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Towards exact molecular dynamics simulations
with machine-learned force fields
Stefan Chmiela1, Huziel E. Sauceda 2, Klaus-Robert Müller1,3,4 & Alexandre Tkatchenko5

Molecular dynamics (MD) simulations employing classical force fields constitute the cor-

nerstone of contemporary atomistic modeling in chemistry, biology, and materials science.

However, the predictive power of these simulations is only as good as the underlying

interatomic potential. Classical potentials often fail to faithfully capture key quantum effects

in molecules and materials. Here we enable the direct construction of flexible molecular force

fields from high-level ab initio calculations by incorporating spatial and temporal physical

symmetries into a gradient-domain machine learning (sGDML) model in an automatic data-

driven way. The developed sGDML approach faithfully reproduces global force fields at

quantum-chemical CCSD(T) level of accuracy and allows converged molecular dynamics

simulations with fully quantized electrons and nuclei. We present MD simulations, for flexible

molecules with up to a few dozen atoms and provide insights into the dynamical behavior of

these molecules. Our approach provides the key missing ingredient for achieving spectro-

scopic accuracy in molecular simulations.
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M
olecular dynamics (MD) simulations within the Born-
Oppenheimer (BO) approximation constitute the cor-
nerstone of contemporary atomistic modeling. In fact,

the 2013 Nobel Prize in Chemistry clearly highlighted the
remarkable advances made by MD simulations in offering
unprecedented insights into complex chemical and biological
systems. However, one of the widely recognized and increasingly
pressing issues in MD simulations is the lack of accuracy of
underlying classical interatomic potentials, which hinders truly
predictive modeling of dynamics and function of (bio)molecular
systems. One possible solution to the accuracy problem is pro-
vided by direct ab initio molecular dynamics (AIMD) simula-
tions, where the quantum-mechanical forces are computed on the
fly for atomic configurations at every time step1. The majority of
AIMD simulations employ the current workhorse method of
electronic-structure theory, namely density-functional approx-
imations (DFA) to the exact solution of the Schrödinger equation
for a system of nuclei and electrons. Unfortunately, different
DFAs yield contrasting results2 for the structure, dynamics, and
properties of molecular systems. Furthermore, DFA calculations
are not systematically improvable. Alternatively, explicitly corre-
lated methods beyond DFA could also be used in AIMD simu-
lations, unfortunately this leads to a steep increase in the required
computational resources, for example a nanosecond-long MD
trajectory for a single ethanol molecule executed with the CCSD
(T) method would take roughly a million CPU years on modern
hardware. An alternative is a direct fit of the potential-energy
surface (PES) from a large number of CCSD(T) calculations,
however this is only practically achievable for rather small and
rigid molecules3–5.

To solve this accuracy and molecular size dilemma and fur-
thermore to enable converged AIMD simulations close to the
exact solution of the Schrödinger equation, here we develop an
alternative approach using symmetrized gradient-domain
machine learning (sGDML) to construct force fields with the
accuracy of high-level ab initio calculations. Recently, a wide
range of sophisticated machine learning (ML) models for small
molecules and elemental materials6–46 have been proposed for
constructing PES from DFA calculations. While these results are
encouraging, direct ML fitting of molecular PESs relies on the
availability of large reference datasets to obtain an accurate
model. Frequently, those ML models are trained on thousands or
even millions of atomic configurations. This prevents the con-
struction of ML models using high-level ab initio methods, for
which energies and forces only for 100s of conformations can be
practically computed.

Instead, we propose a solution that allows converged MD
simulations with fully quantized electrons and nuclei for
molecules with up to a few dozen atoms. This is enabled by two
novel aspects: a reduction of the problem complexity through a
data-driven discovery of relevant spatial and temporal physical
symmetries, and enhancing the information content of data
samples by exercising these identified static and dynamic
symmetries, hence implicitly increasing the amount of training
data. Using the proposed sGDML approach, we carry out MD
simulations at the ab initio coupled cluster level of electronic-
structure theory and provide insights into their dynamical
behavior. Our approach contributes the key missing ingredient
for achieving spectroscopic accuracy and rigorous dynamical
insights in molecular simulations.

