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Abstract

We present an extension to the Tacotron speech

synthesis architecture that learns a latent embed-

ding space of prosody, derived from a reference

acoustic representation containing the desired

prosody. We show that conditioning Tacotron

on this learned embedding space results in syn-

thesized audio that matches the prosody of the

reference signal with fine time detail even when

the reference and synthesis speakers are different.

Additionally, we show that a reference prosody

embedding can be used to synthesize text that

is different from that of the reference utterance.

We define several quantitative and subjective met-

rics for evaluating prosody transfer, and report

results with accompanying audio samples from

single-speaker and 44-speaker Tacotron models

on a prosody transfer task.

1. Introduction

In order to produce realistic speech, a text-to-speech (TTS)

system must implicitly or explicitly impute many factors that

are not provided by simple text input. Such factors include

the intonation, stress, rhythm and style of the speech, and

are collectively referred to as prosody.

Speech synthesis via text-to-speech is a challenging under-

determined problem, since the meaning expressed by an

utterance is inherently underspecified by the text. For exam-

ple, the simple statement “The cat sat on the mat.” can be

spoken many different ways. If the statement is the answer

to the question “Where did the cat sit?” the speaker might

stress the word “mat” to indicate that it is the answer to

the question. To express uncertainty in their knowledge,

the speaker may decide to intone the response with a rising

pitch. The question, “Would you like an apple or an orange?”
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can also be spoken in multiple ways, indicating information

about the set of objects that exist. If there are only two possi-

ble options, the intonation of the final option (“orange”) will

have a declining pitch. If there are a variety of options of

which apple and orange are just two examples, both options

are typically intoned with a rising pitch. The intonation of

these sentences carries meaning about the environment or

context of the question which is unspecified by the text, and

in general, there are any number of such nuances present in

speech that convey information beyond the textual content.

In order to avoid the challenging problem of schematizing

and labeling prosody, we seek methods of modeling prosody

that do not require explicit annotations, and present an ar-

chitecture for learning a latent prosody representation by

extracting it from the ground truth speech audio. Accord-

ingly, we use a “subtractive” definition of prosody:

Definition. Prosody is the variation in speech signals that

remains after accounting for variation due to phonetics,

speaker identity, and channel effects (i.e. the recording

environment).

This view of prosody is compatible with interpretations of

prosody from previous works (Wagner & Watson, 2010;

Ladd, 2008).

One natural problem that arises from this formulation is

sampling – that is, the challenge of generating diverse and

interesting prosody and output speech even for identical

phonetics, speaker identities, and channel effects. In this

paper, we tackle the more basic problem of constructing a

space that represents prosody. We propose one possible con-

struction of a prosody latent space, and show that we capture

meaningful variation in speech by demonstrating transfer

in this space (i.e., using a latent representation to make one

utterance sound like another): this roughly corresponds to a

“say it like this” task.

The recently proposed Tacotron speech synthesis system

(Wang et al., 2017a) computes its output directly from

graphemes or phonemes, and its prosody model is implicit,

learned from the statistics of the training data alone. It

learns, for example, that an English sentence ending in a

question mark likely has a rising pitch if the question has a
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yes-or-no answer. In this work1, we augment Tacotron with

explicit prosody controls. We accomplish this by learning

an encoder architecture that computes a low-dimensional

embedding from a speech signal, where the embedding pro-

vides information not provided by the text and speaker iden-

tity. Through careful experiments, we demonstrate that this

prosody embedding can be used to reproduce the desired

prosody using Tacotron.

The immediate implication of this acoustic encoder archi-

tecture and prosody latent space is that we can control the

behavior of a TTS system using a different voice than the

one used in training. The resulting embedding is fixed-

length and often smaller than the transcript, so it can be

easily stored alongside the text for use in a production sys-

tem. The longer-term implications are that we can build

models that predict prosody embeddings from non-acoustic

context, such as prosody labels or conversation state.

Our main contribution is an encoder architecture that ex-

tracts a fixed-length learned representation of prosody from

acoustic input; we demonstrate that this encoder allows us

to transfer prosody between utterances containing similar

text in an almost speaker-independent fashion. To evaluate

performance in this prosody transfer task, we propose a

number of quantitative and qualitative metrics. Addition-

ally, we strongly encourage the reader to listen to the audio

samples on our demo page.

