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Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) is a
decidable logic that combines 1) Boolean algebra of sets of uninterpreted
elements (BA) and 2) Presburger arithmetic (PA). BAPA can express
relationships between integer variables and cardinalities of unbounded
sets. In combination with other decision procedures and theorem provers,
BAPA is useful for automatically verifying quantitative properties of
data structures. This paper examines QFBAPA, the quantifier-free frag-
ment of BAPA. The computational complexity of QFBAPA satisfiabil-
ity was previously unknown; previous QFBAPA algorithms have non-
deterministic exponential time complexity due to an explosion in the
number of introduced integer variables.
This paper shows, for the first time, how to avoid such exponential ex-
plosion. We present an algorithm for checking satisfiability of QFBAPA
formulas by reducing them to formulas of quantifier-free PA, with only
O(n log(n)) increase in formula size. We prove the correctness of our
algorithm using a theorem about sparse solutions of integer linear pro-
gramming problems. This is the first proof that QFBAPA satisfiability is
in NP and therefore NP-complete. We implemented our algorithm in the
context of the Jahob verification system. Our preliminary experiments
suggest that our algorithm, although not necessarily better for proving
formula unsatisfiability, is more effective in detecting formula satisfiabil-
ity than previous approaches.

1 Introduction

This paper considers the satisfiability problem for a logic that allows reason-
ing about sets and their cardinalities. We call this logic quantifier-free Boolean
Algebra with Presburger Arithmetic and denote it QFBAPA. Our motivation
for QFBAPA is proving the validity of formulas arising from program verifica-
tion [11,12,13], but QFBAPA constraints also occur in mechanized set theory [7],
constraint data bases [23,24], as a fragment of other logics [18,20,1] and in the se-
mantic analysis of natural language [15]. Figure 1 shows the syntax of QFBAPA.
The logic contains 1) arbitrary boolean algebra (BA) expressions denoting sets,
supporting operations such as union, intersection and complement, 2) arbitrary
quantifier-free Presburger arithmetic (PA) expressions, supporting addition of
integers and multiplication by constants, and 3) a cardinality operator |B| for
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computing the the size of a BA expression B and treating it as a PA expression.
The constant MAXC denotes the size of the finite universal set U , so |U| = MAXC.
The expression K dvdT means that an integer constant K divides an integer ex-
pression T , whereas Bc denotes the complement of the set B.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvd T

B ::= x | ∅ | U | B1 ∪B2 | B1 ∩B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 1. Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

Using QFBAPA in software verification. We implemented the algorithm
described in this paper in the Jahob data structure verification system [11]. Fig-
ure 2 shows some of the verification conditions expressible in QFBAPA that we
encountered and proved using our decision procedure. In these verification con-
ditions, sets such as content, C, and C1 represent the contents of dynamically
allocated data structures. (For more examples, see [13, Chapters 2 and 7].) The
formulas in Figure 2 are in HOL syntax, where cardinality of a set is denoted
by card. Jahob soundly maps such formulas into stronger BAPA, using a simple
syntactic translation that represents individual variables as singleton sets and
approximates constructs unsupported by BAPA. Section 5 describes our prelimi-
nary experience with using our algorithm on formulas such as those in Figure 2,
showing that the new algorithm is promising for detecting formula satisfiability.

QFBAPA and BAPA. The logic QFBAPA is the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (BAPA). In addition to the con-
structs in Figure 1, full BAPA supports arbitrary set and integer quantifiers.
Feferman and Vaught [8, Section 8, Page 90] showed the decidability of a vari-
ant of BAPA and used it to show the decidability of generalized products of
first-order structures. In [12,13] we formalize a decision procedure for BAPA and
show that BAPA has the same complexity as the complexity of Presburger arith-
metic (PA), namely alternating doubly exponential time with a linear number of

alternations, denoted STA(∗, 22nO(1)

, n) in [4], [10, Lecture 24].

BAPA admits quantifier elimination, which implies that QFBAPA formulas
define the same class of relations on sets and integers as BAPA formulas, so they
essentially have the same expressive power. Quantifier elimination also makes
BAPA interesting as a potential shared language for combining multiple reasoning
procedures [9].
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VC# verification condition property being checked

1 x /∈ content ∧ size = card content −→
(size = 0 ↔ content = ∅)

using invariant on size to
prove correctness of an
efficient emptiness check

2 x /∈ content ∧ size = card content −→
size + 1 = card({x} ∪ content)

maintaining correct size
when inserting fresh
element

3 size = card content ∧
size1 = card({x} ∪ content) −→

size1 ≤ size + 1

maintaining size after
inserting any element

4 content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting
three objects into a
container data structure

5 content ⊆ alloc0 ∧ x1 /∈ alloc0 ∧
alloc0 ∪ {x1} ⊆ alloc1 ∧ x2 /∈ alloc1 ∧
alloc1 ∪ {x2} ⊆ alloc2 ∧ x3 /∈ alloc2 −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting at
least three objects into a
container data structure

