHO8]. For that, openEHR Foundation published a set of specifications [opec]
that define a health information reference model, archetypes, and a query language. In
openEHR, an archetype is the model for the capture of health information [Les12]. Ex-
ample archetypes can be found in [opea]. OpenEHR mandates openness in terms of data,
models, and Application Programming Interfaces (APIs) for systems and components.

Being independent of software applications and technology changes [Hov10], it provides
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interoperability between health information systems, avoiding dispersion and limitations

of proprietary technical solutions, and allowing flows between distributed systems.

3.1.2 Mapping Storyboard to M2M

The storyboard was mapped and deployed into an ETSI M2M ecosystem, as depicted
in Figure 3.2. Wearable devices, like the chest band heart rate monitor (Zephyr HxM
BT [Zepb]) used in this work, usually do not possess M2M capabilities and do not use
standardized interfaces. Thus, they cannot "play" directly in the M2M ecosystem. These
devices are termed legacy devices. They need to connect first to M2M GWs that act
as proxies or concentrators on their behalf. Users’ smartphones can act as M2M GWs,
collecting data from sensors, embedded or connected via BT, or another BAN technology.
The M2M GW run two software components, an M2M GA and an M2M GSCL, that are
required to manage sensors and data on the M2M Device & Gateway domain. A GIP,
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which can be an internal capability of GSCL or an application, allows sensors from legacy
devices to connect to a SCL. The M2M GWs periodically send/publish data to the NSCL,
whose main function is to act as a broker.

M2M NAs are services in the M2M Network Domain that run the application logic
using M2M capabilities. Every NA that is interested in receiving data exposed through
the M2M middleware must subscribe to the respective resource in the NSCL!. As Data
Processor and openEHR services do not possess M2M capabilities, we enable them with
M?2M capabilities with the use of NA libraries (NAlib). M2M GWs communicate with the
NSCL using the mld interface, while the Data Processor and the openEHR communicate
with the NSCL using the mla interface [ETS13e]. Access control is verified on resource
access by the NSCL, and TLS is used to ensure privacy and security.

The Data Processor subscribes the raw sensor data at the NSCL, and is notified of all
data published by GWs. Once per day, the Data Processor processes the data from each
user, formats it as required by the openEHR, and publishes it at the NSCL. The NSCL
then notifies the openEHR. Figure 3.3 shows the normal message sequence between the
entities during the pilot.

Initially, every entity registers itself at the NSCL. Each M2M GW registers itself un-
der its own SCL using its smartphone’s serial number for unique identification, /scls/
<SerialNumber>/, below the SCL base at the NSCL at https://193.136.29.19/m2m. M2M
GWs publish data to /scls/<SerialNumber>/applications/BT-ZEPHY R/containers/DATA/
contentInstances/. Data Processor and openEHR register themselves directly at the Ap-
plications resource collection below the SCL base at /applications/DataProcessor/ and
/applications/openEHR/, respectively. The Data Processor publishes each user data at
/applications/DataProcessor/containers/<user>/contentInstances/, where <user> corre-

sponds to an integer value between 0 and 9.

3.1.3 User Data

After pairing to a smartphone, the chest band heart rate monitor transmits periodically
at 1Hz (1 packet per second), where each packet is 60 Byte and contains among other
information [Zepa]: heart rate, speed, and distance data. The device sends the average
heart rate in beats per minute (a range from 30 to 240 beats per minute, or O if no valid
average heart beat per minute is detected during the sampling period), a counter for each

time a heartbeat event is detected (rolling over 255), and the last 15 heartbeat timestamps

B necessary, M2M NAs are also able to send commands to M2M GWs, e.g., alerts or behavior com-
mands, following the approach presented in [ETS14a], but we do not use this functionality in our use case.
For efficiency reasons M2M GWs can be set to transmit only after receiving subscriptions.


/scls/<SerialNumber>/
/scls/<SerialNumber>/
https://193.136.29.19/m2m
/scls/<SerialNumber>/applications/BT-ZEPHYR/containers/DATA/contentInstances/
/scls/<SerialNumber>/applications/BT-ZEPHYR/containers/DATA/contentInstances/
/applications/DataProcessor/
/applications/openEHR/
/applications/DataProcessor/containers/<user>/contentInstances/
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Figure 3.3: Message sequence during the pilot.

(R-R intervals) representing the time at which the heartbeat occurred (a range from 0 to
65535 ms, rolling over 65535 ms); the speed data is the instantaneous speed (in steps
of 1/256 m/s); and the cumulative distance traveled since the device was powered on (in
steps of 1/16 m and range from O to 4095, rolling over 256 m).

Data Processor receives notifications from NSCL containing the raw sensor data. It
processes and formats the data to the correct archetype elements to be published at the
NSCL and forwarded to the openEHR. This way, the templates at the openEHR are filled
with the most relevant information, and users’ physical activity and heart rate condition
can be observed by medical personnel. Archetypes are a specification for a single clinical
concept. The specification are expressed in Archetype Definition Language (ADL) which
is an ISO standard. Example archetypes can be found in [opea]. Although archetypes can
be defined by healthcare units or other medical personnel, for evaluation purposes, we
have defined and implemented two types: one heart rate and one mobility.

Data Processor processes heart rate data from the chest band heart rate monitor ac-
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/Root
ctx/language : "en"
ctx/territory : "PT"
ctx/composer_name : "IT Porto"
ctx/time : "2015-06-15T13:52:25.494z7z"
ctx/id_namespace : "Future-Health"
ctx/id_scheme : "Future-Health"
ctx/participation : [Array]
L107 @ [Object]
ctx/participation_name : "Carlos Pereira"
ctx/participation_function : '"requester"
ctx/participation_id : "99999999"
—ctx/participation_mode : "Machine-to-Machine communications"
—ctx/health_care_facility|name : "Future Health"
—ctx/health_care_facilityl|id : "9091"
. fhm2m : [Object]
Lheart_rate_variability : [Object]
width :"P3DT3H48M"
heart_rate_frequency_histogram : [Object]
nn : [Object]
avnn : [Object]
sdnn : [Object]
rmssd : [Object]
pnn20 : [Object]
pnn50 : [Object]
tot_pwr : [Object]
vlf_pwr : [Object]
vlif : [Object]
1f_pwr : [Object]
hf_pwr : [Object]
1f_hf : [Object]
heart_rate_frequency_histogram : [Array]
nn_histogram : [Array]
avnn_histogram : [Array]
sdnn_histogram : [Array]
rmssd_histogram : [Array]
pnn20_histogram : [Array]
pnn50_histogram : [Array]
mobility : [Object]
width :"P3DT3H48M"
distance : [Object]
speed : [Object]
accumulated_movement_time : [Object]
max_period_of_continued_movement : [Object]
max_period_of_continued_stoppage : [Object]
max_distance_of_continued_movement : [Object]
activity_histogram : [Array]
meets_recommendations : false

Figure 3.4: JSON containing two archetypes: heart rate variability and mobility. JSON
contains additional information in order for openEHR to correctly interpret them.

cording to the PhysioNet’s Heart Rate Variability (HRV) toolkit [Phy14]. PhysioNet’s
HRYV toolkit is a validated package for HRV analysis. The heart rate archetype includes

daily averages of several heart rate information, such as the average and standard devia-

tion of normal sinus to normal sinus interbeat intervals, and also several histograms with

hourly values.

The mobility archetype includes several single average daily values, such as: Distance,

Average Speed, Accumulated Movement Time, Maximum Period of Continued Move-
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ment, Maximum Period of Continued Stoppage, or Maximum Distance of Continued
Movement. The archetype also includes a daily histogram of travelled distance per each
hour of the day, and a Boolean value to check if the user has a healthy lifestyle by met-
ing the recommended weekly/daily activities obtained from the guidelines in [TDC" 07,
HLP"07]. User mobility also allows us to take conclusions about its impact on the E2E
latency in Section 3.3.4.

Every parameter of the archetypes must include the units, the type of the data (e.g.,
float, integer, etc.), limits, and expected normal limits for detection of critical situations.
Besides the two archetypes, Data Processor includes some additional data necessary for
the correct interpretation of openEHR. The complete JavaScript Object Notation (JSON)
data is shown in Figure 3.4. With these two archetypes, clinical personnel, or any other
service provider, can obtain a detail information of the user’s heart rate information, mo-

bility, and general lifestyle.

3.1.4 Designing an M2M GW in an Android Smartphone

M2M GWs run M2M Applications, GAs, that use SCL accessible via reference points.
M2M GWs are distinct from common M2M Devices due to their capabilities of inter-
connecting devices to the M2M system and exposing M2M capabilities to them. We
developed a GW service that enables a smartphone to act as M2M GW, but also running
several GAs. The GW service was developed for Android Operative System (OS) devices
and runs as an Android service. The GA Library was implemented to allow developers to
create, with reduced development costs, their own Android Applications as M2M GAs,
extending the M2M capabilities across all smartphone’s applications by implementing the
dla reference point. The GA Library requires that the GW service is running to access the
GSCL.

The M2M GW service and GA Library are depicted in Figure 3.5, and have the fol-
lowing key modules:

e Service Manager - Module that creates and manages the Android service. It is

responsible for the setup, initiation and termination of all other modules;

e GSCL - The service’s local SCL. Provides and processes the M2M functions and
maintenance (e.g., cleaning expired resources). It stores and manages the local
M2M resources. It can fulfill requests to create and retrieve local and remote re-

sources;

e Protocol Manager - Module that manages the client and server communication pro-

tocols. It is used by the GSCL to translate M2M operations in communication pro-
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Figure 3.5: Implementation of an M2M GW. GA Library reduces the development costs
of GAs.

tocol (HTTP, CoAP, or other RESTful protocol supported by ETSI M2M) requests

and vice versa;

HTTP/CoAP Client/Server - The communication’s client and server used to ex-
change HTTP and CoAP requests with other M2M entities, provided by Apache

and Californium libraries [Apa, Ecl];

GIP - This module manages communication with legacy devices that do not support
M2M operations. Currently, this module only supports BT devices, but it may

support others in future, like, for example, ZigBee or NFC devices;

GW IPC Manager - This module uses the Inter Process Communication (IPC) ca-
pabilities of Android and is used to allow communication between GSCL and GAs

at the same device;

GA API - Exposes a set of methods to setup the GA and make M2M requests to
the GW service. The developer creates the GA and interacts with M2M ecosystem
through this module;

GA IPC Manager - Translates M2M operations to Android IPC requests. This
module eliminates the necessity of network clients and servers for communicating
with the GSCL.

M2M are intended for reduced to none human intervention. Thus, our Android Ap-

plication is developed to be non-intrusive, and only has an icon in the notification bar

showing its state, for providing data collection awareness to the users.

As communications between GAs and GSCLs are made using a dla reference point

with a RESTful architecture style, a simple solution would be to use the existent RESTful

server connection used by the GSCL. Thus, GA would create a RESTful client connec-

tion and communicate with GSCL port in the localhost. However, GAs need to be con-

tacted by GSCL. Therefore, we would need a RESTful server connection per each GA as
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well, which does not scale. Exploiting Android IPC capabilities, the GW IPC manager
allows the communication between GAs and GSCL in the same device without setting
up network clients and servers. The Android OS provide two methods for IPC: Binders
and Intents. Although having a similar performance for small exchanged data in terms
of latency, and memory and Central Processing Unit (CPU) usage, the performance of
Intents degrade with the increase of the data size [HFR*13]. We implemented the Mes-
senger method, which is a form of the Binder method. The Messenger method is also
recommended by the Android API guides over the AIDL binder method. The Messenger

method allows the dla to remain simple and functional.

3.1.4.1 Resource Structure Mapping

We performed the following SCL resource mapping to implement the GSCL. Each SCL
represents the smartphone physical device. We use the serial identification of each smart-
phone to guarantee its uniqueness. Under the resource tree, applications represent external
or internal sensors available. Under the Containers we set only two different types of con-
tainers: DATA and DESCRIPTOR. The DATA container is used for common data, while
DESCRIPTOR container is used for information with respect to the application (its parent
in the resource tree), following the strategy presented in [ETS14a]. During the registra-
tion process, the M2M GW exposes the smartphone’s capabilities publishing a Content
Instance with the supported actuation commands (see Section 3.1.5) under the DESCRIP-
TOR container. Other M2M entities can retrieve or subscribe to the latest Content Instance
under the DESCRIPTOR container to learn the information about the available actuation

commands. Content Instances are used to transport data.

3.14.2 Data

Currently, the M2M GW has the ability to process and encapsulate data in JSON, or send
data as it was collected (raw bytes) and delegate the data processing to the subscribers
(applications). Although depending on the complexity and efficiency of the processing,
leaving this task to the subscribers can reduce the overhead in outgoing traffic introduced
by JSON, reduce the CPU and Memory usage, and add more flexibility of connection to

any nearby (or internal) device as it is not required the interpretation of the data.
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3.1.4.3 Accessibility

The Protocol Manager is also responsible for guaranteeing that the M2M GW is con-
tactable/addressable. As applications usually do not require to be globally addressable,
devices operate behind NAT or firewalls and do not possess global IP addresses. The Pro-
tocol Manager has three capabilities: UPnP [BPW], NAT-PMP [CK], and long-polling
[ETS13e]. UPnP and NAT-PMP are two protocols that allow the remote configuration
of port mapping and port forwarding in a routing device, while long-polling sustains a
communication session between servers and clients for a period of time. If the UPnP is
not available, the GW service proceeds to setup the NAT-PMP, and if both port mapping
protocols fail, the M2M GW uses long-polling.

3.1.4.4 GW State machine

We can divide the M2M GW normal operation in 3 states: the bootstrap or initialization
that includes an initial registration, the standby, and the sending.

Initially, the M2M GW is in the bootstrap state. This state is characterized by a set
of tasks executed by the GW service when the Android Application is turned on. The
first task is to start all components, described before in the GW service, by triggering
the Service Manager. The Protocol Manager initiates the GSCL and a client and server
connection. The GSCL loads the M2M resources data stored locally. When initiated,
the GIP sets up a BT communication manager, GPS services, and buffers to be used
in data captures. The client authenticates itself to the NSCL and retrieves a symmetric
key to be used later in the TLS protocol, to ensure privacy and security. As soon as
the client is ready, the second phase of the Bootstrap sets the GSCL to register itself
on NSCL, to create the smartphone’s application, including the containers DATA and
DESCRIPTOR, and to publish the smartphone’s characteristics and capabilities in the
DESCRIPTOR Container.

The Standby is a state in which the M2M GW is not connected to any sensor or
collecting any data. In this state, it only performs maintenance tasks, like maintaining
the communication server and client and managing the GSCL resources. The M2M GW
enters a Sending state as soon as a new sensor is found. For external BT sensors, this
state involves starting a BT connection and, possibly, executing a handshake procedure to
start receiving data. If the connection to a sensor is successful, the M2M GW registers
the sensor in the NSCL (as an Application resource). The M2M GW starts transmitting
the new sensor data if it has a subscription from any other M2M entity for the data. The

M2M GW can publish data from sensors according to defined policies, which can be a
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time period (e.g., 1 second or 10 seconds) or size (e.g., KB or SKB of sensor data). This

state is terminated and the M2M GW returns to standby when all sensors are disconnected.

3.1.4.5 GW benchmarking

We measured memory and CPU usage on smartphone as well as battery life for different
sensor configurations to analyze the M2M GW performance.

We used three Nexus 4 [Area] smartphones, running Android 4.4.4, KitKat, to per-
form the measurements. Each measurement was repeated three times under the same
conditions, but with different smartphones to calculate averages. We analyze the M2M
GW performance for six scenarios: GW standby, GW sending data from an external sen-
sor, GW sending data from an external sensor using a buffer, GW sending data from an
internal sensor, and GW sending data from an internal sensor using a buffer. The use
of buffers allows us to study the impact of data aggregation on the M2M GW perfor-
mance. The smartphones transmit every 10 seconds when buffer is used, and transmit
every 1 second when buffer is not used. We used a chest band heart rate BT device
(Zephyr HxM [Zepb]) as external sensor, and Accelerometer as internal sensor. Thus,
the measurements of the battery include also the energy used to run the internal sensor
and to collect the data from the external sensor. All communications use HTTP over
TCP/IP with TLS, and sensor data is encoded in base64 and marshalled in JSON. Every
data transmission is followed by the respective acknowledgement with the data sent. We
measured all configurations for a Wi-Fi network compliant with IEEE 802.11g.

We minimized any other possible source of battery consumption by disconnecting
all network connectivity, except Wi-Fi, setting the screen off, and stopping any service
or background data. The initial bootstrapping and registration were ignored from the
measurements, and we only disconnected the smartphone from the charger after these
initial phases. For the measurements with the external BT device, we also excluded the
pairing phase from the measurements.

The memory and CPU indicators were obtained from the /proc runtime system infor-
mation. We registered the smartphones’ battery life as the amount of time it took for the
batteries to reach 10% of their capacity.

Table 3.1 shows the average memory and CPU usage and the battery life measured
for the different configurations. The use of the M2M GW has impact on the memory and
CPU usage, and battery life, as expected. The total memory usage column represents the
physical and virtual memory reserved. The resident memory usage column represents
the actual physical memory occupied. The memory usage obtained for our M2M GW
implementation is considered normal if we take in consideration that Google Calendar
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Table 3.1: Performance evaluation of the M2M GW in terms of memory and CPU usage
and battery life. Battery measurements include the energy consumed for running the
internal sensor and to collect the data from the external sensor.

