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Towards electrically conductive,
self-healing materials
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A novel class of organometallic polymers comprising N-heterocyclic carbenes and transition
metals was shown to have potential as an electrically conductive, self-healing material. These
polymers were found to exhibit conductivities of the order of 10™*Scm ™! and showed
structurally dynamic characteristics in the solid-state. Thin films of these materials were cast
onto silicon wafers, then scored and imaged using a scanning electron microscopy (SEM).
The scored films were subsequently healed via thermal treatment, which enabled the
material to flow via a unique depolymerization process, as determined by SEM and surface
profilometry. A method for incorporating these features into a device that exhibits
electrically driven, self-healing functions is proposed.
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1. INTRODUCTION

The formation and propagation of microcracks caused by
exposure to continuous and/or cyclic stress is a main
culprit of fatigue in mechanical materials and failure in
electronic components (Sauer & Hara 1990). Cutting-
edge research has focused on addressing this problem
through the development of responsive materials with
‘self-healing’ capabilities. Prime examples include epoxy-
based composites containing encapsulated healing agents
(Kessler & White 2001; White et al. 2001; Rule et al. 2005)
and thermally remendable plastics comprising monomers
that reversibly conjoin (Chen et al. 2002, 2003). Despite
these brilliant advances, self-healing materials have yet
to reach their full potential. For example, the aforemen-
tioned examples are inherently electrically insulating,
which limits their ultimate responsivities and precludes
their use in related analytical applications. By imparting
conductive properties into these materials, a number of
unique and useful features may be realized. For example,
one may obtain ‘real-time’ status of a material’s
structural integrity through electronic feedback
mechanisms. This feature could lead to new approaches
for detecting and quantifying microcracks (an extremely
challenging task), which, in turn, could lead to materials
capable of recording their stress/load histories. Other
possibilities include using electric fields or currents as
novel healing functions (an example of an ‘electrically
driven self-healing’ process will be described in §2). While
materials exhibiting both self-healing and conductive
properties can be expected to offer obvious advantages in
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omnipresent consumer electronics, they may also provide
practical alternatives to sophisticated redundancy and
other types of back-up systems currently used for high-
risk situations, such as deep-sea and space travel.

2. RESULTS AND DISCUSSION

A number of approaches may be envisioned to impart
conductive properties into self-healing materials. For
example, composites of the aforementioned responsive
materials with self-healing capabilities can be syn-
thesized with metals, alloys, nanoparticles and other
types of electrical conductors. However, this is likely to
result in long-standing phase compatibility and proces-
sability issues associated with these latter materials.
We desired a de novo solution that tackled this problem
from the ‘ground up’, i.e. from a molecular level. We
sought a means to construct a stimulus-responsive
material that effectively combined structurally
dynamic characteristics with electrically conductive
properties. Figure 1 shows a generalized depiction of
how a material with such features may operate if used
as an electrical wire or incorporated into a device. Upon
the formation of a microcrack, the total number of
electron percolation pathways within the material
should decrease. As a result, its inherent electrical
resistance should increase accordingly. If the material is
integrated into a circuit containing an ammeter/
voltmeter, then the drop in conductivity could be
used to trigger a simultaneous increase in the applied
electric field. Considering that the microcrack is the
source of the increased resistance, this voltage bias
should result in the generation of heat localized at the
microcrack. By harnessing the generated thermal
energy to hurdle kinetic barriers, the system may be
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Figure 1. Operation of an electrically conductive, self-healing material. A, amperes; V, volts.

electrically driven back to its original (i.e. a low-
resistance/high-current) state.

In order to realize the previously described system,
the development of a new responsive polymeric
material with the following features was needed: (i)
the material must be electrically conductive, (ii) the
polymerization process must be dynamic and respon-
sive to changes in external stimuli, (iii) for practical
reasons, the polymerization process should also exhibit
high atom economy (i.e. no by-product evolution),
(iv) bond scission (i.e. depolymerization) should occur
only in the vicinity of the microcrack (Wool &
O’Connor 1981; Kim & Wool 1983), and (v) main-
chain unsaturation, a key requirement for conductivity,
must be conserved or increased upon polymerization
(figure 2). In addition, modular components were
desired to facilitate systematic tuning of material and
electronic properties.