6 x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C into
another container

Fig. 2. Examples proved using our QFBAPA decision procedure

1.1 Challenges in checking QFBAPA satisfiability

QFBAPA satisfiability is clearly NP-hard, because QFBAPA supports arbitrary
propositional operators. Moreover, QFBAPA contains Boolean algebra of sets,
which has its own propositional structure, so even the satisfiability of individual
atomic formulas is NP-hard. The challenge is therefore proving the membership
in NP. Membership in NP means that there are short certificates for satisfiability
of QFBAPA formulas, or, dually, that invalid QFBAPA formulas have short coun-
terexamples. Despite the widespread occurrence of QFBAPA constraints, this
result was not known until now. To understand why existing approaches fail to
establish membership in NP, consider the following example QFBAPA formula:

|U| = 100 ∧
∧

0≤i<j≤10

|xi ∪ xj | = 30 ∧
∧

0≤i≤10

|xi| = 20 (E)

Explicitly specifying set contents. The formula (E) has 10 set variables.
Each of these variables represents a subset of the universe of 100 elements. There-
fore, a straightforward certificate of satisfiability of this QFBAPA formula re-
quires 100 bits for each set to indicate whether each element is in the set. Such
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certificate is therefore exponential in the size of the formula (we assume that
100 is represented using log2 100 bits). Such certificates therefore yield merely a
membership of QFBAPA in NEXPTIME. Note that, even if we restrict the con-
stants K in QFBAPA language to be 0 and 1, Presburger arithmetic expressions
such as k1 = 1, ki+1 = ki + ki can efficiently encode large constants. Funda-
mentally, the reason we are interested in large set cardinalities is because they
arise from small model theorem for Presburger arithmetic [19]; supporting them
is necessary for verifying symbolic cardinality bounds and constraints such as
|x ∩ y| = |z|.
Abstraction using sizes of partitions. An alternative to examining set
interpretations up to a certain size is to consider a complete partitioning of sets
into disjoint Venn regions xc

1 ∩ . . . ∩ xc
10, xc

1 ∩ . . . ∩ x10, . . . , x1 ∩ . . . ∩ x10, and
introduce one integer variable for the size each of these partitions, yielding 210

variables l0,...,0, l0,...,1, . . . , l1,...,1. We can then represent cardinality of any set
expression as a sum of finitely many of these integer variables. This approach
is widely known [18], [7, Chapter 11] and is often used to illustrate the very
idea of Venn diagrams. It has the advantage of not being exponential in the
cardinalities of sets, because it reasons about these cardinalities symbolically. It
also naturally integrates with the PA structure of QFBAPA and allows reducing
QFBAPA to quantifier-free PA, as we explain below. Unfortunately, its direct use
introduces a number of integer variables that is exponential in the number of
sets. This approach is the essence of previous algorithms for QFBAPA [28,23,18]
and appears as a special case of our algorithm for quantified BAPA [12, 13]. All
these algorithms would yield exponentially large certificates for satisfiability of
QFBAPA, specifying the values of exponentially many integer variables.

1.2 Our Results

We can summarize the results of this paper as follows:

1. The key contribution of this paper is an encoding of QFBAPA formulas into
polynomially-sized quantifier-free PA formulas. Instead of using exponen-
tially many Venn region cardinality variables l0,...,0, l0,...,1, . . . , l1,...,1, we use
polynomially many “generic” variables along with polynomially many indices
that determine the region that each generic variable represents. In the exam-
ple (E) above, which has 56 equations, we would introduce N = g(56) = 502
generic integer variables lpi

1,...,pi
10

for 1 ≤ i ≤ N that are a function of propo-
sitional variables (pi

1, . . . , p
i
10) ∈ {0, 1}10 for 1 ≤ i ≤ N . The polynomially

bounded function g is given by the equation (6) below. We assume that the
remaining 210−g(56) Venn regions are all empty, which allows us to express
any set expression b as a sum of those of the N integer variables lpi

1,...,pi
10

whose indices pi
1, . . . , p

i
10 identify Venn regions that belong to b.

2. The computation of a sufficient polynomial value for N is the second contri-
bution of this paper. We start with the result [?] that if an element is in an
integer cone generated by a set of vectors X of dimension d, then it is also in
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an integer cone generated by a “small” subset of X of size N(d). This result
implies that a system of equations with bounded coefficients, if satisfiable,
has a sparse solution with only polynomially many non-zero variables, even
if the number of variables in the system is exponential. As a consequence,
every satisfiable QFBAPA formula has a witness of polynomial size, which
indicates the values of integer variables in the original QFBAPA formula,
lists the Venn regions that are non-empty, and indicates the cardinalities
of these non-empty regions. This application of [?] gives the membership of
QFBAPA in NP, but, given the NP-hardness of satisfiability of the generated
formulas, it is desirable to obtain as tight a bound on N(d) as possible. We
make the following steps towards the computation of a precise bound: 1) we
compute the exact bound N(d) = d for d ≤ 3; 2) we identify a lower bound
N(d) ≥ d+

⌊
d
4

⌋
for d ≥ 4; 3) we provide several equivalent characterizations

of vectors that achieve the optimal bound for any d; 4) we provide a more
precise bound in the presence of cardinality constraints of the form |b| ≤ c
and |b| = c for a small constant c.