Results
Symmetrized gradient-domain machine learning. The sGDML
model is built on the previously introduced gradient domain
learning (GDML) model47, but now incorporates all relevant

physical symmetries, hence enabling MD simulations with high-
level ab initio force field accuracy. One can classify physical
symmetries of molecular systems into symmetries of space and
time and specific static and dynamic symmetries of a given
molecule (see Fig. 1). Global spatial symmetries include rotational
and translational invariance of the energy, while homogeneity of
time implies energy conservation. These global symmetries were
already successfully incorporated into the GDML model47.
Additionally, molecules possess well-defined rigid space group
symmetries (i.e. reflection operation), as well as dynamic non-
rigid symmetries (i.e., methyl group rotations). For example, the
benzene molecule with only six carbon and six hydrogen atoms
can already be indexed in 6!6! ¼ 518400 different, but physically
equivalent ways. However, not all of these symmetric variants are
accessible without crossing impassable energy barriers. Only the
24 symmetry elements in the D6h point group of this molecule are
relevant. While methods for identifying molecular point groups
for polyatomic rigid molecules are readily available48, Longuet-
Higgins49 has pointed out that non-rigid molecules have extra
symmetries. These dynamical symmetries arise upon functional-
group rotations or torsional displacements and they are usually
not incorporated in traditional force fields and electronic-
structure calculations. Typically, extracting nonrigid symmetries
requires chemical and physical intuition about the system at
hand. Here we develop a physically motivated algorithm for data-
driven discovery of all relevant molecular symmetries from MD
trajectories.

MD trajectories consist of smooth consecutive changes in
nearly isomorphic molecular graphs. When sampling from these
trajectories the combinatorial challenge is to correctly identify the
same atoms across the examples such that the learning method
can use consistent information for comparing two molecular
conformations in its kernel function. While so-called bi-partite
matching allows to locally assign atoms R ¼ r1; ¼ ; rNð Þ for each
pair of molecules in the training set, this strategy alone is not
sufficient as it needs to be made globally consistent by
multipartite matching in a second step50–52.

We start with adjacency matrices as representation for the
molecular graph9,13,47,53,54. To solve the pairwise matching
problem we therefore seek to find the assignment τ which
minimizes the squared Euclidean distance between the adjacency
matrices A of two isomorphic graphs G and H with entries

Að Þij¼ ri � rj

�

�

�

�

�

�, where P(τ) is the permutation matrix that

realizes the assignment:

argmin
τ

LðτÞ ¼ PðτÞAGPðτÞ
> � AH

�

�

�

�

2
: ð1Þ

Adjacency matrices of isomorphic graphs have identical
eigenvalues and eigenvectors, only their assignment differs.
Following the approach of Umeyama55, we identify the
correspondence of eigenvectors U by projecting both sets UG

and UH onto each other to find the best overlap. We use the
overlap matrix, after sorting eigenvalues and overcoming sign
ambiguity

M ¼ absðUGÞabsðUHÞ
>

; ð2Þ

Then −M is provided as the cost matrix for the Hungarian
algorithm56, maximizing the overall overlap which finally returns
the approximate assignment ~τ that minimizes Eq. (1) and thus
provides the results of step one of the procedure. As indicated,
global inconsistencies may arise, e.g., violations of the transitivity
property τjk � τij ¼ τik of the assignments, therefore a second step
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is necessary which is based on the composite matrix ~P of all
pairwise assignment matrices ~Pij � Pð~τijÞ within the training set.

We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-
partite matching cost (see Eq. (1), Fig. 1) over the training set. The
MST is constructed from the most confident bi-partite assignments
and represents the rank N skeleton of ~P, defining also P.

The resulting consistent multipartite matching P enables
us to construct symmetric kernel-based ML models of the
form

f̂ ðxÞ ¼
X

M

ij

αijκ x;Pijxi

� �

; ð3Þ
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Fig. 1 Fully data-driven symmetry discovery. a, b Our multipartite matching algorithm recovers a globally consistent atom-atom assignment across the

whole training set of molecular conformations, which directly enables the identification and reconstructive exploitation of relevant spatial and temporal

physical symmetries of the molecular dynamics. c The global solution is obtained via synchronization of approximate pairwise matchings based on the

assignment of adjacency matrix eigenvectors, which correspond in near isomorphic molecular graphs. We take advantage of the fact that the minimal

spanning set of best bipartite assignments fully describes the multipartite matching, which is recovered via its transitive closure. Symmetries that are not

relevant within the scope of the training dataset are successfully ignored. d This enables the efficient construction of individual kernel functions for each