2. Related Work

The modeling of prosody and speaking style has been in-

vestigated since the era of HMM-based TTS research. For

example, (Eyben et al., 2012) proposes a system that first

clusters the training set, and then performs HMM-based

cluster-adaptive training. (Nose et al., 2007) proposes esti-

mating a transformation matrix for a set of predefined style

vectors.

Numerous works have explored annotation schemes for dia-

gramming and automatic labeling of prosody: ToBi (Silver-

man et al., 1992), AuToBI (Rosenberg, 2010), Tilt (Taylor,

1998), INTSINT (Hirst, 2001), and SLAM (Obin et al.,

2014) all describe methods for the annotation and auto-

matic extraction of labels or annotations that correlate with

prosodic phenomena. The challenges of annotation often

require domain experts, however, and inter-rater annotations

can differ substantially (Wightman, 2002).

Few works propose the use of acoustic reference signals to

control the prosody of a text-to-speech model. (Tesser et al.,

2013) proposes the use of “signal driven” features to predict

symbolic prosody representations, using AuToBI labels to

1Sound demos are available at https://google.

github.io/tacotron/publications/end_to_end_

prosody_transfer.

improve HMM-based synthesis. (Coile et al., 1994) propose

“prosody transplantation” via a system called PROTRAN

for recording a low-bit-rate “enriched phonetic transcrip-

tion” that can be used in conjunction with desired text to

reproduce the prosody of an original recording. Note that

the same product needs described in (Coile et al., 1994)

motivate the development of this paper.

Prosody transfer is related to the task of voice conversion

(also called style transfer in the audio context). To perform

voice conversion, a model must synthesize an utterance,

given only the acoustic signal of that utterance in a different

speaker’s voice (Wu et al., 2013; Nakashika et al., 2016;

Kinnunen et al., 2017; van den Oord et al., 2017; Chorowski

et al., 2017). An approach similar to ours can be found in

(Wang et al., 2018), where a more complicated autoencoder

is used to learn some elements of style in an unsupervised

fashion.

3. Model Architecture

Our model is based on Tacotron (Wang et al., 2017a), a

recently proposed state-of-the-art end-to-end speech syn-

thesis model that predicts mel spectrograms directly from

grapheme or phoneme sequences. The predicted mel spec-

trograms can either be synthesized directly to the time-

domain via a WaveNet vocoder (Shen et al., 2017), or by

first learning a linear spectrogram prediction network, and

then applying Griffin-Lim spectrogram inversion (Griffin &

Lim, 1984).

In this work, we use the original encoder and decoder ar-

chitecture from (Wang et al., 2017a), not the simplified

architecture proposed by (Shen et al., 2017). Additionally,

we exclusively use phoneme inputs produced by a text nor-

malization front-end and lexicon, as we are specifically

interested in addressing prosody, not the model’s ability to

learn pronunciation from graphemes. Finally, instead of

the Bahdanau content-based attention used in (Wang et al.,

2017a), we use the GMM attention of (Graves, 2013) which

we find improves generalization to long utterances.

The audio samples included on our demo page were pro-

duced with a WaveNet vocoder (Shen et al., 2017); however,

the original linear-spectrogram prediction network followed

by Griffin-Lim spectrogram inversion from (Wang et al.,

2017a) works equally well for prosody transfer. In practice,

we find the choice of neural vocoder only impacts audio

fidelity and has no impact on the system’s resulting prosody.

3.1. Multi-speaker Tacotron

Tacotron as proposed in (Wang et al., 2017a) does not in-

clude explicit modeling of speaker identity; however, due

to the flexibility of all-neural sequence-to-sequence models,

learning multi-speaker models via speaker identity condi-

https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
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Figure 1. The full Tacotron architecture for prosody control. The autoregressive decoder is conditioned on the result of the reference

encoder, transcript encoder, and speaker embedding via an attention module.

tioning is straightforward. We follow a scheme similar to

(Arık et al., 2017) to model multiple speakers.

