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Abstract— Speech is the most used communication method
between humans and it involves the perception of auditory and
visual channels. Automatic speech recognition focuses on inter-
preting the audio signals, although the video can provide infor-
mation that is complementary to the audio. Exploiting the visual
information, however, has proven challenging. On one hand,
researchers have reported that the mapping between phonemes
and visemes (visual units) is one-to-many because there are
phonemes which are visually similar and indistinguishable
between them. On the other hand, it is known that some people
are very good lip-readers (e.g: deaf people). We study the limit
of visual only speech recognition in controlled conditions. With
this goal, we designed a new database in which the speakers
are aware of being read and aim to facilitate lip-reading. In
the literature, there are discrepancies on whether hearing-
impaired people are better lip-readers than normal-hearing
people. Then, we analyze if there are differences between
the lip-reading abilities of 9 hearing-impaired and 15 normal-
hearing people. Finally, human abilities are compared with the
performance of a visual automatic speech recognition system.
In our tests, hearing-impaired participants outperformed the
normal-hearing participants but without reaching statistical
significance. Human observers were able to decode 44% of
the spoken message. In contrast, the visual only automatic
system achieved 20% of word recognition rate. However, if
we repeat the comparison in terms of phonemes both obtained
very similar recognition rates, just above 50%. This suggests
that the gap between human lip-reading and automatic speech-
reading might be more related to the use of context than to the
ability to interpret mouth appearance.

I. INTRODUCTION

Speech is the most used communication method between

humans, and it is considered a multi-sensory process that

involves perception of both acoustic and visual cues since

McGurk demonstrated the influence of vision in speech

perception. Many authors have subsequently demonstrated

that the incorporation of visual information into speech

recognition systems improves their robustness [1], [2].

Visual information usually involves position and move-

ment of the visible articulators (the lips, the teeth and the

tongue), speaker localization, articulation place and other

signals not directly related to the speech (facial expression,

head pose and body gestures) [3], [4], [5]. Even though the

audio is in general much more informative than the video

signal, speech perception relies on the visual information

to help decoding spoken words as auditory conditions are

degraded [3], [6], [7], [8]. Furthermore, for people with

hearing impairments, the visual channel is the only source of

information to understand spoken words if there is no sign

language interpreter [2], [9], [10]. Therefore, visual speech

recognition is implicated in our speech perception process

and is not only influenced by lip position and movement

but it also depends on the speaker’s face, as it has been

shown that it can also transmit relevant information about the

spoken message [4], [5]. Much of the research in Automatic

Speech Recognition (ASR) systems has focused on audio

speech recognition, or on the combination of both modalities

using Audio-Visual Automatic Speech Recognition (AV-

ASR) systems to improve the recognition rates, but Visual

Automatic Speech Recognition (VASR) systems have been

less frequently analyzed alone [11], [12], [13], [14], [15],

[16], [17]. The performance of audio only ASR systems is

very high if there is not much noise to degrade the signal.

However, in noisy environments AV-ASR systems improves

the recognition performance when compared to their audio-

only equivalents [2], [11]. In contrast, in visual only ASR

systems the recognition rates are rather low [18]. This can

be partially explained by the higher difficulty associated to

decoding speech through the visual channel, when compared

to the audio channel.

One of the key limitations of VASR systems resides

on the ambiguities that arise when trying to map visual

information into the basic phonetic unit (phonemes), i.e. not

all the phonemes that are heard can be distinguished by

observing the lips. There are two types of ambiguities: i)
there are phonemes that are easily confused because they

look visually similar between them (e.g: /p/, /b/ and /m/). For

example, the phones /p/ and /b/ are visually indistinguishable

because voicing occurs at the glottis, which is not visible;

ii) there are phonemes whose visual appearance can change

(or even disappear) depending on the context. This is the

case of the velars, consonants articulated with the back

part of the tongue against the soft palate (e.g: /k/ or /g/),

because they change their position in the palate depending

on the previous or following phoneme. Specifically, velar

consonants tolerate palatalization (the phoneme changes to

palatal) when the previous or following phoneme is a vowel

or a palatal [19]. Other drawbacks associated to lipreading

have also been reported in the literature, such as the distance

between the speakers, illumination conditions or visibility

of the mouth [3], [20], [21]. However, the latter can be

easily controlled, while the ambiguities explained above are

limitations intrinsic to lip-reading and constitute an open

problem.

