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ABSTRACT
Electroencephalography (EEG) is the record of electrogram of the
electrical activity on the scalp typically using non-invasive elec-
trodes. In recent years, many studies started using EEG as a human
characteristic to construct biometric identification or authentica-
tion. Being a kind of behavioral characteristics, EEG has its natural
advantages whereas some characteristics have not been fully evalu-
ated. For instance, we find that Motor Imagery (MI) brain-computer
interface is mainly used for improving neurological motor function,
but has not been widely studied in EEG authentication. Currently,
there are many mature methods for understanding such signals. In
this paper, we propose an enhanced EEG authentication framework
with Motor Imagery, by offering a complete EEG signal processing
and identity verification. Our framework integrates signal prepro-
cess, channel selection and deep learning classification to provide
an end-to-end authentication. In the evaluation, we explore the re-
quirements of a biometric system such as uniqueness, permanency,
collectability, and investigate the framework regarding insider and
outsider attack performance, cross-session performance, and influ-
ence of channel selection. We also provide a large comparison with
state-of-the-art methods, and our experimental results indicate that
our framework can provide better performance based on two public
datasets.

CCS CONCEPTS
• Security and privacy→ Biometrics.
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1 INTRODUCTION
With the rapid development of smart cities, biometric authenti-
cation receives more attention and opportunities [38]. Biometrics
can be generally divided into two categories [45]: a) Physiologi-
cal characteristics are inherent properties of human body such as
fingerprint, palm veins, face recognition and iris recognition. b)
Behavioral characteristics are related to the pattern of behavior
of a person, including signature, voice and EEG. In real life, there
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are already many identity recognition or authentication systems
constructed using physiological characteristics, such as payment
systems based on facial recognition [52]. Behavioral biometrics is
designed to complement the former system, such as EEG biometric,
which has many advantages.

Physiological characteristics such as fingerprints or faces can be
forged [10] and may suffer from spoofing attacks [17]. EEG signal
is highly emotional state dependent so anomalies will be detected
under coercion situations [24]. Users are unlikely to pass authen-
tication if they are threatened. Similarly, EEG signals cannot be
forcibly acquired like body tissues or generated from places other
than the subject’s brain. Among all the biometrics, EEG can reach
83 bits entropy for shallow classification [41]. The uniqueness, col-
lection, and persistence of EEG biometrics towards authentication
needs to be proved [24]. The performance of some models, which
have been shown to be more efficient at utilizing EEG information
in other domains, has not been systematically studied on this task
[3].

Motivation. In cryptography protocols, authentication is a pro-
cess to prove or disprove a claimed identity while identification
aims to determine who the user is. Plenty of studies adopted EEG
biometric to construct identification systems, trying to classify sig-
nals to all subjects in the system [11]. However, most studies on
identification ability of EEG biometric confined the subject number
under 50 and this is insufficient to claim the uniqueness of EEG.
By increasing 10 subjects, the identification accuracy would even
decrease up to 9% [49]. In real life scenario, security system needs
to serve a large set of individuals. In order to mitigate this im-
pact of subject amount, an authentication system is more practical
compared with identification when managing access to protected
properties.

EEG-based authentication has a variety of acquisition proto-
cols. Subjects are designed to perform different mental tasks and
produce characteristic EEG signals. The selected task can affect
the accuracy of authentication. Rest state signal needs no external
stimuli but is sensitive to artifacts and environmental noise. Visual
stimuli can meet the permanency requirements of biometric but it
requires the support of external equipment and synchronization.
Also, individual’s familiarity for visual stimulation is easy to be
confused [11].

Motor Imagery requires the subject to imagine physical move-
ments [15]. This task allows the subject to be more concentrated
without being disturbed by environmental factors. In addition, due
to the potential of Motor Imagery in improving exercise and assist-
ing stroke patients, the understanding of such EEG signals has been
extensively studied. This not only allows patients who use Motor
Imagery-based exercise assistance to be more directly authenticated
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by their devices, but also can transplant many of the Motor Imagery
classification methods for identity authentication [3].

Contributions.Motivated by the above, in this work, we pro-
pose an enhanced EEG authentication framework with Motor Im-
agery. The EEG processing contains signal preprocessing, channel
selection and classification. In the preprocessing stage, the signal
is segmented according to the task interval, and artifacts in the
signal are removed. The purpose of channel selection is to find
the channels the most relevant to event related potential to re-
duce the number of electrodes that need to be processed [18]. This
reduces the requirements for equipment and software. There are
many classifiers based on traditional machine learning methods
or shallow methods [16]. Although they also have good perfor-
mance, they mainly rely on manually extracted features. In recent
years, more and more deep learning classifiers have been applied
in this field. In particular, the classifiers in the Motor Imagery field
for brainwave signals to categorize different limb movements can
well extract temporal, spatial and spectral characteristics from the
motion signal.

Our contributions can be summarized as below.

• Our proposed EEG authentication framework consists of
three key components:
– ICA Artifacts Removal. Blind source separation (BSS) is
conducted on the raw signal to separate sources according
to different statistical features of artifacts and obtain input
composed of all brain electrical signals.

– Channel Selection. The channel selection method is
based on effective connectivity. When the body move-
ment is imagined, the causality of the signal in different
electrodes is analyzed to retain the channel as the cause.

– Deep Learning Classification. The feature extraction
and classification can refer to the method of Motor Im-
agery decoding to fully extract the frequency, space and
multi-mode temporal features of EEG. Through the fea-
ture extraction of the convolution layer, the input can
be directly classified as bona fide presentation or attack
presentation.

• In the evaluation, we consider two public and popular datasets
(Physionet and BCI dataset) and provide a large comparison
with 9 similar studies andmethods. In addition, we also inves-
tigate insider attack and outsider attack performance, cross-
session performance and the influence of channel selection.
The results indicate that our proposed EEG authentication
framework can perform two-class classification accurately
and outperform the other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 introduces
the state-of-the-art EEG-based authentication methods. Section
3 details our proposed EEG authentication framework including
signal preprocessing, channel selection and deep learning classifi-
cation. Experimental configuration and result analysis are given in
Section 4 and Section 5, respectively. A discussion is provided in
Section 6. Finally, Section 7 concludes our work.

2 RELATEDWORK
For the EEG authentication system, the tasks, features, and classifi-
cationmethods used in past research are very extensive. A summary
and evaluation of all these systems can be found in the survey [24].