The Tacotron architecture conditions an auto-regressive de-

coder on an LT × dT -dimensional representation of the

phoneme or grapheme sequence produced by a transcript

encoder architecture, where LT is the length of the encoded

transcript representation (typically equal to the length of

the input transcript) and dT is the embedding dimension

produced by the transcript encoder. For each speaker in the

dataset, an R
dS embedding vector is initialized with Glorot

(Glorot & Bengio, 2010) initialization. For each example,

the dS-dimensional speaker embedding corresponding to

the true speaker of the example is broadcast-concatenated

to the LT × dT -dimensional transcript encoder representa-

tion to form a (dT + dS)-dimensional sequence of encoder

embeddings that the decoder will attend to. No additional

changes or loss metrics are necessary. For single-speaker

datasets we do not use a speaker embedding.

3.2. Reference Encoder

We extend the Tacotron architecture by adding a “refer-

ence encoder” module that takes a length-LR and dR-

dimensional reference signal as input, and computes a dP -

dimensional embedding from it. Instantiations of this fixed-

dimensional embedding define a “prosody space” – our goal

is that sampling from this space will yield diverse and plau-

sible output speech, and that we can manipulate elements of

this space to control the output meaningfully.

As with the speaker embedding, this prosody embedding

is combined with the LT × dT text encoder representation

via a broadcast-concatenation. In combination with the

speaker embeddings described in Section 3.1, the encoder

embeddings form a LT ×(dT +dS+dP ) embedding matrix,

where the speaker and prosody embeddings are fixed across

all timesteps. Figure 1 illustrates this structure.

During training, the reference acoustic signal is simply the

target audio sequence being modeled. No explicit super-

vision signal is used to train the reference encoder; it is

learned using Tacotron’s reconstruction error as its only loss.

In training, one can think of the combined system as an

RNN encoder-decoder (Cho et al., 2014a) with phonetic

and speaker information as conditioning input. For a suffi-

ciently high-capacity embedding, this representation could

simply learn to copy the input to the output during train-

ing. Therefore, as with an autoencoder, care must be taken
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Figure 2. The prosody reference encoder module. A 6-layer stack

of 2D convolutions with batch normalization, followed by “recur-

rent pooling” to summarize the variable length sequence, followed

by an optional fully connected layer and activation.

to choose an architecture that sufficiently bottlenecks the

prosody embedding such that it is forced to learn a compact

representation.

During inference, we can use the prosody reference encoder

to encode any utterance: we are not constrained to match

either the text input or the speaker identity. In particular,

this enables the possibility of prosody transfer – using an

utterance by a different speaker, or different text to control

the output. We study prosody transfer in detail in Section 4.

For the reference encoder architecture (Figure 2), we use a

simple 6-layer convolutional network. Each layer is com-

posed of 3 × 3 filters with 2 × 2 stride, using ”same”

padding and ReLU activations. Batch normalization (Ioffe

& Szegedy, 2015) is applied to every layer. The number of

filters in each layer doubles at half the rate of downsampling:

32, 32, 64, 64, 128, 128.

The LR × dR reference signal is downsampled by this ar-

chitecture 64 times in both dimensions. The ⌈dR/64⌉ fea-

ture dimensions and 128 channels of the final convolution

layer are unrolled as the inner dimension of the resulting

⌈LR/64⌉×128⌈dR/64⌉ matrix. To compress the ⌈LR/64⌉-

length sequence produced by the CNN layers down to a

single fixed-length vector, we use a recurrent neural net-

work with a single 128-width Gated Recurrent Unit (GRU)

(Cho et al., 2014b) layer. We take the final 128-dimensional

output of the GRU as the pooled summarization of the se-

quence.

To compute the final dP -dimensional embedding from the

128-dimensional output of the GRU, we apply a fully-

connected layer to project the output to the desired dimen-

Reference
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Reference 
Spectrogram Slices

Conditioned
Decoder

Conditioning Input

Neural Vocoder

Figure 3. An interpretation of the Tacotron architecture for prosody

control from Figure 1 as an RNN encoder-decoder with speaker

and phonetic conditioning input.

sionality, followed by an activation function (e.g. softmax,

tanh). The choice of activation function can constrain the

information contained in the embedding and make learning

easier by controlling its magnitude. After some exploration,

we found that a dP of 128 and a tanh activation perform

well in practice.