Memory Usagej (Kb) CPU Time Battery Life

Total Resident (%) (h)
GW Off - - - 113.4
GW Standby 884069 41722 0.026 46.5
GW Send Ext Sensor 887036 42219 0.161 5.3
GW Send Ext Sensor Buffer 886285 41945 0.047 9.0
GW Send Int Sensor 885473 42425 0.256 6.2
GW Send Int Sensor Buffer 884786 42012 0.056 12.4

uses 880 Mb of total memory and 36 Mb of resident memory in the same smartphones.
Results also show that CPU usage is rather small for all measurements, below 1%, which
means that reading, parsing, or marshaling of data have small impact on the CPU over
time. The use of buffers can result in a slight decrease of memory and CPU usage.

We can observe that the external sensor scenarios led to shorter battery life than the
internal sensor scenarios, mainly due to the BT usage, as it is the only significant dif-
ference between the two scenarios. Even the M2M GW in standby introduces a signifi-
cant battery depletion, as the M2M GW periodically performs maintenance tasks and BT
searches. The periodic device search can be eliminated and set to be triggered by actu-
ation (see next section). We can observe that using smartphones as M2M GW can have
an undesirable effect on the battery life of the smartphone; however, the use of buffers,

exploring data aggregation, can guarantee at least 9 hours of operation.

3.1.5 Designing NAs

We developed a NA Library, a Java library, to allow the easy deployment of NAs in
multi-platforms, by exposing a set of methods, i.e., the mla interface, for interaction with
the M2M Ecosystem. The NA developed is very similar to the GA, though the former
connects to the NSCL that is not at the same place. The architecture, as depicted in

Figure 3.6, can be divided in the following key modules:

e NA API - Exposes a set of methods to setup the NA and make M2M requests to
NSCL. The developer creates the NA and interacts with M2M ecosystem through

this module;

e Protocol Manager - Module that manages the client and server communication pro-

tocols. Itis used by the NA to translate M2M operations in communication protocol
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Figure 3.6: Implementation of an NA. NA can actuate in M2M GWs via NSCL and the
network. NA Library was developed to ease the development of NAs.

(HTTP, CoAP, or other RESTful protocol supported by ETSI M2M) requests and

vice versa;

e HTTP/CoAP Client/Server - The communication’s client and server used to ex-
change HTTP and CoAP requests with other M2M entities, provided by Apache

and Californium libraries.

NAs can, depending on proper authorization, control the behavior of M2M GWs via
NSCL, like, for example, changing the transmission period or the frequency that data is
collected from the devices, the start, stop, or search of sensors. Device discovery (BT
searches) and sensor captures can be remotely optimized or reduced with actuation. This
control is performed using the same M2M system, i.e., the control is not performed di-
rectly between NAs and M2M GWs using a separate type of communication. It was
necessary to implement an actuation procedure that was able to target a single M2M GW
and that used few messages, since M2M is envisioned to large scale.

There are two main options, depicted in Algorithm 1, one for actuation on SCLs and
other for actuation on Applications: (1) Remote SCL resource’s access based approach,
and (2) Retargeting based approach. The first option consists of exploiting the mechanism
defined in [ETS13e] to access resources on different SCLs, as long it is in the limit of 3
SCL hops of distance. Thus, if an NA requests a GSCL resource not present at NSCL, the
latter forwards the request to the GSCL (destination SCL). This mechanism requires that
GSCL extends the standardized request interpretation.

On the other hand, the second option exploits the Retargeting mechanism [ETS13e],
which is defined as a mechanism to enable an SCL to route messages to an Application.
This mechanism settles in two attributes of the Application resource: the Application
Point of Contact (aPoC) and the Application Point of Contact Paths (aPoCPaths). The
aPoC attribute contains a URI that can be used to contact the registered application, and

the aPoCPaths contains a list of paths allowed for use in retargeting. A retargeting proce-
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Algorithm 1: Remote actuation.

/* Remote SCL resource’s access */
SCL receives a request targeted to an App Resource:
if local SCL is the destination then
if rargeted resource exists then
‘ SCL responds with resource;
else
L SCL responds with an error;

A UM A W N =

else
L forwards request to the remote SCL;

e 3

/+ Retargeting */
9 SCL receives a request targeting a resource that matches an APoCPath:
10 if Application APoC is the localhost then
11 ‘ Use IPC;
12 else
13 | Use HTTP Client;

dure is triggered if the target resource, in a received request, is not present in the receiving
SCL and the target URI matches or is prefixed by the combination of the registered Appli-
cation resource path and one of the aPoCPaths. At this moment, the Application resource
path, in the targeted URI, is substituted by the Application’s aPoC and the request is for-
warded. Available actions can be listed as retargeting paths in the aPoCPaths attribute.
When the M2M GW receives the request, it executes the desired action. The supported
actuation commands are in the DESCRIPTOR container belonging to the M2M GW.

3.1.6 Pilot Setup and Implementation

Along three weeks 10 volunteers used a Moto 2g [Areb] smartphones running Android
4.4.4 KitKat [Goo] and a chest band heart rate monitor, Zephyr HxM BT, following
the procedure presented in the storyboard. The users were willing to follow the proce-
dure during the week days, i.e., from Monday to Friday, preferably during 8 hours. The
users signed an informed consent for the collection of personal data. Mapping between
users and smartphones were not disclosed and, therefore, we can consider it as pseudo-
anonymous collection.

All communications use HTTP over TCP/IP. Subscriptions, publications, and notifica-
tions are made with a POST method which is followed by an acknowledgement message
from the receiver. We estimate that using CoAP [SHB] instead would lead to a decrease

of 28% of transmitted application protocol headers, without considering re-transmissions.
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Figure 3.7: Location of the system entities.

M2M GWs periodically transmitted M2M data using a UMTS or GPRS cellular net-
work selected automatically according to the network availability and state. Although
providing lower data rates, GPRS is a solution commonly adopted by telcos for M2M
traffic, and a majority of M2M devices use it [SJLT13]. Whenever an M2M GW experi-
enced periods without connectivity, it would continue to collect sensor data and attempt
to publish at the defined transmission period.

NSCL is installed in a machine running CentOS 7 in our department facilities (Porto,
Portugal), and openEHR is installed in a machine at the nearest medical school, less than 2
km away from NSCL. Both entities are connected to the same metropolitan area network.
The Data Processor runs in a machine with Ubuntu 14 LTS hosted at a commercial cloud
provider (London, England). Figure 3.7 depicts the location of these entities as well as
the connections between them. All communications are made using IP instead of domain

names to reduce possible delays of using DNS.

3.2 Measuring Latencies

Latency or One Way Delay (OWD) [AKZa] refers to the amount of time for data to travel
one way from one point to another [AKZa]. Latency measurements can be achieved by
non-intrusive (or passive), or intrusive (or active) measurements. In this work, we use
non-intrusive measurements, i.e., we use real network traffic to measure latencies. The
use of latency is advisable for complex networks due to the existence of asymmetric paths
or different routing or queueing policies [AKZa]. However, latency measurements require
comparable timestamps through internally synchronized clocks, and access to all system

components to correlate sending and reception information. We did not have this kind of
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Table 3.2: Points and levels where timestamps were acquired during the exchanging of
data packets between the different entities.

M2M GWs NSCL Data Processor openEHR

Application th tﬁ' SCL tfP tfH R
NSCL DP
Kernel - 1% g -

synchronization at the gateways, and we did not have access to the openEHR machine.
So, comparing all timestamps to estimate one-way delays was a challenge. In the rest of
this section, we describe how we measured latency for the different segments given the

different possibilities and accesses.

3.2.1 Synchronization

The most common method for clock synchronization over a distributed network is Net-
work Time Protocol (NTP) [Mil]. NTP is a well-known protocol used to synchronize
the clock of a client to a reference time source, and it allows up to sub-millisecond syn-
chronization [Smo03, Mil91, DVRTO08]. We use timestamps with millisecond precision,
so an NTP precision near 1 millisecond suffices. Data Processor, NSCL, and openEHR
were synchronized using NTP. However, the M2M GWs were not, so we had to find an

alternative way to estimate the latency between them and the NSCL.

An option to estimate latency between points that are not synchronized is using the
half of the Round-Trip Time (RTT) [AKZb] measurements, assuming that paths are sym-
metric. RTT is measured as the time interval between sending a packet and receiving its
acknowledgement at the same point, and, thus, it includes processing times at the remote
location. Recent measurements show that halving RTT can introduce tens of millisec-
onds of delay asymmetry (larger than our precision), and that asymmetries are higher for
commercial networks than education and research networks [PPZ"08]. Echo request and
reply mechanisms (Ping) of the Internet Control Message Protocol (ICMP) [Pos] are an
alternative commonly used to estimate RTT network latencies. Another possible solution
is to use TCP Ping that uses the SYN/ACK or SYN/RST mechanisms in the TCP hand-
shake. These techniques provide an estimate of network distance and latency, but use
only very short control packets being intrusive (though with negligible impact). Thus, we
halve the RTT to estimate the latency between GW and NSCL during the pilot.
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Table 3.3: Notations and equations of latencies measured between system components.

Notation Equation Measured Value
owDg" V11 f}( W(Acki) — 1S (Pub;))  0.9671 sec +0.0186
;
OWDy PP 1 fl (PP (Not;) — £Y5CL (Nory)) 0.0138 sec + 1.802 x 104
e
owDLEHR ,}lé (tEHR (Not) — (PP (Puby,)) 0.3130 sec +0.0470
owDj 1 il (eNSCL(Pub;) — t¥SCL(Puby))  0.0106 sec +5.312 x 104
OWDj e ”l’kgl (eNSCL(Puby) — (YSCL(Puby))  0.1399 sec 0.0404
owD5% ,}lé (t2P (Puby) — (PP (Puby)) 0.1076 sec +0.0306
OWDgA 1 f (PP (Not;) — t2P (Noty)) 0.0035 sec +1.162 x 10~
OWDjx ™ L nil (¥SCL(Notj) — tNSCL(Not))  0.0074 sec +7.535 x 1073
f=
Ping” "Nk 0.0057 sec
Ping" cEHR 0.0020 sec

3.2.2 Timestamping

Table 3.2 shows the timestamping points for our measurements. We acquired timestamps
at kernel- and application-levels at NSCL and Data Processor since we had full access to
them. Due to limited access, we could not acquire kernel-level timestamps at openEHR,
and we did not acquire timestamps at kernel-level at M2M GWs either due to the need for

root.

Timestamps measured at the kernel-level are the closest time we can acquire before
the packet is passed to (or after the packet is received from) the network device. Times-
tamp measurements at the kernel-level were acquired using TCPDUMP [MLIJ] that uses
libpcap [MLJ]. We acquired timestamps at application-level in all entities before data
was passed to (or received from) the M2M libraries. These libraries lay between the
application and the kernel. Timestamp measurements at the application-level were ac-
quired using the currentTimeMillis Java method [Ora]. While E2E latency measurements
tend to choose application-level timestamp-based measurements, pure network laten-
cy/delay measurements tend to choose kernel-based measurements [FZ15]. Performing
application-level measurements allows us to include the inherent delay of the application
protocol libraries, e.g., accessing or using libraries, queuing processes, etc. Interactions

between the application-level and the kernel-level are performed on a per-packet basis
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Figure 3.8: Latency measurement between entities presented. Dashed lines represent
transmissions or receptions at kernel-level between entities, which are the closest to the
network times.

and, therefore, we can acquire the timestamps of each packet at each level and quantify
the time differences between levels.

For latency measurements between application and kernel-levels at the same entity,
we calculate the difference of time between the timestamp of the HTTP data sent at the
application-level and the timestamp of the last TCP segment with HTTP data sent at the
kernel-level. For latency measurements between kernel and application-levels at the same
entity, we calculate the difference of time between the timestamp of the first TCP segment
with HTTP data received at the kernel-level and the timestamp of the HTTP data received
at the application-level.

Table 3.3 depicts the average latencies with 95% confidence intervals between system
components presented in the following section, and Figure 3.8 shows how we calculate

them.



3.3 System Evaluation 53

3.3 System Evaluation

In this section, we present a characterization and quantification of the data and latency
times, as the most relevant results obtained from the pilot measurements. We did not
observe significant changes on the memory or CPU usage during the pilot on any device,

and, thus, we do not present those results.

3.3.1 Quantification of Application Protocol Overheads

Figure 3.9 presents an overview of the amount of information that flowed through the
NSCL. It shows the received data per minute during the measurement days. The shape
of the figure allows us to have a visual perception of the measurement periods. There are
periods with data flowing, which are the periods where M2M GWs were transmitting, and

periods with almost no traffic, which are night periods.

M2M GWs produced 22759 publications. Figure 3.10 shows the amount of hours
monitored by each gateway. We monitored users for a total of 1146 hours, from which
479 hours were actual data collection and transmission (i.e. active time), corresponding
to 42% of the total. During measurements, users experienced some sensor device mal-
functioning which caused the time differences between operation and actual collection
and transmission. In some cases, the chest band heart rate monitor indicated full battery
when it was not the case, leading to short or even null periods of operation. The very low
active time for M2M GW?7 is explained due to the user leaving its application running
without the BT device being connected. Figure 3.10 and Figure 3.11 show that M2M

GWs with larger active times transmit more information, as expected.

In total, M2M GWs received approximately 6.3 MByte of HTTP data and transmit-
ted approximately 65.6 MByte of HTTP data, as shown in Figure 3.11. From the latter,
43.3 MByte were the actual compressed sensor data, corresponding to 430 MByte of un-
compressed data. The total HTTP protocol headers transmitted during the measurements
corresponded to 3.2 MByte of the total transmitted data. The M2M resource structure
paths transmitted were 19.1 MByte, which corresponded to 29% of the total transmitted
data. This shows that protocol headers are only a small part of the total overhead. On the
other hand, resources are a large part. If we had used CoAP we estimate approximately
1 MByte savings of application protocol headers and a saving of 1.5% of the total trans-
mitted data which is not as relevant as one would expect. However, as the resource paths
were large and the HTTP protocol headers were relatively small, the use of CoAP would

not provide significative advantages.
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Figure 3.9: Amount of data received per minute at NSCL during the measurements. The
outline makes the measurement days observable.

3.3.2 Characterization of the E2E Latency

We start by looking into the E2E latency experienced by data produced at a GW that
would be processed at the Data Processor and then delivered to the openEHR using the
M2M middleware. E2E latency can be split into the latencies between neighbor system
components. Figure 3.12 shows the latency splits between the entities that compose the
E2E latency. We decomposed the E2E in three parts: the latency between M2M GW
and NSCL, the latency between NSCL and Data Processor, and the latency between Data

Processor and openEHR:

E2F GW,NSCL

OWD->" = OWDS VSCL.DP

+OWD, PPERR

+OWD,

The average application-level latency between an M2M GW i publication and the
respective acknowledgement from NSCL is 0.9671 sec.

The average application-level latency of a notification from NSCL to Data Processor is
0.01382 sec. The average application-level latency of a publication from Data Processor
to openEHR 1s 0.3130 sec. The last value is obtained by the averaging the time differences
between the application layer timestamps of the reception of the k notification at openEHR
and of the transmission of the k publication at Data Processor. This latency shows that
message passing between services can be a large component in the user-perceived latency.

In our system, a Ping probing between Data Processor and NSCL had an RTT average
of 5.7 milliseconds, and a Ping probing between NSCL and openEHR had an RTT av-

erage of 2.0 milliseconds. We see that the latency between services OWDEP’EHR, which
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Figure 3.10: Comparison between the time each gateway was running and the actual
active time when it was collecting sensor data and transmitting.

includes the latency impact of the broker and the applications, extends the latency esti-
mated by Ping by 8000%. This shows that, although Ping is an invaluable tool for having
a first impression of network latencies, it is not representative of actual application-level
latencies.

The latencies that compose the E2E latency follow a normal distribution, verified
using One-sample Kolmogorov-Smirnov [Kol33, Smi48] and Lilliefors [Lil67] normality
tests. Thus, the average application layer E2E latency is the sum of the average of these

latencies:

OWD,>F =0.9671 +0.0138 +0.3130 = 1.2939 sec

Latency between M2M GWs and NSCL makes up for 75% of the total E2E latency.

3.3.3 Quantification of the Impact of the Broker

The sum of the average latencies between kernel- and application-levels and between
application- and kernel-levels of NSCL, plus the time for processing the subscriptions,
gives us an estimate of the NSCL forwarding latency, i.e., the latency introduced by NSCL

receiving and forwarding data:

————NSCL ——NSCL —+5<NSCL —<NSCL
OWDForward = OWDK,A + OWDProc + OWDA,K
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Figure 3.11: Amount of HTTP data sent and received at each gateway.

where OWDﬁfff is the average latency of the NSCL application for processing subscrip-

tions (publications and notifications). We observe that the average latency between kernel-
and application-levels of NSCL when receiving publications on the mld interface is one
order of magnitude smaller than when receiving publications on the mla interface. There-
fore, we quantify the impact of the broker taking into consideration the two situations in

separate. If we consider publications received only on the mld interface:

7 VSCLyg
OWDForward -

OWDjyp ™+ OWDpry, +OWDy " =

0.0106 +0.0068 4-0.0074 = 0.0248 sec

while for publications received only on the mla interface:

=77 VSCLinta
OWDForward -

OWDjy ™ + OWDppy, +OWD) . ™ =

0.1399 +0.0068 +0.0074 = 0.1541 sec

Application-level processing and forwarding at the NSCL alone introduces on average at
least 25 milliseconds of latency for publications received on the mld interface, but can be
~ 520% larger for publications received on the mla interface. Considerable differences
between forwarding latencies in different interfaces can occur, and they depend of spe-

cific broker implementations. Thus, the impact of the broker forwarding latency should
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Figure 3.12: CDF of the average application-level latency between the entities that com-
pose the E2E latency.

be always measured separately in different interfaces to provide realistic performance
guarantees. Additionally, we see that service composition via broker may add significant

latency to the application response time, even if the broker is not overloaded.