3. We describe our implementation of the algorithm in the context of the Jahob
verification system and present preliminary experiments on the examples of
Figure 2 and their variations.

Our previously reported results. We suggested the possibility of the exis-
tence of sparse solutions in the final version of [13], where we also established the
complexity of quantified BAPA. In a previous technical report [16] we identified
a PSPACE algorithm for QFBAPA, but the techniques used there are different
and not needed for the results of this paper. A preliminary version of the current
result is described in [11, Section 7.9].

2 Constructing Small Presburger Arithmetic Formulas

Given a QFBAPA formula, this section shows how to construct an associated
polynomially larger quantifier-free PA formula. Section 3 then proves that the
constructed formula is equisatisfiable with the original one.

Consider an arbitrary QFBAPA formula in the syntax of Figure 1. To analyze
the problem, we first separate PA and BA parts of the formula by replacing
b1 = b2 with b1 ⊆ b2 ∧ b2 ⊆ b1, replacing b1 ⊆ b2 with |b1 ∩ bc

2| = 0, and then
introducing integer variables ki for all cardinality expressions |bi| occurring in
the formula. With a linear increase in size, we obtain an equisatisfiable QFBAPA
formula of the form G ∧ F where G is a quantifier-free PA formula and F is of
the form

p∧
i=0

|bi| = ki (1)

We assume b0 = U and k0 = MAXC, i.e., the first constraint is |U| = MAXC.
Let y1, . . . , ye be the set variables in b1, . . . , bp. If we view each Boolean

algebra formula bi as a propositional formula, then for β = (p1, . . . , pe) where
pi ∈ {0, 1} let JbiKβ ∈ {0, 1} denote the truth value of bi under the propositional
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valuation assigning the truth value pi to the variable yi. Let further sβ denote
the Venn region associated with β, given by sβ = ∩e

j=1y
pj

j where y0
j = yc

j is
set complement and y1

j = yj . Because bi is a disjoint union of its corresponding
Venn regions, we have |bi| =

∑
β|=bi

|sβ |. For the sake of analysis, for each β ∈
{0, 1}e introduce a non-negative integer variable lβ denoting |sβ |. Then (1) is
equisatisfiable with the exponentially larger PA formula

p∧
i=0

∑ {
lβ | β ∈ {0, 1}e ∧ JbiKβ=1

}
= ki (2)

Instead of this exponentially large formula where β ranges over all 2e propo-
sitional assignments, the idea of our paper is to check the satisfiability of an
asymptotically smaller formula

p∧
i=0

∑ {
lβ | β ∈ {β1, . . . , βN} ∧ JbiKβ=1

}
= ki (3)

where β ranges over a set of N assignments β1, . . . , βN for βi = (pi1, . . . , pie) and
pij are fresh free variables ranging over {0, 1}. Let d = p + 1. We are interested
in the best upper bound N(d) on the number of non-zero Venn regions over all
possible systems of equations. In the sequel we show that N(d) is polynomial
in d and therefore polynomial in the size of the original QFBAPA formula. This
result implies that QFBAPA is in NP and gives an effective bound on how to
construct a quantifier-free PA formula for checking the satisfiability of a given
QFBAPA formula.
Encoding generic cardinality variables in PA. Formula (3) uses some PA
constructs along with some meta-notation. We next explain how to write (3) as a
polynomially large quantifier-free PA formula. Because there are only N distinct
assignments βj considered, we introduce one variable lj for each 1 ≤ j ≤ N , for a
total of N integer variables. Let cij = JbiKβj for 1 ≤ i ≤ p and 1 ≤ j ≤ N . Then
each conjunct of (3) becomes

∑N
j=1 cij lj = ki. It therefore suffices to show how

to efficiently express sums with boolean variable (as opposed to constant) co-
efficients. For this we can use the standard conditional expression ite(p, t1, t2),
where p is a propositional formula and t1, t2 are integer terms. The ite(p, t1, t2)
expression evaluates to t1 when p evaluates to true, and evaluates to t2 when p
evaluates to false. It can be efficiently eliminated by flattening the formula to
contain no nested terms and then replacing t = ite(p, t1, t2) with the formula
(p → t = t1) ∧ (¬p → t = t2). (It is also directly available in the SMT-LIB
format [22].) Using ite, we can express cij lj as ite(cij , lj , 0). Then (3) becomes∧p

i=0

∑N
j=1 ite(JbiKβj , lj , 0) = ki. Note that we can substitute the values ki back

into the original PA formula G, so there is no need to perform the separation into
G ∧ F in practice. We obtain the following simple summary of our algorithm:

