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Towards End-to-End Synthetic Speech Detection
Guang Hua, Member, IEEE, Andrew Beng Jin Teoh, Senior Member, IEEE, and Haijian Zhang, Member, IEEE

Abstract—The constant Q transform (CQT) has been shown
to be one of the most effective speech signal pre-transforms to
facilitate synthetic speech detection, followed by either hand-
crafted (subband) constant Q cepstral coefficient (CQCC) feature
extraction and a back-end binary classifier, or a deep neural
network (DNN) directly for further feature extraction and clas-
sification. Despite the rich literature on such a pipeline, we show
in this paper that the pre-transform and hand-crafted features
could simply be replaced by end-to-end DNNs. Specifically, we
experimentally verify that by only using standard components,
a light-weight neural network could outperform the state-of-
the-art methods for the ASVspoof2019 challenge. The proposed
model is termed Time-domain Synthetic Speech Detection Net
(TSSDNet), having ResNet- or Inception-style structures. We
further demonstrate that the proposed models also have attractive
generalization capability. Trained on ASVspoof2019, they could
achieve promising detection performance when tested on disjoint
ASVspoof2015, significantly better than the existing cross-dataset
results. This paper reveals the great potential of end-to-end DNNs
for synthetic speech detection, without hand-crafted features.

Index Terms—Synthetic speech detection, speech forensics,
ASVspoof2019, ASVspoof2015, cross-dataset testing, end-to-end.

I. INTRODUCTION

THE success of deep learning technology has shifted the

paradigm of speech synthesis from the classic hidden

Markov model based framework [1] to neural speech synthesis.

Equipped with powerful deep neural network (DNN) archi-

tectures e.g., [2], and fueled by massive training data, today’s

text-to-speech (TTS) systems could synthesize high quality

speech that is hard to be distinguished from human voices.

Despite the multitude of benefits, these advances have also

improved the quality of voice spoofing attacks, including voice

conversion [3], impersonation [4], cloning [5], etc., posing new

challenges to synthetic speech detection.

For nearly a decade, the combination of a front-end feature

extractor and a back-end binary classifier is the de facto

framework for synthetic speech detection. Within this frame-

work, an overwhelming majority of the existing works have

focused on the development of hand-crafted front-end fea-

tures, including fundamental frequency, power spectrum, oc-

tave spectrum, linear frequency cepstral coefficient (LFCC),

mel-frequency cepstral coefficient (MFCC), cepstral mean and

variance (CMVN), cochlear filter cepstral coefficient (CFCC),

filter bank based cepstral coefficient, linear prediction cepstral
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Fig. 1. Relationship between the existing front-end→back-end pipeline and
the proposed end-to-end framework for synthetic speech detection.

coefficient (LPCC), modified group delay (MGD), relative

phase shift (RPS), constant Q cepstral coefficient (CQCC), and

many of their variations and combinations [6]–[15]. Usually,

one or a few of these features are used to train a Gaussian

mixture model (GMM) or a support vector machine (SVM) for

classification. Taking the advantage of DNNs in classification

tasks, multilayer perceptron (MLP) and convolutional neural

network (CNN) based classifiers have been used to replace the

conventional back-end classifiers [15]–[22]. On the other side,

DNN structures have also been used at the front-end to fa-

cilitate feature extraction [22]–[25], followed by conventional

classifiers. DNNs can also work across the front- and back-

end, with pre-transformed features as input [26]–[30].

Among hand-crafted features, CQCC has been found to

be the best choice, which is also the baseline feature in the

ASVspoof2019 challenge [31]. Recently, Yang et al. devel-

oped a set of subband CQCC features for better detection

performance [19]. Subsequently, Das et al. [21] further fused 8
hand-crafted features, followed by an MLP classifier. For deep

learning based approach, Lavrentyeva et al. [29] proposed

the use of FFT, LFCC, and CMVN, followed by a CNN for

classification, while using CQT as model input, Li et al. [30]

incorporated the so called Res2Net structure and squeeze-and-

excitation (SE) block. With score level fusion, Lavrentyeva et

al. [29] and Li et al. [30] have achieved the state-of-the-art

performance on ASVspoof2019 dataset.