3.3.4 Impact of Mobility

Mobility is inherent to any mobile communication system. Mobility introduces han-
dovers, increase of packet loss, and link failure. Figure 3.13 shows the average application-
level latency between M2M GW publications and reception at NSCL and the traveled
distance per measurement day for each GW. Average latency varied between close to half
second and one and half seconds. We observe a similar trend between the magnitude of
the traveled distance and the average latency experienced for each GW. We obtain 0.67
(n =10, p < 0.04, 95% CI: 0.068 —0.914) for Pearson’s correlation coefficient [Pea95]
between traveled distance and latency values. On the other hand, M2M GW4 and M2M
GW7 were located 300 km apart from the rest of the gateways during measurements. But
their average experienced latency does not differ from the global average, though they

follow the same trend of mobility.

These results indicate that the average latency values between M2M GWs and NSCL
1) depend on the M2M GW mobility; and 2) are independent of the physical distance
between gateway j and the NSCL for the considered distances. We assume that this ob-
servation is mainly due to the selection of GPRS and/or vertical handovers introduced by

the increase of mobility; however, we do not have enough data to confirm this assumption.
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Figure 3.13: Average application-level latency between M2M GW publications and re-
ception at NSCL and the traveled distance per measurement day for each GW.

3.3.5 Quantification of the Impact of the Promotion Delay

We study the impact on the E2E latency of the gateway’s network interface state at the
moment when the application schedules transmission by quantifying the impact of the
promotion delay of the access network, under controlled measurements. The promotion
delay is the time needed for the network to allocate network resources to the gateway’s
network interface. Although other works [QWG™ 10, HQG ™ 12] have characterized pro-
motion delay, we cannot apply it to our measurements as different networks carriers adopt
different state machine models with varied parameters. To complement our results, we
also quantify latencies between M2M GW and NSCL as well as expectable E2E latencies
for different access networks. Thus, we performed additional measurements for different
access networks using a single gateway and following a different procedure for transmis-
sions, depicted in Figure 3.14. Now, the M2M GW is completely static and it is not used
for any personal use which eliminates any background traffic. The stationariness reduces
possible random delays originated from mobility. The M2M GW transmits periodically
a set of 5 publications, each one transmitted only after the reception of the acknowledge-
ment of the previous publication, followed by a period of time without any transmissions
to guarantee the NIC returns to the Idle state.

We measured using a Wi-Fi connection to a high-speed fixed backbone, a 2G GSM/G-
PRS cellular network, a 3G UMTS cellular network, and a 4G LTE cellular network, all
of the same Internet provider, for almost two hours, and we acquired the application-level
RTT between the M2M GW and NSCL. All cellular networks had 2 gateways between
the base station and the Portuguese Internet eXchange (GigaPIX), the location where dif-
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Figure 3.14: Message sequence to measure the impact of the gateway’s network interface
state at the average application-level RTT between the M2M GW and NSCL in a static

and controlled environment.
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Wi-Fi,1  Wi-Fi,2-5 GPRS,1 GPRS,2-5 UMTS,1 UMTS,2-5 LTEA LTE,2-5

RTT,

Figure 3.15: Average application-level RTT between the M2M GW and NSCL for the
first and the subsequent four publications of each sequence for Wi-Fi, GPRS, UMTS, and
LTE, in a static and controlled environment.

ferent IP networks exchange traffic.

The first publication of each set is affected by the promotion delay. The remaining
publications (2-5) of each set are not affected by the promotion delay. The results are
shown in Figure 3.15. Overall, we can observe there is a significant difference between
the average RTT of the publications affected by the promotion delay and the average RTT
of the publications not affected by the promotion delay for all technologies. The average
RTT using GPRS was the highest for the publications affected by the promotion delay,
followed by UMTS, and finally LTE and Wi-Fi. Wi-Fi and LTE offer much lower average
RTT (almost 1 second less) than 2G and 3G cellular networks. We can observe that the
TCP three-way handshake, as expected [SCGM14], is not responsible for the high average
RTT, since it would affect all technologies in a similar way. In any case, alternatives to
the TCP three-way handshake could be the use of UDP and CoAP. These findings are in
conformity with [HQG™'13], [Gril3], and [XHW " 11] that argue that network access in
2G and 3G dominates overall E2E latency.

Keeping the interface state on and eliminating the promotion delay allows to reduce



60 Design and Evaluation of an interoperable M2M ecosystem

Table 3.4: Measured promotion delay for Wi-Fi, GPRS, UMTS, and LTE, in a static and
controlled environment.

Wi-Fi GPRS UMTS LTE

0.1066 sec 0.6812 sec 0.9952 sec 0.3249 sec

latency for all technologies. Table 3.4 shows the measured promotion delay. These values
are in conformity with previous works which obtained promotion delay values of approxi-
mately 0.080 seconds for Wi-Fi, 1 second for GPRS, 2 seconds for UMTS, and 0.260 sec-
onds for LTE [QWG™10, HQG™ 12], respectively. While our results differ in magnitude
for GPRS and UMTS, the ratio between them is similar to previous work. Nevertheless,
this confirms that it is not advisable to reuse network time parameters across different

networks.

The average latency between M2M GW and NSCL, when the gateway’s interface
state is On and Idle at the moment when the application schedules transmission, for the
different technologies is presented in Table 3.5. Overall, E2E latencies using Wi-Fi stay
below 0.5 seconds for both scenarios, and E2E latencies using UMTS and LTE are below
0.5 seconds only for an On state. E2E latencies using GPRS and UMTS are clearly above
1 second for an Idle state. Furthermore, the access network does not dominate the E2E

latency in any case when using Wi-Fi.

Applications with large transmission periods or aperiodic transmissions, like moni-
toring/sensing or event-based applications, do not drive the network interface to be con-
stantly on and suffer promotion delay at every network access. Therefore, they will ex-
perience latency values between the M2M GW and NSCL similar to the average latency
measured for the publications affected by promotion delay. For these type of applications,
the access network will dominate the E2E latency. On the other hand, applications with
small transmission periods can drive the network interface to be constantly on and do
not suffer promotion delay. Thus, they will experience latency values between the M2M
GW and NSCL similar to the average latency measured for the publications not affected
by promotion delay. In this case, the dominant part of the E2E latency is the latency
between NSCL, Data Processor, and openEHR, i.e., the latency between services, when

considering low latency technologies as LTE, Wi-Fi, or even UMTS.

The network access plays an important role even for applications with small transmis-
sion periods when considering high latency technologies, such as GPRS. Nevertheless,
the average latency values measured for the publications without promotion delay using

GPRS approximate the ones measured for the publications with promotion delay using
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Table 3.5: Average application-level latency between the M2M GW and NSCL when the
gateway’s interface state is On and Idle for Wi-Fi, GPRS, UMTS, and LTE, in a static and
controlled environment. Right column shows the expectable E2E latency for the same
scenarios by including the latency between the rest of the entities that compose the full

application.

———GW,NSCL

———F2F

W' F OWDA70N = 00617 sec OWDA,ON = 03885 sec
1-I'1

OWDy yprr = 0.1683 sec  OWDiy 1y = 0.4951 sec

——GW.NSCL ———F2F

OWDy, 5 =0.3551 sec OWD =0.6819 sec
GPRS e IR

OWDAJbLE = 10363 sec OWDA,IDLE = 13631 sec

————GW ,NSCL ———F2F

OWDy, 5 =0.1344 sec OWD =0.4612 sec
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OWDAJbLE = 11296 sec OWDAJDLE = 14564 sec

- OWDy oy~ =0.1032 sec  OWDy gy = 0.4300 sec
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LTE. Furthermore, they are considerably smaller than the average latency values for pub-

lications with promotion delay measured using UMTS.

3.4 Discussion and Important Observations

3.4.1 Discussion

As M2M standards are usually a one-size-fits-all and telcos need to guarantee average
service, latency serves as a performance indicator. We showed that it is possible to provide
an loT service composition on top of standards in a context of mobility; however, the high
E2E latency observed can disrupt user experience. We observed average E2E latency for
the 10T service composition during the mobile pilot of roughly 1.3 seconds. This value
falls near estimations obtained in [NK11], where E2E latency between a M2M GW and
a single M2M application using an LTE network could reach up to 1.5 seconds. Thus,
for interactive applications that involve a response from a service on the network domain
to a mobile device, the expected response time could be twice this much, with impact
on the user experience. High average application-level RTT between M2M GWs and
NSCL additionally means that devices will have their network interface powered on more

time, as it does not return to an Idle state between transmission and reception of data.
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Ultimately, this leads to higher battery consumption [HQG™ 12, SJL ™ 13]. We also showed
that Ping is not an admissible tool for estimating latency between services.

We identified the access network of the gateway as the main bottleneck. According to
our results, E2E latencies between a smartphone gateway and cloud hosted services vary
largely and can exceed 1 second. Also, they depend on the gateway’s network interface
state due to promotion delay and mobility. Nevertheless, further research with a larger
number of users should be conducted to better characterize the impact of mobility on the
application latency. Critical applications are latency sensitive and demand low latency.
If we consider that certain e-health applications may tolerate up to 1 second of E2E la-
tency, such as for ECG data [GHSC 05, SKM10, IT02], then, according to Table 3.5, we
just cannot use GPRS or UMTS for infrequent transmissions that may lead to idle states.
However, e-health applications with stricter E2E latency requirements, such as 500 mil-
liseconds [SLD™15], can face latency problems if any type of cellular networks is to be
used.

IoT applications should carefully coordinate the network access for latency perfor-
mance. In every transmission, when radio devices have the network interface idle, they
must synchronize and negotiate radio resources with the nearby radio tower. Even though
large transmission periods are associated with a lower battery consumption, time require-
ments can be compromised due to latency in the access network introduced by the promo-
tion delay. Moreover, the extent of the promotion delay depends on the technology used.
In case time requirements need to be guaranteed to, for example, detect or react to alarm
situations, the solution can be to maintain the interface on by using TCP SYN.

Further latency occurs at the core network as packets must flow from the radio tower
to the packet gateway, enhanced by the restricted routing topology of cellular networks
observed in [XHW ™ 11]. This advises locating content servers inside cellular networks or
as close as possible to the packet gateway. However, in an open ecosystem, there is no
desire to guarantee that services to be composed will be located inside a single cellular
operator’s network. An alternative may be the availability of multiple peering points in
the cellular backbone, with the inherent costs and challenges.

LTE replaces the two-layered radio access network architecture of 3G into a single-
layered architecture reducing overall latency [HQG™'12]. Future IoT applications for
mobile scenarios should adopt lower latency cellular networks, such as LTE, to provide
services with real-time requirements. However, recent LTE measurements showed that
it is less energy efficient during the Idle state and for transferring smaller amounts of
data [HQG " 12]. Nevertheless, in scenarios of heterogeneous networks, the exploitation
of low latency and power efficiency trade-offs offered by most wireless networks will be

mandatory. Thus, it is advisable to enhance the networking API of mobile devices with
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the possibility to choose among available connectivity opportunities, and/or to request
specific service guarantees, exploring service level awareness that are based on different
traffic modes [Gro16].

Advances in 5G cellular networks [ABC™14], namely a combination of Network
Function Virtualization (NFV) with Software Defined Networking (SDN) and offloading
to Wi-Fi, are certainly going to be part of the solution to reduce E2E latency. While NFV
alone introduces additional sources of latency through the virtualization layer [ALT14,
ETS14b, BKH " 14], the use of network slicing as a form of network virtualization [FRZ14]
can make the deployment of virtual network functions (VNFs) in separate networks pos-
sible, with separate configurations and network topologies, optimized for different types
communications, such as M2M [Eril4]. Different latencies can be achieved with the same
physical infrastructure by placing network functions accordingly [Eril5, HNXCI15], as
VNFs can be placed near data centers or close to base stations. Nonetheless, VNFs can be
enhanced by the use of small scale data centres deployed in selected places along the net-
work operator infrastructure achieving higher efficiency [Eril5]. In this context, device
and application-dependent provisioning could be enabled through a mobile networking
API that enables more expressiveness than sockets, and middleware APIs that also allow
QoS differentiation, which current standards do not.

Finally, the paradigm shift envisioned by the Tactile Internet, providing ultra-reliable
and ultra-responsive connectivity, will force a transition from LTE to 5G communications
to achieve the desired RTT in the order of 1 millisecond [Fet14, MCRV16, SAD" 16,
ADA™17]. This paradigm shift may become a key enabler of real-time interactive systems
and allow the development of new and innovative IoT applications with smaller time

requirements.

3.4.2 Important Observations

In this section, we present important observations from designing and implementing this
service composition that we believe to be useful for other researchers and practitioners

when developing IoT applications.

e Standardization: M2M standardization foster the emergence of IoT applications by
providing interoperability, as discussed previously. Standardization and interoper-
ability allowed us to create M2M libraries for use in different machines, while sav-
ing development and deployment time. In this concrete case, the NAlib at openEHR
was deployed by a developer which had no familiarity with M2M standards; how-
ever, the NAlib and its functionalities allowed a fast deployment and integration of
this NA;
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e Access Limitations: We faced several access limitations to different parts of the

system, e.g., having access for enabling services, such as NTP or TCPDUMP, or
opening TCP ports for receiving notifications. In IoT systems, it is unlikely that
anyone will have full access to all systems. So, performance evaluation of IoT

systems must design experiments to deal with the limitations of each system;

Application Design: Developers must be aware that data collection from a smart-
phone’s BT or internal sensors can have a significant impact on battery life. Even
the choice between using Random Access Memory (RAM) and hard drive to store
sensor data can have impact on battery consumption [PRP*16]. Therefore, applica-
tion developers need to pay close attention to resource usage optimization. The con-
strained nature of devices and networks introduces trade-offs, such as transmission

frequency and battery consumption and the specific application time-requirements;

Pilot study design: During measurements, users experienced some sensor device
malfunctioning which caused the time differences between operation and actual
collection and transmission, which ultimately led to short or even null periods of
operation. A previous study that assessed the feasibility of continuous stress mea-
surement using wireless physiological sensors [RBAT14] observed a significant
learning effect after the first week of use. However, two differences to our study are
evident. In that study, users had to sporadically interact with the smartphone, and
were monetarily compensated. Our application is designed to be non-intrusive and
the M2M middleware intended for reduced or no human intervention. Therefore, it
was easy to "forget" the application. Moreover, all participants were volunteers and
did not receive any form of compensation. For future implementations we advise
researchers to add control mechanisms to assure data quality locally and provide
feedback/notification of possible malfunctioning for users. Finally, some form of
user interaction or incentives for participation increases the engagement of partici-

pants or users.



Chapter 4

Modeling and Optimization of Packet

Transmission Scheduling in M2M

Currently, smartphones are mainly used for other purposes such as Web browsing, so-
cial networking, phone calls, etc. Battery capacity is quite moderate compared to the
increase of the complexity due to new hardware and services [PFW11]. This has led
to numerous studies on energy estimations and measurements of mobile devices to un-
derstand energy consumption of mobile applications as well as of wireless network in-
terfaces [PHZ" 11, PHZ12, DWC 13, BBV09, HQG"12, SSM09a]. The use of smart-
phones as M2M GWs can have a considerable impact on the smartphones’ usability and
introduce undesirable battery depletion due to network accesses, as shown previously in
this document. From a usability perspective, any additional battery depletion caused by
the gateway functionality should remain unnoticed, or nearly so. Several studies have
been conducted on battery recharge patterns [FDK11, BRC107, TSLX14, RQZ07], and,
for example, users that recharge battery based on battery levels notice differences in the
recharging cycle of the phones and tend to be irritated by the increase of energy consump-
tion [TSLX14].

This means that transmission of sensor information should be the most energy efficient
as possible. Nevertheless, each transmission can be performed with several different tech-
nologies, each with different power consumption profiles. Furthermore, latency between
M2M GWs and broker plays an important role in the fulfillment of time requirements,
and it depends on the technologies used for transmission. Transitions between different
network interface states have delay and power consumption costs associated with them.
Therefore, IoT applications in which data has deadlines need to carefully coordinate the
network access so that network interface state transitions do not compromise the timely

delivery of data, taking into consideration that different types of data might have different
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deadlines [SLD*15, SMK™17]. For instance, in interactive applications, a mere one-
second delay when downloading or uploading content has a significant negative impact
on the user experience [Eril7]. Figure 4.1 depicts the application scenario.

The problem of energy consumption of network interfaces in mobile phones has been
addressed in recent works, mostly by adjusting the tail time, that is, the time to switch
from the On state to the Idle state [BBV09, XZH" 15, ZZCA13], and by exploring state
transitions for the specificities of Web browsing in [ZHZC15]. To maximize the battery
life of smartphones in an IoT context, transmission scheduling should be employed to
minimize the energy consumption, while providing QoS to guarantee that data meets spe-
cific service requirements like deadline. In [HC14a], the authors proposed the reduction of
the energy consumed during the Tail state in cellular networks by aggregating data traffic
of multiple nodes using their peer to peer interfaces (BT or Wi-Fi direct), and the prob-
lem was formulated as finding the best task schedule to minimize energy consumption. In
another study, the same authors have shown that there can be considerable throughput dif-
ferences between cellular networks at the same locations, and use the same interfaces for
node collaboration in order to save energy consumption [HC14b]. In [GHY " 15], the au-
thors proposed energy efficient computation offloading algorithms for cellular networks,
while analyzing the effect of the tail problem in the offloading decision and aiming to
minimize the energy consumption of mobile devices.