On the other hand, it is known that some people are

very good lip-readers. In general, visual information is

the only source of reception and comprehension of oral

speech for people with hearing impairments, which leads



to the common misconception that they must be good lip-

readers. Indeed, while many authors have found evidence

that people with hearing impairments outperform normal-

hearing people in comprehending visual speech [22], [23],

[24], [25], [26], there are also several studies where no dif-

ferences were found in speech-reading performance between

normal-hearing and hearing-impaired people [27], [28]. Such

conflicting conclusions might be partially explained by the

influence of other factors beyond hearing impairment. For

example, it is well know that human lip-readers use the

context of the conversation to decode the spoken information

[3], [5], [20], thus it has been argued that people who

are good lip-readers might be more intelligent, with more

knowledge of the language, and with a more comprehensible

oral speech for others [21], [27], [29], [30].

While the above complexities may provide some expla-

nation to the rather low recognition rates of VASR systems,

there seems to be a significant gap between these and human

lip-reading abilities. More importantly, it is not clear what

would be the upper bound of visual-speech recognition,

especially for systems not using context information (it

has been argued that humans can read only around 30%

of the information from the lips, and the rest is filled-in

from the context [21], [31]). Thus, it is not clear if the

poor recognition rates obtained in VASR systems are due

to the inappropriate or incomplete design or because there is

an intrinsic limitation in visual information that causes the

impossibility of perfect decoding of the spoken message.

Contributions: In this work we explore the feasibility of

visual speech reading with the aim to estimate the recognition

rates achievable by human observers under favorable condi-

tions and compare them with those achieved by an automatic

system. To this end, we focus on the design and acquisition of

an appropriate database in which recorded speakers actively

aim to facilitate lip-reading but conversation context is mini-

mized. Specifically, we present a new database recorded with

the explicit goal of being visually informative of the spoken

message. Thus, data acquisition is especially designed with

the aim that a human observer (or a system) can decode the

message without the help of the audio signal. Concretely, lip-

reading is applied to people that is aware of being read and

has been instructed to make every effort so that they can be

understood based exclusively on visual information. Then,

the database deals with sentences that are uttered slowly,

with repetitions, well pronounced and viewed under optimal

conditions ensuring good illumination and mouth visibility

(without occlusions and distractions).

In this database we divided the participants in two groups:

9 hearing-impaired subjects and 15 normal-hearing subjects.

In our tests, hearing-impaired participants outperformed the

normal-hearing participants but without reaching statistical

significance. Human observers outperform markedly the

VASR system in terms of word recognition rates, but in terms

of phonemes, the automatic system achieves very similar

accuracy to human observers.

II. AUDIO-VISUAL SPEECH DATABASES

Visual only speech recognition spans over more than thirty

years, but even today is still an open problem in science. One

of the limitations for the analysis of VASR systems is the ac-

cessible data corpora. Despite the abundance of audio speech

databases, there exist a limited number of databases for

audio-visual or visual only ASR research. That is explained

in the literature because the field is relatively young, and also,

because the audio-visual databases add some challenges such

as database collection, storage and distribution, not found as

a problem in audio corpora. Acquisition of visual data at

high resolution, frame rate and image quality, with optimal

conditions and synchronized with the audio signal requires

expensive equipment. In addition, visual storage is at least

one or two orders of magnitude to the audio signal, making

his distribution more difficult [13], [32].