substitute each expression |bi| with
N∑

j=1

ite(JbiKβj , lj , 0). Note that this transla-

tion of QFBAPA into PA is parameterized by N . Sufficiently large values of N
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guarantee soundness and are the subject of the following sections, which show
that a polynomial value suffices. However, any value of N can be used to try
to prove the existence of a satisfying assignment for QFBAPA formulas. because
a satisfying assignment for N0 implies the existence of satisfying assignments
for all N ≥ N0, letting lj = 0 for N0 + 1 ≤ j ≤ N . This suggests an iterative
algorithm of Figure 3 that starts with N = 0 and increases N until a counterex-
ample is found or a provably sufficient bound is reached. ’break symmetry’ is
a symmetry breaking predicate that imposes a lexicographical order on propo-
sitional variables βj . ’set expressions into card’ transforms all boolean algebra
expressions into form |bi| = 0.

let findN(f : QFBAPA) : bool =
let d = #atomic formulas(f)
let s0 = #formulas with 0 rhs(f)
let s1 = #formulas with 1 rhs(f)
let d1 = d− s0 − s1

let N1 = if (d1 ≤ 3) d1

else max{n | 2n ≤ (n + 1)d1}
return N1 + s1

let makePA(f : QFBAPA, N : int) : QFPA =

let f1 = f [|bi| 7→
NP

j=1

ite(JbiKβj , lj , 0)]i

return
((

V
j lj ≥ 0) ∧ break symmetry) → f1

let valid(f0 : QFBAPA) : bool =
let f = negation normal form(

set expressions into card(f0))
let N0 = findN(f);
N := 0;
while(N ≤ N0) do

let fPA = makePA(f, N)
if ¬validPA(fPA) return false;
else N := N + 1;

return true;

Fig. 3. Our algorithm for deciding QFBAPA formulas

3 Upper Bound on the Number of Non-Zero Regions

We next prove that the number N(d) of non-zero Venn regions can be assumed
to be polynomial in d. Let Z denote the set of integers and Z≥0 denote the set
of non-negative integers. We write

∑
X for

∑
y∈X

y.

Definition 1. For X ⊆ Zd a set of integer vectors, let

int cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ∈ Z≥0}

The following result is established as Theorem 1(ii) in [?].

Fact 1 (Eisenbrand, Shmonin (2005)) Let X ⊆ Zd be a finite set of integer
vectors and M = max{(maxd

i=1 |xi
j |) | (x1

j , . . . , x
d
j ) ∈ X} be the bound on the

coordinates of vectors in X. If b ∈ int cone(X), then there exists a subset X̃ ⊆ X
such that b ∈ int cone(X̃) and |X̃| ≤ 2d log2(4dM).
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To apply Fact 1 to formula (2), let X = {xβ | β ∈ {0, 1}e} where xβ ∈ {0, 1}e is
given by

xβ = (Jb0Kβ , Jb1Kβ , . . . , JbeKβ).

Fact 1 implies is that if (k0, k1, . . . , kp) ∈ int cone(X) where ki are as in for-
mula (2), then (k0, k1, . . . , kp) ∈ int cone(X̃) where |X̃| = 2d log2(4d) (note that
M = 1 because xβ are {0, 1}-vectors). The subset X̃ corresponds to selecting
a polynomial subset of N Venn region cardinality variables lβ and assuming
that the remaining ones are zero. This implies that formulas (2) and (3) are
equisatisfiable.

A direct application of Fact 1 yields N = 2d log2(4d) bound, which is suffi-
cient to prove that QFBAPA is in NP. However, because this bound is not tight,
in the sequel we prove results that slightly strengthen the bound and provide
additional insight into the problem.

4 Bounds and Nonredundant Integer Cone Generators

Definition 2. Let X ⊆ Zd. We say that X is a nonredundant integer cone
generator for b, and write NICG(X, b), if both 1) b ∈ int cone(X), and 2) b /∈
int cone(X \ {y}) for every y ∈ X.

In the sequel we consider only vectors of non-negative integers, so X ⊆ Zd
≥0.

Lemma 1 says that if NICG(X, b) for some b, then the sums of vectors
∑

Y
for Y ⊆ X are uniquely generated elements of int cone(X).

Lemma 1. Suppose NICG(X, b) for X ⊆ Zd
≥0. If λ1, λ2 : X → Z≥0 such that∑

x∈X

λ1(x)x =
∑
x∈X

λ2(x)x (4)

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.