3.3. Reference signal feature representation

The choice of LR × dR feature representation used as the

input to the reference encoder architecture naturally impacts

the aspects of prosody we can expect to learn. For exam-

ple, a pitch track representation will not allow us to model

prominence in some languages since it does not contain

energy information. Similarly an MFCC representation may

be somewhat pitch-invariant (depending on the number of

coefficients retained), preventing us from modeling intona-

tion. In this work, we decided to use the same perceptually-

relevant summarization of the spectrum that (Wang et al.,

2017a) does: the mel-warped spectrum (Stevens et al., 1937).

As in (Wang et al., 2017a), we use 80 mel bands from 80 to

12000 Hz.

This choice of representation enables an interpretation of

the resulting architecture as an RNN encoder-decoder (Cho

et al., 2014a) conditioned on text and speaker identity. All

it must model via its bottleneck representation is the unex-

plained variation in the signal, i.e. the prosody and recording

environment. We illustrate this interpretation in Figure 3.

We also explored more compact representations, such as

pitch track and intensity, but mel spectrograms produced the

best results.
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3.4. Variable Length Prosody Embeddings

The use of a fixed-length prosody embedding poses an ob-

vious scaling bottleneck, preventing the extension of this

approach to longer utterances. An alternate implementation

of the reference encoder in Section 3.2 uses the output of the

GRU at every time step rather than just the final output. As

with the fixed-length encoder, each GRU output is passed

through a fully connected layer to transform it to the desired

dimensionality. This can be interpreted as a low-bitrate

representation of prosody similar to the Enhanced Phonetic

Transcriptions proposed in (Coile et al., 1994). To condition

the Tacotron decoder on this sequence, we introduce a sec-

ond attention head with an attention-aggregator module as

proposed in (Wang et al., 2017b).

In our experiments, variable-length prosody embeddings

are able to generalize to very long utterances; however,

compared to fixed-length embeddings, variable-length em-

beddings are not as robust to text and speaker perturbations

likely because they encode a stronger timing signal. There-

fore, this paper focuses on fixed-length embeddings.

4. Experiments and Results

4.1. Datasets and training

We use the following datasets:

Single-speaker dataset: A single speaker high-quality En-

glish dataset of audiobook recordings by Catherine

Byers (the speaker from the 2013 Blizzard Challenge).

This dataset consists of 147 hours of recordings of 49

books, read in an animated and emotive storytelling

style.

Multi-speaker dataset: A proprietary high-quality En-

glish speech dataset consisting of 296 hours across

44 speakers (5 with Australian accents, 6 with British

accents, 1 with an Indian accent, 2 with Singaporean

accents, and 30 with United States accents).

We train our models for at least 200k steps with a minibatch

size of 256 using the Adam optimizer (Kingma & Ba, 2015).

We start with a learning rate of 1× 10−3 and decay it to

5× 10−4, 3× 10−4, 1× 10−4, and 5× 10−5 at step 50k,

100k, 150k, and 200k respectively. For baselines, we train

models without the reference encoder architecture (Section

3).

4.2. Evaluation metrics

There are no generally-accepted metrics for prosody trans-

fer. To measure performance, we adapt a number of metrics

from general audio processing, each of which reflects an

acoustic correlate of prosody. For all comparisons of pre-

dicted signals to target signals, we extend the shorter signal

to the length of the longer signal using a domain-appropriate

padding (e.g. 0 for a time-domain waveform, −13.8 for a

log magnitude spectrogram with a 1× 10−6 stabilizing off-

set). All pitch and voicing metrics are computed using the

output of the YIN (De Cheveigné & Kawahara, 2002) pitch

tracking algorithm.

Mel Cepstral Distortion (MCDK) (Kubichek, 1993):

MCDK =
1

T

T−1
∑

t=0

√

√

√

√

K
∑

k=1

(

ct,k − c′t,k

)2

Where ct,k,c′t,k are the k-th mel frequency cepstral co-

efficient (MFCC) of the t-th frame from the reference

and predicted audio. We sum the squared differences

over the first K MFCCs, skipping ct,0 (overall energy).