Many studies regarding energy-aware task scheduling have been conducted for real-
time systems, specially research related to processors [BMAB16, AMMMAO(04, RMMO03a,
RMMO3b]. In [SCO1], the authors proposed a scheduling for minimizing the energy con-
sumption in processors for periodic tasks while guaranteeing the fulfillment of the tasks
deadlines. They also introduced a low-energy earliest deadline first (LEDF) scheduling
algorithm, a heuristic based on EDF, that schedules tasks in the option that consumes less
power. We use this heuristic for comparing scheduling performances in this work. The
problem of energy-aware task scheduling has also been studied in heterogeneous proces-
sor systems [WLC" 14, ZBHC15]. In [SC05], the authors introduced a pruning-based
offline Input/Output (I/O) device scheduling algorithm which determines for a given set
of jobs the start time such that the energy consumption of the I/O devices is minimized,
ensuring that no real-time constraint is violated.

These and other works in, or applicable to, the area of transmission scheduling in mo-
bile heterogeneous networks tackle the problem of energy consumption. However, to the
best of our knowledge none combines a model of network interfaces state transitions, the
concurrent use of wireless networks, and detailed models of latency and power consump-
tion in order to model and evaluate packet transmission scheduling. In addition, only

such model can allow us to use data mining techniques to develop a packet transmission
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Figure 4.1: Application scenario. Sensor information is collected by M2M GWs and
forwarded to a broker that notifies all Network Applications interested in receiving the
data.

heuristic that minimizes energy consumption with near optimal performance.

Here, we model packet transmission scheduling in LP. The model answers the ques-
tion: given a set of available networks and a number of packets to be transmitted without
missing any deadlines, what packet transmission scheduling should the M2M GW do to
optimize a given objective? The model delivers a packet schedule of when and on which
wireless network to transmit each packet in order to optimize, for example, the total en-
ergy consumption or the total packet waiting time. It decides likewise the state at which
each network interface is along the scheduling period. The model exploits the data char-
acteristics, the network characteristics, the application deadlines, and the heterogeneous
scenario, as depicted in Figure 4.2. We can thus understand what improvements can
energy- and latency-aware packet transmission scheduling introduce to M2M communi-
cations. Additionally, the model also allows to understand the factors that might cause a
wireless network to become more competitive, or to assess the impact of modifications in
the network interface performance.

This model can be used to inform packet scheduling heuristics that improve the us-
ability of smartphone M2M GWs. Furthermore, as the decision version of integer LP is
NP-complete, its implementation in M2M GWs can be unfeasible. In this work, we de-
sign a transmission heuristic by taking into consideration the knowledge obtained from the
energy-optimal scheduling obtained from the model in a wide set of different scenarios.
We evaluate the performance of the scheduling minimizing the total energy consumption
against the EDF scheduling algorithm, the LEDF heuristic, and our own heuristic, for a
wide range of scenarios. We quantify the average energy consumption, average packet
waiting time, average packet slack time, and average execution time, that can be obtained
following each scheduling.

We summarize the contributions of this chapter as follows:
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Figure 4.2: Packet transmission scheduling. M2M GWs schedule packet transmissions
to, for example, minimize the energy consumption or packet waiting times while guaran-
teeing the timely delivery of data. M2M GWs are multi-homed.

e We present the packet transmission scheduling model in LP. This model is a useful
tool for analyzing and comparing network performance under different configura-

tions, and for devising schedules that can minimize smartphones’ battery depletion;

e We use data mining techniques to devise a packet transmission scheduling heuristic
that minimizes the energy consumption. This heuristic performs several degrees
of magnitude faster than the energy-optimal scheduling, for the considered set of
scenarios. We show that the packet schedules obtained from the model and the

heuristic are similar, as well as the resulting network interface state behavior;

e We evaluate the performance of different scheduling algorithms, optimal and heuristic-
based, for different scenarios. We show that minimizing the energy consumption
can reduce the energy consumption in 7% when compared to the EDF scheduling,
and nearly 3% when compared to the energy-aware LEDF heuristic. On the other
hand, it increases the packet waiting time and decreases the packet slack time. It
performs only 0.03% better than our heuristic, but it takes larger times for exe-
cution, showing that the heuristic can be a good alternative for implementation in
M2M GWs.

The rest of the chapter is structured as follows. We present the assumptions of our
model in Section 4.1.1, and we present the model itself in Section 4.1.2. In Section 4.2,
we present the scenarios and settings that we consider for this work. We design our trans-
mission heuristic that seeks to minimize the energy consumption in Section 4.3, and we
show the performance evaluation between different scheduling objectives in Section 4.4.

We discuss results in Section 4.5.
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4.1 Modeling Packet Transmissions

4.1.1 Model Assumptions

We make the following assumptions to build the model:
e We consider a discrete notion of time, i.e., time is slotted equally;

e No preemption is allowed. If a network starts transmitting a packet, then the net-

work must complete its transmission;
e Each packet must be transmitted only once on a single network;
e Each network can only transmit one packet at a time;

e Packets arrive at the start of each slot, and thus they can be transmitted immediately

in that slot;

e We assume the M2M GW allows concurrent packet transmissions on heterogeneous
technologies. In case the M2M GW does not possess such capabilities, an additional

constraint limiting the transmission to only one network would be necessary;

e The network and data characteristics are known a priori for the entire scheduling
period. They can vary over the scheduling epoch, but they must be defined and
characterized a priori, e.g., the latency between M2M GW and broker can vary
according to a time distribution. This allows guarantees and optimal scheduling. We
also assume throughput and latency between M2M GW and broker accommodate

possible packet re-transmissions;

e Network interfaces must be in one of four different states (Idle, Promotion, On, and
Tail) at a given time slot. The Promotion and Tail states occur after the Idle and On
(at the end of a packet transmission or a set of consecutive packet transmissions)
states, respectively. Figure 4.3 shows the possible transitions between states. More

states can be introduced into the model as long as the state machine is updated;

e In the Idle state, the network interfaces go to a complete idle mode in which the

power consumption is static (can be 0 or different) and there is no periodic wakeup;

e The network interfaces can be at different states at the start and they do not have to

return to the Idle state at the end of the scheduling period;
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Figure 4.3: Network interfaces state machine. The transitions from Idle and On states to
Promotion and Tail states, respectively, occur instantaneously. For example, if in a given
time slot the interface is at Idle state, it can be at Promotion state in the next slot, as long as
there is a packet to be transmitted after the promotion time. The Promotion state (during
the promotion time) as well as packet transmissions cannot be interrupted. Transitions
from the Tail state back to the On state are possible if there is a packet to be transmitted.

e All networks have the same transmission time slots, i.e., all networks can schedule
packets at the start of each (smallest unit) time slot considered. If different trans-
mission time slots are to be used in different networks, an easy solution is to restrict

packet allocation only to those slots for each network;

e We consider the data buffer size to be large enough to hold all data until transmis-
sion. If necessary, further model improvements can include a limitation of the total

amount of data that can be maintained at a given time.

Additionally, the schedule must be feasible. Therefore, there cannot be more sensor load
than what the available networks can carry. We assume thus the existence of an admission

policy to ensure this.

4.1.2 Model Definition

Let us consider a finite set of tasks # = {wy,wp,...,w;} of z sensors. We assume a
discrete notion of time t = k€,k > 0, and € the time unit and the smallest slot size possible.
The scheduling is made for a time period of T (e.g., fixed time or the lcm of all periodic
tasks). Each task is associated with a packet set & = {py,p2,...,p;} which consists
of all [ packets of each sensor w € # during T. We consider the total packet set to be
7 ={Jj1,J2,---,jm} which consists of all / packets from all z sensors. Each j packet
is characterized by the arrival time A; at the M2M GW, deadline d; at the destination
(broker), and size L;. Each packet can be transmitted in a set 4" = {ny,ny,...,n} of k
networks. Each network # has the following parameters: the uplink throughput 7 Ar,, the
latency Lat; , between M2M GW and broker using that network at a given time #, and the

power consumption profile Py, for each s state where s € . = {0,1,2,3}. The power
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Table 4.1: Notations used in the model.

Notation Definition

-~

Time in slots, r € 7 = {0,¢,2¢,...,T — 1}

j Packet to be scheduled, j € _#

n Network available for transmission, n € .4~

S Network interface state, s € .7

L; Size of packet j € 7

Thry Uplink throughput of network n € 4

Dj, Transmission time of packet j € ¢ in network n € A (= Tijrn

Aj Arrival time of packet j € _#

d; Deadline of packet j € ¢ at destination (broker)

Lat; Latency between M2M GW and broker of network n € A atr €

Py, Power consumption of network n € .4 in state s € .’

Xin,j Binary variable indicating whether packet j € ¢ is assigned to be transmitted in network n € 4" in time r € .7
Vins Binary variable indicating whether network n € .4 is in state s € . in time t € .J

consumption in the Idle state is P— ,, in the Promotion state it is P—; ;, in the On state it
18 Ps—3 5, and in the Tail state it is P—3 ,,. The transition time from the Idle state to the On
state is the duration of the Promotion state 7, 5, and the transition time from the On state
to the Idle state is the duration of the Tail state #4;; ,. The throughput together with the
size of each packet define the packet transmission time in each network D; ,. Table 4.1

summarizes the notations used in the model.

Our problem is to identify the start time and network for scheduling/allocating all
packets 2" = {X[t,n, j]} as well as the state at which each network interface is along the
scheduling period % = {y[hnﬁ]} that minimize a desired cost function. These variables
represent decisions of whether or not should a packet be allocated to a network at a given
time and whether or not should a network be at a specific state at a given time, and so
they should only take on the value O or 1, that is, a binary value. Therefore, our decision

variables are:

1, if packet j is assigned to network » in time ¢
Ximj = (4.1)
0, otherwise

1, if network n is in state s in time ¢
Ytns = . (42)
0, otherwise

The optimization problem for minimizing the energy consumption, EOpt, is given by:

min ) YeasPon 4.3)
VieT neN s€S



72 Modeling and Optimization of Packet Transmission Scheduling in M2M

subject to:
Xinj€{0,1}, Vie T neN,je g (4.4)
Vins €{0,1}, Vt€e T,ne N s€S (4.5)
Xin;j <0, Vte T neN,je Z|t<Aj|lt>T—-1-Dj, (4.6)

Xinj+Xgnk <1L,V(t,q) € Tine N, (jk)e F|jF#kt<qg<t+Dj, 4.7)

Xt7n7.j(t+Dj7n+Latt+Dj,n7n) S d,] VI e ‘77’1 E ‘/1/7.] 6 / (4'8)
Y Xinj>1, VieT neN je g (4.9)
t.n
Y Xinj<1, VieT neN je g (4.10)
t.n
Y yins>1, Vi€ T ne N s€S 4.11)
S
Y s <1, Ve Tne N seS (4.12)
S
q
XinjDjn/€ <Y Vin2,V(t,q,k) € Tne N, je Flg=t+Dj,—1 (4.13)
k=t
Yims=2 < Y XqnjV(t,q) € Tone N, jel|t—Dj,+1<q<t (4.14)
J4q

Yt.ns=1 +yt+1,n,s=2 —1< 2X1+1,n,ja Vit € {07 . -7T —2},71 € JV,] € j (415)
J

Yt ,n,s=0 +YI+1,n7s:1 -1 S ZX(1+1+zpmﬁn),n,j7Vl € {07 sy T—-1 _tpro,n};n € </V7] € j
J
(4.16)
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Figure 4.4: Packet allocation is done without any packet overlap for the same network

(top), and it must guarantee packet deadlines (bottom).

Vens=3 +Vitins=2—1< ZX,H’,M-, vt €{0,....,T-2},neN,jE #
J
Vins=1 <0, Vte T ne N |[t>T—1—tyon
Yins=0+Ygns=2 <1, V(t,q9) € T ,n€ N [t <q<t+1pon
q
kztyk,n,s_3 <traitn/ €, V(t,q,k) € T \n €N | q=1+tin
Vings=2FYagns=0 < L,V(t,q) € T,ne N |t <q<t+tan
Vings=2FVgns=1 < L,V(t,g) € T ne N [t <q<t+taign+1
Yens=0tYqns=3 < L,V(t,q) € T ne N [t <q<t+1pon+]
Vens=1+Ygns—0 < 1,Y(t,q) € T ne N |t <q<t+ty,+]1

Vens=11Yqns=3 <lI, v(t7Q) € 9,n eN ‘ g=t+1

Vins=3+Ygns—1 < 1,V(t,q) € T ne N |g=t+1

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

The cost function that minimizes the energy consumed during the entire scheduling
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Figure 4.5: Network interfaces can transmit packets consecutively remaining in the On
state (center), go to the Idle state between different packet transmissions (left) or remain
in the Tail state for a time period shorter than its tail time (right).

period is defined in eq. (4.3). The decision variables are defined as binary in eqs. (4.4)
and (4.5), and constraint eq. (4.6) defines that packets cannot be allocated before their
arrival or if there is not enough time to be transmitted near the end of the scheduling
period in the respective network. Constraint eq. (4.7) forbids overlap between packet
transmissions in the same network, and constraint eq. (4.8) guarantees data deadlines, as
depicted in Figure 4.4. Constraints eqs. (4.9) and (4.10) state that packets can only be
transmitted once, and constraints eqs. (4.11) and (4.12) limit that each network must be in
one and only one state at each time slot. Constraints eqs. (4.13) to (4.17) allow some state
transitions to occur only if there is a packet allocation and define that packet allocation
must occur only in the On state. Constraints eqs. (4.18) and (4.19) limit the Promotion
state, and constraint eq. (4.20) limits the Tail state. Finally, constraints eqs. (4.21) to (4.26)
define and limit the remaining transitions between states. Figure 4.5 depicts how network

interfaces behave for and in between packet allocations.

4.2 Settings

We implemented the LP model in OPL Studio modeling language using the IBM ILOG
CPLEX Optimization Studio 12.6.3, running on Windows 10, on an Intel(R) Core (TM)
i7-4700HQ CPU@2.40GHz with 8 GB of RAM and 200 GB of free disk space. The
main changes to the default configuration were: presolve dual setting was set to on, the
node presolve switch was set to perform aggressive node searching, and the MIP variable
selection strategy was set to strong branching. We initialized the generator of pseudo
random numbers with a value of 1.

Evaluation of energy- and latency-aware packet transmission scheduling requires know-
ledge of the power consumption behavior of actual wireless interfaces as well as latency
associated to each network. In the following analysis, we consider two networks: Wi-Fi
and LTE. In [HQG " 12], the authors performed a comprehensive study of Wi-Fi and LTE
power consumptions using a data set of 5-month traces of 20 smartphone users which we
use as reference for the power consumption models, see Table 4.2. They concluded that

a linear model fits well transmissions. The power level during transmissions (On state)
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Table 4.2: Power consumption profiles of Wi-Fi and LTE.

Network, State  Power Consumption (mW) Duration (ms)

Wi-Fi, Idle 0 -
Wi-Fi, Promotion 124 79
Wi-Fi, On 132 + 283 x Thr -
Wi-Fi, Tail 119 238
LTE, Idle 0 -
LTE, Promotion 1211 260
LTE, On 1288 + 438 x Thr -
LTE, Tail 1060 11576

depends on the throughput. We use the median uplink throughput of Wi-Fi of 0.95 Mbps
and LTE’s of 5.7 Mbps measured in that work. We assume network interfaces remain
with no power consumption in the Idle state, as previously mentioned.

In the previous chapter, we have characterized latency between smartphones acting
as M2M GWs and cloud hosted services in ETSI M2M communications for different
networks using controlled and static measurements. We use them as reference for the
network latency models. The measured Wi-Fi’s latency between M2M GWs and broker
was approximately 60 ms, while LTE’s latency was 100 ms. We assume the latency
remains static throughout the entire scheduling period.

We consider the e-health application use case described in Chapter 3. Here we con-
sider that the M2M GW collects physiologic and mobility data from three wearable pe-
riodic sensors, as illustrated in Figure 4.1. To develop our transmission heuristic as well
as to evaluate the performance of different scheduling algorithms, we proceed to obtain
several different scenarios.

We consider the minimum time slot size € to be 10 ms. Smaller time slots, or larger
scheduling periods, number of packets, and networks available can be used at the expense
of higher complexity due to the higher number of constraints and variables in the LP
model. For our analysis, we consider scenarios with an offered load at the M2M GW be-
tween 35% and 180% of the available bandwidth of the "slowest" network (Wi-Fi). This
approach allows us to explore the effect of the load in the scheduling process as well.
To attain the desired load and obtain a wide range of different scenarios, we randomly
and uniformly generate 30 different (unique) configuration scenarios consisting of 1 to 3
periodic sensors. We consider the packet size L; to be 7.125 KByte to hold the model as
an integer problem without decreasing the time unit. Considering large packet sizes, nev-

ertheless, allow the system to be robust against aperiodic or spontaneous packet arrivals,
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Table 4.3: Parameters used for scenario generation.