Proof. Suppose NICG(X, b). Then (0, . . . , 0) /∈ X. Let λ1, λ2 : X → Z≥0 such
that (4) holds and λ1(x) ∈ {0, 1} for all x ∈ X, but λ2 6= λ1. If there are vectors
x on the left-hand side of (4) that also appear on the right-hand side, we can
cancel them. We obtain an equality of the form (4) for distinct λ′1, λ

′
2 with the

additional property that λ′1(x) = 1 implies λ′2(x) = 0. Moreover, not all λ′1(x)
are equal to zero (otherwise the left-hand side would be zero vector and the
right-hand side a vector with a strictly positive coordinate since (0, . . . , 0) /∈ X).
By b ∈ int cone(X), let λ : X → Z≥0 such that b =

∑
x∈X λ(x)x. Let x0 be

such that λ′1(x0) = 1 and λ(x0) = min{λ(x) | λ′1(x) = 1}. By construction,
λ′1(x0) = 1 and λ′2(x0) = 0. We then have, with x in sums ranging over X:

b =
∑

λ′
1(x)=1

λ(x)x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x)− λ(x0))x + λ(x0)
∑

λ′
1(x)=1

x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x)− λ(x0))x + λ(x0)
∑

λ′2(x)x +
∑

λ′
1(x)=0

λ(x)x
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In the last sum, the coefficient next to x0 is zero in all three terms. Because all
coefficients are non-negative, we conclude b ∈ int cone(X \ {x0}), contradicting
NICG(X, b).

We write NICG(X) as a shorthand for NICG(X,
∑

X). Theorem 1 gives sev-
eral equivalent characterizations of NICG(X). The equivalence of 1) and 4) is
interesting because it justifies the use of NICG(X) independently of the gener-
ated vector b.

Theorem 1. Let X ⊆ Zd
≥0. The following statements are equivalent:

1) there exists a vector b ∈ Zd
≥0 such that NICG(X, b);

2) If λ1, λ2 : X → Z≥0 are non-negative integer coefficients for vectors in X
such that ∑

x∈X

λ1(x)x =
∑
x∈X

λ2(x)x

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.
3) For {x1, . . . , xn} = X (for x1, . . . , xn distinct), the system of d equations

expressed in vector form as

λ(x1)x1 + . . . + λ(xn)xn =
∑

X (5)

has (λ(x1), . . . , λ(xn)) = (1, . . . , 1) as the unique solution in Zn
≥0.

4) NICG(X).

Proof. 1) → 2): This is Lemma 1.
2) → 3): Assume 2) and let λ1(xi) = 1 for 1 ≤ i ≤ n. For any solution λ2

we then have
∑

x∈X λ1(x)x =
∑

x∈X λ2(x)x, so λ2 = λ1. Therefore, λ1 is the
unique solution.

3) → 4): Assume 3). Clearly
∑

X ∈ int cone(X); it remains to prove that
X is minimal. Let y ∈ X. For the sake of contradiction, suppose

∑
X ∈

int cone(X \ {y}). Then there exists a solution λ(x) for (5) with λ(y) = 0 6= 1,
a contradiction with the uniqueness of the solution.

4) → 1): Take b =
∑

X.

Corollary 1 is used in [?] to establish the bound on the size of X with
NICG(X). We obtain it directly from Lemma 1 taking λ2(x) ∈ {0, 1}.

Corollary 1. If NICG(X) then for Y1, Y2 ⊆ X, Y1 6= Y2 we have
∑

Y1 6=
∑

Y2.

Every set contains a NICG subset that generates a given element. To establish
the existence of sparse solutions, it therefore suffices to establish bounds on the
cardinality of X such that NICG(X).

Lemma 2. If b ∈ int cone(X), then there exists X̃ ⊆ X with b ∈ int cone(X̃)
and NICG(X̃, b).
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Proof. If b ∈ int cone(X) then by definition b ∈ int cone(X0) for a finite X0 ⊆ X.
If not NICG(X0, b), then b ∈ int cone(X1) where X1 is a proper subset of X0.
Continuing in this fashion we obtain a finite maximal sequence X0 ⊃ X1 ⊃ . . . ⊃
Xk where NICG(Xk, b), so we let X̃ = Xk.

Lemma 3. If NICG(X) and Y ⊆ X, then NICG(Y ).

Define
g(d) = max{n | 2n ≤ (n + 1)d} (6)

Theorem 2. Let X ⊆ {0, 1}d, NICG(X), and N = |X|. Then for d ≥ 2,

N ≤ g(d) ≤ (1 + ε(d))(d log2 d) (7)

where ε(d) ≤ 1 and lim
d→∞

ε(d) = 0.

Proof. Let X ⊆ {0, 1}d, NICG(X) and N = |X|. We prove 2N ≤ (N + 1)d.
Suppose that, on the contrary, 2N > (N +1)d. If

∑
Y = (x1, . . . , xd) for Y ⊆ X,

then 0 ≤ xj ≤ N because Y ⊆ {0, 1}d and |Y | ≤ N . Therefore, there are only
(N+1)d possible sums

∑
Y . Because there are 2N subsets Y ⊆ X, there exist two

distinct subsets U, V ∈ 2X such that
∑

U =
∑

V . This contradicts Corollary 1.
Therefore, 2N ≤ (N + 1)d. We next show that any n for which 2n ≤ (n + 1)d is
bounded by (1 + ε(d))(d log2 d). Using elementary reasoning, from 2n ≤ (n + 1)
we obtain n ≤ 2d log2(2n) (see [?], [11, Section 7.9.3] for details). Substituting
this bound on n back into n ≤ d log2(n + 1) we obtain

n ≤ d log2(n + 1) ≤ d log2(2d log2(2d) + 1) = d log2(2d(log2(2d) + 1
2d ))

= d(1 + log2 d + log2(log2(2d) + 1
2d )) = d log2 d(1 + 1+log2(log2(2d)+ 1

2d )

log2 d )

so we can let ε(d) = (1 + log2(log2 d + 1 + 1
2d ))/ log2 d.