Most databases used in audio-visual ASR systems suffer

from one or more weaknesses. For example, they contain

low number of subjects ([33], [34]), small duration ([33],

[34], [35], [36]), and are addressed to specific and simple

recognition tasks. For instance, most corpora are centered

in simple tasks such as isolated or connected letters ([33],

[34], [35]), digits ([35], [36], [37], [38], [39]), short sen-

tences ([36], [40], [41], [42], [43], [44]) and only recently

continuous speech ([38], [45], [46], [47]). These restrictions

make more difficult the generalization of methods and the

construction of robust models because of the few samples of

training. Additional difficulties are that some databases are

not freely available.

As explained in Section I the aim of this project is to apply

continuous lip-reading to people that is conscious of being

read and is trying to be understood based exclusively on

visual information. Thus, from the most common databases,

only VIDTIMIT [40], AVICAR [35], Grid [41], MOBIO

[42], OuluVS [43], OuluVS2 [44], AV@CAR [45], AV-

TIMIT [46], LILiR [47] contain short sentences or continu-

ous speech and could be useful to us. However, we rejected

the use of them because the participants speak in normal

conditions without previous knowledge of being lip-read. In

addition, most of the databases have low technical aspects

and limited number of subjects with restricted vocabularies

centred in repetitions of short utterances. Subsequently, we

decided to develop a new database designed specifically for

recognizing continuous speech in controlled conditions.

III. VISUAL LIP-READING FEASIBILITY DATABASE

The Visual Lip-Reading Feasibility (VLRF) database is

designed with the aim to contribute to research in visual only

speech recognition. A key difference of the VLRF database

with respect to existing corpora is that it has been designed

from a novel point of view: instead of trying to lip-read from

people who are speaking naturally (normal speed, normal

intonation,...), we propose to lip-read from people who strive

to be understood.

Therefore, the design objective was to create a public

database visually informative of the spoken message in which



it is possible to directly compare human and automatic lip-

reading performance. For this purpose, in each recording

session there were two participants: one speaker and one

lip-reader. The speaker was recorded by a camera while

pronouncing a series of sentences that were provided to

him/her; the lip-reader was located in a separate room,

acoustically isolated from the room where the speaker was

located. To make the human decoding as close as possible

to the automatic decoding, the input to the lip-reader was

exclusively the video stream recorded by the camera, which

was displayed in real time by means of a 23” TV screen.

After each uttered sentence, the lip-reader gave feedback

to the speaker (this was possible because it was possible

to enable audio feedback from the lip-reading room to the

recording room, but not conversely). Each sentence could be

repeated up to 3 times, unless the lip-reader decoded it cor-

rectly in fewer repetitions. Both the speaker utterances and

the lip-reader answers (in each repetition) were annotated.

Participants were informed about the objective of the

project and the database. They were also instructed to make

their best effort to be easily understood, but using their own

criteria (e.g: speak naturally or slowly, emphasize separation

between words, exaggerate vocalization,...).

Each recording session was divided in 4 levels of increas-

ing difficulty: 3 levels with 6 sentences and 1 level with 7

sentences. We decided to divide the session in different levels

to make it easier for participants to get accustomed to the lip-

reading task (and perhaps also to the speaker). Specifically,

in the first level the sentences are short with only few words,

and as the level increases the difficulty increases in terms of

number of words. The sentences are unrelated among them

and only the context within the sentence is present. Thus, in

the first sentences participants had to read fewer words but

with very little context and in the last sentences the context

was considerably more important and would certainly help

decoding the sentence. To motivate participants and to ensure

their concentration during all the session, at the end of each

level both participants changed their roles.

Finally, because our objective was to determine the visual

speech recognition rates that could be achievable, we also

recruited volunteers which were hearing-impaired and accus-

tomed to use lip-reading in their daily routine. Then, we will

also compare the capability of lip-reading of normal-hearing

and hearing-impaired people.

A. Participants

We recruited 24 adult volunteers (3 male and 21 female).

Thirteen are University students, one is Teacher of Sign

Language at UPF and the other 10 participants are members

of the Catalan Federation of Associations of Parents and Deaf

(ACCAPS) [48]. The 24 participants were divided in two

groups: normal-hearing people and hearing-impaired people.