Parameter Value/Range
Number of scenarios 60
Load (Mbps) 0.333-1.710
Sensors 1-3
Inter-arrival time (ms) 10-400
Packet Size (KB) 7.125
First packet arrival (ms) 1-10
Deadlines (ms) 200 & 400
Scheduling Period (sec) 1
€ (ms) 10

even though significant packet sizes can be expected when using HTTPS and REST and
depending of whether or not data compression and aggregation are used. We consider that
the first packet from each sensor arrives at the M2M GW inside the first 10 ms, and that
the inter-arrival times (periods) are between 10 and 400 ms.

For a matter of completeness, we also consider two different packet deadlines d;:
200 and 400 ms relative to the arrival time A;. Scenarios with packet deadlines much
smaller than 200 ms would not make sense as the sum of each packet transmission time
and network latency is 110 and 120 ms for LTE and Wi-Fi, respectively. Therefore, we
obtain a total of 60 different scenarios. Finally, we consider the scheduling period T to
be 1 second, and, for fairness, we assume the networks were transmitting in the instant
before the beginning of the scheduling period, i.e., we consider the networks at the first
time slot are at the Tail state or they can transmit on it immediately. For that, we added
one additional constraint to the model. Table 4.3 resumes the parameters used to generate

the scenarios.

4.3 Packet Transmission Scheduling Heuristic

The minimization of the total energy consumption using the LP model serves as an in-
dispensable tool by providing the lower bound on the amount of energy consumed for a
given configuration. However, it is a computationally intensive task to be performed for
large datasets. Furthermore, as the decision version of integer LP is NP-complete, we seek
to understand the packet transmission scheduling decisions and provide a simple heuris-
tic that approximates the allocations obtained with EOpt, which minimizes the energy

consumption, but with less complexity and generating close to optimal solutions in poly-
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nomial time. Thus, serving as general guidelines that can be followed and implemented

in M2M GWs for scheduling packets using current wireless network interfaces.

4.3.1 Feature Selection

Manually designing heuristics for the type of problems this work deals with is imprac-
tical, if not impossible, due to the time required for learning the insights of each prob-
lem and solution. Nevertheless, one could design a specific heuristic that could outper-
form others for a specific configuration. This is known as the "No Free Lunch" theo-
rems [WM97, WMO05]. There the authors state that any two algorithms are equivalent
when their performance is averaged across all possible problems. Therefore, the need for
a spectra of different configurations as the ones generated in the previous section in order
to assess the performance of a heuristic across all of them.

A good packet transmission heuristic should follow not only the overall energy con-
sumption performance of EOpt but also its network interfaces state behavior and packet
allocations along the entire scheduling period. First, we need to analyze and characterize
these allocations in order to understand the behavior of the optimal solutions. By finding
what are the key features that define a specific allocation, we can group them based on
similarity, i.e., allocations that show the same type of features’ behavior, and compare
them with the ones obtained from EOpt.

The problem of comparing different allocations is to detect time shift variations. For
instance, even a sequence of network interface states shifted only by one time slot can
make the interfaces behavior of two different scheduling algorithms look very different.
Though maintaining the same objective cost, their interface states can differ in several
time slots along the scheduling period. Therefore, we consider several features that char-
acterize the sequences of the network interface states. After some initial analysis, we
reached a total of 40 features characterizing the EOpt allocations. These features include
the total and the maximum consecutive time slots where a network interface was at a cer-
tain state; the total and the maximum consecutive time slots where both network interface
were at a certain state; the longest common prefix and suffix sequence of both networks;
the number of transitions between each state for each network; and the first and last time

slot when each network transmitted.

4.3.2 Cluster Analysis

Clustering is a unsupervised learning method commonly used for statistical data analysis,

and considered as a core task in data mining [HKP12, EC02]. It can be used to discover
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relationships among the elements of the results. By performing cluster analysis, we divide
our results and group them in subsets that are similar in some sense, i.e., we group similar
allocations.

We extracted the values of the features from the allocations obtained from the 60 dif-
ferent configurations presented in Section 4.2. First, we removed from the analysis 11
features that were not adding any real value to the results, as they presented zero vari-
ance across all scenarios. Figure 4.6 shows the hierarchical clustering with the associated
dendrogram that we obtained, where columns represent each of the 60 different configu-
rations and rows represent the value for each feature. The results were scaled and centered
per row.

Figure 4.6 shows clearly 3 main clusters. The first (left) cluster highlights the ex-
clusive use of Wi-Fi. There are no transmissions and, therefore, there are no transitions
between different states on LTE (e.g., V30, V3, V20). These scenarios have the smaller
offered load, and thus Wi-Fi can offload all packets alone.

The second (center) cluster is composed of scenarios where both networks need to
transmit several packets as the offered load is high, although with preference for the less
power consuming one (Wi-Fi). Therefore, this cluster highlights the features that indicate
not only the use of Wi-Fi and LTE, and their state transitions, but also their concurrent
use, that is, the transmission of packets at the same time in both networks (e.g., V40).

The third (right) cluster groups the scenarios where the offered load requires the use
of two networks as well, but not always, either because the load is not that high or because
it is just due to some packets that arrive near the end of the scheduling period (e.g., V5),
or at the same time, and cannot be allocated in Wi-Fi due to the smaller throughput.

Regarding the allocation differences between scenarios that differ only on the dead-
lines, we see that these scenarios do not cluster in the low levels of the tree, but they do in
higher levels. Furthermore, this analysis allows us to see that, for some scenarios, larger
deadlines mean Wi-Fi being in Idle state for some time slots, and thus reducing the energy
consumption. This is done by aggregating and delaying the transmissions to a later point
in time as Wi-Fi still manages to fulfill the data time requirements.

Taken together, these results show that generically the heuristic should only use the
network with the lowest energy consumption for transmitting packets, and aggregate data
across the entire scheduling period in order to attempt transitions to the Idle state. If not
possible, depending of the load, then it should offload some (or many) packets to the other

network.
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Figure 4.6: Hierarchical clustering with dendrogram showing that the sequences of the
network interface states obtained from the 60 different scenarios group together in three
main clusters, considering 29 main features for characterization.

4.3.3 Transmission Heuristic Algorithm

The key to save energy according to the knowledge obtained from the EOpt scheduling is
to use only one network if possible and delay transmissions as much as possible in order
to schedule packets consecutively, and thus the heuristic must consider this. However,
due to time requirements (deadlines), there will always be a maximum amount of time
that each packet can be delayed. Algorithm 2 presents our heuristic, termed EHeu.

One requirement for the heuristic that is implicit, but is of utmost importance, is that
it should run fast, i.e., it should be less time consuming than EOpt for finding a solution.

Therefore, first, our heuristic performs a quick initial packet allocation, where it tries
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Figure 4.8: Optimization (top) and enforcement of the state machine (bottom).

to schedule packets in Wi-Fi as later as possible, as shown in Figure 4.7. If that is not
possible, it will iteratively try one time slot earlier up to the packet’s arrival time. Only
then, if the allocation to Wi-Fi was not possible, it attempts to allocate the packet in
the other network, LTE. As for the model, packets cannot be scheduled for transmission
before they arrive or if there is not enough time for a network to transmit it, and there
cannot be packet allocation overlaps. We removed these steps from the algorithm for a
matter of simplicity.

The second procedure of the heuristic, depicted in Figure 4.8, enforces the state ma-
chine while optimizing the packet allocation. If packets were allocated with a time dif-
ference less than the tail time, that is, the time between the end of the first packet and
the start of the second packet is less than the tail time, the heuristic attempts to join these
packets together, that is, it tries to anticipate the transmission of the latter packet in order
to explore possible Idle states later in time. However, if that time difference is larger than
the tail time, but less than the amount of time required to move to the Idle state at least
one time slot, it tries to re-schedule that packet, or any other if that one fails, somewhere
inside a tail time period after the transmission of the former packet. This same process is
applied to the special case of the first packet.

Finally, the heuristic must allocate the states to each network interface. The heuristic

allocates the On state for packet transmissions. For a difference of time between consecu-
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Figure 4.9: Left dendrogram contains the hierarchical clustering of the features extracted
from the EOpt schedules, and right dendrogram contains the hierarchical clustering of
the features extracted from the EHeu schedules, showing a close resemblance. Baker’s
Gamma is 0.98 and Fowlkes-Mallows index is 0.767 for k = 7.

tive packet allocations less than tail time, the interface remains at the Tail state; otherwise,

the heuristic allocates the Tail, Idle, and Promotion states accordingly.

We compare how similar the clusters of the features obtained from EOpt alloca-
tions are from that of EHeu allocations for all 60 scenarios. Figure 4.9 shows this vi-
sually [Gall5]. We obtained 0.98 of Baker’s Gamma correlation coefficient. Baker’s
Gamma, ranging from -1 to 1, is a measure of similarity between two trees of hierarchical
clustering [Bak74]. No statistical similarities are given by values close to 0. It is defined
as the rank correlation between the stages at which pairs of objects combine in each of

the two trees [Gall5]. However, this measure is not affected by the height of a branch,
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but only of its relative position compared with other branches.

For a matter of completeness, we also computed the Fowlkes-Mallows index [FM83].
It is formed by cutting the two hierarchical trees and counting the number of matching
entries in the k clusters in each tree, taking into consideration not only the position but
also the height. This index can range from O to 1, where 1 implies greater similarity
between hierarchical clusterings. We obtained an Fowlkes-Mallows index of 0.767 at a
cut tree of k=7.

We can conclude that there are similarities between the values of the features extracted
from EOpt and EHeu schedules, showing resemblances between the two allocations. The
performance evaluation and comparison between EOpt and EHeu are presented in the

next section.
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Algorithm 2: EHeu algorithm.

1

order ¢,

2 listAllocatedSlots| T[N ];

w
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39
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4
42
43
44
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57

networkstate[ T |[N];

/+ Initial Allocation

for j € {m,...,1} do

attempt X; ,—1; from t =d; —Dj,=1 —Laty—1 : Aj;

if X,.’,lzl‘j == 1 then

update listAllocatedSlots[t : t+Dj,— — 1][n=1] = j;
continue;

else
attempt X,)nzz‘j from t=d;— Dj‘,,zz —Lat,— :Aj;
if X; -2 j == 1 then
‘ update listAllocatedSlots[t 1t +Dj ,— — 1][n = 2] = j;
continue;

/% Optimize allocation and Check consistency

forne ./ do

Get time of first allocated packet, 71 Xax=1>
if 11451 <t1 <tpron +tiaitn + 1 then
if A; <1y, then
‘ attempt X1,k from t =A; :tpron;
else
L try with other packet;

ierl,n,k == 1 then
| update listAllocatedSlots(t1 : t1+ Dy, —1][n] = k;
Get next allocated packet;
Calculate &, = 12x,, =1 —tlx, =13
if & > tpron +tiair,n + 1 then
‘ skip to that packet;
else if & < 1,4, then
attempt X; , j from t=max(Aj,t1+Dy, —1):12—1;
if X; , ; == 1 then
| update listAllocatedSlotst : 1+ D, — 1][n] = j
else if & > 1,4y, && < tpropn + tail.n + 1 then
ifA; <1y, then
‘ attempt X; , ; from t =max(Aj, 11+ Dy, —1) tpron;
else
L try with other packet;

if X; , j == 1 then
B | update listAllocatedSlotst : t+Dj, —1][n] = j:

/* Fill States

forn € .4 do

time = 0;

while time < T — 1 do

if listAllocatedSlots|time][n] # 0) then

networkstatetime|[n] = 2;

time = time + 1,

else

6 =0+1;

for newTime =time+1:T —1 do
if (listAllocatedSlotsinewTime][n] # 0) then

‘ break;

else

L 6 =0+1;

if 6; < ttuil,n then
| networkstateltime : time + & — 1][n] =3;
else
networkstatetime : time + t,qi (1] = 3;

time = time + &;;

networkstate([time 4ty  : time 4+ & — tyron — 1][n] =
networkstate(time + & — tpro p  time+ & — 1][n] = 3;

*/

*/

*/
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4.4 Scheduling Evaluation

In this section, we compare the performance of different scheduling for the scenarios
of Section 4.2. The first scheduling considered here is EOpt, and it minimizes the to-
tal energy consumption in a given scenario as defined by eq. (4.3). The second one is
the well-known EDF scheduling [LL73], and it is implemented in the LP model as well.
In our case, for each slot, if possible, EDF schedules packets to be transmitted in order
of their deadline as soon as they are ready for transmission, that is, as soon as they ar-
rive. The earlier the deadline of a packet is the higher the priority for transmission is.
Within the same scenario, all packets have the same deadline, and thus the objective of

this scheduling becomes the minimization of the total packet waiting time:

min ) Xinj(t—A)) (4.27)
Vte T neN je I

We consider two heuristic-based scheduling algorithms for comparison purposes: our
own heuristic devised in the previous section, and an adaption of the LEDF heuris-
tic [SCO1] to wireless networks. The latter is an extension of EDF that attempts to sched-
ule the tasks first in the least power consuming option. After adapting it to our case, LEDF
operation becomes as follows. It schedules packets in ascending order of their deadlines.
For each slot, if there is any packet ready to be transmitted, this heuristic attempts to
schedule the packet in Wi-Fi; if that is not possible, it tries to schedule the packet in LTE.
If both attempts fail, it shifts to the next time slot and repeats the same process. The im-
possibility of a packet allocation to a network is due to allocation overlaps, to insufficient
time for a packet to be transmitted in a network, or due to the consistency of the network
interface state machine, as discussed earlier.

We define the following four metrics to quantify the performance of each packet

scheduling:

e Average energy consumption: the average energy consumption for all scenarios (in

Joules);

e Average waiting time: the average amount of time between the arrival (at M2M
GW) and the allocation of all packets for all scenarios (in seconds), as depicted in

Figure 4.10 for a single packet;

e Average slack time: the average amount of time between the arrival at destination
(broker) and the deadline of all packets for all scenarios (in seconds), as depicted in

Figure 4.10 for a single packet;
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Figure 4.10: Calculation of the waiting and slack times for a packet.
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Figure 4.11: Energy consumption for the different scheduling across the different scenar-
10s divided by load. EOpt scheduling performs the best, followed by our heuristic, and
then by LEDF and EDF scheduling.

e Average execution time: the average amount of time to find the best/optimal solu-

tion for all scenarios (in seconds).

Minimization of the average waiting time does not imply a maximization of the av-
erage slack time because packets can be transmitted in different networks, with different
throughputs and latencies.

Figures 4.11 to 4.14 show the energy consumption, waiting time, slack time, and
execution time, respectively, for the different scheduling across the different scenarios
divided by load. Table 4.4 shows the average performance of each packet transmission
scheduling for 1 sec scheduling periods.

The schedules obtained from EOpt result in the best performance in terms of the aver-
age energy consumption. EDF consumes 7.04% and LEDF consumes 2.87% more energy
in average than EOpt. Our heuristic has a very close performance, with an increase of just

0.03% more than the optimal scheduling.
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Figure 4.12: Waiting time for the different scheduling across the different scenarios di-
vided by load. Time-based objective scheduling perform better than energy-based objec-
tive scheduling for the waiting time, as expected.
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Figure 4.13: Slack time obtained for the different scheduling across the different scenarios
divided by load. Higher is better. LEDF performs similarly to EDF, and both perform
better than EOpt and EHeu.

The trade-off between energy and time becomes clear when we add the waiting and
slack time metrics to the analysis. While generally packet transmissions are delayed to
send packets consecutively using a single network for the objective of minimizing energy
consumption, all packets should be sent as soon as they arrive and two networks should

be used if necessary in order to the minimize waiting time.
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Figure 4.14: Execution time (in log) for the different scheduling across the different sce-
narios divided by load. EHeu and LEDF are much faster than EOpt and EDF.

The EOpt schedules lead to an increase of 10520% of the average waiting time and of
26% of the average slack time when compared to the EDF schedules that are optimal in
terms of the waiting time. Our heuristic has the worst average performance with respect to
these two metrics, with an increase of 136000% and 33%, respectively, when compared to
EDF. LEDF, as expected, performs very similarly to EDF, showing an increase of 100%
of the average waiting time and just 1.7% of the average slack time. As EDF chooses
either Wi-Fi or LTE for transmission, it performs better than LEDF with respect to the
slack time, since the latter scheduling preferably selects Wi-Fi, which is the network with
the worst performance in terms of the sum of transmission time and latency. Moreover,
by always allocating a first packet to Wi-Fi if possible, LEDF can struggle in terms of the
waiting time when compared to EDF. Specifically, if two packets arrive at the same time
while there is still an ongoing transmission in Wi-Fi, one packet can be transmitted in
LTE but the other will have to be delayed for transmission in the next time slot. Although
this situation depends on very specific scenario configurations, namely the packet arrival
period of each sensor, it will occur with more frequency with LEDF than with EDF, as
EDF would eventually use LTE for the first transmission and, thus, it would have both
networks available sooner. This explains the small, but existent, differences between the

average waiting time of the two scheduling for a few scenarios shown in Figure 4.12.

EHeu shows only a slightly worse performance than EOpt regarding the average en-
ergy consumption. From an individual analysis of the packet allocations in the scenarios

where we observe differences between the energy consumption of these two scheduling,
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Table 4.4: Average energy consumption, waiting time, slack time, and execution time for
the different scheduling for all scenarios.