EEG tasks are also known as acquisition protocols. Those proto-
cols greatly affect the quality of data and user experience. Resting
state is a very popular acquisition protocol because it requires mini-
mal user and setup requirements [26, 39]. However, such acquisition
methods are easily disturbed by environmental factors. Hence some
complex protocols introduce more focused tasks on the attention
of participants. Visual Evoked Potential (VEP) is the EEG signal
caused by visual stimuli. In [21], texts are presented for individuals
to read silently. Zeng et al. [56] utilized the P300 ERP triggered by
Rapid Serial Visual Presentation (RSVP). The familiarity of differ-
ent individuals with different pictures was also used to generate
EEG signals containing discriminative information [11]. There is
also a class of protocols that contain mental tasks. For example,
Motor Imagery or actual body movements belong to mental tasks
[15, 34]. More and more tasks have been introduced for designing
EEG biometric systems, such as the N-back tasks [43].

The main purpose of acquisition protocols is to include EEG
traits in the data that are easier to separate and optimize the user
experience. Appropriate algorithms are expected to make better
use of these features for classification. Some traditional machine
learning methods require handcrafted features. Kumar et al. [27]
extracted statistical features from EEG data and feeded into Support
Vector Machine (SVM) and Hidden Markov Model (HMM) classifier.
Alyasseri et al. [4] designed an identification system based on SVM
classifier with a Radial Basis Function kernel. Omerhodzic et al. [36]
and Sharma and Vaish [28] concentrated on the energy distribu-
tion feature of EEG signal and selected Neural Network as their
classifier. Jayarathne et al. [25] adopted Common Spatial Patterns
(CSP) values as feature and Linear discriminant analysis (LDA) as
classification algorithm. In addition, many research studies also
pay attention to the consistency of feature classification in different
sessions. Maiorana and Campisi [32] proved that discriminative
traits with HMM classifier can conquer aging effect over long-term
periods. Similarly, Das et al. [14] focused on the longitudinal study,
and evaluated the discriminative capabilities of generic visually-
evoked potentials (VEPs) and visual event-related potentials (ERPs)
associated to specific cognitive tasks. Armstrong et al. [7] provided
an example of assessing the uniqueness, collectability, and perma-
nence of traits from the Event-Related Potential (ERP).

Deep learning methods have also been introduced for classify-
ing Motor Imagery data for EEG authentication. Most of them are
CNN-based with an end-to-end framework using automatic feature
extraction. The Motor Imagery CNN (MI-CNN) method [15] is a
representative that could achieve a classification accuracy higher
than 98%. Sun et al. [47] enhanced the CNN with a recurrent struc-
ture aiming to handle the time series of Motor Imagery data. Some
deep learning methods also tried to solve longitudinal immutability.
For instance, Ozdenizci et al. [37] proposed an adversarial inference
approach to learn session-invariant person-discriminative repre-
sentations that can provide robustness in terms of longitudinal
usability. Table 9 (Appendix) provides a comprehensive summary
about the related studies.
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Figure 1: Theflowchart of the proposed authentication frame-
work.

Among the BCI systems, Motor Imagery has been widely stud-
ied. In recent years, methods based on deep learning have been
used more for EEG information analysis related to Motor Imagery.
The review of [3] summarized deep learning methods for Motor
Imagery content understanding and classification in recent years.
The classification method used to understand the meaning of Mo-
tor Imagery movements is of great significance for authentication
based on the same signal. CP-MixedNet [30] was identified by the
mixed-scale convolutional block from temporal aspect. The FBC-
Net [33] then combined the concept from [6] to draw attention on
the spectral aspect. Tabar and Halici [48] investigated CNN and
stacked autoencoders (SAE) to classify EEG Motor Imagery signals.
Ingolfsson et al. [22] further improved the classification perfor-
mance. Transformer-based methods [46] were recently introduced
for EEG classification.

Channel Selection is also an important aspect for EEG authen-
tication. Varsehi and Firoozabadi [50] first introduced a method
of channel selection based on Granger causality (GC) analysis. In
addition to this hypothetical approach based on brain connectivity,
Alyasseri et al. [4] defined the problem as a NP-hard problem and
designed a binary version of the Grey Wolf Optimizer (BGWO) to
find an optimal solution.

3 OUR PROPOSED FRAMEWORK
3.1 Framework Overview
The flowchart of our proposed authentication framework is depicted
in Figure 1. Our proposed framework incorporates an effective pre-
processing method and a deep learning classifier. Also, in order to
reduce system complexity and extract the most influential electrode
channels, a channel selection method is added before classification.
This section will introduce these three modules theoretically to help
understand how invalid signals are eliminated, the modeling of cor-
tical signals and how deep learning models can extract sufficient
features from a limited amount of data.

It is worth noting that the EEG authentication system is trained
for each subject, which means a subject owns private selected chan-
nels and weights of deep learning classifier. The selected channel
for each subject is shared between training data and testing data.
A subject’s model contains its own selected channels and deep
learning weights.1

1The source code of our framework is available at: https://github.com/BKAUTO/EEG-
Biometric.

Figure 2: The timing scheme of a trial in Motor Imagery.

3.2 Preprocessing
3.2.1 Segmentation. In the Motor Imagery task, the multi-channel
EEG data collected by non-invasive equipment is generally labeled,
which means that the data at each moment corresponds to a state,
which generally includes rest state, cue state, and imaging state.
After seeing the cue, the subject needs to imagine a specific limb
movement according to the instructions. In a trial that includes rest,
cue, and imagination, we only intercept a fixed-length time series
based on the label as our original EEG data. The timing scheme for
one trial is illustrated in Figure 2. In one trial, the user performs
one imagination, and there is a period for rest before and after the
imagination. The cue generally refers to a symbol prompt from,
for example, a computer monitor, prompting the user to start the
imagination.

Typically, the length of imagination period is around 4s. If con-
sidering a sample frequency of 250Hz, then the time series segment
would have a length around 1000 samples for each trial.

3.2.2 Artifact Removal. The raw EEG data generally contains noise
and artifacts caused by eye blink, cardiac activity and muscle move-
ment [42]. Blind source separation (BSS) technique is proved to
be effective in automatic artifact removal. Signals from different
sources such as artifacts and EEG signals can be separated by this
type of technology. Independent Component Analysis (ICA) is a
representative method, assuming that time series recorded on scalp
are spatially mixtures of temporally independent neurological and
artifactual sources. All the electrodes record a linear summation of
potentials from spatial distributed positions on scalp.

It is argued that ocular activity tends to have higher power, and
muscle activity contains a higher frequency than EEG [13]. Let 𝐸
denote the raw EEG signal of shape (𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑡𝑟𝑎𝑖𝑙𝑠 × 𝑠𝑎𝑚𝑝𝑙𝑒𝑠).
𝐸 is assumed to be a linear mixture of source 𝑆 and white noise 𝑁
[23].