– Normal-hearing participants. Fifteen of the volunteers

are normal-hearing participants (14 females and 1 male),

who were selected from a similar educational range (e.g:

same degree) because, as explained in Section I, lip-reading

abilities have been related to intelligence and language

Fig. 1. Scheme of the recording setup and snapshots of the VLRF database.

knowledge. Two of the participants were more than 50 years

old and have a different education level while the other 13

subjects of this group shared educational level and age range.

– Hearing-impaired participants. There were nine hearing-

impaired participants, all above 30 years old (7 female and 2

male). Eight of them have post-lingual deafness (the person

loses hearing after acquiring spoken language) and one has

pre-lingual deafness (the person loses hearing before the

acquisition of spoken language). There were 4 participants

with cochlear implants or hearing aids.

B. Utterances

Each participant was asked to read 25 different sentences,

from a total pool of 500 sentences, proceeding similarly

to [41]. The sentences were unrelated between them to

avoid that lip-readers could benefit from conversation con-

text. Sentences had different levels of difficulty, in terms

of their number of words. There were 4 different levels,

from 3-4 words, 5-6 words, 7-8 words and 8-12 words. We

decided to divide the sentences in different levels for two

reasons. Firstly, to allow lip-readers to get some training

with the short sentences of the first level (i.e. to get ac-

quainted and gain confidence with the setup, the task and

the speaker). Secondly, to compare the effect of the context

in the performance of human lip-readers. The utterances with

fewer words have very little context, while longer sentences

contained considerable context that should help the lip-reader

when decoding the message.

Overall, there were 10200 words in total (1374 unique).

The average duration per sentence was 7 seconds and the

whole duration of the database was 180 minutes (540,162

frames). The sentences contained a balanced phonological

distribution of the Spanish language, based on the phono-

logical distribution of the balanced utterances used in the

AV@CAR database [45].

C. Technical aspects

The database was recorded in two contiguous soundproof

rooms (Fig. 1). The distribution of the recording equipment

into the rooms is shown in Fig. 1. A Panasonic HPX 171

camera was located with a tripod PRO6-HDV in front of

the chair of the speaker, to ensure an approximately frontal

face shot, with a supplementary directional microphone

mounted on the camera to ensure a directional coverage in



the direction of the speaker. The camera recorded a close

up shot (Fig.1) at 50 fps with a resolution of 1280× 720

pixels and audio at 48 kHz mono with 16-bit resolution.

Two Lumatek ultralight 1000W Model 53-11 were used to-

gether with reflecting panels to obtain a uniform illumination

and minimize shadows or other artifacts on the speaker’s

face. When performing the lip-reading task, the lip-reader

was located in the control room. The position of the lip-

reader was just in front of a 23” LG Flatron M2362D PZ

TV. This screen was connected to the camera so that it

reproduced in real time what the camera was recording.

Only the visual channel of the camera was fed into the

control room, although both audio and video channels are

recorded for post processing of the database. The rooms were

acoustically isolated between them except for the feedback

channel composed by a microphone in the control room and

a loudspeaker in the recording room. This channel was used

after each utterance to let the speaker know what message

was decoded by the lip-reader.

D. Data labeling

The ground-truth of the VLRF database consists in la-

belling each frame with the phoneme being pronounced at

that time instant.

We used the EasyAlign plug-in from Praat [49], which

allows to locate the phoneme in each time instant based

on the audio stream. Specifically, the program locates the

phonemes semi-automatically and there is usually the need

for manual intervention to adapt the boundaries of each

phoneme to more precise positions. The phonemes used

are based on the phonetic alphabet SAMPA [50]. For the

Spanish language, the SAMPA vocabulary is composed of

the following 31 phonemes: /p/, /b/, /t/, /d/, /k/, /g/, /tS/, /jj/,

/f/, /B/, /T/, /D/, /s/, /z/, /x/, /G/, /m/, /n/, /N/, /J/, /l/, /L/, /r/,

/4/, /j/, /w/, /a/, /e/, /i/, /o/, /u/.