training molecule, reflecting the joined similarity of all its symmetric variants with another molecule. The kernel exercises the symmetries by consolidating

all training examples in an arbitrary reference configuration from which they are distributed across all symmetric subdomains. This approach effectively

trains the fully symmetrized dataset without incurring the additional computational cost
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by augmenting the training set with the symmetric variations of
each molecule (see Supplementary Note 1 for a comparison with
alternative symmetry-adapted kernel functions). A particular
advantage of our solution is that it can fully populate all recovered
permutational configurations even if they do not form a
symmetric group, severely reducing the computational effort in
evaluating the model. Even if we limit the range of j to include all
S unique assignments only, the major downside of this approach
is that a multiplication of the training set size leads to a drastic
increase in the complexity of the cubically scaling kernel ridge
regression learning algorithm. We overcome this drawback by
exploiting the fact that the set of coefficients α for the
symmetrized training set exhibits the same symmetries as the
data, hence the linear system can be contracted to its original size,
while still defining the full set of coefficients exactly.

For notational convenience we transform all training geome-
tries into a canonical permutation xi � Pi1xi, enabling the use of
uniform symmetry transformations Pj � P1j (see Supplementary
Note 2). Simplifying Eq. (3) accordingly, gives rise to the
symmetric kernel that we originally set off to construct

f̂ xð Þ ¼
P

M

i

αi

P

S

q
κ x;Pqxi

� �

¼
P

i

αiκsym x; xið Þ;
ð4Þ

and yields a model with the exact same number of parameters as
the original, non-symmetric one.

Our symmetric kernel is an extension to regular kernels and
can be applied universally, in particular to kernel-based force
fields. Here we construct a symmetric variant of the GDML
model, sGDML. This symmetrized GDML force field kernel takes
the form:

Hess κsym

� �

x; x′
� �

¼
X

S

q

Hess κð Þ x;Pqx
′

� �

Pq: ð5Þ

Accordingly, the trained force field estimator collects the
contributions of the partial derivatives 3N of all training points M
and number of symmetry transformations S to compile the
prediction for a new input x. It takes the form

f̂F xð Þ ¼
X

M

i

X

3N

l

X

S

q

ðPqαiÞl
∂

∂xl
∇κ x;Pqxi

� �

ð6Þ

and a corresponding energy predictor is obtained by integrating
f̂F with respect to the Cartesian geometry. Due to linearity of
integration, the expression for the energy predictor is identical up
to second derivative operator on the kernel function.

Every (s)GDML model is trained on a set of reference examples
that reflects the population of energy states a particular molecule
visits during an MD simulation at a certain temperature. For our
purposes, the corresponding set of geometries is subsampled from
a 200 picosecond DFT MD trajectory at 500 K following the
Boltzmann distribution. Subsequently, a globally consistent
permutation graph is constructed that jointly assigns all
geometries in the training set, providing a small selection of
physically feasible transformations that define the training set
specific symmetric kernel function. In the interest of computa-
tional tractability, we shortcut this sampling process to construct
sGDML@CCSD(T) and only recompute energy and force labels
at this higher level of theory.

The sGDML model can be trained in closed form, which is
both quicker and more accurate than numerical solutions. Model
selection is performed through a grid search on a suitable subset

of the hyper-parameter space. Throughout, cross-validation with
dedicated datasets for training, testing, and validation are used to
estimate the generalization performance of the model.

Forces and energies from GDML to sGDML@DFT to
sGDML@CCSD(T). Our goal is to demonstrate that it is possible
to construct compact sGDML models that faithfully recover
CCSD(T) force fields for flexible molecules with up to 20 atoms,
by using only a small set of few hundred molecular conforma-
tions. As a first step, we investigate the gain in efficiency and
accuracy of the sGDML model vs. the GDML model employing
MD trajectories of ten molecules from benzene to azobenzene
computed with DFT (see Fig. 2 and Supplementary Table 1). The
benefit of a symmetric model is directly linked to the number of
symmetries in the system. For toluene, naphthalene, aspirin,
malonaldehyde, ethanol, paracetamol, and azobenzene, sGDML
improves the force prediction by 31.3–67.4% using the same
training sets in all cases (see Table 1). As expected, uracil and
salicylic acid have no exploitable symmetries, hence the perfor-
mance of sGDML is unchanged with respect to GDML. The
inclusion of symmetries leads to a stronger improvement in force
prediction performance compared to energy predictions. This is
most clearly visible for the naphthalene dataset, where the force
predictions even improve unilaterally. We attribute this to the
difference in complexity of both quantities and the fact that an
energy penalty is intentionally omitted in the cost function to
avoid a tradeoff.