𝐸 = 𝐴 × 𝑆 + 𝑁 (1)
A is the matrix expressing the linear combination of sources, and

the inverse𝑊 = 𝐴−1 is therefore the unmixing matrix to separate
the sources.

𝑆 ′ =𝑊 × 𝐸 (2)
The core problem here is how to identify sources other than

EEG signals from all sources and eliminate them to obtain 𝑆 ′
𝑐𝑙𝑒𝑎𝑛

that removes artifacts. Algorithm 1 shows the K-means and ICA
artifact removal.

This work combines clustering with ICA to distinguish between
suspected artifacts and EEG sources [31]. The ICA is applied to
each trial to derive ICA components, which are the various sources.
Multiple statistical descriptors are considered, such as variance,
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Algorithm 1 K-means and ICA artifact removal

1: Raw EEG data of shape (𝑁𝑡𝑟𝑖𝑎𝑙 ×𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ×𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ), 𝑁𝑡𝑟𝑖𝑎𝑙—
number of trials, 𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙—number of channels, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒—
number of time samples

2: for 𝑖 = 1, 2, . . . , 𝑁𝑡𝑟𝑖𝑎𝑙 do
3: Z-score normalization of each trial
4: end for
5: Reshape EEG data to a matrix of (𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑁𝑡 ) where 𝑁𝑡 =

𝑁𝑡𝑟𝑖𝑎𝑙 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 .
6: Calculate ICA linear combination matrix𝑊 , using the Picard

ICA algorithm.
7: Calculate ICA components of sources 𝑆 ′ =𝑊𝐾 × 𝐸, 𝐾 is the

whitening matrix.
8: Derive descriptors, including variance, amplitude, range, max

derivative, kurtosis, entropy, mean local variance and mean
local skewness of each ICA component.

9: Utilize K-means clustering based on above features into two
classes. Class with less components is considered as suspected
artifacts.

10: Remove two components with highest variance by setting cor-
responding rows of 𝑆 ′, the 𝑆 ′

𝑐𝑙𝑒𝑎𝑛
is derived.

11: Reconstruct EEG data 𝐸𝑐𝑙𝑒𝑎𝑛 = 𝐾−1𝑊 −1𝑆 ′
𝑐𝑙𝑒𝑎𝑛

maximum amplitude, range of the signal amplitude, max first de-
rivative, kurtosis, shannon entropy, mean local variance of time
intervals of 1s and 15s duration, and mean local skewness of time
intervals of 1s and 15s duration [53]. It is followed by a k-means
cluster based on these features. ICA components are clustered into
two classes, suspected artifacts and original EEG. Two components
with the highest variance are removed and the components are
unmixed to reconstruct the multi-channel EEG data.

3.3 Channel Selection
3.3.1 Brain Connectivity. The current brainwave acquisition setup
uses an average of more than 30 electrodes, and some can reach
more than 60 [24]. In order to improve Collectability, channel selec-
tion is used to choose the most relevant electrodes for a specific task.
This assumes that some channels have a more significant impact on
the specific functions of EEG than other channels. This technique
can make brainwave acquisition equipment more user-friendly in
practice.

Our work conducts the channel selection based on brain con-
nectivity. In particular, brain connectivity refers to a pattern of
anatomical links (anatomical connectivity), statistical dependencies
(functional connectivity) or causal interactions (effective connec-
tivity) between distinct units within a nervous system.

Compared with functional connectivity, less interest is shown
on the classification of brain areas as it mainly relies on effective
connectivity. Effective connectivity is defined as the influence that
a node exerts over another under a network model of causal dy-
namics. When the subject performs Motor Imagery, some neural
nodes are the causes of potentials, and other secondary nodes are
stimulated in time sequence, which establishes a causal model. An
observed time series 𝑥 𝑗 (𝑛) Granger-causes another series 𝑥𝑖 (𝑛),
if knowledge of 𝑥 𝑗 (𝑛)′𝑠 past significantly improves prediction of

𝑥𝑖 (𝑛) [20]. Evaluating the extent of Granger causality provides a
measure of the strength of causal interaction between nodes in
neural structure.

3.3.2 Partial Directed Coherence. Here partial directed coherence
(PDC) [9] is applied to describe the direction of information flow
based on Granger causality. First it is necessary to construct a
multivariate autoregressive model (MVAR). After that, the least
square method is adopted to solve the model coefficients and error
coefficients. Then the AR model is converted to the frequency
domain by Laplace transform to obtain the PDC value.

Autoregressive model (AR) is a linear regression model that uses
the linear combination of random variables at several moments in
the previous period to describe the random variables at a certain
moment in the future. It is a common form of time series. Assuming
a MVAR:

𝑥𝑖 (𝑛) =
𝑝∑︁
𝑖=1

𝑎𝑖𝑑𝑥𝑖 (𝑛 − 𝑖) + 𝑒𝑖 (𝑛) (3)

𝑎𝑖𝑑 represents the coefficient of the 𝑖-th channel to the 𝑑-th chan-
nel, 𝑒 is the deviation. 𝑥𝑖 (𝑛) represents the variable state value at
time 𝑛. 𝑝 represents the order of building the model that can be
selected by Bayesian information criterion (BIC) [51]. The predic-
tive model can be solved by only requiring the coefficient state
quantity 𝑎𝑖𝑑 and the error 𝑒 . The transpose of Equation (3) is shown
as below,

𝑋𝑇 (𝑛) =
𝑝∑︁
𝑖=1

𝑋𝑇
𝑖 (𝑛 − 𝑖)𝑎𝑇

𝑖𝑑
+ 𝐸𝑇 (𝑛) (4)

𝑋𝑇 (𝑛) is the discrete samples at time 𝑛 while 𝐸𝑇 (𝑛) is the devia-
tion matrix. Let

𝐷 =


𝑋𝑇
1 ... 𝑋𝑇

𝑝𝑚+1
... ...

𝑋𝑇
𝑁−𝑝𝑚 ... 𝑋𝑇

𝑝𝑚

 (5)

𝑝𝑚 is the maximum order of predictive model of MVAR. Then
Equation (4) can be converted to

𝑌 = 𝐷𝐴 (6)

Since 𝐷𝑇𝐷 is a symmetric square matrix, the coefficients of
MVAR can be solved as

𝐴 = (𝐷𝑇𝐷)−1𝐷𝑇𝑌

𝐸 = 𝑋𝑖 −
𝑁∑︁
𝑖=1

𝑎𝑖𝑑𝑋𝑖 (𝑛 − 𝑖)
(7)

𝐴 represents the coefficients of the forecast time series, and 𝐸
represents the coefficients of the forecast error series.