IV. RESULTS

In this section we show the word- and phoneme-

recognition rates obtained in our experiments. We start by

analyzing the human lip-reading abilities and comparing

the performance of hearing-impaired and normal-hearing

participants. Then, we analyse the influence of training and

context in human performance. Finally, we compare the

performance of our automatic system to the results obtained

by human observers.

The use of two separate measures (word and phoneme

rates) is necessary to analyze different aspects of our results.

On one hand, phonemes are the minimum distinguishable

units of speech and directly constitute the output of our

automatic system. However, the ultimate goal of lip-reading

is to understand the spoken language, hence the need to focus

(at least) on words. It is important to notice that acceptable

phoneme recognition rates do not necessarily imply good

word recognition rates, as will be shown later.

The word recognition rate was computed as the fraction

of words correctly understood in a given sentence. The

phoneme recognition rate was computed as the fraction of

Fig. 2. Top: Analysis of word recognition rate for each user (normal-
hearing (H) and hearing-impaired people (H-Imp)) at each repetition;
Bottom: Word accuracy for normal-hearing (H) and hearing-impaired people
(H-Imp) at each repetition.

video frames in which the correct phoneme was assigned.

Consequently, 25 accuracy measures were computed for each

participant and each repetition. Recognition rates for the

automatic system were computed in the same manner, except

that there were no multiple repetitions.

A. Experimental setup

Our VASR system starts by detecting the face and per-

forming an automatic location of the facial geometry (land-

mark location) using the Supervised Descend Method (SDM)

[51]. Once the face is located, the estimated landmarks are

used to fix a bounding box around the region (ROI) that is

then normalized to a fixed size. Later on, local appearance

features are extracted from the ROI based on early fusion

of DCT and SIFT descriptors in both spatial and temporal

domains. As explained in Section I there are phonemes that

share the same visual appearance and should belong to the

same class (visemes). Thus, we constructed a phoneme to

viseme mapping that groups 32 phonemes into 20 visemes

based on an iterative process that computes the confusion

matrix and merges at each step the phonemes that show the

highest ambiguity until the desired length is achieved. Then,

the classification of the extracted features into phonemes

is done in two steps. Firstly, multiple LDA classifiers are

trained to convert the extracted features into visemes and

secondly, at the final step, one-state-per-class HMMs are

used to model the dynamic relations of the estimated visemes

and produce the final phoneme sequences. This system

was shown to produce near state-of-the-art performance for

continuous visual speech-reading tasks (more details in [52]).

B. Human lip-reading

As explained in Section I, it is not clear if hearing-

impaired people are better lip-readers than normal-hearing

people. Fig. 2 (Top) shows the word recognition rates for

both groups at each repetition and Fig. 2 (Bottom) shows the

word recognition rates for each participant and repetition.

Analyzing each participant individually, it is difficult to

observe any group-differences between hearing-impaired and



TABLE I

STATISTICAL COMPARISON BETWEEN HEARING-IMPAIRED AND

NORMAL-HEARING PARTICIPANTS FOR EACH REPETITION.

Attempt Wilcoxon signed rank Unpaired two-sample

1 p = 0.116 p = 0.094

2 p = 0.094 p = 0.088

3 p = 0.041 p = 0.037

normal-hearing participants. However, we do observe large

performance variations within each of the groups, i.e. there

are very good and quite poor lip-readers regardless of their

hearing condition.

On the other hand, looking at the results globally, split only

by group (Fig. 2 (Top)), they suggest that hearing-impaired

participants outperform normal-hearing participants in the

lip-reading task for all three repetitions. However, the results

differ about 20% in terms of word recognition rate and thus

we need to study if this difference is statistically significant.