Gross Pitch Error (GPE) (Nakatani et al., 2008):

GPE =

∑

t 1 [|pt − p′t| > 0.2pt] 1[vt]1[v
′

t]
∑

t 1[vt]1[v
′

t]

Where pt,p
′

t are the pitch signals from the reference

and predicted audio, vt,v
′

t are the voicing decisions

from the reference and predicted audio, and 1 is the

indicator function. The GPE measures the percentage

of voiced frames that deviate in pitch by more than

20% compared to the reference.

Voicing Decision Error (VDE) (Nakatani et al., 2008):

VDE =

∑T−1

t=0
1[vt 6= v′t]

T

Where vt,v
′

t are the voicing decisions for the reference

and predicted audio, T is the total number of frames,

and 1 is the indicator function.

F0 Frame Error (FFE) (Chu & Alwan, 2009):

∑T−1

t=0
1 [|pt − p′t| > 0.2pt] 1[vt]1[v

′

t] + 1[vt 6= v′t]

T

FFE measures the percentage of frames that either con-

tain a 20% pitch error (according to GPE) or a voicing

decision error (according to VDE).

In addition to these metrics, we propose a subjective (i.e.,

human) test structured as an AXY discrimination test that

we refer to as an “anchored prosody side-by-side”. A human

rater is presented with three stimuli: a reference speech sam-

ple (A), and two competing samples (X and Y) to evaluate.

The rater is asked to rate whether the prosody of X or Y

is closer to that of the reference on a 7-point scale. The
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Table 1. A summary of quantitative and subjective metrics (Section 4.2) used to evaluate the prosody transfer. Lower is better for both

MCDk and FFE. Higher subjective scores are better, and indicate whether human raters believe the voice is closer in prosody to the

reference than the corresponding baseline model on a 7 point (−3 to 3) scale, where 0 is “about the same”.

VOICE MODEL REFERENCE MCD13 FFE SUBJECTIVE

SINGLE-SPEAKER BASELINE SAME SPEAKER 10.63 53.2%
SINGLE-SPEAKER TANH-128 SAME SPEAKER 7.92 28.1% 1.611± 0.164

SINGLE-SPEAKER BASELINE UNSEEN SPEAKER 11.22 59.6%
SINGLE-SPEAKER TANH-128 UNSEEN SPEAKER 8.89 38.0% 1.465± 0.132

MULTI-SPEAKER BASELINE SAME SPEAKER 9.93 48.5%
MULTI-SPEAKER TANH-128 SAME SPEAKER 6.99 27.5% 1.307± 0.127

MULTI-SPEAKER BASELINE SEEN SPEAKER 12.37 64.2%
MULTI-SPEAKER TANH-128 SEEN SPEAKER 9.51 37.1% 0.871± 0.138

MULTI-SPEAKER BASELINE UNSEEN SPEAKER 11.84 60.0%
MULTI-SPEAKER TANH-128 UNSEEN SPEAKER 10.87 41.3% 1.146± 0.246

scale ranges from “X is much closer” to “Both are about the

same distance” to “Y is much closer”, and can naturally be

mapped on the integers from −3 to 3. Prior to collecting any

ratings, we provide the raters with 4 examples of prosodic

attributes to evaluate (intonation, stress, speaking rate, and

pauses), and explicitly instruct the raters to ignore audio

quality or pronunciation differences. A screenshot of this

user interface is included in the supplemental material. For

each triplet (A, X, Y) evaluated, we collect 4 independent

ratings. No rater is used for more than 6 items in a sin-

gle evaluation. To analyze the data from these subjective

tests, we average the scores and compute 95% confidence

intervals.

4.3. Same-text Prosody Transfer

We first demonstrate that our model is capable of prosody

transfer when the text is unchanged from that of the refer-

ence utterance.

4.3.1. SPECTROGRAMS AND PITCH TRACKS

Figure 4 shows three spectrograms (reference, baseline

model, prosody embedding model) for the same utterance.

Note that the spectrogram from the model conditioned on a

reference embedding bears a much stronger resemblance to

the reference signal than that generated by an unconditioned

model. In particular, notice that the spectrogram from the

baseline model, which does not use a reference signal, ex-

hibits noticeably different rhythm – for example, there is a

long pause between the two halves of the utterance, and the

utterance lasts much longer. By contrast, the output with

a prosody embedding has the same length and pause char-

acteristics as the reference audio; it also has recognizably

similar harmonic and onset structure.