Scheduling Average energy consumption (J) Average waiting time (s) Average slack time (s) Average execution time (s)

EOpt 1.3753 0.702 2.239 666.583
EHeu 1.3757 0.907 2.033 1.315 x1073
EDF 1.4722 0.667 x1073 3.017 5.475
LEDF 1.4148 1.333 x1073 2.966 2.233 x1074

we can see that EOpt not only delays transmissions, but, in some specific cases, it also
anticipates transmissions of some other packets in order to explore Idle states in between
the two groups of packets, specially for scenarios with larger deadlines and low offered
load. Furthermore, this action also leads EHeu to have larger waiting times and smaller
slack times than EOpt in some scenarios.

The average execution time is an important metric to be considered when comparing
different scheduling, specially when analyzing it as a metric of the implementation feasi-
bility in smartphones as M2M GWs. Both heuristics perform fast when compared to EOpt
and EDF. The time required for EOpt and EDF to find the optimal solutions increases with
the load which does not happen for the heuristics. While EDF performs faster than EOpt,
it still takes much more time on average than LEDF to find the optimal (best, in the case

of LEDF) solution. Our heuristic is several degrees of magnitude faster than EOpt.
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4.5 Discussion

As the IoT grows in number of devices and services, the need for energy efficient systems
grows as well. The access network of the M2M GW is a limiting factor, both in terms
of energy consumption and latency, and thus IoT applications have to coordinate network
accesses carefully. Although large periods of time between consecutive transmissions, in
which there are more opportunities for network interfaces to shift to the Idle state, are
associated with a lower energy consumption (and hence battery consumption), data time
requirements can be compromised due to latency in the access network, introduced by
the promotion time and the core network, and the extent of this value depends on the
technology used. Efficient modes of operation to provide an always On state could be
used to address this problem [PKN*13].

Devising models to allow schedule packet transmissions in order to minimize en-
ergy consumption, while guaranteeing QoS depending of specific application deadlines
and networks characteristics, is important. Furthermore, these models can be crucial for
scenarios where IoT devices must operate for very long periods of time (years or even
decades) without replacements or interventions. In heterogeneous networks scenarios,
the exploitation of low latency and power efficiency trade-offs offered by wireless and
cellular networks will be mandatory to guarantee an efficient resource utilization.

In our results, we observed that we can obtain significant energy savings by mini-
mizing the energy consumption (EOpt) when compared to a common scheduling (EDF).
Using knowledge obtained from the model, we managed to approximate the energy per-
formance of a heuristic (EHeu) to the optimal, still with less complexity in finding the
best solutions. Therefore, increasing the usability of smartphones M2M GWs. The two
heuristics considered in this work can be a good compromise between either energy con-
sumption (EHeu) or waiting time (LEDF) and execution time, and thus showing as better
options for implementation in M2M GWs.

The model also provides a useful way to analyze the impact of modifications in the
network interface performance and understand if different networks can be more com-
petitive with minor modifications. For example, in [PA17b], we analyzed for a specific
scenario the impact of a throughput degradation of the best network in terms of energy
consumption. With the degradation, the network was not able to offload all packets dur-
ing the scheduling period, and we observed the optimal solution avoiding inefficient state
transitions and completely shifting the entire packet schedule to the other network. Even
if different power consumption or latency models are used, or even if other networks are
used, this model and type of analysis can be crucial for optimizing the energy consump-

tion, or any other objective using for that a different cost/objective function.






Chapter 5

Enabling Efficient GWs with Network
Coding

Nowadays, smartphones are equipped with a multitude of heterogeneous wireless inter-
faces that offer diverse bandwidth, reliability, and latency at different energy and eco-
nomic costs. In this scenario of convergence of heterogeneous radio access technologies,
multi-homing allows smartphones to be simultaneously connected to and exchange data
on multiple network interfaces, thereby increasing reliability and QoS of content deliv-
ery [LJH"08] and allowing mobile IoT applications to have better performance.

Typically, only one interface is used at a time, chosen according to static, pre-defined
priorities: use Wi-Fi if possible, 3G/4G otherwise, and BT for specific applications. This
approach is consistent with today’s business model for mobile connectivity, but it is not ef-
ficient in terms of managing network resources, or decreasing economic costs [AMSSO08].
The interface to use should be chosen according to application and user requirements, as
well as device and network context.

Current proposals, recently reviewed in [PKBV11], include network centric [THMO04,
NHO06, BKKR13, YBCO05], user centric [SJ05, CANT11, LCX07, OPMO05, LLZ06] and
hybrid [HEAA11, WLMOS] approaches that trigger vertical handovers in heterogeneous
wireless networks using a variety of techniques, e.g., stochastic LP [THMO04], game the-
ory [NHO6], multiple-attribute decision making [HY81, BLO7], grey relationship analy-
sis [LCXO07], as well as concepts borrowed from economic modelling like profit [LLZ06],
surplus [OPMO5], or utility functions [YBCO05]. Context-aware frameworks for vertical
handovers have also been proposed [PNWO03, She05, NVACT13, ZS10]; however, they
do not consider simultaneous use of more than one radio technology, which is a common

limitation present in network selection work [HILS11, CK04].

91
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The emergence of multi-homing and the feasibility of unicast communication over
multiple paths [HSH™06] opens up the possibility to use different interfaces simultane-
ously. In [XV05], the authors propose a scheme for choosing the access technology to use
for each new flow upon arrival partitioning the flows over multiple radio access techno-
logies. A framework for simultaneous use of 3G and WLAN by multi-homed devices is
proposed in [LMD™ 03], considering the specificities of multilayer HTTP and video traf-
fic, but the approach separates the traffic into multiple flows and makes a static allocation
of those flows. These and similar proposals provide little or no adaptability to the in-
herent channel quality variations of wireless systems [CR06, LB13, XLG" 13, LDH*" 14,
PNAKI11, RFC12].

Adaptive resource allocation algorithms that choose which data to send/request through
each available interface based on network conditions, traffic load, available energy, among
other constraints are thus instrumental to leverage the full potential of converged hetero-
geneous wireless communications [[ZE13, 17214, CS14]. We note that none of these works
provide a framework for exploring the parameter space and evaluating achievable gains,
nor do they consider network coding exploring opportunistic transmissions in the con-
text of multiple paths in converged heterogeneous wireless networks with time-varying
channels.

Network coding, initially proposed in [ACLYO0O0], constitutes a disruptive paradigm
that relies on mixing (coding) packets E2E or at intermediate nodes in the network rather
than storing and forwarding them [FLBW06, SSM09b]. Random linear combinations
are sufficient to achieve the maximum capacity of a network with probability exponen-
tially approaching 1 with the code length [HMK™06] while attaining minimum delay
[LYCO03, LMKEOS8]. From a receiver’s perspective, it is no longer crucial to focus on
gathering specific packets, but to gather enough linearly independent coded packets to
recover the original information. This enables network coding to exploit multiple routes
and/or network topologies seamlessly by dynamically shifting traffic between different
paths, without concerning about coordination or packet scheduling problems. By explor-
ing redundant network capacity, network coding reduces the need for complex manage-
ment schemes, allows decentralized operation, and increases the robustness and resilience
to topology/network changes and even link failures [HMK ™06, CdPCZ*13].

For transmissions in packet erasure channels, network coding provides robustness
against packet losses and highly dynamic network conditions [HMK™06, WFyLB05,
FLBWO06, KRH"08]. These traits make network coding very appealing for the volatile
environments typical of heterogeneous wireless networks, especially when data may be
transmitted simultaneously using different technologies as is enabled by multi-homing.

Network coding is a block-coding operation where each block represents a generation.
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Other block-based codes used on packet erasure channels such as Automatic Repeat re-
Quest (ARQ) error-control codes [LCM84], although achieving optimal throughput, have
increased delay [FLBWO06], and E2E Forward Error Correction (FEC) codes [Ham50] do
not achieve the optimal throughput due to the inherent redundancy adaptation to the E2E
loss rate [FLBWO06]. Digital fountain codes, such as Luby Transform (LT) codes [Lub02]
or Raptor codes [Sho06] which are based on LT codes, low-density parity-check (LDPC)
codes [Gal62], turbo codes [BGT93] and even Reed-Solomon codes [RS60] are examples
of FEC codes. Usually, large block sizes are required to maximize capacity which add
extra delay; less delay comes with the expense of a less efficient code. As FEC codes are
used E2E, since intermediate nodes do not perform coding operations and confine them-
selves to relay packets, in [WKROS5] the authors propose the use of network-embedded
FEC; however, nodes need to wait until sufficient packets are received for decode and fur-
ther re-encode of a new data segment which adds extra delay to the system, while network
coding would allow the immediate decode and re-encode of each packet.

Recent work on network coding has considered the use of multiple interfaces to im-
prove quality of experience [PMOS11] with an economical cost objective and to minimize
completion time of a file transfer [ML15]. In [PAL13], our goal was to leverage network
coding techniques optimizing how to share load among the available interfaces between
multi-homed devices over heterogeneous, time-varying wireless networks. Thereby we
focused on a user-centric approach, formulating and solving a resource allocation problem
for deciding when and under which conditions the offered traffic load should be transmit-
ted on each available path. The numerical results proved that dynamic allocation policies
using network coding improved resource usage efficiency by reducing energy consump-
tion and/or channel utilization in some selected (and specific) scenarios. We present these
results in Appendix A.

In this work, we show the extension and generalization of that work by evaluating
the actual potential impact of the proposed optimal policies. The work uses Simulated
Annealing (SA) meta-heuristics to efficiently explore the parameter space and fully un-
derstand the advantages of dynamic allocation policies that adapt to the volatile channel
characteristics; we compare their performance with the use of static policies, as are com-
mon in state-of-the-art devices, identifying under which operating conditions the reduc-
tion of energy consumption and channel utilization are most significant, and answering
the question: "When are network coding based dynamic techniques beneficial for multi-

homed GWs in IoT applications?"
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5.1 Framework

We consider the problem of transmission of data packets from a source (GW) to a des-
tination in a time-slotted system, where two independent channels are available!. Both
source and destination can be relay nodes in a network. Our framework determines the
amount of offered traffic load that should be sent on each channel. At each time slot, the
source can transmit random linear network coded packets [HMK ™ 06] through both chan-
nels (sending a different coded packet in each), one channel, or can decide not to transmit
in that time slot. Given that packets arrive randomly at the sender, we consider an online
network coding approach [SSM09b, SSMO0S].

We assume an independent Gilbert-Elliott model for the channel [Gil60, E1163]. Fig-
ure 5.1 illustrates the scenario. We consider that each channel i can transmit using a
combination of a set of modulation and (physical-layer) coding pairs, .#). M;; € ./ rep-
resents the j-th available modulation and physical-layer coding pair available to channel i.
D(M;;) represents the fraction of useful information bits in a slot when transmitting with
M;;. Packet erasure (loss) probabilities on the i-th channel for the good and bad channel
state for modulation M; ; are represented by e(; , M;)) and e(; p, M;j)» respectively. The prob-
ability of channel i to remain in state ¢ € {b,g} is given by pgi). We assume that a genie
indicates the joint channel state C = (cy,c2) of the two channels, i.e., the probabilities of
packet loss in each channel, at each time slot. However, the event of a packet loss is not
known a priori to the genie.

We define Priic.my;) and Oi.c.m;j) A the probability of transmission through channel
i during the joint channel state C using M;; and the fraction of the data to be transmitted
through channel i during the joint channel state C using M;;, respectively. Zc constitutes
the stationary probability of the joint channel state C, which can be easily determined
through standard finite Markov chain techniques using pg) and plgi) for i = 1,2. The

stationary probabilities 7, and 7, for each channel are obtained by:

(i) (i)

o__1=pm’ _@__ 1-pg
N RN 1 L SRS RO -1
Pg —Pp Pg — Py
The utilization of channel i in our system is given by:
Ui([Pricm;))) = Y Pricm;;) Tc- (5.2)

M,’_,’E(% 7C€{b,g}2

We define the total channel utilization of the system as U = Y}, U;, although other

IThis framework can easily be generalized to more than 2 channels.
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Channel 1

Channel 2

Figure 5.1: Source (GW) can connect to two different channel interfaces to transmit ran-
dom linear network coded packets in a time-slotted system to a destination. Both source
and destination can be relay nodes in a network. An independent Gilbert-Elliott model
and only one modulation and (physical-layer) coding pairs are assumed for each channel.

metrics can be used as cost functions for our optimization problem, e.g., minimizing the
maximum of the U;’s. If the use of channel i has an associated energy cost, the energy

spent per slot in channel i is given by:

Si([Pricmy)) = Y EiPr (i cm;;)Tc (5.3)
M;jety Celbgy?

and the total energy cost per slot of the system is given by: E =Y, ;. Table 5.1 summa-

rizes the notations used in this chapter.
The resource optimization problem for a desired cost function .# from our framework
using network coding is given by:

min F (5.4)

(Pricm, i )]
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Table 5.1: Notations used in the framework.

Notation Definition

A Source rate
Pr(; c.m;) Probability of transmission through channel i during the channel state
C using M;;

Qi.c.M;) Fraction of the data to be transmitted through channel i during the chan-
nel state C using M;;

€ig.M;; Packet erasure probability for the good state of i-th channel using using
M;;
€ibM;; Packet erasure probability for the bad state of i-th channel using M;;
ng(l) Stationary probability of the good state of i-th channel
ﬂlgl) Stationary probability of the bad state of i-th channel
M;; The j-th available modulation and physical-layer coding pair available
to i-th channel
D(M;j) The fraction of useful information bits in a slot when transmitting with
M;;
E; Energy consumption of i-th channel
U; Utilization of i-th channel
& Energy cost per slot of i-th channel
subject to:
Z Pr(i7C,M,'j)E[O71]7 ‘V’Ce{g,b}z,ie{l,Z}
Ml'jE%
Oicm;j) = 1

M;je ie{1,2},Ce{g,b}?
(1 = €(i.cip;) ) D(Mij))Pr (i 0 aay;) ie = A 0 )
VC = (Cl,Cz) € {g,b}z,i € {1,2},Mij cH.

The last condition captures the fact that the probability of channel i transmitting in a
given channel state using M;; is linked to the mean usage of the channel during that state,
e.g., Ao cmy;)/ [D(M)(1— e )] for channel 1.

The optimal policy for a given channel state C and source rate A is given by the vector
[Pr(,-’a Mij)] that results from this optimization. Note that the probability of transmitting
through channel 1 and channel 2 is independent, thus transmission over two channels or
no channels at each time slot is possible. In this work, we make the assumption of trans-
mission of data flows, avoiding the granularity of data packets. In addition, we assume
that we transmit the least possible redundancy per original data packet over a long pe-

riod of time, which requires infinite queue size [LRM06]. While there is a performance
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degradation in terms of delay from adding extra information, assuming transmission of a
finite number of data packets may not allow us to reach the same performance as trans-
mission of data flows. We consider our approach a good approximation as online network
coding allows the creation of large windows of coded packets, which approximate a flow.
Our framework can perform an optimal resource allocation, as the infinite queue size

allows to store the coded packets while awaiting a good channel.

5.1.1 Comparison Policies

Despite being equipped with multiple interfaces and being multi-home capable, smart-
phones conventionally access wireless networks one at a time according to a pre-defined
user configurations, i.e., the user connects to one technology that best fits his/her interests
at the time. We capture this behavior in fixed policies and compare their performance
to optimal dynamic policies that leverage multi-homing to use more than one access net-
work simultaneously, following the optimal allocation obtained from solving the problem
formulated previously.

We define the following two fixed policies in the transmission of packets:

e Fixed Policy Channel 1 (FP1) - Policy where all available resources (time slots)
from channel 1 are used before allocating slots for transmission from channel 2. If

the arrival rate is low enough, only channel 1 will be active;

e Fixed Policy Channel 2 (FP2) - Same as FP1 policy except resources (time slots)
from channel 2 are used first and resources from channel 1 are used only if needed

to support a given data rate.
and the two dynamic policies:

e Dynamic Policy Optimizing Channel Utilization (DPOCU) - Optimal policy in
terms of reduction of channel utilization, where the channel assignments are de-
cided by solving problem (5.4) for the cost function: .% =Y, U; (Pr(hc, ij)> ;

e Dynamic Policy Optimizing Energy Consumption (DPOEC) - Optimal policy in
terms of reduction of energy consumption, where the channel assignments are de-
cided by solving problem (5.4) for the cost function: .% =Y, E;U; (Pr(,-@ Mii))'

5.1.2 Metrics

We define two metrics to quantify the advantages of using dynamic policies rather than

fixed policies.
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e Channel Utilization Gap of DPOCU: is the difference of channel utilization be-
tween a policy P and channel utilization optimal policy DPOCU for the same

channel conditions. The value is presented in decibel (dB) and is calculated as
1010g (UPi/UDPOCU);

e Energy Consumption Gap of DPOEC: is the difference of energy consumption
between a policy P; and the energy consumption optimal policy DPOEC, under

the same channel conditions. The value is expressed in dB and is calculated as
10log (& /SppPoEc).

As an example, consider that the Channel Utilization Gap of DPOCU is 3 dB when
compared to FP1. This means that DPOCU uses the channel 50 % less than FP1. A larger
value of the gap is associated with a larger reduction in channel utilization achievable by

the DPOCU policy. The same logic applies for the energy consumption metric.

5.2 Simulated Annealing Meta-heuristics

The optimization framework and the dynamic network coding policies proved to pro-
vide efficient, channel-aware load allocation for multi-homed devices under different cost
criteria in our previous work [PAL13]. However, every parameter had to be manually ad-
justed in an attempt to find a combination that provided considerable gains. It is impossi-
ble to understand which areas of the parameter space can provide better results following
that methodology. Therefore, it is imperative to explore the parameter space automati-
cally.