Based on the above overview, the existing mainstream work-

flow for synthetic speech detection is summarized in the

brown blocks of Fig. 1. It can be seen that a time-frequency

transform (e.g., CQT) of the speech waveform before hand-

crafted feature extraction (e.g., CQCC), or before feeding the

data into a DNN, has become an implicit standard routine in

the existing works. However, since DNNs are best known for

their excellent capability of feature extraction, there naturally

arises a question of whether it is necessary to apply these

pre-transforms. In fact, these transforms usually discard some

information about the observed speech signal. For example, the

CQT feature, more precisely the log power spectrum of the

CQT [30], does not have the phase information of the signal.

http://arxiv.org/abs/2106.06341v1


2 IEEE SIGNAL PROCESSING LETTERS

To further generate the CQCC, even more information will be

discarded [19]. From hand-crafted feature engineering point

of view, a good feature captures discriminative information

between classes and is also compact in size, but the same

principle may not apply to the DNN regime.

In this paper, we show that the pre-transforms, as well as

the hand-crafted features, are in fact not a must for DNN

based synthetic speech detection. Despite the rich hand-crafted

features, we experimentally verify that via the use of standard

DNN structures, an end-to-end light-weight neural network

with mere speech waveform could achieve even better results.

Our proposal is motivated by recent works analyzing raw-

waveform based DNNs [32] and the attempt of applying

end-to-end DNNs to related speech processing tasks, e.g.,

speech separation [33]. The proposed model is thus termed

as Time-domain Synthetic Speech Detection Net (TSSDNet).

We note that the first work on end-to-end synthetic speech

detection was probably carried out by Muckenhirn et al. [34],

in which a basic feedforward sequential CNN was used. It

was tested on older datasets, not achieving the state-of-the-

art results. In our design of the TSSDNet, two types of

advanced CNN structures are considered, including ResNet-

style skip connection with 1 × 1 kernels [35] and Inception-

style parallel convolutions [36], respectively. We demonstrate

that via proper training, the proposed networks outperform

the state-of-the-art hand-crafted feature based detectors as

well as DNN based ones on the challenging ASVspoof2019

dataset [31]. To analyze practical merits of the proposed meth-

ods, we further perform a cross-dataset evaluation between

ASVspoof2019 and ASVspoof2015 [37]1, demonstrating their

promising generalization capability.

II. THE PROPOSED MODELS

In many deep learning tasks such as object recognition or

semantic understanding, it has been found that generally the

deeper the network, the better the performance [35], [36], [38].

However, in synthetic speech detection, the critical feature is

the artifact left behind data forgery, which may not contain any

semantic information. Since deeper features are more towards

higher level semantic information, which may not be suitable

to represent the subtle forgery artifacts, we hypothesize that

the network for synthetic speech detection should be relatively

shallower. Grabbing the essence of the popular ResNet [35]

and Inception network [36], the proposed end-to-end TSSD-

Nets are designed as follows.

A. Model Structure

The proposed Res-TSSDNet and Inc-TSSDNet are depicted

in Fig. 2 (a) and (b), respectively, which share the same

first layer, 3 final fully-connected linear layers, and global

max pooling before the linear layers. The ResNet-style and

Inception-style blocks are repeated for M times, respectively,

and batch normalization (BN) is applied in both networks. CR

1The ASVspoof2017 dataset is not considered in this paper because it only
has replay attack. Although replay attack is seen to be considered together
with synthesis attack, the underlying mechanism is very different. The physical
access portion of ASVspoof2019 is also excluded for the same reason.
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(a) ResNet style, Res-TSSDNet.
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(b) Inception style, Inc-TSSDNet.

Fig. 2. Structures of the proposed models, where all the conv layers apply
“SAME” padding, and in all local max pooling layers, stride=kernel size.
M : number of stacked ResNet- and Inception-Style modules. CR: number of
channels in Res-TSSDNet. CI: number of channels in Inc-TSSDNet.

and CI denote the number of channels in the corresponding

modules, which may vary across layers. Noticeably, to in-

crease the receptive field and control model complexity, dilated

convolutions [39] with dilation d are incorporated in the Inc-

TSSDNet, which is different from the original Inception net-

work [36]. All the convolution layers apply “SAME” padding

with stride = 1, while for the pooling layers the stride equals

to the corresponding kernel size.

B. Training Strategy

1) Data Preparation: Normally, the training data contain

raw speech recordings with varied durations. To align the

training data, we adopt the treatment in [30]. In [30], the

training examples are truncated or repeated until the duration

is 6.4 seconds to generate the CQT feature, while here we

keep every example with 6 seconds, with the default 16 kHz

sample rate. These 6-second examples are then directly fed

into the networks for end-to-end training. Since all convolution

layers have “SAME” padding, the length of feature vector

(9.6 × 104 at input) is reduced solely by the pooling layers.
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Note that hand-crafted feature based method, e.g., CQCC [19],

is insensitive to the length of recording since all time slices

contribute to classifier training. Batch size is set to 32. .