Figure 5 shows the pitch tracks for the same triplet of ut-

terances. We can see that the prosody embedding model

closely follows the pitch contours of the reference, whereas

the unconditioned model does something else entirely.

4.3.2. QUANTITATIVE AND SUBJECTIVE EVALUATIONS

We evaluated synthesis of single- and multi-speaker models

using two types of reference utterance. “Same speaker” in-

dicates a reference utterance from the same speaker as the

target, while “unseen speaker” refers to a reference utterance

from a speaker unseen in training. For the multi-speaker

model, we also tested synthesis with a speaker seen in train-

ing but different from the target speaker (“seen speaker”).

We present our findings in Table 1. The results show that

augmenting Tacotron with a reference encoder allows it to

match the reference prosody substantially more accurately.

This is true for all baseline/model pairs in Table 1, and is

independent of whether the reference speaker matches the

target speaker. The objective metrics MCD13 and FFE also

support this conclusion, both resulting in substantially lower

values for the reference encoder model than for the baseline

model.

Note that when the target and reference speakers are dif-

ferent (i.e., when the reference in Table 1 is either “seen

speaker” or “unseen speaker”), we must be careful to demon-

strate that prosody transfer has been achieved. If the bot-

tleneck allows too much information to flow through the

reference encoder, for example, the overall model could

simply copy the reference to the output. In this instance,

listening to even a small number of outputs suffices to ver-

ify that the output speaker matches the target speaker, and

that we have in fact achieved prosody transfer across speak-

ers. However, further experiments, explored in Section 4.5,

provide some surprising results.
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Figure 4. Mel spectrograms for the utterance “Snuffles is a lot

happier. And smells a lot better.” (Top) Reference utterance from

an unseen speaker. (Middle) Synthesized utterance conditioned

on reference embedding. (Bottom) Synthesized utterance from a

model without reference conditioning.

4.4. Templated Prosody Transfer

In addition to same-text prosody transfer, we also explore

the robustness of our proposed model to changes in the

synthesized text. Since the prosody embeddings we learn

capture prosodic features with some fine time detail, it isn’t

clear what it would mean to transfer these prosodic fea-

tures to a radically different utterance. As expected, we

find that drastic changes to the sentence or phrase struc-

ture result in undesirable prosody transfer. This use case

may be more suited to models that capture less granular

features of prosody such as emotion or style. (Wang et al.,

2018), for example, applies a similar approach to learning

representations of global style.

Nonetheless, we include a number of examples on our

demo page demonstrating that text transformations can be

performed without compromising intelligibility or desired

prosody. This can be highly useful in building templated

dialogue systems capable of synthesizing a template with a

desired prosody.

4.5. Preservation of Speaker Identity

In Table 1, the results of our “anchored prosody side-by-side”

subjective evaluation show that reference-based synthesis

matches the reference audio significantly better than the
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Figure 5. Pitch tracks for the utterance “Snuffles is a lot happier.

And smells a lot better.” A pitch of 0 Hz indicates an unvoiced

segment. (Top) Reference utterance from an unseen speaker. (Mid-

dle) Synthesized utterance conditioned on reference embedding.

(Bottom) Synthesized utterance from a model without reference

conditioning.

baseline model. However, the evaluation does not assess

whether the target speaker identity was preserved by the

synthesis. This is not accidental: pitch, pacing, and other

prosodic characteristics factor into speaker identity, and

thus it is difficult to prescribe exactly which aspects of the

target speaker’s identity should be preserved during prosody

transfer.

The audio samples we include on our demo page show that

our model preserves many important aspects of speaker

identity during prosody transfer. We include a grid of au-

dio examples representative of typical performance of this

system, with reference clips from 6 speakers with distinct

accents. Each utterance is synthesized 6 times, each with a

different target speaker. Notably, the prosody of each clip

matches that of the reference, while the distinct accents and

vocal tract properties of each speaker are preserved.

However, listening to samples of a male voice controlling

a female voice (and vice-versa) reveals that our prosody

representation encodes pitch in an absolute manner. When

controlled by a male reference signal, female target speakers

sound as if they’re imitating a person with a deeper voice.

Similarly, when controlled by a female reference signal,

male speakers sound as if they’re imitating a person with

a higher voice. This suggests that the prosody and speaker

https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
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representations are somewhat entangled.