Traditional problem solving strategies either guarantee to find the global solution, but
are too expensive in terms of computation, e.g., memory usage or processing time, or they
get caught in local optima. Recent algorithms are capable of escaping the local optima
while searching for the global optimum. SA is a probabilistic method for efficiently ex-
ploring the search space in order to find near optimal (global) solutions [C85, KGV83].
Meta-heuristics, such as SA, generally find good solutions by exploring a large set of the
feasible solutions, which allow us to explore the areas of the parameter space that provide
better results.

This work uses SA meta-heuristics to efficiently explore the parameter space to fully
understand the advantages of resource allocation policies that dynamically adapt to the
volatile channel characteristics and identify under which operating conditions, i.e., areas
of the parameter space, the reduction of energy consumption and channel utilization are

most significant.
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Algorithm 3: SA algorithm.

1 begin

2 t<0; /% Time */

3 initialize T; /» Temperature */

4 select a current point v, at random; /* V. is composed by A, €liciMyy)r TCo
E;, for VCZ(C],CQ)E{g,b}z,iE{l,Z},Ml’jG%. */

5 evaluate v.;

/+ Evaluation is performed by obtaining the wvalue
corresponding to the minimum between a dynamic policy
and other policies. */

6 Vp < Ve
7 repeat
8 repeat
9 Select a new point v, in the neighborhood of v.;/« Change randomly a
single parameter according to a predefined step.
*/
10 if evaluation(v,) > evaluation(v.) then
1 Ve 4 Vi
12 if evaluation(v.) > evaluation(v,) then
13 | e
14 else
s if random[0,1) < exp( _ evaluation(v,) ;evaluation(v,J) then
16 | Ve s
17 end
18 until rermination condition/ > termination condition - Max # of
iterations is not reached. */;
19 T < f(T;t); / Cooling Ratio */
20 t < t+1;
21 until halting condition/~ halting condition - Max # of times v, is
not changed. x/;
22 end

We use SA to select parameter sets and evaluate them using the mathematical frame-
work described in the previous section, and thus SA is driven by a theoretical analysis.
Algorithm 3 presents our SA formulation for the problem. The SA algorithm starts by ini-
tializing and assigning a random value to a parameter set composed of source rate, erasure
probabilities and stationary probabilities to each channel. The stationary probabilities for
each channel must sum up to 1 and, therefore, we just need to randomly assign one value
to one state of each channel. The parameter set is evaluated according to the achievable
gains of the dynamic network coding policies, DPOCU or DPOEC, and the result of the
evaluation (a solution) is the minimum of the channel utilization gap or energy consump-

tion gap. In other words, in the algorithm, a solution corresponds to the minimum of the
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Channel Utilization Gap of DPOCU or the Energy Consumption Gap of DPOEC with re-
spect to any other policy. For example, if a parameter set results in a Channel Utilization
Gap of DPOCU with respect to FP1 of 2 dB, in a Channel Utilization Gap of DPOCU
with respect to FP2 of 3 dB, and in Channel Utilization Gap of DPOCU with respect to
DPOEC of 4 dB, the solution obtained is 2 dB which corresponds to the minimum be-
tween the three values, i.e., our results correspond to the minimum achievable gain for
each explored point of the parameter space.

The initial parameter set us the Current Solution, v., which corresponds to the current
solution to which other solutions in its parameters’ neighborhood shall be compared to. At
the beginning, this solution also corresponds to the Best Solution, vj,. The Best Solution is
the best solution obtained so far, and, at the end of the algorithm, desirably it should yield
the global optimum. In each step of the algorithm, we select a new parameter set to be
our Candidate Solution, v,, originated from a change to a single parameter in the Current
Solution, and evaluate it. Therefore, the neighborhoods are composed of solutions around
the Current Solution at the distance of one change in one parameter, either decreasing
or increasing its value by a predefined step. If the Candidate Solution provides a better

solution than the Current Solution, we accept it as our new Current Solution. If it is the
evaluation (v.) — evaluation (vy)

same or lower, we accept it if random[0,1) < exp | —

Temperature ’
which is adjusted by the parameter temperature. The reason why we record both Current
Solution and Best Solution is because we can accept a Candidate Solution as Current So-
lution even if it provides a worse solution than the previous Current Solution. However, as
we iterate over the outer loop, the value of the temperature will decrease, and the accep-
tance of worse solutions will be less frequent. At the beginning, this algorithm resembles
a random search, thus avoiding possible local optima, and, at the end, it resembles a stan-
dard hill-climber. To avoid infinite generation of iterations, we set a halting condition as
the maximum number of times that the algorithm does not change the Current Solution,
and a termination condition as the maximum number of iterations the algorithm runs with
the same temperature value. Every time the algorithm changes the value of Current Solu-
tion, the counter of halting condition is reset, since the algorithm accepted a new solution
and possibly new better and different solutions are reachable. Please note that different

heuristics could lead to different (higher or lower) results.

5.3 Results

We focus our analysis in two different scenarios: (i) Channels with same energy consump-

tions where we have two different channels with the same energy consumption and fixed
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data rate (e.g., same modulation and coding pairs), but with different erasure and station-
ary probabilities for each channel state; (ii)) Channels with different energy consumptions
where we have two different channels, with the same fixed data rate, but with different
erasure and stationary probabilities for each channel state, and different energy consump-
tions. Therefore, the packet erasure probabilities on the i-th channel for the good and bad
channel state are from now on represented by the terms e(; ;) and e(; 5, respectively, and

both channels send the same fraction of useful information bits in a slot (D(M;;)).

Having both channels with the same data rate allows us to simplify the analysis. If
we had more configurations for the channels, having the possibility of different data rates
in each channel, we would increase our parameter space, but we would also increase
the areas where the dynamic policies provide better performance. The opportunities to
transmit in good channel conditions and good data rates would possibly increase, and,

ultimately, the results would stress even further the importance of the framework.

We performed 1000 analyses for each scenario using MATLAB. The analyses were
performed in parallel in the Avalanche cluster at the High Performance Computing at the
Faculdade de Engenharia da Universidade do Porto [FEU]. The cluster has 29 nodes, each
with 16 cores and between 64 GB and 128 GB of RAM; however, due to quota limitations,
no more than 300 analyses could run at the same time. The execution of all analyses lasted
for two and one half days. Although the parameter space explored by Candidate Solution
is larger, during analyses we only recorded the Best Solution and Current Solution values

since the effort in terms of disk to record all Candidate Solution was unfeasible.

The arrival rate, the parameters of the Gilbert-Elliot model, and energy consumption
for each channel were allowed to vary according to the values presented in Table 5.2. The
ranges of the values were selected to constitute a reasonable representation of possible
conditions. Channels can have an erasure probability between 0.01 and 0.20 for the good
states, 0.21 and 0.90 for the bad states, and stationary probabilities in each state between
0.05 and 0.95. Table 5.2 also presents the values chosen for the counters of the halting and
the termination conditions, and the temperature cooling ratio. The tuning of these values
was made in a trial and error approach and we selected the values that provided a good
trade-off between the diversity of parameter space search and the duration of the analyses.
Each analysis sets the initial parameters at random within the ranges of Table 5.2. Each
generation of a new neighbourhood is accomplished by a change to a single parameter

according to the step defined in that table.
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Table 5.2: Parameters range and counters values.

Parameter = Range/Value Step

) 0.1-2 0.1
el 0.01-020  0.01
ety 021-0.90 0.0l
€2 0.01-020 0.0l
€2 021-0.90 0.0l
! 0.05-0.95 0.0l
) 0.05-0.95 0.1
) 0.05-0.95 0.0l
s 0.05-0.95 0.1
E 1-8 0.05
E 1 -
Halting 500 —
Termination 360 —
Temperature 25 0.025

5.3.1 Channels with same energy consumption

When the two channels have the same energy consumption (E; = E»), the Channel Uti-
lization Gap of DPOCU behaves the same as the Energy Consumption Gap of DPOEC
with respect to the fixed policies. Figure 5.2 shows the distribution of the final Best Solu-
tion and the corresponding parameters for the Channel Utilization Gap of DPOCU. The
results show that a large percentage of all Best Solution (83%) are approximately 5.4 dB
and a significant percentage of the Best Solution (14%) obtained are approximately 7 dB.
The best solutions of both Channel Utilization Gap of DPOCU and Energy Consumption
Gap of DPOEC with respect to the fixed policies are obtained with high and low erasure
probabilities for the good and bad states of the channels, respectively, and with low and
high stationary probabilities for the good and bad state, respectively. The best results are
obtained for small A (0.2 or 0.3), that is, the best results are obtained when the offered
traffic load is low and the dynamic policies can take advantage of opportunistic transmis-
sions and select the best moment to transmit. The dynamic policies use the good states of
both channels instead of using the bad states, and it is here where our dynamic policies
have advantage in comparison to the fixed policies. FP1 uses resources (time slots) from
both good and bad states of channel 1 before using resources of the channel 2, and FP2
uses resources from both good and bad states of channel 2 before using resources of chan-
nel 1. The higher the stationary probabilities of the bad states and lower the stationary
probabilities of the good states are, the more gains DPOCU and DPOEC achieve with
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Figure 5.2: Boxplot of the final best solutions on top and boxplot of the parameters on
bottom, for the Channel Utilization Gap of DPOCU (same as Energy Consumption Gap
of DPOEC) with respect to the fixed policies. Maximum Best Solution obtained is ~ 7 dB,
minimum Best Solution obtained, and equal to the median, is ~ 5.43 dB, and the mean of
the Best Solution is ~ 5.67 dB.

respect to the other policies and, thus, the higher the Channel Utilization Gap of DPOCU
and Energy Consumption Gap of DPOEC are.

To have a visual perspective of the areas of the parameter space explored by all ac-
cepted Current Solution during analyses, Figure 5.3 presents a spider chart with the solu-
tions that provide a Channel Utilization Gap of DPOCU (same as Energy Consumption
Gap of DPOEC) with respect to the fixed policies above 3 dB, having the figure sampled
1:1000 for visualization purposes. In the figure, each individual solution is obtained by
a unique combination of parameters. In the analyses, we obtained around 3 million so-
lutions above 3 dB of gap (4.67% of all unique Current Solution accepted) and, approx-
imately, 384,000 above 5 dB (0.6% of all unique Current Solution accepted). Figure 5.3
includes in the edges of each axis the range that each parameter varied in all accepted

Current Solution.
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Figure 5.3: Spider Chart for all Current Solution that provide a Channel Utilization gap of
DPOCU (same as Energy Consumption Gap of DPOEC) with respect to the fixed policies
above 3 dB.

5.3.2 Channels with different energy consumptions

In this scenario, channel 1 and channel 2 can have different energy consumptions. For a
matter of efficiency, we fix the energy consumption of channel 2 to 1, i.e., E5 = 1, and let
the energy consumption of channel 1 vary on values higher or equal than 1, i.e., E1 > 1.
Next, we present the results obtained for the Energy Consumption Gap of DPOEC with
respect both to the fixed policies and the dynamic DPOCU. Later, we present the results
obtained for the Energy Consumption Gap of DPOEC when it is compared only to the

fixed policies.

5.3.2.1 Energy Consumption Gap of DPOEC with respect both to the fixed policies
and DPOCU

Figure 5.4 shows the distribution of the final Best Solution and the corresponding param-
eters for the Energy Consumption Gap of DPOEC as well as the ranges of the energy
consumption of channel 1 in all analyses. Please note that the Energy Consumption Gap
of DPOEC here is compared both to the fixed and to the dynamic DPOCU policies. The
mean of all obtainable Best Solution is approximately 2.9 dB, while the maximum and

minimum Best Solution are 3.16 and 0.65 dB, respectively. The best solutions are ob-
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Figure 5.4: Boxplot of the final best solutions and energy consumption of channel 1 on
top and boxplot of the parameters on bottom, for the Energy Consumption Gap of DPOEC
with respect both to the fixed policies and DPOCU. Maximum Best Solution obtained is
~ 3.16 dB, minimum Best solution obtained is ~ 0.65 dB, median is ~ 3.05 dB, and the
mean of the Best Solution is ~ 2.91 dB.

tained when the energy consumption of channel 1 is £y ~ 3 X E, and with high erasure
probabilities for the good state of both channels and low erasure probabilities for the bad
state of channel 2. We now observe a larger and higher distribution for the offered traffic
load.

For DPOEC to have advantage with respect to FP1, the fixed policy that transmits
always first in both states of channel 1, which consumes more energy than channel 2,
it suffices for DPOEC to use channel 1 and channel 2 in the good states. In order for
DPOEC to have advantage with respect to FP2, the fixed policy that transmits always first
in both states of channel 2, but consumes less energy than channel 1, it is necessary that
the stationary probability in the good state of channel 2 (7té(,2)) is lower enough than the
homologous of channel 1 (ﬂél)). FP2 will always use channel 2 in both states, but will

not benefit from channel 1 good state.
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Figure 5.5: Spider chart for all Current Solution that provide an Energy Consumption Gap
of DPOEC with respect both to the fixed policies and DPOCU above 3 dB.

For DPOEC to have advantage towards DPOCU it is necessary for the erasure proba-
bility of channel 1 in the bad state (e(1,p)) to be better (lower) than the erasure probability
of channel 2 in the bad state (e(27b)); otherwise, DPOCU would choose channel 2, which
is the channel with the lowest energy consumption, and would match DPOEC. Further-
more, DPOCU chooses first a state of channel 1 with the same erasure probabilities as
channel 2 only when channel 1 has higher stationary probabilities in the good state.

To have a visual perspective of the areas of the parameter space explored by all ac-
cepted Current Solution during analyses, Figure 5.5 presents a spider chart with the ones
that provide an Energy Consumption Gap of DPOEC with respect only to the fixed poli-
cies above 3 dB, having the figure sampled 1:1000 for visualization purposes. In the anal-
yses we obtained over 1.4 million solutions above 3 dB of gap. The figure also includes

in the edges of each axis the range that each parameter varied in all accepted solutions.

5.3.2.2 Energy Consumption Gap of DPOEC with respect only to the fixed policies

Figure 5.6 shows that the results obtained for the Energy Consumption Gap of DPOEC
with respect only to the fixed policies are different from the results obtained in the previ-
ous section. In this case, we obtain the maximum Energy Consumption Gap of DPOEC
in all scenarios with the value of 7.02 dB when the energy consumption of channel 1

is E; = 1.05 x E;. Nevertheless, it is clear now that, in the previous section, DPOCU



5.3 Results 107

Value
I
Il

Best
Solution
Eid¢ o

0.0 ‘ —_—
<

T
a —

s

- ,...,|

,-éﬂ 1 ewafo o
TTS) ]

€10

T T
o o
— o ol
(0] (o) [0)
Parameters

Figure 5.6: Boxplot of the final best solutions and energy consumption of channel 1 on
top and boxplot of the parameters on bottom, for the Energy Consumption Gap of DPOEC
with respect only to the fixed policies. Maximum Best Solution obtained is ~ 7.02 dB,
minimum Best Solution obtained is &~ 3.17 dB, median is ~ 5.44 dB, and the mean of the
Best Solution is ~ 5.68 dB.

prevented the algorithm from exploring solutions of the Energy Consumption Gap of
DPOEC where the energy consumption of channel 1 was low. When the energy con-
sumptions of both channels are close, DPOEC has the same performance as DPOCU (see
Section 5.3.1), which means the algorithm needed to find areas of the parameter space
where DPOEC had advantage when compared to DPOCU. Now that we exclude DPOCU

from the analysis, the results shows a similarity with the ones obtained in Section 5.3.1.

Figure 5.7 shows the relation of the maximum Best Solution of the Energy Consump-
tion Gap of DPOEC with respect only to the fixed policies and the energy consumption of
channel 1. We performed an extra set of analyses where we set the energy consumption of
channel 1 static at £} = 2,4, 6,8 times the consumption of channel 2, E;. In general, the
increase of channel 1 energy consumption leads to the reduction of the value of the Best

Solution achievable, that is, to the reduction of the possible gains using a dynamic policy.
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Figure 5.7: Relation between the maximum Best Solution of the Energy Consumption Gap
of DPOEC with respect only to the fixed policies and the energy consumption of channel
1. The maximum is achieved for E1 = 1.05 x E,. The achievable Energy Consumption
Gap of DPOEC decreases with the increase of the energy consumption of channel 1.

When channel 1 consumes more energy and in higher quantities than channel 2, the dy-
namic policy DPOEC cannot use the good state of channel 1 because it is very damaging
in terms of energy cost, and, thus, DPOEC will choose both states of channel 2 and will
be similar to the fixed policy FP2. These results are somewhat non intuitive, because it
would be expected that, if one channel consumes more energy, we would gain more in
using dynamic policies; however, in fact, the best scenarios for the dynamic policies are
when we can explore the use of the good state of both channels and both channels have

roughly the same energy consumption.

5.4 Discussion

From the results, we can conclude that the best savings over fixed policies come from
situations where the GW can connect at the same time to two similar channels of the
same technology/network, like for example two Wi-Fi links, two 3G or 4G links, because
the achievable gains decrease with the difference in energy needs between the links. To
allow the dynamic policies to explore the best opportunities for transmission of the offered
traffic load, both channels should have low error rates on the good state. High error rates
or very high offered traffic load reduce these opportunities.