After fitting the coefficient 𝐴(𝑟 ) of MVAR by the least square
method, it is converted to the frequency domain by Laplace trans-
form.

𝐴𝑖 𝑗 (𝑓 ) = 𝐼 −
𝑝∑︁
𝑟=1

𝑎𝑖 𝑗𝑒
−𝜋𝑖𝑟 𝑓 (8)

4

802



Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface ACSAC, December 5–9, 2022, Austin, TX, USA

Algorithm 2 PDC-based Channel Selection

1: Artifact removed EEG data of subject 𝑠 of shape (𝑁𝑡𝑟𝑖𝑎𝑙 ×
𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 )

2: for 𝑖 = 1, 2, . . . , 𝑁𝑡𝑟𝑖𝑎𝑙 do
3: To calculate PDCmatrix (𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ×𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ) for i-th trial.
4: To derive the mean for each column, which represents the

PDC from j-th channel to all the channels.
5: To sort and return the maximum M mean PDC value chan-

nels.
6: end for
7: To select M most frequent channels in 𝑁𝑡𝑟𝑖𝑎𝑙 trials.

Then the partial directed coherence (PDC) value from 𝑗-th channel
to 𝑖-th channel is

𝑃𝑖 𝑗 (𝑓 ) =
𝐴𝑖 𝑗 (𝑓 )√︃

𝑎𝐻
𝑗
(𝑓 )𝑎 𝑗 (𝑓 )

(9)

𝐻 means conjugate transpose, 𝐴𝑖 𝑗 (𝑓 ) is the coefficient of the
𝑖-th row and the 𝑗-th column.

𝐴𝑖 𝑗 (𝑓 ) =


1 −∑𝑝

𝑖=1 𝑎𝑖 𝑗 (𝑟 )𝑒
−𝑖2𝜋 𝑓 𝑟 𝑖 = 𝑗

−∑𝑝

𝑖=1 𝑎𝑖 𝑗 (𝑟 )𝑒
−𝑖2𝜋 𝑓 𝑟 𝑖 ≠ 𝑗

(10)

Note the normalization properties as below:

0 ≤ |𝑃𝑖 𝑗 (𝑓 ) |2 ≤ 1
𝑁∑︁
𝑖=1

|𝑃𝑖 𝑗 (𝑓 ) |2 = 1
(11)

PDC value describes the intensity of the causal action from the
𝑗-th channel to the 𝑖-th channel. When 𝑖 = 𝑗 , PDC represents the
influence of the past value of 𝑋 (𝑛) on the current value.

3.3.3 PDC-based Channel Selection. The idea is based on the influ-
ence of some specific EEG channels while measuring the causality
of these channels onto others. In addition, these selected channels
are different for each subject. This is because the brain function
connection network generated by each person during Motor Im-
agery activity is different. This can also be used as an additional
factor to strengthen the authentication ability. For the 𝑗-th channel,
its PDC values for all other channels are calculated and averaged to
measure the possibility of the 𝑗-th channel being a cause channel
and affecting other channels.

The channel selection is applied to each trial for each subject
and the most frequent selected channels are considered as the cause
channels of one particular subject, as shown in Algorithm 2.

3.4 Deep Learning Classification
The deep learning framework is modified from the Motor Imagery
decoding task. This task focuses on classifying Motor Imagery trials
as corresponding limb movements, but some of the adopted meth-
ods have good generalizability in extracting time series features.

FBCNet [33] extends the deep convolution structure to the classic
FBCSP [6] method. Motivated by this, we develop a hybrid tempo-
ral feature extraction structure to further enrich the basis of the

classifier. The deep learning framework mainly consists of four
stages:

(1) Filter-bank spectral decomposition: Multiple narrow-band fil-
ters are applied to the EEG data to decompose different fre-
quency bands. Different frequency bands are then input into
the convolutional network in parallel to obtain multi-band
characteristics.

(2) Spatial convolution: The convolution kernel slides in the
channel dimension to communicate the feature distribution
among different electrodes data.

(3) Mixed temporal feature extraction: Two kinds of temporal
characteristic are concatenated. Temporal feature is inferred
from variance layer and standard convolution layer along
time axis.

(4) Classifier : The feature map is flattened and input into a fully
connected layer.

The original data is firstly decomposed into different frequency
intervals to obtain spectro-spatial features. These features pass
through the parallel conventional & convolutional layer and vari-
ance layer to finally obtain spectro-spatial-temporal features. Fi-
nally, feature maps are expanded into one-dimensional vectors and
mapped into two categories: Bona fide access and Attack access.
The architecture of our framework is illustrated in Figure 3.

1) Multi-Frequency Representation by Filter Bank: Considering
the input EEG data as 𝐸 = {(𝑋𝑖 , 𝑦𝑖 ) |𝑖 = 1, 2, ..., 𝑛}. The 𝑖-th trial EEG
sample is 𝑋𝑖 ∈ R𝐶×𝑆 and the corresponding label is 𝑦𝑖 ∈ {0, 1},
where 0 denotes the attack access and 1 denotes the bona fide access.
𝐶 represents the channel number and 𝑆 represents time points of
one single trial.

There are several significant frequency bands in EEG signal,
including 𝛿 (1-3Hz), 𝜃 (4-7Hz), 𝛼 (8-13Hz), 𝛽 (14-30Hz), etc. Be-
low the power line noise - 60Hz, the frequency is divided into 9
non-overlapping frequency intervals from 4Hz to 40Hz, and the
bandwidth of each frequency band is 4Hz [33]. Each frequency
band is obtained by a narrow-band filter. As a result, the 𝑖-th trial
high-frequency EEG signal can be deconstructed into 9 different
frequency band signals, 𝑋𝐹𝐵 ∈ R𝐵×𝑇×𝑆 . 𝐵 = 9 represents the num-
ber of narrow-band filters and frequency bands. The subsequent
convolution operation is performed on 𝐵 = 9 signals in order to
extract features corresponding to different spectral intervals.

2) Spatial Feature Aggregation: Each frequency band is followed
by a spatial convolution block. The spatial convolution is respon-
sible for connecting features from different electrodes across the
scalp. The core component is𝑚 = 32 kernels of size (𝐶, 1) where
𝐶 represents the number of channels. This is also called a Depth-
wise Convolution Layer. Information from all the channels for each
frequency band is assigned with different weights and aggregated.
The rest configurations of spatial convolution block are identical to
FBCNet [33].

The output feature map is 𝑋𝑆𝐶 ∈ R(𝑚×𝐵)×1×𝑆 , where channels
are aggregated in multiple filters.