To do so, we estimated the word accuracy of each par-

ticipant as the average accuracy across the 25 sentences that

he/she had to lip-read. Then, we performed statistical tests to

determine if there were significant differences between the

9 hearing-impaired samples and the 15 normal-hearing sam-

ples. Because we only want to test if the hearing-impaired

participants were better than normal-hearing participants, we

performed single-tailed tests where the null hypothesis was

that the mean or median (depending on the test) performance

of hearing-impaired participants was not higher than the

performance of normal-hearing participants. We ran two

tests (summarized in Table I) for each of the 3 repetitions:

Wilcoxon signed rank test and Unpaired two-sample t-test.

Taking the conventional significance threshold of p < 0.05 it

could be argued that at the third repetition the performance

of hearing-impaired participants was significantly better than

that of normal-hearing participants. However, this was not

observed in the first two repetitions. Moreover, the 9 hearing-

impaired subjects did better than the 15 normal-hearing,

but taking into account that the sample size is relatively

small, current trends in statistical analysis suggest that the

obtained p-values are not small enough to claim that this

would extrapolate to the general population. On the other

hand, looking at the p-values, with the current number of

subjects we are not far from reaching significance [53].

In Fig. 2 we also show the influence of repetitions into the

final performance: as the number of repetitions increases the

recognition rate increases too. This effect can be seen split

by group and analysing each participant separately.

C. Training and context influence on lip-reading

The context is one of the human resources more used

in lip-reading to complete the spoken message. To analyse

the influence of the context, the participants were asked to

read four different types of sentences, in terms of number of

words (explained in Section III). Thus, as the level increases,

sentences are longer and the context increases too.

In Fig. 3 we can observe how the first level has the lowest

word recognition rates for all repetitions, while the last

Fig. 3. Average word recognition rate for each participant at each level.

Fig. 4. Cumulative average per sentence of all participants in each
repetition.

level has the highest rates. There are two factors that could

contribute to this effect: 1) Context: humans use the relation

between words to try decoding a meaningful message, and

2) Training: as the level increases the participants are more

acquainted to the speaker and to the lip-reading task.

The results of Fig. 3 are not enough to determine whether

the effect is due to context, training or both. Thus, in Fig. 4

we analyze the variation of performance per sentence (with a

cumulative average) instead of per level, which should make

clearer the effect of training. This is because training occurs

continuously from one sentence to another while context

only increases when we change from one level to the next

one. Thus, the effect of training can be seen as the constant

increase performance in each of the curves (up to 20%). As

the users have lip-read more sentences they tend to become

better lip-readers. On the other hand, the influence of context

is better observed by comparing the different repetitions. In

the first attempt, the sentence was completely unknown to the

participants, but, in the second and third repetitions there was

usually some context available because the message had been

already partially decoded, hence constraining the possible

words to complete the sentence.

D. Human observers and automatic system comparison

The results of the automatic system are only computed

for the first attempt, since it was not designed to benefit

from repetitions. The resulting word-recognition rates are

shown in Fig. 5 (Top). Notice that now the participant number

indicates the person that was pronouncing the sentences as

the recognition is always performed by the system. Thus, this

figure provides information about how well the system was

able to lip-read each of the participants. The system produced

the highest recognition rates for participants 1, 8, 17 and 21.

Interestingly, these participants had good pronunciation and

visibility of the tongue and teeth.

We are interested in comparing the performance of humans

lip-reading and a VASR system. Focusing on Fig. 6 (Top)



Fig. 5. Top: System performance in terms of word recognition rate for each
participant. Bottom: Phoneme accuracy recognized by the VASR system for
each participant.

Fig. 6. Top: Average word recognition for each participant for human
observers (Repetition 1) and for the VASR system; Bottom: Phoneme
accuracy recognized by the VASR system for each participant.

we can observe how the word recognition rates are lower

for the system in most of the cases. However, we have to

take into account that the system does not use the context

into the sentence. Indeed, the system is not even targeting

words but phonemes, which are later merged to form words.

In contrast, people directly search for correlated words with

the lip movements of the speaker. Thus, it is reasonable to

expect a considerable gap between human and automatic

performance, which will be shown to reduce considerably

if the comparison is done in terms of phonemes.