2) Weighted Cross-Entropy Loss: Considering the fact that

in general data-driven media content forgery detection tasks,

the number of genuine examples is usually much less than the

number of fake ones, we apply weighted cross-entropy (WCE)

loss during the training phase to cope with data imbalance.

Let {xi, yi} compose the labeled training set, where ∀i, label

yi ∈ {0, 1}, then the WCE loss is given by

WCE (z, yi) = −wyi
log (zyi

) , (1)

where z = [z0, z1] contains the softmax probabilities of the 2
classes, and wyi

is the inverse ratio of label yi in the training

set. For all the training processes, we use the Adam [40]

optimizer and default settings. Exponential learning rate decay

with a multiplicative factor of 0.95 is adopted. The model

yielding the lowest equal error rate (EER) on development set

within 100 epochs is selected for evaluation.

3) Mixup Regularization: For practical forensic merits, the

trained model is expected to generalize to unseen attacks, and

the ASVspoof datasets have been specially designed for this

purpose. In this paper, we consider the mixup regularization

[41] as a booster to further improve the generalization capa-

bility. Specifically, it uses a set of mixed examples and labels,

instead of the original set, to train the network, i.e.,

x̃i = λxi + (1 − λ)xj , ỹi = λyi + (1− λ)yj , (2)

where {xi, yi} and {xj , yj} are two randomly selected training

pairs, λ ∼ Beta(α, α), and α ∈ (0,∞) is a hyperparameter.

The implementation of the mixup regularization could be

carried out via the following equivalent loss function,

CEmixup (z̃, yi, yj) = λCE(z̃, yi) + (1− λ)CE(z̃, yj), (3)

where z̃ contains the softmax probabilities from mixed ex-

amples, and CE(·, ·) is the standard cross-entropy (CE) loss,

equivalent to setting w0 = w1 in (1).

III. RESULTS

We first present the main results obtained by the proposed

networks in comparison with the benchmark and the state-of-

the-art solutions on the latest ASVspoof2019 dataset. We then

perform ablation study, followed by cross-dataset evaluation

on the ASVspoof2015 dataset. All the results are generated

using a single GeForce GTX 1080 or 1080Ti GPU. PyTorch

implementations of the proposed TSSDNets are available at:

https://github.com/ghuawhu/end-to-end-synthetic-speech-detection .

A. Main Results

The comparison of the results in terms of EER obtained on

the logical access (LA) development and evaluation sets of

the ASVspoof2019 challenge is presented in Table I, where

the 2D-Res-TSSDNet is the 2D version of the Res-TSSDNet,

having the same architecture except that all the convolution

and pooling (2× 2 pooling) layers use 2D kernels instead.

We make the following remarks from the main results.

i) The works of [19] and [21] represent the best results of

TABLE I
EER (%) OF THE PROPOSED AND STATE-OF-THE-ART METHODS ON

ASVSPOOF2019 LA DEV AND EVAL SETS, M = 4, CL = {64, 32},
CR = {32, 64, 128, 128}, CI = {8, 16, 32, 32}.

Method #Param Dev Eval

Baseline LFCC+GMM [42] - 0.43 9.57
Baseline CQCC+GMM [42] - 2.71 8.09

Subband CQCC+MLP [19] - - 8.04
8 Features+MLP [21] - 0.00 4.13

Spec+VGG+SincNet [28] > 4.32M 0.00 8.01
Spec+CQCC+ResNet+SE [27] 5.80M 0.00 6.70

FFT+CNN [29] 10.2M 0.04 4.53
3 Features+CNN [29] 30.6M 0.00 1.86

CQT+Res2Net+SE [30] 0.92M 0.43 2.50
3 Features+Res2Net+SE [30] 2.76M 0.00 1.89

CQT+2D-Res-TSSDNet 0.97M 0.59 5.89
End-to-End Res-TSSDNet 0.35M 0.74 1.64
End-to-End Inc-TSSDNet 0.09M 1.09 4.04

TABLE II
ABLATION STUDY OF RES-TSSDNET AND INC-TSSDNET, USING

ASVSPOOF2019 LA EVAL EER (%), CL = {64, 32}.