3) Mixed Temporal Feature: Temporal features can be extracted in
different manners including pooling, convolution and other opera-
tions. In [30], a parallel structure of regular and dilated convolution
is applied for generating two groups of feature maps containing
different scales of temporal information. Inspired by this, the mixed
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Figure 3: Modified Network architecture. (𝐶: number of channels, 𝑆 : number of samples, 𝐵: number of frequency bands,𝑚:
number of spatial kernels per frequency band, 𝑛: number of temporal convolution kernels in total, 𝑤 : length of temporal
convolution kernel)

temporal feature block adopts both regular temporal convolution
and variance layer in parallel. The strategy is using a medium-sized
convolution filter (1 × 𝑤/𝑝) to extract features and a small max
pooling window (1×𝑝) to select representative features. This means
that the kernel extracts features from non-overlapping segments
of time points. The output feature map of regular convolution is
of size 𝑋𝑅𝐶 ∈ R𝑛×1×𝑆/𝑤 where 𝑛 = 28 is the kernel number for all
the frequency bands.

In addition to regular temporal convolution, a variance layer
is applied to extract discriminative traits in EEG signal [33]. It is
assumed that different individuals generate distinguishable power
spectrums. Therefore, local variance is calculated in non-overlapping
windows.

𝑥𝑣𝑎𝑟 (𝑘) =
1
𝑤

(𝑘+1)∗𝑤−1∑︁
𝑡=𝑤∗𝑘

(𝑋𝑆𝐶 (𝑡) − 𝜇 (𝑘)) (12)

𝜇 (𝑘) is the mean value of the 𝑘-th window. 𝑘 has a range of
[0, 𝑆/𝑤]. For the power differs among different frequencies, the
variance calculation is associated with each frequency band. The
output feature map is therefore 𝑋𝑣𝑎𝑟 ∈ R(𝑚×𝐵)×1×𝑆/𝑤 and the last
two dimensions are identical to 𝑋𝑅𝐶 .
𝑋𝑅𝐶 and 𝑋𝑣𝑎𝑟 are concatenated to compress temporal shape

characteristic and power characteristic together. The final feature
map 𝑋𝑇 can be denoted using a concatenating function 𝐻̃ (·).

𝑋𝑇 = 𝐻̃ ( [𝑋𝑅𝐶 , 𝑋𝑣𝑎𝑟 ]) (13)

4) Classification: The concatenated feature map is flattened into
a vector. The fully connected layer is applied for connecting all the
activations of spectro-spatial-temporal features. The probability
of 2 classes are given by softmax layer and the whole network is
trained by negative log likelihood loss.

4 EXPERIMENTAL DESIGN
In this section, we aim to verify the actual performance and poten-
tial problems of the proposed framework. Our evaluation mainly
uses two public datasets, their acquisition methods and data styles
have certain commonalities, and they were widely used in many
other research studies. This contributes to the standardization of
data collection in the EEG authentication system.

The framework is tested with a single factor authentication se-
curity model, which means that Biometrics is the only defense.
Our threat model partially follows the protocol from some other
biometric research like [54] [55]. Attackers are assumed to have
the same prior knowledge and behavioral abilities as normal users.
Inspired by intra-test and inter-test in other studies, we defined
insider attack and outsider attack. For an insider attack, the attacker
is one of the system users with template enrolled, while trying to
impersonate other users. For an outsider attack, the attackers come
from outside the registered users with no template enrolled.

4.1 Dataset
We selected two datasets to conduct the experiment. The Physionet
EEG Motor Movement/Imagery Dataset contains a large number of
subjects, which can be used to test the robustness of the framework
towards a large number of users. The reason for involving BCI
competition IV-dataset is that it contains samples from different
days, which can be used to evaluate the Longitudinal performance
of the framework.

1) Physionet EEG Motor Movement/Imagery Dataset [19]: This
dataset is recorded using the BCI2000 system [44]. The subject
is required to perform either real movement or imagination of
opening and closing fists or feet. The experiment only selects trials
for imagination tasks, including:

(1) imagine opening and closing left or right fist.
(2) imagine opening and closing both fists or both feet.
Cues appear on the screen as instructions so that the subject

should perform the corresponding tasks. The sampling rate was
6

804



Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface ACSAC, December 5–9, 2022, Austin, TX, USA

Figure 4: The deep learning model is trained for each subject.

160Hz and the data was acquired in 64 channels. Data of 109 subjects
is available and each subject performed 6 runs of 15 trials in one
session. Subject 88 and 92 were excluded for data completeness
reason. In the experiment, the signal with a duration of 4s in the
imagination phase was intercepted as a trial EEG data.

2) BCI competition IV-dataset 2a2: The dataset is also recorded
using a cue-based BCI paradigm. The subject is required to perform
four different motor imagery tasks, including:

(1) imagine movement of the left hand.
(2) imagine movement of the right hand.
(3) imagine movement of both feet.
(4) imagine movement of tongue.
The data is acquired in 22 channels and the sampling rate is

250Hz. This dataset convened a smaller number of volunteers. Up
to 9 subjects performed 6 runs of 48 trials for each in one session.
Two sessions on different days were recorded. Although the small
number of subjects limits the persuasiveness of evaluation on this
dataset, using different sessions for enrolment and verification
can evaluate the permanency of the authentication system. The
duration of 4.5s was used for one trial where the cue was prompted
in the first 0.5s.

4.2 Protocol and Measurement
Individuals need to perform motor imagery tasks when registering
biometric information and then performing authentication. The
EEG data that executes a trial is a sample used for system training
or testing. How many trials are executed in the enrolment phase
can determine the accuracy, user-friendliness and usage time of
the system. In principle, the fewer imaginations the user needs to
perform during the enrolment and verification phase, the more it
helps to improve the user-friendliness of the system, while at the
same time maintaining acceptable accuracy.

Which body part (left hand, right hand, foot) the subject imag-
ines in detail was mixed in the experimental data. The experiment
aims to verify that all classes of motor imagery have universal
characteristics that can distinguish subjects. As shown in Figure 4.
One subject’s deep learning model is trained by this subject’s EEG
data as Bona fide sample and several other subjects’ data as attack
samples. In the verification phase, the subject or the user also uti-
lizes his corresponding model for verification. Each subject has an
independently trained model for authentication, that is, we perform
authentication instead of identification. When evaluating the per-
formance of models corresponding to different subjects, we used
the same attackers to achieve fairness in the evaluation.

The accuracy of the authentication system is mainly measured
by Equal Error Rate (EER), which is a widely accepted metric in

2https://www.bbci.de/competition/iv/

the performance measurement of biometric system. The EER is
the location on a ROC or DET curve where the false acceptance
rate and false rejection rate are equal. Besides, the time used for
enrolment and verification, the parameters of deep learning are
also recorded aiming to evaluate the user-friendliness of the au-
thentication system.