A minimal force accuracy required for reliable MD simulations
is MAE= 1 kcal mol−1 Å−1. While the GDML model can achieve
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this accuracy at around 800 training examples for all molecules
except aspirin, sGDML only needs 200 training examples to reach
the same quality. Note that energy-based ML approaches typically
require two to three orders of magnitude more data47.

Given that the novel sGDML model is data efficient and highly
accurate, we are now in position to tackle CCSD(T) level of
accuracy with modest computational resources. We have trained
sGDML models on CCSD(T) forces for benzene, toluene, ethanol,
and malonaldehyde. For the larger aspirin molecule, we used
CCSD forces (see Supplementary Table 2). The sGDML@CCSD
(T) model achieves a high accuracy for energies, reducing the
prediction error of sGDML@DFT by a factor of 1.4 (for ethanol)
to 3.4 (for toluene). This finding leads to an interesting hypothesis
that sophisticated quantum-mechanical force fields are smoother
and, as a convenient side effect, easier to learn. Note that the
accuracy of the force prediction in both sGDML@CCSD(T) and
sGDML@DFT is comparable, with the benzene molecule as the
only exception. We attribute this aspect to slight shifts in the
locations of the minima on the PES between DFT and CCSD(T),
which means that the data sampling process for CCSD(T) can be
further improved. In principle, we can envision a corrected
resampling procedure for CCSD(T), using the sGDML@CCSD
(T) model as future work.

MD with ab initio accuracy. The predictive power of a force field
can only be truly assessed by computing dynamical and ther-
modynamical observables, which require sufficient sampling of
the configuration space, for example by employing MD or Monte
Carlo simulations. We remark that global error measures, such as
mean average error (MAE) and root mean squared error are
typically prone to overestimate the reconstruction quality of the
force field, as they average out local topological properties.
However, these local properties can become highly relevant when
the model is used for an actual analysis of MD trajectories. As a
demonstration, we will use the ethanol molecule; this molecule
has three minima, gauche± (Mg±) and trans (Mt) shown in
Fig. 3a, where experimentally it has been confirmed that Mt is the
ground state and Mg is a local minimum57. The energy difference
between these two minima is only 0.12 kcal mol−1 and they are
separated by an energy barrier of 1.15 kcal mol−1. Obviously, the
widely discussed ML target accuracy of 1 kcal mol−1 is not suf-
ficient to describe the dynamics of ethanol and other molecules.

This brings us to another crucial issue for predictive models:
the reference data accuracy. Computing the energy difference
between Mt and Mg using DFT(PBE-TS) we observe that Mg is

0.08 kcal mol−1 more stable than Mt, contradicting the experi-
mental measurements. Repeating the same calculation using
CCSD(T)/cc-pVTZ we find that Mt is more stable than Mg by
0.08 kcal mol−1, in excellent agreement with experiment. From
this analysis and subsequent MD simulations we conclude that
CCSD(T) or sometimes even higher accuracy is necessary for
truly predictive insights.

Additionally to requiring highly accurate quantum chemical
approximations, the ethanol molecule also belongs to a category
of fluxional molecules sensitive to nuclear quantum effects
(NQE). This is because internal rotational barriers of the ethanol
molecule (Mg↔Mt) are on the order of ~1.2 kcal mol−1 (see
Fig. 3), which is neither low enough to generate frequent
transitions nor high enough to avoid them. In a classical MD at
room temperature the thermal fluctuations lead to inadequate
sampling of the PES. By correctly including NQE via path-
integral MD (PIMD), the ethanol molecule is able to transition
between Mg and Mt configurations, radically increasing the
transition frequency (see Supplementary Figure 1) and generat-
ing statistical weights in excellent agreement with experiment.
Figure 3b shows the statistical occupations of the different
minima for ethanol using classical MD and PIMD for the
sGDML@CCSD(T) and sGDML@DFT models in comparison
with the experimental results. Overall, our MD results for
ethanol highlight the necessity of using a highly accurate force
field with an equally accurate treatment of NQE for achieving
reliable and quantitative understanding of molecular systems.