To quantify this entanglement, we designed a simple speaker

identification model that takes varying types of acoustic in-

put, and produces predictions of speaker identity from a

universe of speakers known at training time. The archi-

tecture uses the same strided convolutions and GRU-based

aggregation as the reference encoder architecture from Sec-

tion 3.2, and is independently trained on ground truth mel

spectrograms using the same 44-speaker dataset used to

train our multi-speaker model. The architecture achieves

over 99% accuracy on both the held-out ground truth and

synthesized audio from our baseline 44-speaker model.

We then tested our prosody-enhanced Tacotron using this

model. To do so, we first constructed pairs of all target

speakers and reference utterances in the test set. We then

used our prosody-enhanced Tacotron to generate mel spec-

trograms for these pairs, and fed the output into the speaker

identification model. The speaker identification model iden-

tified the spectrograms as originating from the reference

speaker in 61% of test set examples, and the target speaker

only 21% of the time (ideally, the target speaker would be

at 100%). We refer the reader to the audio samples to un-

derstand how surprising this is – the audio samples sound

substantially more like the target speaker in every sample

we’ve listened to.

Since our model seems to transfer prosody in a pitch-

absolute manner, we ran a further experiment where we

trained the speaker identification model on 13 mel-frequency

cepstral coefficients (MFCCs) which contain less pitch con-

tent. In this case, the speaker identification model identified

the utterances as originating from the reference speaker

41% of the time, and the target speaker 32% of the time,

suggesting that, indeed, speaker-dependent pitch content is

transferred from the reference to the output.

4.6. Bottleneck Size and Shape
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Figure 6. The effect of bottleneck size on quantitative metrics. In

terms of both MCD13 and FFE, models with prosody encoders beat

the baseline. As the bottleneck size increases, the performance in

both metrics improve. Softmax is a more severe bottleneck than

tanh, and exhibits worse metrics.

The dimensionality and activation used for the bottleneck

substantially affect the information flow from the prosody

reference encoder to the output. In this experiment, we use

our single speaker as both the reference signal and target

(we are essentially trying to conditionally autoencode the

mel spectrograms given text). We plot the MCD13 and FFE

metrics while varying the bottleneck size and activation

in Figure 6, and include a series of audio samples on our

demo page. We can conclude that increasing the bottleneck

size allows for significantly more information flow from the

reference to the output, allowing for better reproduction of

the reference. More interestingly, using a softmax activation

leads to a degradation of metrics in comparison to tanh:

this is probably due to the exponential suppression of the

non-maximal components in the softmax.

The quantitative metrics are in agreement with the audio

samples provided on our demo page: larger bottlenecks with

the tanh activation improve audio similarity, and the outputs

are more faithful to the reference prosody. A potential trade-

off is that a narrower bottleneck would likely better preserve

the speaker identity of the target speaker.

5. Discussion and Future Work

In this work, we have demonstrated prosody transfer via an

end-to-end learned representation of prosody directly from

acoustic signals. While our system successfully transfers

prosody from one speaker to another, it does so in a pitch-

absolute manner. Future work should focus on encoding

prosody in a pitch-relative manner so that speaker identity

is more completely preserved during transfer.

A substantial open question is how to disentangle the tex-

tual information implicit in the reference signal from the

prosodic information. In Section 4.4, we showed that this

is possible to some extent, especially when the transcripts

are relatively close. But, more generally, this amounts to

transferring or controlling prosody using utterances with

different corresponding text transcripts. As noted earlier,

this is a somewhat ill-defined task, and a more careful for-

malization of this problem is needed to make real progress.

We also defined objective and subjective metrics for evaluat-

ing prosody transfer, and evaluated our architecture on these

benchmarks. Solidifying metrics that quantify all desired

aspects of prosody transfer (e.g., prosodic similarity and

the degree to which prosodic, textual, and speaker informa-

tion are disentangled) is an important step in the long-term

progression of end-to-end prosody work.

Finally, given our construction of a prosody space, we would

like to be able to sample from this space (i.e., generate

prosody instead of transferring it). One could, for example,

attempt to learn a prior distribution over the prosody space.

https://google.github.io/tacotron/publications/end_to_end_prosody_transfer
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