4.3 Configuration
The ICA computation applies the Picard algorithm [1, 2]. The max
iteration was set to 150 and the tolerance is 10−6.

A trial contains a single imagination, which consists of consecu-
tive values in the time domain.

For the Physionet dataset, one trial has 640 time points (4s). The
temporal convolution filter has a length of𝑤/𝑝 = 32 and the max
pooling window has a length of 𝑝 = 4. Therefore the time points of
the trial data are reduced to 𝑆/𝑤 = 5. The variance layer calculates
variance on a window of𝑤 = 128.

For the BCI dataset, one trial has 1125 time points (4.5s). The
temporal convolution filter has a length of𝑤/𝑝 = 45 and the max
pooling window has a length of 𝑝 = 5. Therefore the time points of
the trial data are reduced to 𝑆/𝑤 = 5. The variance layer calculates
variance on a window of𝑤 = 225.

The deep learning classifier was realized using Pytorch. Batch
normalization and swish nonlinearity were used after each convo-
lution layer. A dropout function of 0.5 probability was applied in
temporal convolution aiming to prevent overfitting. The training
process contains 300 epochs and the final classifier for each subject
was selected in the last 50 epochs with the best accuracy. Learning
rate is 0.001, and it is reduced to 0.1 times every 40 epochs.

For the Physionet dataset, the first four runs (60 trials) of each
subject were used for training, and the last two runs (30 trials) were
used for testing. For the BCI IV 2a dataset, two different sessions
were used for training and testing, 96 trials per subject were used
as bona fide samples, and 48 trials were used for attacks on other
subject models.

5 RESULT ANALYSIS
This section discusses in detail the results obtained through experi-
ments and analyzes the characteristics of our proposed authentica-
tion framework. Below are the main goals and observations in the
evaluation:

• Insider Attack Performance. Subjects that provide attack
samples during training can still be identified as attackers
in the testing phase. The system could achieve an average
EER below 1% using 10 channels under two protocols with
different attacker numbers.

• Outsider Attack Performance. Subjects not present in
training can still be classified as outliers (attackers) in the
testing phase. The system could achieve an average EER
below 1.3% using 10 channels under two protocols with dif-
ferent attacker numbers.

• Cross-session Performance. When the enrolment and the
verification occur at different times, that is, the data used
for training and the data collected in the testing phase are
collected at different time periods, the system could still
classify accurately. Either the attack comes from an insider
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Table 1: The result of EER (%) for insider and outsider attack experiment on Physionet dataset.

Protocol Subject
1 2 3 4 5 6 7 8 9 10 avg

Insider EER-19 1.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.19 3.15 0.74
EER-49 2.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.06 0.0 0.51

Outsider EER-19 1.06 0.0 1.06 0.0 0.0 0.0 0.0 0.0 7.37 3.19 1.27
EER-47 2.13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.19 4.26 0.96

Table 2: Configuration of Insider Attack Experiment

Dataset Trials Channels
Physionet 60 10

Enrollment Time Verification Time Model Parameters
8-10 mins 4s 450,626

or an outsider, the system could achieve an average EER
below 0.3%.

• Performance Comparison. The proposed system outper-
formed selected baselines and SOTA methods under both
insider and outsider attacks, especially when using a limited
number of channels.

• Influence of Channel Selection.When reducing the num-
ber of used channels, the performance of authentication
system could decrease to a certain extent, but it was still
within the acceptable range. In particular, when the same
channels are used for all subjects in the training phase, the
performance of the system could still be maintained at 1%-
2%.

5.1 Insider Attack Performance
The insider attack here refers to an attack on the authentication
system from the subject (as an attacker) that has appeared in the
training. This means that the system recognizes these attackers,
and these attackers are other users who use the same system. When
training the model of subject 𝑘 , the data enrolled by these subjects
is used as attacks.

For the insider attack experiment, two protocols were leveraged
with the Physionet dataset. The bona fide data for training consists
of 4 runs of 60 trials and the attack data consists of 19 or 49 subjects.
Each attacker performs 5 trials for 19 attackers and 2 trials for 49
attackers. In the test, data from another two runs was used for bona
fide and attack presentation.

Table 2 depicts the configuration and statistics under the insider
attack experiment. The enrolment time contains the imaginations,
4s rest between two imaginations, and the optional rest between
runs. The 60 trials were the bona fide samples of the subject of the
model, which needed to be enrolled.

The performance for 10 subjects was recorded in the row of
insider, as shown in Table 1. EER-19 represents the test EER for
each subject’s model with the same 19 attackers in training and
testing. EER-49 represents the result of 49 attackers. It can be seen
from the results that there are 7 subject models that can completely
separate the bona fide presentation from the attack presentation,
that is, to correctly classify honest visitors from visitors who falsely
claim their identities. Although the EER of subject 9 and subject
10 exceeded 3%, the EER of subject 10 could decrease due to the
addition of more attack samples. On average, using more attackers

Table 3: Configuration of Outsider Attack Experiment

Dataset Trials Channels
Physionet 60 10

Enrollment Time Verification Time Model Parameters
8-10 mins 4s 450,626

Table 4: Configuration of BCI IV 2a Experiment

Dataset Trials Channels
BCI IV 2a 96 10

Enrollment Time Verification Time Model Parameters
14-18 mins 4.5s 450,626

during training (the total training samples remain unchanged) can
improve the performance of the system, which is in contrast to the
identification system that was affected by the number of users.

5.2 Outsider Attack Performance
An outsider attack refers to an attack towards the system from the
subject who has not appeared in the training. The authentication
system does not know the attacker, so the characteristics of the
attacker’s data are completely unknown.

The same protocols for insider attack experiment were used for
outsider attack experiment again. For EER-47, 49 subjects were
used as attackers in the training and 47 attackers were used in the
testing. Except for using different attackers in the testing and train-
ing phases, the remaining configurations of the experiment were
consistent with the insider attack experiment. Table 3 depicts the
configuration and statistics under the outsider attack experiment.

The performance for 10 subjects was recorded in the row of
outsider, as shown in Table 1. It is found that subjects’ model that
performed well in the insider attack experiment could also better
resist outsider attacks. However, when facing an unknown subject
attack, the performance of the system could decrease to a certain
extent compared with classifying known subjects. On average, an
EER of no more than 2% is an acceptable performance of unknown
attacks. Further, when the number of attackers used for training
increases, the performance of the system will also be improved. The
performance of EER-47 was better than EER-19, which is consistent
with the situation of insider attacks.