In the same figure (Fig. 6) we can observe a direct

comparison of the mean recognition rates of each participant

identified by humans and by the automatic system. The

system gives an unbiased measure about the facility to lip-

read participants because it evaluates each of them in the

same manner. In contrast, human lip-reading was performed

in couples (couples are organized in successive order, e.g.

participants 1 and 2, 3 and 4, etc), hence each participant

was only lip-read by its corresponding partner. Analyzing

Fig. 6 we can identify which users were good lip-readers

and also good speakers. For example, participant 7 was

lip-read by participant 8 with high word recognition rate.

Fig. 7. Top: Number of wrong detected phonemes. The red columns
represent the false negatives phonemes and the green ones the false
positives.; Bottom: Precision and Recall of each phoneme.

Then, in the curve corresponding to human performance,

we observe a high value for participant 8, meaning that

he/she was very successful at lip-reading. When we look

at system’s performance, however, the value assigned to

participant 8 corresponds to the rate obtained by the system

and is therefore a measure related to how participant 8 spoke

rather than how he/she lip-read. For this specific participant,

the figure shows that system performance was also high,

hence he/she is a candidate to be good lip-reader and speaker.

The word recognition rates reported by our system are

rather low compared to those obtained by human observers.

However, as stated earlier, our system is trying to recognize

phonemes and convert them to words, so it is also interesting

to analyze its performance in terms of phoneme recognition.

The phoneme recognition rates obtained by the system

are between 40% and 60%, as shown in Fig. 5 (Bottom)

and Fig. 6 (Bottom). It is interesting to note that system

performance was much more stable across participants than

human performance. In addition, in terms of phoneme units,

the global mean of the automatic system was 51.25%, very

close to the global mean of 52.20% obtained by humans.

There are several factors that help understanding why

the system achieves significantly higher rates in terms of

phonemes than in terms of words: 1) Phoneme accuracy is

computed at frame level because that is the output rate of

the system. Thus, the temporal resolution used for phonemes

is much higher than that of words and correctly recognizing

a word implies the correct match of a rather long sequence

of contiguous phonemes. Any phoneme mismatch, even if in

a single frame, results in the whole word being wrong. 2)

The automatic system finds it easier to recognize concrete

phonemes (e.g: vowels) with high appearance rates in terms

of frames (vowels are usually longer than consonants). This

implies that a high phoneme recognition rate does not

necessarily mean that the message is correctly decoded. To

analyze this, system performance is displayed in Fig. 7.

Specifically, in Fig. 7 (Top) we can observe the number

of phonemes that were wrongly detected, distinguishing

false negatives (in red color) and false positives (in green),



while Fig. 7 (Bottom) shows the corresponding values of

precision and recall. Most of the consonants have very high

precision, but many samples are not detected, deriving in a

low recall. In contrast, vowels have an intermediate precision

and recall because they are assigned more times than their

actual occurrence. Close inspection of our data suggests that

this effect is partially explained by the difficulty in correctly

identifying the temporal limits of phonemes.

V. DISCUSSION AND CONCLUSIONS

In this work we explore visual speech reading with the

aim to estimate the recognition rates achievable by human

observers and by an automatic system under optimal and

directly comparable conditions. To this end, we recorded

the VLRF database, appropriately designed to be visually

informative of the spoken message. For this purpose we

recruited 9 hearing-impaired and 15 normal-hearing sub-

jects. Overall, the word recognition rate achieved by the

24 human observers ranged from 44% (when the sentence

was pronounced only once) to 73% (when allowing up to

3 repetitions). These results are compatible to those from

Duchnowski et al. [31], who stated that even under the most

favorable conditions (including repetitions) ”speech-readers

typically miss more than one third of the words spoken”.