Having established the accuracy of statistical occupations of
different states of ethanol, we are now in position to discuss for
the first time the CCSD(T) vibrational spectrum of ethanol
computed using the velocity–velocity autocorrelation function
based on centroid PIMD (see Fig. 3c). As a reference, in Fig. 3c-
top we compare the vibrational spectra from DFT and CCSD(T)
sGDML models in the fingerprint zone, and as expected the
sGDML@CCSD(T) model generates higher frequencies but both
share similar shapes but slightly different peak intensities.
Molecular vibrational spectra at finite temperature include
anharmonic effects, hence anharmonicities can be studied by
comparing the sGDML@CCSD(T) spectrum with the harmonic
approximation. Figure 3c-middle shows such comparison and
demonstrates that low-frequency and non-symmetric vibrations
are most affected by finite-temperature contributions. The
thermal frequency shift can be better seen in Fig. 3c-bottom,
where the sGDML@CCSD(T) spectrum is compared at two
different temperatures. We observe that each normal mode is
shifted in a specific manner and not by a simple scaling factor, as
typically assumed. The most striking finding from our simula-
tions is the resolution of the apparent mismatch between theory
and experiment explaining the origin of the torsional frequency
for the hydroxyl group. Experimentally, the low frequency region
of ethanol, around ~210 cm−1, is not fully understood, but there
are frequency measurements for the hydroxyl rotor ranging in
between ~20258,59 and ~20760 cm−1 for gas-phase ethanol, while
theoretically we found 243.7 cm−1 at the sGDML@CCSD(T) level
of theory in the harmonic approximation. From the middle and
bottom panels in Fig. 3c, we observe that by increasing the
temperature the lowest peak shifts to substantially lower
frequencies compared to the rest of the spectrum. The origin of
such phenomena is the strong anharmonic behavior of the lowest
normal mode 1, shown in Fig. 3c-middle, which mainly
corresponds to hydroxyl group rotations. At room temperature
the frequency of this mode drops to ~215 cm−1, corresponding to
a red-shift of 12% and getting closer to the experimental results,
demonstrating the importance of dynamical anharmonicities.

Finally, we illustrate the wider applicability of the sGDML
model to more complex molecules than ethanol by performing a

Table 1 Relative increase in accuracy of the sGDML@DFT vs.

the non-symmetric GDML model: the benefit of a symmetric

model is directly linked to the number of permutational

symmetries in the system

Molecule #Sym. in κsym Δ MAE (%)

Energy Forces

Benzene 12 −1.6 −62.3

Uracil 1 0.0 0.0

Naphthalene 4 0.0 −52.2

Aspirin 6 −29.6 −31.3

Salicylic acid 1 0.0 0.0

Malonaldehyde 4 −37.5 −48.8

Ethanol 6 −53.4 −58.2

Toluene 12 −16.7 −67.4

Paracetamol 12 −40.7 −52.9

Azobenzene 8 −74.3 −47.4

All symmetry counts include the identity transformation
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detailed analysis of MD simulations for malonaldehyde and
aspirin. In Fig. 4a, we show the joint probability distributions of
the dihedral angles (PDDA) for the malonaldehyde molecule.
This molecule has a peculiar PES with two local minima with a O
� � �H� � �O symmetric interaction (structure (1)), and a shallow
region where the molecule fluctuates between two symmetric
global minima (structure (2)). The dynamical behavior repre-
sented in structure (2) is due to the interplay of two molecular
states dominated by an intramolecular O� � �H interaction and a
low crossing barrier of ~0.2 kcal mol−1. An interesting result is
the nearly unvisited structure (1) by sGDML@DFT in compar-
ison to sGDML@CCSD(T) model regardless of the great
similarities of their PES, which gives an idea of the observable
consequences of subtle energy differences in the PES of
molecules with several degrees of freedom. In terms of spectro-
scopic differences, the two approximations generate spectra with

very few differences (Fig. 4a-right), but being the most
prominent the one between the two peaks around 500 cm−1.
Such difference can be traced back to the enhanced sampling of
the structure (1), and additionally it could be associated to the
different nature between the methods in describing the
intramolecular O� � �H coupling.