5.3 Cross-session Performance
The BCI IV 2a dataset was used to evaluate the cross-session perfor-
mance of the system. The bona fide data for enrolment consists of
96 trials per subject according to the configuration in Table 4. The
testing data and the training data were extracted from two sessions
from different days. The performance result is shown in Table 5.

Limited by the size of the dataset, each subject model has only 4
attackers for training or testing. Comparedwith usingmore attacker
samples, the performance of the system in the face of outsider
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Table 5: The result of EER (%) for insider and outsider attack experiment on BCI IV 2a dataset.

Protocol Subject
1 2 3 4 5 6 7 8 9 avg

Insider EER-4 0.0 0.0 2.34 0.0 0.0 0.58 0.0 0.0 0.0 0.32

Outsider EER-4 9.04 0.0 20.45 1.14 0.0 0.0 1.74 12.35 0.0 4.97

Table 6: Performance Comparison with Baseline and SOTA Methods on Physionet Dataset.

Method Insider Outsider
Mean

Accuracy (%)
Mean

EER-19 (%)
Lowest

Subject/EER-19
Mean

Accuracy (%)
Mean

EER-19 (%)
Lowest

Subject/EER-19
SVM[27] 90.63 6.73 10 / 13.68 91.44 5.785 3 / 24.21
HMM[27] 76 18.23 3 / 25.85 74 20.57 7 / 27.12
CSP_LDA 98.32 0.84 1 / 5.26 96.96 1.37 1 / 5.26
energyNN 82.6 15.47 5 / 19.17 80.23 17.98 9 / 24.23
MI_CNN[15] 84.96 11.88 6 / 26.08 80.56 15.02 6 / 25.27
CNN_LSTM[47] 78.2 17.89 7 / 24.54 76 19.12 7 / 26.25
EEGNet[29] 82.16 22.04 1 / 32.97 79.6 23.44 1 / 36.17
CP_MixedNet[30] 74.97 9.95 1 / 13.6 67.87 15 1 / 18.22
FBCNet[33] 98.02 1.45 3 / 4.34 96.12 1.98 7 / 6.23
Mixed_FBCNet_10 99.48 0.74 9 / 3.19 98.89 1.27 9 / 7.37

Figure 5: The EER-19(%) of CSP_LDA and Mixed_FBCNet
using 64, 32 and 10 channels.

Table 7: Configuration of 32-channel Experiment

Dataset Trials Channels
Physionet 60 32

Enrollment Time Verification Time Model Parameters
8-10 mins 4s 457,622

attacks has dropped significantly, but the system could still give an
average result of <1% EER when classifying known people.

5.4 Performance Comparison
We further provided a comparison with several selected represen-
tative algorithms in the literature. These methods include baselines
for EEG authentication and Motor Imagery classification, as well
as state-of-the-art methods. For instance, Kumar et al. [27] utilized
SVM and HMM classifiers, which are two classic shallow methods.
Mahajan et al. [32] proved that EERs below 2% could be achieved
when comparing samples taken at temporal distances in the or-
der of years. Time domain statistical features were added to such
methods as handcrafted features that are similar to [27].

Jayarathne et al. [25] provided a representative baseline for the
common spatial coherence feature, which was used frequently in
spatial-frequency domain. Linear Discriminant Analysis (LDA) is
another linear classifier, which is used when there are so many
features with possibility of correlation. CSP feature is a good fit of
LDA classifier. They particularly proposed an EEG-based biometric
authentication system based on this method, which achieved a
maximum accuracy rate of 96.97%.

In addition, Wavelet Transform (WT) is widely used as a power-
ful feature extractor regarding the non-stationary nature of EEG
signals [24]. Sharma and Vaish [28] combined Wavelet decompo-
sition with Motor Imagery task. Das et al. [15] and Sun et al. [47]
proposed two novel deep learning based methods for resolving
Motor Imagery EEG authentication. They could both achieve an
accuracy rate around 99% in certain conditions.

EEGNet [29], CP_MixedNet [30] and FBCNet [33] are convolu-
tional neural network-based BCI methods, which handle movement-
related signals. More specifically, EEGNet has been configured as
backbone in multiple SOTA methods as it can best encapsulate
the well-known EEG feature extraction concept for BCI through
convolutional architecture. CP_MixedNet proposed a structure that
combines different time dimensions. For FBCNet, the characteris-
tics of different frequency domains and timing characteristics can
be considered at the same time. It is also the template method we
followed in this work.

For all these methods, we managed to use the preprocessing and
feature extraction methods proposed in its original place, and in
order to further improve the performance, we also added filters
to extract 𝛼 and 𝛽 bands [27] or normalization [15] and select the
optimal configuration.

As shown in Table 6, it is seen that our proposed method could
outperform all the other methods. Some of the shallowmethods also
achieved promising results such as CSP_LDA [25]. It even surpassed
many deep learning based methods. All methods were better at
distinguishing insider attacks except for SVM. The energyNN refers
to [28], which utilized energy wavelet features. It is worth noting
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Table 8: The result of EER (%) for insider and outsider attack experiment on Physionet dataset of 32 channels.

Protocol Subject
1 2 3 4 5 6 7 8 9 avg

Insider EER-19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Outsider EER-19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.13 0.0 0.21

that we used 17 selected channels in the MI_CNN method. The
experimental results of CP_MixedNet were given based on the BCI
IV 2a dataset, as it provided better training accuracy on this dataset.

Further, we compared CSP_LDA with our proposed method
under different number of channels. The result is plotted in Figure 5.
Although the LDA classifier and CSP features can generate an EER
less than 2%, its performance decreased intensely when reducing
the number of channels. In contrast, the features and classifier in
our proposed framework are more robust with a small number of
channels.

5.5 Influence of Channel Selection
Physionet provides 64 electrodes signals located on the scalp. The
previous experiments only used the 10 selected channels the most
relevant to Motor Imagery (see Section 3.3). To verify whether the
selected channels are sufficient for EEG biometric extraction, we
provided a comparison by using more channels. The configuration
is summarized in Table 7.

The result of EER-19 for both insider attack and outsider attack
is shown in Table 8. It is found that using 32 channels yielded
more valid information to give correct authentication results than
using 10 channels. For all subject models, more channels could
bring a drop in EER, but 7 out of 10 subjects might already extract
enough traits to achieve 100% classification accuracy when using
10 channels.

The most frequently selected 10 electrodes for the 10 subjects
are illustrated in Figure 6. When training models for all subjects by
using the same 10 channels, we could achieve an average EER-19
of 1.21 for insider attack and 1.74 for outsider attack. This rate
is instructive and can completely reduce the complexity of EEG
authentication systems by also reducing the number of required
channels during the training phase.