Define N(d) = max{|X| | X ⊆ {0, 1}d ∧ NICG(X)}. We have shown N(d) ≤
g(d). Thanks to the monotonicity of g, we can compute g(d) efficiently using
binary search.

4.1 Lower Bounds

Although we currently do not have tight bounds for N(d), in this section we
show several observations about lower bounds for N(d).

We first show d ≤ N(d).

Lemma 4. Let X = {(x1
i , . . . , x

d
i ) | 1 ≤ i ≤ n} and

X+ = {(x1
i , . . . , x

d
i , 0) | 1 ≤ i ≤ n} ∪ {(0, . . . , 0, 1)}

Then NICG(X) if and only if NICG(X+).



11

Corollary 2. N(d) + 1 ≤ N(d + 1) for all d ≥ 1.

Proof. Let X ⊆ {0, 1}d, NICG(X), and |X| = N(d). Then NICG(X+) by
Lemma 4 and |X+| = N(d) + 1, which implies N(d + 1) ≥ N(d) + 1.

Lemma 5. d ≤ N(d). Specifically, NICG({e1, . . . , ed}) where ei are unit vec-
tors.

Note that for X = {e1, . . . , ed} we have int cone(X) = Zd
≥0, which implies that

X is a maximal NICG, in the sense that no proper superset W ⊃ X has the
property NICG(W ).
N(d) = d for d ∈ {1, 2, 3}. We next show that for d ∈ {1, 2, 3} not only
d ≤ N(d) but also N(d) ≤ d.

Lemma 6. N(d) = d for d ∈ {1, 2, 3}.

Proof. By Corollary 2, if N(d + 1) = d + 1, then N(d) + 1 ≤ d + 1 so N(d) ≤ d.
Therefore, N(3) = 3 implies N(2) = 2 as well, so we can take d = 3.

If N(d) > d, then there exists a set X with NICG(X) and |X| > d. From
Lemma 3, a subset X0 ⊆ X with |X0| = d+1 also satisfies NICG(X0). Therefore,
N(3) = 3 is equivalent to showing that there is no set X ⊆ {0, 1}3 with NICG(X)
and |X| = 4.

Consider a possible counterexample X = {x1, x2, x3, x4} ⊆ {0, 1}3 with b ∈
int cone(X). By previous argument on real-valued relaxation, NR(3) = 3, so b
is in convex cone of some three vectors from X, say b ∈ cone({x1, x2, x3}). On
the other hand, b /∈ int cone({x1, x2, x3}). If we consider a system λ1x1 +λ2x2 +
λ3x3 = b this implies that such system has solution over non-negative reals, but
not over non-negative integers. This can only happen if the absolute value of the
determinant of the matrix [x1, x2;x3] is greater than 1. The only set of three
vectors for which this can occur is X1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. We then
consider all possibilities for the fourth vector in X, which, modulo permutations
of coordinates, are (0, 0, 0), (1, 1, 1), (1, 1, 0), and (1, 0, 0). However, adding any
of these vectors violates the uniqueness of the solution to λ1x1 + λ2x2 + λ3x3 +
λ4x4 =

∑
X, so NICG(X) does not hold by Theorem 1, condition 3).

N = 5
4
d − 3

4
lower bound. We next show that there exists an example

X5 ⊆ {0, 1}4 with NICG(X5) and |X5| = 5. From this it follows that N(d) > d
for all d ≥ 4.

Consider the following system of 4 equations with 5 variables, where all
variable coefficients are in {0, 1}. (We found this example by narrowing down
the search using the observations on minimal counterexamples in the proof of
Lemma 6.)

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ1 + λ3 + λ4 + λ5 = 4

λ1 + λ2 + λ4 + λ5 = 4

(8)
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It is easy to see that the system has (1, 1, 1, 1, 1) as the only solution in the
space of non-negative integers. Note that all variables are non-zero in this solu-
tion. The five columns of the system (8) correspond to the set of vectors X5 =
{(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1)} such that NICG(X5). The
set X5 is also a maximal NICG, because adding any of the remaining 9 non-zero
vectors in {0, 1}4 \X5 results in a set that is not NICG.

This argument shows that there exist maximal NICG of size larger than d for
d ≥ 4. As we have remarked before, the set of d unit vectors is a maximal NICG
for every d, which means that, unlike linearly independent sets of vectors over a
field or other independent sets in a matroid [27], there are maximal NICG sets
of different cardinality. Nevertheless, Lemma 2 and Lemma 3 show that some of
the properties of independent sets do hold for vectors in X where NICG(X).