The dynamic policies outperform the fixed policies especially for bad channel condi-
tions, that is, for high stationary probabilities of the bad states. To better analyse this, we
define three channel quality classes for each channel i € {1,2} according to the station-
ary probabilities: good conditions occur for ﬂg(i) € [2/3,1], medium conditions occur for
n:égi) € [1/3,2/3], and bad conditions occur for n:égi) € [0,1/3[. Table 5.3 provides another
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Table 5.3: Maximum, mean, and median gains (in dB) obtained for the Channel Utiliza-
tion Gap of DPOCU (same as Energy Consumption Gap of DPOEC when the two chan-
nels have the same energy consumption) with respect to the fixed policies under good,
medium, and bad channel conditions.

Channel 1 Channel 2 Either Channel Both Channels

Max 2.0931 2.0396 2.0931 1.4840
Good Mean 0.0798 0.0795 0.0877 0.0599
Median 0 0 0 0
Max 3.9482 3.9451 3.9482 3.8340
Medium  Mean 0.4726 0.3841 0.3881 0.5806
Median  0.0639 0.0202 0.0163 0.2264
Max 6.9553 6.9553 6.9553 6.9553
Bad Mean 1.5284 1.2813 1.0934 2.4875
Median  0.6371 0.2399 0.2164 2.9796

view of the results previously shown in Section 5.3.1, showing the maximum, mean, and
median gains obtained for each class for the Channel Utilization Gap of DPOCU. The
results are separated according to which channel has the channel conditions identified on
the left, i.e. depending on whether it is channel 1, channel 2, either channel, or both
channels stationary probabilities that belong to the channel quality class.

We observe that having longer periods of medium or bad channel conditions leads to
higher gains, confirming the results from Figure 5.2. Conversely, when at least one of the
channels is bad the gains are on average above 1 dB, and when both channels are bad the
average gain is more than 2 dB.

Bad channel conditions occur often in real wireless and cellular networks and often
there is more than one possible communication link, e.g., dense Wi-Fi deployments or
indoor cellular coverage. Our results show that using network coding for taking advantage
of multiple available links enables using less resources, e.g. channel time, to provide
the desired service to the user. Better results occur for low offered traffic load since
dynamic policies can take advantage of opportunistic transmissions and decide the best
allocation, while for high offered traffic load it is necessary to transmit even under bad

channel conditions.






Chapter 6
Conclusions and Future Work

The main concluding remarks are presented in this chapter. The conclusions of this dis-
sertation are presented in Section 6.1, and open challenges and research lines that can be

pursued in the future are discussed in Section 6.2.

6.1 Conclusions

Mobile M2M communications are currently receiving attention from the academia due
to its potentiality in ubiquitous applications, like mobile healthcare, telemetry, or in in-
telligent transport systems, and also due to the emergence of the IoT paradigm. M2M
middleware standards allowed the emergence of several IoT applications by permitting
interoperability and easing the effort of development and deployment; however, M2M
communications in cellular and wireless networks face several challenges.

The performance of M2M in a context of IoT applications was not present in lit-
erature. Thus, our first research question was: "What is the performance of current loT
applications settled in state-of-the-art standards with mobile GWs?". To answer this ques-
tion, we presented an experimental characterization of latency and application overheads
in an [oT application of service composition with mobile GWs. For that, we designed
and implemented a mobile e-health use case, combining ETSI M2M communications
and openEHR, that monitored 10 people for 3 weeks. We observed that M2M resource
structure paths contribute a lot to the overhead, but protocol headers only a small part.
Furthermore, latency between the smartphone and broker contributes to a large portion
of the E2E latency, and depends on the mobility. We also verified that the access net-
work makes up most of that latency due to the promotion delay. We conclude that M2M
middleware should provide means to support low latency for applications with real-time

requirements and that this may be a trade-off with functionality/complexity. Finally, we
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highlighted some lines along which the current developments in networking may con-
tribute to address some of the problems identified.

Although smartphones are fitted to serve as M2M GWs, that use can introduce unde-
sirable battery depletion which can difficult the user adoption of IoT applications. Careful
selection of transmission technologies should be made in order for their use to the feasible
in terms of a normal depletion time of a smartphone’s battery, and transmission schedul-
ing, mechanisms, and techniques should be devised. Thus, improving smartphone’s bat-
tery life and usability.

Our second research question was: "What improvements can packet transmission
scheduling bring to multi-homed GWs in loT applications?". We presented a packet trans-
mission scheduling LP model that optimizes a given objective for heterogeneous networks
while guaranteeing time requirements, and we focused on the minimization of the energy
consumption. To simplify the complexity of solving the model, we devised a packet
transmission scheduling heuristic that allows IoT applications to make fast scheduling
decisions, by taking into consideration the knowledge obtained from energy-optimal al-
locations. We compared the performance of the optimal scheduling that minimizes the
energy consumption against EDF, an energy-aware heuristic based on EDF, and our own
heuristic, for a wide set of scenarios. We observed that the energy-optimal scheduling and
our heuristic perform similarly in terms of the average energy consumption, with signifi-
cant energy reductions when compared with the other two, though increasing the average
packet waiting time. Nevertheless, these energy savings can be crucial to extend smart-
phones’ battery life. We observed that scheduling obtained from the LP model require
significantly more time for finding solutions than the heuristic-based scheduling, and thus
they may be impractical for use in M2M GWs. Further, as both heuristics show good
performance, with respect either to energy or time, they can be a fit replacement for them.

Finally, in this work, we sought to identify the operating regions under which dynamic
coded policies bring most benefits in terms of resource usage efficiency to M2M GWs,
answering the question: "When are network coding based dynamic techniques beneficial
for multi-homed GWs in IoT applications?". We proposed meta-heuristics to explore the
parameter space, not only to find different local optima, but also to map areas whose per-
formance is above a certain level. The results demonstrated that opportunistic assignment
of the traffic load over heterogeneous time-varying channels can in fact achieve consid-
erable gains. In particular, dynamic network coding policies allow energy consumption
and channel utilization savings over 5 dB with respect to the best static policy in a large

number of scenarios.
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6.2 Future Work

M2M communications have the potential to introduce decisive advantages to different [oT
fields; however, it is clear they will face several challenges and requirements. The support
of multitude and diversity of devices, and the traffic volume and traffic pattern generated
from them will continue to be important challenges in mobile M2M communications,
specially if there is not a careful plan of the networks.

The access network of the M2M GW is a limiting factor, both in terms of energy con-
sumption and latency, and thus [oT applications need to cautiously coordinate the network
access. Devising models to allow schedule packet transmissions in order to minimize en-
ergy consumption, while guaranteeing QoS depending of specific application deadlines
and networks characteristics, becomes crucial, specially for scenarios where [oT devices
must operate for very long periods of time without replacements or interventions. Fu-
ture work should include implementation of the different scheduling in an M2M GW to
evaluate and compare their real performance in terms of energy consumption and time-
related metrics for several scenarios. The design of meta-heuristics to ease the effort of
finding the optimal solution from the model can be an efficient way for searching config-
urations where a given network is better, for analyzing the impact of modifications, or for
exploring trade-offs between energy and time, e.g., by adding weights to the model’s cost
function.

In our vision, further research should continue to focus in exploring the mobile M2M
GW concept by seeking ways to improve performance, while attaining the time require-
ments of data, and reduce the energy consumption and bandwidth utilization in transmis-
sions. Researchers should also seek to combine techniques that effectively reduce the
amount of data necessary to be transmitted, such as data compression, data concatena-
tion or data aggregation, with transmission scheduling schemes in order to optimize the
overall performance.

In the subject of network coding based-techniques for GWs, work should focus on
scheduling algorithms that can implement the policies through single packet decisions,
incorporate unreliable estimates of the channel, and explicit trade-offs between latency,

energy, and economic cost.
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Allocation Policies

In [PAL13], we consider two scenarios: a simplified one in which both channels offer
the same data rate but have different quality and energy consumption; and another one
in which channels offers multiple different data rates. For the first scenario, the fixed
policies are the ones presented in Section 5.1.1, named FPC1 and FPC2 in here, while for

the second we define the following fixed policies:

e Highest Data Rate (HDR) - Assigns transmissions first to the channel with the high-
est data rate. If additional resources are needed, the modulation and coding pair

with the second highest rate is activated and so on;

e Lowest Data Rate (LDR) - Follows the reverse order from HDR, i.e., the assign-
ments are made first to the modulation and coding pairs with the lowest data rate

(and highest resiliency).

Mapping Wireless Technologies to Gilbert-Elliot Channel
Models

For the evaluation, we consider two channels, channel 1 and channel 2. The first one
is inspired by a Wi-Fi network, which can transmit at data rates of 1 and 2 Mbps using
Binary Phase-shift Keying (BPSK) and Quadrature PSK, respectively, and no error cor-
recting codes. These settings correspond to M1 and M;,. The second one is an Enhanced
Date Rates For GSM Evolution (EDGE)-inspired channel using 8-PSK for modulation
and convolutional codes of % and %, which corresponds to M,; and Mjy;, respectively.
For decoding in the EDGE-inspired channel, we use the Viterbi algorithm with constraint
length of 7 with hard decision decoding [Vit71].

We relate our two-state Gilbert-Elliot model to Rayleigh fading by dividing the range
of the received Signal-to-Noise Ratio (SNR) into a Finite-State Markov Channel (FSMC),
as proposed in [WM95]. Although our system is packet based, the slow-fading assump-
tions hold if we consider walking speed and existing cellular and Wi-Fi carrier frequen-
cies.

For each channel, we divide the received SNR range in two states, defining the thresh-
olds as being 0 = Ag < A] < Ay = o0 [WMO5]. Thus, the channel is in state g for SNRs
€ [A},°0[ and in state b for SNRs € [0,A[. The received SNR has an exponential pdf
with average value p = E[SNR], and the stationary state probability for each state can be

obtained by integrating it over the corresponding SNR range. Moreover, we assume that
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the channel is affected by Additive White Gaussian Noise (AWGN) with spectral density
equal to Ny/2 and there is no interference from other users. The expected symbol error
probability on channel i for each state and modulation Se; . y, ; can be obtained from the
expected symbol error probability in each state and the respective stationary probability.
We consider that errors in two different symbols are independent and all symbols in a
packet have the same energy. Without error correction codes the packet erasure probabil-
ity on channel i is described as e; ., = 1 — (1 —Sei e a,;)", ¢ = {g,b} where N represents

the number of symbols per packet.

A convolutional code with a % rate has a bit error probability upper bounded by Pb <
%):‘j: djree B4P(d), where djy,, is the free distance of the convolutional code, P(d) is the
probability of the decoder selecting an incorrect path with distance d to the correct path,
the weighting coefficient B, is the total number of information bit ones on all weight d
paths, and k is the number of information bits [Vit71]. P(d) is determined taking into
account the type of the modulation used, and, for a coding rate r and 8-PSK, the bit
error probability p can be computed as p ~ %er fc(\/% sinf). The parameters of
the convolutional code for coding rates % and % can be obtained from [HalO]. For our
purposes, we consider the bit error probability P, to be equal to the upper bound, in order
to consider the worst case scenario. The packet erasure probability for channels that use
error correcting codes is computed as e;p;; = 1 — (1— Pbiqul.j)k, ¢ = {g,b}, where
Pb; ¢ m;; 1s the bit error probability after correction for channel i on state ¢ and modulation

Mij.

To determine the transition probabilities for the Markov chain, we consider the num-
ber of times per second the received SNR level crosses threshold Al downwards N; =
2’:% X fm; X exp{—‘%}, where fm is the doppler frequency. If a channel has a trans-
mission rate of R packets per second, then R, = R x 7. packets per second are transmitted
when the channel is in state c. The Markov transition probabilities for channel i are given

bypg)zl—g—fandp,(f)%l—%.

Numerical Results

We use MATLAB to perform simulations to characterize the gains that can be obtained
by leveraging multi-homing for simultaneous use of multiple wireless networks. The

performance metrics are the ones presented in Section 5.1.2.
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Figure A.1: Channel Utilization Gap of DPOCU for different source rates. Parameters:
€15 =0.05,e1,=0.05, 1, =0.5, ey, =08, pi’) =0.7, p{¥) = 0.7, pi!) = 0.85, p{?) =
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Networks Operating at the Same, Fixed Data Rate

In the following, we present the results obtained for a scenario where the same fixed data

rate is available to the user in the two channels, i.e., Mj1 = Mp = My = M»».

Figure A.1 shows the Channel Utilization Gap of DPOCU for different source rates
(A) along the interval [0,2] with the parameters stated in the figure. Although channel 1
has a higher energy cost than channel 2, it has lower erasure probability in the bad state
(e(1,p) < €(2,5))- DPOCU reduces the channel utilization for a source rate between 0.3 and
1.1 packets/slot with respect to all other assignment schemes, namely a reduction of up
to 3 dB (50% reduction) relative to FPC2, and up to 1.5 dB (30% reduction) relative to
DPOEC and FPC1. Additionally, the figure shows that, for a source rate between 0.3 and
0.65 packets/slot, both dynamic policies perform better than any fixed policy.

Figure A.2 presents the Energy Consumption Gap of DPOEC for the same scenario.
When compared to DPOCU and FPCI1 policies, DPOEC permits to save almost 5 dB
(70% reduction) of energy consumption for small source rate values because channel 2
is less energy expensive and DPOEC can use it in the good state with the same erasure
probability as channel 1. Also, DPOEC reduces energy consumption in relation to FPC1
due to the higher energy costs of channel 2. DPOEC outperforms FPC2 by up to 1 dB

(20% reduction) for a source rate between 0.3 and 0.75.

Figure A.3 shows the variation of the Energy Consumption Gap of DPOEC for a
source rate of 0.5 packets/slot while varying Ecy1 /Ecpa, the energy ratio between chan-
nels, from 0.5 to 5. The erasure and transition probabilities remain unchanged. For

Ecn/Ecn = 0.5, the fixed policy FPCI is equal to the dynamic policy DPOEC because
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Figure A.2: Energy Consumption Gap of DPOEC for different source rates. Parameters:
e14=0.05, e2,=0.05, 1, =0.5, e, = 0.8, pi’) =0.7, p&) =0.7, p{!) = 0.85, p*) =
0.85, and Ecni = 3% Ecino.

channel 1 has lower energy costs than channel 2 and a lower erasure probability in the bad
state, thus, DPOEC uses channel 2 first, as does the FPC1 policy. When the two channels
have the same energy cost (Ecy1/Ecp, = 1), channel utilization optimization is equal to
the energy consumption optimization and, thus, there is no reduction by DPOEC in re-
spect to DPOCU. For Ecy; /Ecpp = 1.5, there is a reduction in the energy consumption
of almost 2.5 dB to FPC1 and FPC2, i.e., a reduction of almost 45% in energy consump-
tion with respect to both fixed policies. For Ecy1 /Ecp > 3, DPOCU performs worse than
FPC2 due to the low energy consumption of channel 2 when compared to channel 1. Both
dynamic policies perform better than the fixed policies in terms of energy consumption
when Ecy1 /Ecyp is between 0.6 and 3.

Summarizing, channel utilization and energy consumption are conflicting goals; how-
ever, for source rate between 0.3 and 0.6, both dynamic policies are better than any fixed
policy (Figure A.1); for source rate between 0.2 and 1, DPOEC is more energy saving
than any fixed policy (Figure A.2); for Ecy,1/Ecyy between 0.6 and 3, dynamic policies
are more energy efficient than fixed policies (Figure A.3).

Networks with Multiple Modulation and Coding Schemes

We now present results for channel 1 and channel 2 considering different modulation and
coding pairs, and Rayleigh Fading. To calculate the packet erasure probability without
error correcting codes, we assume the number of symbols per packet N = 200. Let us
specify the coefficient D(M;;) for the optimization problem. The Wi-Fi channel has a
symbol rate of 1 Msymbol/s and the EDGE channel has a symbol rate of 270 Ksymbol/s.
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0.85,, and p!”) = 0.85.

Taking into consideration that BPSK has 1 bit/symbol, QPSK has 2 bits/symbol, and 8-
PSK has 3 bits/symbol, we have that D(M};) = 0.5, D(M},) = 1, D(M>;) = 0.14, and
D(Mp,) = 0.20.

Impact of Wi-Fi channel’s expected SNR in the Energy Consumption Gap of DPOEC

Figure A.4 compares policies in terms of the Energy Consumption Gap of DPOEC for
a scenario where Ecj =~ 5 X E¢yp, and the Wi-Fi channel has expected SNR p = 12 dB
and threshold SNR A; = 5 dB, and the EDGE channel has p =5 dB and A; =5 dB.
The Wi-Fi channel has a higher data rate than the EDGE channel, but it has also more
energy consumption. DPOEC policy performs better than the other policies. The dynamic
policies DPOEC and DPOCU perform better than the fixed policies until the source rate
reaches 0.65 packets/slot. The gap between DPOEC and the fixed policies HDR and
LDR decreases as the source rate increases. When the source rate increases above around

0.7 packets/slot, the channel overloads and all policies consume the same.

Impact of Wi-Fi channel’s expected SNR in the Channel Utilization Gap of DPOCU

Figure A.5 illustrates the impact of Wi-Fi channel’s expected SNR in the Channel Utiliza-
tion Gap of DPOCU, using the same configurations as above. The figure shows that, for
an source rate up to 0.5 packets/slot, there is a clear advantage to use DPOCU instead of
the other policies, with a reduction of as much as 3 dB for the HDR.
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Figure A.4: Energy Consumption Gap of DPOEC when compared with the other policies
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