6 DISCUSSION AND LIMITATIONS
From the experimental results, it is found that our proposed EEG
authentication system can perform the two-class classification on
the visitors well, and evaluate whether the visitors belong to their
claimed identities.

Further, the experimental results showed that more EEG chan-
nels have no proportional effect on improving the system perfor-
mance. For our proposed method, the channels that are the most
relevant to the Motor Imagery task are screened out. Using only
these channels can achieve a similar accuracy rate the same as
using more channels. The channel selection can not only simplify
the equipment used by the system, but also if the channels corre-
sponding to each subject are kept secret, the channels can be used
as a further representation of identity information.

It can be seen from the most frequently selected channels that
the scalp area, which is the cause of Motor Imagery, is relatively

Figure 6: Map of the 10 frequently selected channels among
10 subjects (in the EEG international 10-10 system).

concentrated. In future studies, uniform channels can be used across
all subjects to compress the number of channels required for raw
data.

The use of deep learning classifiers can directly extract different
representations of EEG data and conduct the classification in an
end-to-end manner. Our proposed framework does not require a
large amount of data and time for training, which can reduce the
requirements for biometric system in the aspects of collectability
and user-friendliness.

Our work, at this stage, is not sufficient to study the longitu-
dinal performance of the system, which is mainly limited by the
characteristics of public datasets. In future, we plan to focus on
the permanency of the authentication system and ensure it to have
acceptable performance in a long period of time.

7 CONCLUSION
In this work, we proposed an enhanced EEG authentication frame-
work with Motor Imagery, which is a mental process by which a
subject imagines a given action without actually performing the
action. It consists of three main components: signal preprocessing,
channel selection, and deep learning classification. Our framework
does not require a large amount of data and time for training. In
the evaluation, we investigated the framework in the aspects of
insider and outsider attack performance, cross-session performance,
and influence of channel selection. In the large comparison, our
framework could outperform the other 9 relevant state-of-the-art
methods (i.e., with a mean EER-19 of 0.74% and 1.27% for insider
attack and outsider attack respectively).
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APPENDIX
EEG Background
EEG is the electrical signal along the scalp surface. These signals
are often representatives of physical or mental states of individuals.
EEG recordings are diverse in amplitudes and dominant frequencies.
Depending on the equipment, the frequency bands, which can be
triggered and influenced by most tasks in an EEG authentication
system, are introduced as follows:

• Alpha (8-12Hz) is the dominant frequency band during re-
laxed state. Focused attention can reduce the amplitude of
this band.

• Beta (12-25Hz) is related to thinking and focused attention.
Body movements can also increase amplitude of this band.

Figure 7: The Stages of EEG Authentication System

These two bands are usually acquired and filtered for usage in
EEG authentication as they contain most of the traits [25]. Except
for the amplitude and frequency of EEG signals, different electric
potentials are captured at different scalp locations through elec-
trodes. Standards have been introduced to regularize the expression
of electrode location. For instance, 10-20 standard [40] could place

the electrodes at 10% and 20% points along lines of longitude and
latitude.

Based on these concepts, EEG authentication systems are con-
structed using biometric factor(s). The users are required to perform
designed tasks under specific settings. These tasks are designed to
trigger particular potentials such Visual Evoked Potential (VEP)
and Event Related Potential (ERP), which can be captured through
EEG headsets. Some of the tasks have even higher demands on
the experimental environment. For the authentication system, two
stages of usage fall into registration phase and enrolment phase.
During registration phase, an individual records his or her own
EEG signal and forms a template, the signal is processed and ana-
lyzed together with other people’s signals, and finally a classifier
is trained. This classifier can exclusively distinguish the individ-
ual. Followed by the enrolment phase, an individual claims his/her
identity, which calls the corresponding classifier to validate. The
user usually has to perform the same task or a task from the same
type during the enrolment phase. Figure 7 depicts the stages for an
EEG authentication system.
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Table 9: Related EEG Authentication/Identification Studies Categorized by Tasks (auth in Type stands for authentication and
iden stands for identification)

Study Year Type Task Subject Channel Feature Method Performance

[8] 2011 auth
resting state/

motor imagery/
thinking stimuli

5 14

AR/
PSD/SP/
IHPD/
IHLC

SVM 100%

[12] 2013 auth

resting state/
motor imagery/

visual/
auditive stimuli

15 1 time series Cosine Similarity 1.1% HTER

[35] 2016 auth motor imagery 20 2 ∼6 STFT SVM/NN 98%

[28] 2016 iden motor imagery/
movement 5 1 Wavelet

Decomposition NN 95% TAR
4.44 %FAR

[15] 2018 iden motor imagery 40 17 time series CNN 99.3%

[5] 2018 iden motor imagery/
movement 10/11 64 MOFPA-WT NN 85.71% TAR

14.28% FAR
[47] 2019 iden motor imagery 109 16 time series CNN-LSTM 99.58%

[4] 2022 iden motor imagery/
movement 109 23 AR SVM-RBF 94.13%

[7] 2015 iden text reading (ERPs) 45 3 time series NN 82% ∼97%
[25] 2016 auth visual stimuli/

thinking stimuli 12 14 CSP LDA 96.97%

[14] 2016 auth visual stimuli 50 19 time series Similarity 95% EER
confidence intervals

[27] 2017 auth gesture patterns 50 14 DFT SVM/HMM 25% Global HTER
2.01% Local HTER

[32] 2018 auth
resting state/

math computation/
speech imagery

45 19
AR/

MFCC/
Bump

HMM <2% EER

[37] 2019 iden RSVP Keyboard (RSVP) 10 16 time series Adversarial CNN 99% within-session
72% across-sessions

Figure 8: The DET curve of Insider Attack Experiment. (Left: EER-19, 19 attackers in test, Right: EER-49, 49 attackers in test)
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Figure 9: The DET curve of Outsider Attack Experiment. (Left: EER-19, 19 attackers in test, Right: EER-47, 47 attackers in test)

14

812


	Abstract
	1 Introduction
	2 Related Work
	3 Our Proposed Framework
	3.1 Framework Overview
	3.2 Preprocessing
	3.3 Channel Selection
	3.4 Deep Learning Classification

	4 Experimental Design
	4.1 Dataset
	4.2 Protocol and Measurement
	4.3 Configuration

	5 Result Analysis
	5.1 Insider Attack Performance
	5.2 Outsider Attack Performance
	5.3 Cross-session Performance
	5.4 Performance Comparison
	5.5 Influence of Channel Selection

	6 Discussion and Limitations
	7 Conclusion
	References