Note also that X5 is not a Hilbert basis [25]. Namely, we have that
(1, 1, 1, 1) ∈ cone(X5) \ int cone(X5) because (1, 1, 1, 1) = 1/3((1, 0, 1, 1) +
(1, 1, 0, 1) + (1, 1, 1, 0) + (0, 1, 1, 1)). This illustrates why previous results on
Hilbert bases do not directly apply to the notion of NICG.

Using k identical copies of X5 (with 4 equations in a group mentioning a
disjoint set of 5 variables) we obtain systems of 4k equations with 5k variables
such that the only solution is a vector (1, . . . , 1) of all ones. By adding p unit
vector columns for 1 ≤ p ≤ 3, we also obtain systems of 4k + p equations with
5k + p variables, with N = 5

4d − p
4 = d +

⌊
d
4

⌋
≥ 5

4d − 3
4 , which, in particular,

shows that N = d upper bound is invalid for all d ≥ 4.

4.2 Better Upper Bounds for Small Cardinalities

Consider a QFBAPA formula in separated form G ∧ F as in Section 2, where G
is a PA formula and F is given by (2). Our bounds on N so far are a function of
d alone. For many formulas arising in practice we can reduce N using bounds on
the values that ki can take, as explained in this section. In our experience, this
improvement significantly reduced the overall running time of our algorithm.
Improved bound. Suppose that we can conclude that if the formula F ∧G is
satisfiable, then there exists a satisfying assignment for variables where 0 ≤ ki ≤
ci (if we do not have a bound for some i, we let ci = ∞). We can often obtain
such a bound ci by transforming G to negation-normal form and checking if ki

occurs in literals such as ki = 0 or ki < ci. Given the bounds ci, we have the
following inequality that generalizes the one in Theorem 2:

2N ≤
d∏

i=1

(1 + min(ci, N)) (9)

The reasoning follows the proof of Theorem 2.
Consequences for common cases. Two common cases that we can easily take
advantage of are bounds ci = 0 and ci = 1. Suppose that for i ∈ I0 we have ci = 0
and for i ∈ I1 (where I1 ∩ I0 = ∅) we have ci = 1. Let |I0| = s0 and |I1| = s1.
Letting ci = ∞ for i /∈ I0 ∪ I1, from (9) we obtain 2N ≤ 2s1(N + 1)d−s0−s1 .
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For ci = 0 and ci = 1 we can in fact obtain a slightly stronger bound from the
condition 2N ≤ 2s1(N−s1+1)d−s0−s1 , which can be justified as follows. Consider
a satisfying assignment for G ∧ F . When i ∈ I0, we can eliminate the equation
|bi| = ki in (2) and remove all lβ such that JbiKβ=1 from the remaining equations,
while preserving the property that all vectors in the matrix corresponding to (2)
are in {0, 1}. The bound on non-zero variables for the resulting system with d−s0

equations therefore applies to the original system as well. Similarly, if i ∈ I1 and
the right-hand side ki = 1, then we know that in the satisfying assignment there
is exactly one β1 such that JbiKβ1=1, so we can remove the equation |bi| = 1,
and for all j such that JbjKβ1=1 subtract 1 from kj and remove lβ1 . The result
is again a system with {0, 1} coefficients, but one less equation. Increasing the
bound for the resulting system by one (to account for lβ1 = 1) we obtain the
bound for the original system, which proves our claim.

These observations are important in practice because they imply that pure
boolean algebra expressions (such as b1 ⊆ b2 and b1 = b2) do not increase N when
they occur positively, since for them ci = 0. The bound ci = 1 also frequently
occurs in our examples because we encode elements as singleton sets.

5 Preliminary experiments

Figure 4 shows formula sizes and running times for the original BAPA algorithm
and our new QFBAPA algorithm (Figure 3) on formulas of Figure 2 and their
variations.3

The examples 2a, 3a, 6a are more realistic versions of examples 2, 3, 6 be-
cause they contain some unnecessary assumptions that would normally appear
in an automatically generated verification condition. Syntactically determining
which assumptions are useful is a difficult problem [6], so it is reasonable to leave
this task to the the decision procedure. Formulas 1− 6, 2a, 3a, 6a are all valid.
Formulas 2b, 3b, 4b, 5b, 6b, 6c are obtained from 2a, 3a, 4, 5, 6a, 6a, respectively,
by dropping one of the necessary assumptions or changing the relation between
integers to make the formula invalid. All invalid formulas are marked by ∗ in
Figure 4. In addition to the running time, the figure shows the number of ab-
stract syntax tree nodes in the generated quantifier-free Presburger arithmetic
formulas. For the QFBAPA algorithm, the “iteration of N” column indicates the
number of non-empty Venn regions for which a counterexample was found, in
the case when the formula is invalid. For valid formulas this column indicates the
bound that was computed as being sufficient to establish formula validity; this
bound is actually explored whenever validity checking terminates in the given
timeout. In any case, the size of the generated PA formula corresponds to this
value of N . The running time for QFBAPA is the sum of running times over all
iterations, corresponding to the overall running time of the algorithm. We ran
the experiments on 3GHz, 1MB cache, 2GB RAM workstation. As a decision
procedure for quantifier-free PA we used CVC3 version 20070217 [3].