For aspirin, the consequences of proper inclusion of the
electron correlation are even more significant. Figure 4b shows
the PIMD generated PDDA for DFT and CCSD based models. By
comparing the two distributions we find that sGDML@CCSD
generates localized dynamics in the global energy minimum,
whereas the DFT model yields a rather delocalized sampling of
the PES. These two contrasting results are explained by the
difference in the energetic barriers along the ester dihedral angle.
The incorporation of electron correlation in CCSD increases the
internal barriers by ~1 kcal mol−1. This prediction was
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between the vibrational spectrum obtained from PIMD simulations at 300 K for sGDML@CCSD(T) and its sGDML@DFT counterpart; (middle)

comparison between the sGDML@CCSD(T) PIMD spectrum and the harmonic approximation based on CCSD(T) frequencies; (bottom) comparison of

sGDML@CCSD(T) PIMD spectra at 300 and 100 K. The rightmost panel shows several characteristic normal modes of ethanol, where atomic

displacements are illustrated by green arrows
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corroborated with explicit CCSD(T) calculations along the
dihedral-angle coordinate (black dashed line in Fig. 4b-PES).
Furthermore, the difference in the sampling is also due to the fact
that the DFT model generates consistently softer interatomic
interactions compared to CCSD, which leads to large and visible
differences in the vibrational spectra between DFT and CCSD
(Fig. 4b-right).

Discussion
The present work enables MD simulations of flexible molecules
with up to a few dozen atoms with the accuracy of high-level ab
initio quantum mechanics. Such simulations pave the way to
computations of dynamical and thermodynamical properties of
molecules with an essentially exact description of the underlying
PES. On the one hand, this is a required step towards molecular
simulations with spectroscopic accuracy. On the other, our
accurate and efficient sGDML model leads to unprecedented
insights when interpreting the experimental vibrational spectra
and dynamical behavior of molecules. The contrasting demands
of accuracy and efficiency are satisfied by the sGDML model
through a rigorous incorporation of physical symmetries (spatial,
temporal, and local symmetries) into a gradient-domain ML
approach. This is a significant improvement over symmetry
adaption in traditional force fields and electronic-structure cal-
culations, where usually only (global) point groups are con-
sidered. Global symmetries are increasingly less likely to occur
with growing molecule size, providing diminishing returns. Local
symmetries on the other hand are system size independent and

preserved even when the molecule is fragmented for large-scale
modeling.

In many of the applications of machine-learned force fields
the target error is the chemical accuracy or thermochemical
accuracy (1 kcal mol−1), but this value was conceived in the
sense of thermochemical experimental measurements, such as
heats of formation or ionization potentials. Consequently, the
accuracy in ML models for predicting the molecular PES should
not be tied to this value. Here, we propose a framework for the
accuracy in force fields which satisfy the stringent demands of
molecular spectroscopists, being typically in the range of
wavenumbers (≈ 0.03 kcal mol−1). Reaching this accuracy will
be one of the greatest challenges of ML-based force fields. We
remark that energy differences between molecular conformers
are often on the order of 0.1–0.2 kcal mol−1, hence reaching
spectroscopic accuracy in molecular simulations is needed to
generate predictive results.

A comparable accuracy is not obtainable with traditional
force fields (see Fig. 5). In general, they miss most of the
crucial quantum effects due to their rigid, handcrafted ana-
lytical form. For example, the absence of a term for electron
lone pairs in AMBER leads to uncoupled rotors in ethanol.
Furthermore the oversimplified harmonic description of
bonded interactions generates an unphysical harmonic sam-
pling at room temperature (see Fig. 5a). In the case of mal-
onaldehyde (Fig. 5b), both distributions misleadingly resemble
each other, however they emerge from different types of
interactions. For AMBER, the dynamics are purely driven
by Coulomb interactions, while the sampling with
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sGDML@CCSD(T) (structure (2) in Fig. 4a) is mostly guided
by electron correlation effects. Lastly, a complete mismatch
between the regular force field and sGDML is evident for
aspirin (see Fig. 5c), where the interactions dominated by
Coulomb forces generate a completely different PES with
spurious global and local minima. It is worth mentioning, that
the observed shortcomings of the AMBER force field can be
addressed for a particular molecule, however only at the cost
of losing generality and computational efficiency.

In the context of ML, our work connects to recent studies on
the usage of invariance constraints for learning and representa-
tions in vision. In the human visual system and also in computer
vision algorithms the incorporation of invariances such as
translation, scaling, and rotation of objects can in principle per-
mit higher performance at more data efficiency61; learning the-
oretical bounds can furthermore show that the amount of data
required is reduced by a factor: the number of parameters of the
invariance transformation62. Interestingly, our study goes
empirically beyond this factor, i.e., our gain in data efficiency is
often more than two orders of magnitude when combining the
invariances (physical symmetries). We speculate that our finding
may indicate that the learning problem itself may become less
complex, i.e., that the underlying problem structure becomes
significantly easier to represent.