Although an impressive range of dynamic polymer-
izations is known, the fundamental reversible reactions
involved do not meet the conductivity requirement
(Bell et al. 2002; Rowan et al. 2002; Otsuka et al. 2003;
Chung et al. 2004; Skene & Lehn 2004; Kolomiets &
Lehn 2005; Ono et al. 2005; Scott et al. 2005). One
exception are complexes formed between N-hetero-
cyclic carbenes (NHCs) and transition metals. These
are not only known to form reversibly with tunable
equilibrium constants, but also their electronic com-
munications within these systems are well studied
(Lewis et al. 2003; Scott & Nolan 2005). Implemen-
tation of these complexes in polymeric materials
required the synthesis of appropriately functionalized
multitopic NHCs (1) poised for polymerization.
Through a series of synthetic developments, we
successfully prepared such NHCs and demonstrated
that they may be combined with group X metal salts
to provide well-defined organometallic polymers (2;
M=Ni, Pd and Pt; R=alkyl, benzyl and aryl; figure 3;
Boydston et al. 2005, 2006; Khramov et al. 2006a,b;
Boydston & Bielawski 2006). After these polymers were
found to be structurally dynamic, efforts were directed
towards evaluating their electronic properties. Conduc-
tivities of polymeric films are typically measured using
a four-point probe technique, which accounts for
contact resistances between the polymer film and the

J. R. Soc. Interface (2007)

HC-R-CH: == :HC-R-C=C-R-CH: == =+C-R-
H H =éH (H:%=n

Figure 2. A hypothetical polymerization where unsaturation
is maintained as a monomer is converted to a polymer
(R, unsaturated linker).
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Figure 3. A dynamic equilibrium between a monomer species
(left) and a organometallic polymer (right) that is controlled
via an external stimulus, such as heat.

gold contacts, as well as resistances between the contacts
and the electrodes. In this method, four equidistant gold
contacts are first deposited in a linear arrangement on the
film. Current is then applied from an outer electrode and
electrical potential distribution is measured between the
inner two electrodes. Applying this technique to
(undoped) 700 nm films of 2 resulted in conductivities of
the order of 107% S em ™ *. For comparison, Si, a metalloid
used in the semiconductor industry, exhibits a conduc-
tivity of the order of 107> S em ™.

The potential of these materials in self-healing
applications was investigated using a scanning electron
microscopy (SEM). Gold deposition was found to
be unnecessary to obtain visible images of these
materials, a testament of their high conductivities,
which provided a unique opportunity to visualize any
healing processes. Cross-linked thin films (800 nm)
were first cast on silicon wafers and, to emulate
microcrack formation, a sharp razor blade was used to
score the films. After imaging (figure 4a), the material
was then heated at 200°C for 25 min, allowed to cool
and then re-imaged (figure 4b). Comparing these
images clearly indicated that rough edges introduced
by the razor blade were visibly smoothened upon
thermal treatment. Encouraged by this result, and in
conjunction with the fact that the dynamic behaviour of
the system had been established in solution, it was
predicted that the presence of a solvent might facilitate
the reformation of the broken NHC-metal bonds.
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Figure 4. The scanning electron micrographs of a scored organometallic polymer film (a) before and (b) after exposure to 200°C
for 15 min, and (¢) before and (d) after exposure to 150°C for 2 h in the presence of DMSO vapour. Arrows indicate a common

point of reference.

Towards this end, a thin film of the material was cast on
a silicon wafer, and a crack was introduced and imaged
as before (figure 4¢). The wafer was then heated at
150°C for 2 h in a compartmentalized sealed vessel. A
pool of dimethylsulphoxide (DMSO) was placed in a
contiguous compartment, so that the solvent vapour
would facilitate healing. Comparison of the SEM image
of the treated film (figure 4d) indicated that the razor-
induced crack was now refilled with the material. This
observation was supported by measuring the film’s
surface with a stylus profiler, which indicated that the
depth of the crack had been significantly reduced (from
800 nm to nearly O nm) in the healed films. We are
currently assessing the extent to which microcracks and
self-healing efficiencies can be quantified by this unique
combination of characterization techniques.

3. CONCLUSIONS

Collectively, these results suggest that self-healing
characteristics were observed in materials with
electrically conductive properties. However, many
challenges remain before their potential is fully
realized. Most importantly, their dependency on
solvent vapour to facilitate healing must be elimi-
nated. Incorporating bulky N-alkyl groups, such as
2,2-dimethylbutyl, into the carbene moieties should
frustrate crystallization, reduce the viscosities of the
respective polymers and help the material ‘low’ into
neighbouring microcracks upon depolymerization.
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Additionally, the electronic performance of these
materials must be enhanced to more than or equal
to 1Scm ™' in order for them to be broadly useful.
This may be achieved by properly matching the
reduction—oxidation potentials of the transition
metal with the N-heterocyclic carbene, a well-known
method for maximizing electronic communication in
organometallic materials (Holliday & Swager 2005).
Efforts towards these goals, as well as exploring the
potential of deploying these materials in many of the
aforementioned applications, are currently underway.
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