3 The examples are available from http://lara.epfl.ch/∼kuncak/cade07examples

http://lara.epfl.ch/~kuncak/cade07examples
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VC#
(∗=invalid)

BAPA QFBAPA

PA size(nodes) total time(s) PA size(nodes) iteration of N total time(s)

1 39 < 0.1 190 3 < 0.1
2 57 < 0.1 220 4 0.1
2a 1049 1.8 840 5 15.4
∗2b 946 1.4 87 1 < 0.1
3 51 < 0.1 131 3 < 0.1
3a 532 0.4 688 5 7.3
∗3b 532 0.4 92 1 < 0.1
4 546 0.5 1328 8 > 100.0
∗4b 554 0.5 284 2 0.1
5 2386 13.6 1750 8 > 100.0
∗5b 2318 13.4 570 3 0.4
6 442 0.4 2613 18 > 100.0
6a 10822 > 100.0 8401 23 > 100.0
∗6b 10822 > 100.0 1021 3 0.8
∗6c 10563 > 100.0 990 3 0.9

Fig. 4. Results for variations of formulas in Figure 2

Discussion. These results suggest that our new algorithm is more effective than
the previous algorithm for finding counterexamples of invalid formulas. On large
valid formulas our algorithm generates more compact quantifier-free PA formu-
las than the introduction of exponentially many variables, but the complexity of
generated formulas makes them difficult to solve, leading to worse overall perfor-
mance. Nevertheless, on small formulas our new algorithm terminates, reaching
the computed upper bound on N and thus establishing formula validity.

6 Related Work

We have presented the the first decision procedure for a logic with sets and car-
dinality constraints that does not explicitly construct all set partitions. Using a
new form of small model representation property, the “small number of non-zero
variables” property, we obtained a non-deterministic polynomial-time algorithm
that can be solved by producing polynomially large quantifier-free Presburger
arithmetic formulas. A polynomial bound sufficient for NP membership can be
derived from [?]. In addition to improvements in the bounds that take into ac-
count small cardinalities, we introduced the notion of non-redundant integer
cone generators and established their properties. Previous results, such as [25],
consider matroids and Hilbert bases. As we remark in Section 4.1, the sets of
vectors X with NICG(X) do not form a matroid, and maximal NICG(X) need
not be a Hilbert basis. The equations generated from QFBAPA problems are
more difficult than set packing and set partitioning problems [2], because our
partition cardinality variables are not restricted to {0, 1}.
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Relationship to counting SAT. Although similarly looking, QFBAPA sat-
isfiability is different from the #SAT problem [26]. Solving QFBAPA formula
differs from counting the number of satisfying assignments of propositional for-
mulas because set partitions may possibly be empty. An immediate consequence
of our results is that there is no QFBAPA formula of size polynomial in n that
would express the property “all 2n partitions of n sets are non-empty”.
Reasoning about sets. The quantifier-free fragment of BA is shown NP-
complete in [17]; see [14] for a generalization of this result using the parameter-
ized complexity of the Bernays-Schönfinkel-Ramsey class of first-order logic [5,
Page 258]. The decision procedure for quantifier-free fragment with cardinalities
in [7, Chapter 11] introduces exponentially many integer variables to reduce the
problem to PA.
Using first-order provers. With appropriate axioms and decision procedures,
first-order provers can also be used to reason about QFBAPA-like constraints,
as shown, for example, by SPASS+T [21]. Our decision procedure by itself is
not nearly as widely applicable as SPASS+T, but is complete for its domain
(for example, it proves a formulation of problem number (73) from [21] in 0.1
seconds whereas SPASS+T is reported to time out in [21]).
Acknowledgements. Alexandr Andoni suggested using binary search instead
of an analytical expression to compute the inverse of N/ log(N + 1). Stefan
Andrei and Bruno Marnette made remarks about result [16]. Emina Torlak used
her Kodkod constraint solver to search for counterexamples of the conjecture
N(3) = 3 (Section 4.1 shows that this conjecture is true). We thank Zoran
Džunić, Michael Sipser, and the anonymous reviewers for useful feedback.
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25. András Sebö. Hilbert bases, Caratheodory’s theorem and combinatorial optimiza-
tion. In R. Kannan and W. Pulleyblank, editors, Integer Programming and Com-
binatorial Optimization I. University of Waterloo Press, 1990.

26. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991.

27. H. Whitney. On the abstract properties of linear independence. American Journal
of Mathematics, 57:509–533, 1935.

28. Calogero G. Zarba. Combining sets with cardinals. J. of Automated Reasoning,
34(1), 2005.

http://dx.doi.org/10.1007/s10817-006-9042-1

	Viktor Kuncak and Martin Rinard