There is a number of challenges that remain to be solved to extend
the sGDML model in terms of its applicability and scaling to larger
molecular systems. Given an extensive set of individually trained
sGDML models, an unseen molecule can be represented as a non-
linear combination of those models. This would allow scaling up and
transferable prediction for molecules that are similar in size.
Advanced sampling strategies could be employed to combine forces
from different levels of theory to minimize the need for computa-
tionally intensive ab initio calculations. Our focus in this work was on
intramolecular forces in small- and medium-sized molecules. Look-
ing ahead, it is sensible to integrate the sGDML model with an
accurate intermolecular force field to enable predictive simulations of
condensed molecular systems (Ref.63 presents an intermolecular
model which would be particularly suited for coupling with sGDML).
Many other avenues for further development exist64, including
incorporating additional physical priors, reducing dimensionality of
complex PES, computing reaction pathways, and modeling infrared,
Raman, and other spectroscopic measurements.

Methods
Reference data generation. The data used for training the DFT models were
created running abinitio MD in the NVT ensemble using the Nosé-Hoover ther-
mostat at 500 K during a 200 ps simulation with a resolution of 0.5 fs. We computed
forces and energies using all-electrons at the generalized gradient approximation
level of theory with the Perdew-Burke-Ernzerhof (PBE)65 exchange-correlation
functional, treating van der Waals interactions with the Tkatchenko-Scheffler (TS)
method66. All calculations were performed with FHI-aims67. The final training data
was generated by subsampling the full trajectory under preservation of the Maxwell-
Boltzmann distribution for the energies.

To create the coupled cluster datasets, we reused the same geometries as for the
DFT models and recomputed energies and forces using all-electron coupled cluster
with single, double, and perturbative triple excitations (CCSD(T)). The Dunning’s
correlation-consistent basis set cc-pVTZ was used for ethanol, cc-pVDZ for toluene
and malonaldehyde and CCSD/cc-pVDZ for aspirin. All calculations were
performed with the Psi468 software suite.

Molecular dynamics. In order to incorporate the crucial effects induced by quantum
nuclear delocalization, we used PIMD, which incorporates quantum-mechanical
effects into MD simulations via the Feynman’s path integral formalism. The PIMD
simulations were performed with the sGDMLmodel interfaced to the i-PI code69. The
integration timestep was set to 0.2 fs to ensure energy conservation along the MD
using the NVE and NVT ensemble. The total simulation time was 1 ns for ethanol
(Fig. 3) to get a converged sampling of the PES using 16 beads in the PIMD.

Bipartite matching cost matrix. For the bipartite matching of a pair of mole-
cular graphs, we solve the optimal assignment problem for the eigenvectors of
their adjacency matrices using the Hungarian algorithm56. As input, this algo-
rithm expects a matrix with all pairwise assignment costs CM ¼ �M, which is
constructed as the negative overlap matrix from Eq. (2). We add a penalty matrix
with entries ðCzÞij ¼ absððzÞi � ðzÞjÞε that prevents the matching of non-
identical nuclei for sufficiently large ε > 0. The final const matrix is then
C ¼ CM þ Cz .

Training sGDML. The symmetric kernel formulation approximates the similarities
in the kernel matrix between different permutational configurations of the inputs,
as they would appear with a fully symmetrized training set. We construct this
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Fig. 5 Accuracy of the sGDML model in comparison to a traditional force

field. We contrast the dihedral angle probability distributions of ethanol,

malonaldehyde, and aspirin obtained from classical MD simulations at 300

K with sGDML (left column) vs. the AMBER70 (right column) force field.