M CR 1× 1 #Param Eval

R
es

-T
S

S
D

N
et 3 {32, 64, 128} Yes 0.18M 11.37

4 {32, 64, 128, 128} No 0.32M 2.69
4 {32, 64, 128, 128} Yes 0.35M 1.64
5 {32, 64, 128, 128, 128} No 0.47M 5.14
5 {32, 64, 128, 128, 128} Yes 0.51M 4.58

M CI Dilation d #Param Eval

In
c-

T
S

S
D

N
et 3 {8, 16, 32} {20, . . . , 23} 0.04M 10.39

4 {8, 16, 32, 32} {20, . . . , 23} 0.09M 4.04

5 {8, 16, 32, 64, 64} {20, . . . , 23} 0.35M 5.31

4 {8, 16, 32, 32} {20, . . . , 27} 0.34M 3.75

5 {8, 16, 32, 64, 64} {20, . . . , 27} 1.34M 4.20

sophisticated hand-crafted feature engineering plus an MLP

as the back-end classifier. ii) The majority of recent works

belong to the type of pre-transform (or light feature engi-

neering) plus DNNs to further perform feature extraction and

classification. iii) All the works incorporating DNNs rely on

the feature and model fusion for performance improvement,

and in [29] and [30], the fused results have achieved EERs

below 2%. iv) The 2D-Res-TSSDNet result is obtained with

experimental settings identical to [30] without fusion, and it

can be seen that when working with 2D pre-transform input,

the use of advanced DNN components, i.e., Res2Net and SE,

becomes very necessary. v) Most importantly, the proposed

Res-TSSDNet is a single end-to-end network (no fusion, no

feature engineering), containing less than a half of trainable

weights than the one in [30] and only about one-tenth than in

[29], but it achieves the overall lowest evaluation EER by a

clear margin. vi) Lastly, the Inc-TSSDNet is extremely light,

having only 0.09M parameters, but it could still achieve an

EER lower than those from [27]–[29] heavy models.

B. Ablation Study

We first perform ablation study by varying the depth or

width of the networks, and the results are summarized in Table

II. For the Res-TSSDNet, the column “1×1” indicates whether

the “skip connection” in Fig. 2 (a) is used. It can be seen

that going either shallower or deeper will result in the raise

https://github.com/ghuawhu/end-to-end-synthetic-speech-detection


4 IEEE SIGNAL PROCESSING LETTERS

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eval EER (%)

0

0.5

1

1.5

2

D
ev

 E
E

R
 (

%
)

Res-TSSDNet
Inc-TSSDNet

Fig. 3. Intra-model performance on ASVspoof2019.

of EER, while with the use of ResNet skip connection, the

network could achieve 1.05% EER reduction over the one

without using it. Similarly for the Inc-TSSDNet, the sweet

spot also lies in the moderate depth or width.

We further perform intra-model sensitivity analysis using

the two proposed end-to-end models in Table I. Fixing all

hyperparameters, the two models are trained from scratch

using ASVspoof2019 training set for over 30 times, and the

dev and eval EERs are summarized in Fig. 3. It can be seen that

the EERs of both models are bounded within certain ranges

(except one outlier eval EER > 4% for the Res-TSSDNet). The

Inc-TSSDNet yields tighter dev EERs over the Res-TSSDNet,

but eval EERs of the former are clearly higher. We can see

from Fig. 3 and Table II that the intra-model differences may

be as significant as the differences from model configurations.

Relatively lighter models are hence recommended for their

better trade-offs between accuracy and efficiency.

In addition, we have also discovered that i) changing all

the activations from ReLU to leaky or parametric ReLU does

not lead to a clear performance difference; ii) The first layer

with a 1× 7 convolution kernel, adopted from ResNet setting,

is slightly better than using a 1 × 3 kernel; iii) Global max

pooling is found to be more effective than global average

pooling before the linear layers for both networks, but for

the 2D-Res-TSSDNet, we stick to global average pooling; iv)

The EERs of using standard CE are slightly higher than those

using the WCE; v) Duration of training example also matters.

Experimental results using 5-second truncation yielded a slight

performance degradation, but when 2-second truncation is

applied, the EER on evaluation set increased drastically.