We also tested the performance of participants grouped by

their hearing condition to compare their lip-reading abilities

and verify if these are superior for hearing-impaired subjects,

as suggested in some studies. Concretely, we found that

hearing-impaired participants outperformed normal-hearing

participants on the lip-reading task, but without statistical

significance. The performance difference, which averaged

20%, was not sufficient to conclude significance with the

current number of subjects. Hence, future work will address

the extension of the VLRF database so that it includes

sufficient subjects to reach a clearer conclusion.

The participation of hearing-impaired people was very

important given their daily experience in lip-reading. During

the recording sessions they explained that lip-reading in our

database was a challenge because they did not known the

context of the sentence beforehand. For them, it is easier

to lip-read when they know the context of the conversation.

The conversation topic constrains the vocabulary that can

appear in the talk. Furthermore, we mentioned before that

lip-reading is related to the intelligence and the language

knowledge. During the recording sessions we noticed that

sentences directly related to daily life were easier to un-

derstand than sentences with words not used in colloquial

language.

Another important aspect to consider is how easy or diffi-

cult is to lip-read different speakers. As explained in Section

III, participants were instructed to use their own criterion

to facilitate lip-reading. It is difficult to objectively judge

the effectiveness of the techniques that were used, but we

observed some interesting tendencies during the recordings.

Firstly, facial expressions help decoding the spoken message

adding context to the sentence (e.g: sad expression if you

are speaking about something unfortunate); hearing-impaired

participants used this technique more often than normal-

hearing subjects. Secondly, it is more useful to separate

clearly between words than to exaggerate pronunciation. That

is because the human system is searching words that fit the

lip movements. We noticed that when pronunciation was

exaggerated the separation between words was not clear or

even lost considerably increasing the difficulty of lip-reading.

The above is important when interpreting the results of

human observers, as they are conditioned both by the lip-

reading abilities of the lip-reader and by the pronunciation

abilities of the speaker. Recall that, in our experiments,

each participant only lip-read his/her corresponding partner.

It would be interesting to separate these factors, which

could be done by randomizing the combinations of speakers

and lip-readers on a per-sentence basis. In particular, the

most interesting aspect would be to estimate the level of

difficulty to lip-read each of the speakers, which could be

done by having several subjects lip-reading the same speaker.

There would be several advantages in doing so: 1) it would

allow a more direct comparison to the performance of the

system, as speaker performance will not be conditioned to a

single human reader; 2) speakers that are too difficult could

be excluded from the analysis, at least when seeking for

the theoretical limit of lip-reading in optimal conditions;

3) it would help understand which are the best speaking

techniques to use to facilitate lip-reading understanding.

As just explained, in our experiments, human observers

reached word accuracy of 44% in the first attempt while

our visual-only automatic system achieved 20% of word

recognition rate. However, if we repeat the comparison in

terms of phonemes, the automatic system achieves recog-

nition rates quite similar to human observers, just above

50%. These results are comparable with those reported by

Almajai et al. [54] who tested in the RM corpus, using 12

speakers and 6 expert lip-readers. Concretely, their human

lip-readers reached 52.63% viseme accuracy (in our case

52.20% phoneme accuracy) and their system obtained 46%

viseme accuracy (our system 51.25% phoneme accuracy).

Therefore, in terms of viseme/phoneme accuracy, both Al-

majais and our system reach near-human performance. But

this does not happen in terms of word accuracy: Almajai et

al. reported human word accuracy of 21% (ours 44%) and

system word accuracy of 14% (ours 20%).

When trying to explain the above, we found that the low

word recognition rates were related to: 1) the fact that it is

quite easy to make mistakes at frame level and a mistake in

a single frame results in the whole word being wrong; 2) the

imbalance in the occurrence frequencies of phonemes. The

latter is especially important because it highlights that the

system, while achieving similar phoneme rates to those from

humans, does not actually perform equally well. In other

words, the phoneme sequences returned by humans always

make some sense, which is not generally true for the system

as it does not include higher-level constraints (e.g. at the

word- or phrase-level). Hence, future directions should focus

on introducing constraints related to bigger speech structures

such as connected phonemes, syllables or words.
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