C. Cross-Dataset Testing

We now perform the cross-dataset experiments. Since the

ASVspoof2015 training set contains relatively old speech syn-

thesis methods, we focus on using networks trained on the

training set of more advanced ASVspoof2019 to test on the dev

and eval sets of ASVspoof2015. The intra- and inter-dataset

EERs are presented in Table III. It can be seen that the GMMs

learned from LFCC and CQCC features in ASVspoof2019 are

generally inconsistent with the data in ASVspoof2015. For the

best Res-TSSDNet on ASVspoof2019, it could not generalize

to ASVspoof2015 either, whose EERs indicate almost indis-

tinguishable softmax probability distributions for real and fake

classes. However, by incorporating mixup regularization and

increasing the level of mixup level α, we observe that the

TABLE III
EER (%) OF NETWORKS TRAINED ON ASVSPOOF2019 TRAINING SET,

TESTED ON ASVSPOOF2015 DEV AND EVAL SETS.

Method
2019 2015
Eval Dev Eval

Baseline LFCC+GMM [42] 9.57 19.82 15.91
Baseline CQCC+GMM [42] 8.09 47.72 39.90

Res-TSSDNet 1.64 39.42 42.52
Mixup, α = 0.1, Res-TSSDNet 2.07 5.48 5.46
Mixup, α = 0.5, Res-TSSDNet 2.29 3.50 5.75
Mixup, α = 1.0, Res-TSSDNet 2.16 0.71 1.95
M = 3, 4-branch, Inc-TSSDNet 10.39 5.31 5.24
M = 4, 4-branch, Inc-TSSDNet 4.04 2.78 3.29
M = 4, 8-branch, Inc-TSSDNet 3.75 1.84 2.16
M = 5, 8-branch, Inc-TSSDNet 4.20 1.31 1.96

1 2 5 10 20 30
False Fake Rate (%)

1

2

5

10 

20

Fa
lse

 R
ea
l R

at
e 
(%

)

Mixup, α=0.1, Res-TSSDNet
Mixup, α=0.5, Res-TSSDNet
Mixup, α=1.0, Res-TSSDNet
M=3, 4-branch, Inc-TSSDNet
M=4, 4-branch, Inc-TSSDNet
M=5, 8-branch, Inc-TSSDNet

Fig. 4. DET curves of cross-dataset testing on ASVspoof2015 eval set.

Res-TSSDNet can significantly reduce the cross dataset EERs

to less than 2%, while slightly sacrificing the performance on

the original dataset. Further, all the Inc-TSSDNets have very

attractive generalization capability even for the lightest model.

The M = 5, 8-branch version yields the best cross-dataset

performance with 1.96% eval EER. This is a significant score

compared to the existing cross-dataset results as reported in

[43]–[45]. Noticeably in [45], also trained on ASVspoof2019

training set and tested on ASVspoof2015, the use of the CQT

based features could only achieve EERs greater than 20% (see

Table 2 in [45]). For completeness, the detection error trade-

off (DET) curves on ASVspoof2015 evaluation set using a few

methods in Table III are provided in Fig. 4.

IV. CONCLUSION

We have shown that a light-weight end-to-end neural net-

work, significantly different from the exiting front- and back-

end pipeline, could achieve to date the best synthetic speech

detection results. It reduces the ASVspoof2019 eval EER by a

clear margin compared to much heavier networks fed by pre-

transform inputs, sophisticated hand-crafted features plus MLP

classifiers, or the fusion of many systems of such kinds. We

have further shown via cross-dataset testing that the proposed

networks could also generalize to unseen dataset. In the on-

going ASVspoof2021 challenge, a new speech deepfake (DF)

detection task is introduced specially for synthetic deepfake

speech detection, and end-to-end methods are being given

more attention, e.g., the RawNet2 [46] is used as a baseline.



HUA et al., AMS-LATEX 5

REFERENCES

[1] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura,
“Speech synthesis based on hidden markov models,” Proc. IEEE, vol.
101, no. 5, pp. 1234–1252, May 2013.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“FastSpeech 2: Fast and high-quality end-to-end text to speech,” in Proc.

Int. Conf. Learning Representations (ICLR), 2021, pp. 1–15.

[3] X. Tian, S. W. Lee, Z. Wu, E. S. Chng, and H. Li, “An exemplar-based
approach to frequency warping for voice conversion,” IEEE/ACM Trans.

Audio, Speech, Lang. Process., vol. 25, no. 10, pp. 1863–1876, 2017.

[4] Y. Gao, R. Singh, and B. Raj, “Voice impersonation using generative
adversarial networks,” in Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2018), Apr. 2018,
pp. 2506–2510.
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