The ethanol simulations were carried out at constant energy (NVE),

whereas a constant temperature (NVT) was used for malonaldehyde and

aspirin. a Ethanol: the coupling between the hydroxyl and methyl rotor is

absent in AMBER. Moreover, the probability distribution shows an

unphysical harmonic sampling at room temperature, revealing the

oversimplified harmonic description of bonded interactions in that force

field. b, c Malonaldehyde and aspirin: the formulation of the AMBER force

field is dominated by Coulomb interactions, which can lead an incomplete

description of the PES and even spurious global minima in the case of

aspirin. The length of the simulations was 0.5 ns
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object as the sum over all relevant atom assignments for each training geometry,
such that the kernel matrix retains its original size. This procedure is used to
symmetrize the GDML model47, where the symmetric kernel function takes the
form

Hess κsym

� �

x; x′
� �

¼
1
S

X

S

pq

P>
p Hess κð Þ Ppx;Pqx

′

� �

Pq: ð7Þ

Note, that the rows and columns of the Hessian in the summand are permuted
(using P>

p and Pq) such that the corresponding partial derivatives align. When
evaluating the model, the free variable x (first argument of the kernel function) is
not permuted and the normalization factor is dropped (see Eq. (5). See
Supplementary Note 3 for information on how to use the sGDML model, when the
input is represented by a descriptor.

Data availability
All datasets used in this work are available at http://quantum-machine.org/datasets/.
Additional data related to this paper may be requested from the authors.

Received: 24 March 2018 Accepted: 22 August 2018

References
1. Tuckerman, M. Statistical Mechanics: Theory and Molecular

Simulation (Oxford University Press, Oxford, UK, 2010).
2. Koch, W. & Holthausen, M. C. A Chemist's Guide to Density Functional

Theory (John Wiley & Sons, Hoboken, New Jersey, USA, 2015).
3. Partridge, H. & Schwenke, D. W. The determination of an accurate isotope

dependent potential energy surface for water from extensive ab initio
calculations and experimental data. J. Chem. Phys. 106, 4618–4639
(1997).

4. Mizukami, W., Habershon, S. & Tew, D. P. A compact and accurate semi-
global potential energy surface for malonaldehyde from constrained least
squares regression. J. Chem. Phys. 141, 144310 (2014).

5. Schran, C., Uhl, F., Behler, J. & Marx, D. Highdimensional neural network
potentials for solvation: the case of protonated water clusters in helium. J.
Chem. Phys. 148, 102310 (2018).

6. Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401
(2007).

7. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation
potentials: the accuracy of quantum mechanics, without the electrons. Phys.
Rev. Lett. 104, 136403 (2010).

8. Jose, K. V. J., Artrith, N. & Behler, J. Construction of high-dimensional neural
network potentials using environment-dependent atom pairs. J. Chem. Phys.
136, 194111 (2012).

9. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and
accurate modeling of molecular atomization energies with machine learning.
Phys. Rev. Lett. 108, 058301 (2012).

10. Montavon, G. et al. Machine learning of molecular electronic properties in
chemical compound space. New J. Phys. 15, 095003 (2013).

11. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical
environments. Phys. Rev. B 87, 184115 (2013).

12. Hansen, K. et al. Assessment and validation of machine learning methods for
predicting molecular atomization energies. J. Chem. Theory Comput. 9,
3404–3419 (2013).

13. Hansen, K. et al. Machine learning predictions of molecular properties:
accurate many-body potentials and nonlocality in chemical space. J. Phys.
Chem. Lett. 6, 2326–2331 (2015).

14. Rupp, M., Ramakrishnan, R. & von Lilienfeld, O. A. Machine learning for
quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett. 6,
3309–3313 (2015).

15. Bartók, A. P. & Csányi, G. Gaussian approximation potentials: a brief tutorial
introduction. Int. J. Quantum Chem. 115, 1051–1057 (2015).

16. Botu, V. & Ramprasad, R. Learning scheme to predict atomic forces and
accelerate materials simulations. Phys. Rev. B 92, 094306 (2015).

17. Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly
machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405
(2015).

18. Eickenberg, M., Exarchakis, G., Hirn, M., Mallat, S. & Thiry, L. Solid harmonic
wavelet scattering for predictions of molecule properties. J. Chem. Phys. 148,
241732 (2018).

19. Behler, J. Perspective: machine learning potentials for atomistic simulations. J.
Chem. Phys. 145, 170901 (2016).

20. De, S., Bartok, A. P., Csányi, G. & Ceriotti, M. Comparing molecules and
solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18,
13754–13769 (2016).

21. Brockherde, F. et al. Bypassing the Kohn-Sham equations with machine
learning. Nat. Commun. 8, 872 (2017).

22. Artrith, N., Urban, A. & Ceder, G. Efficient and accurate machine-learning
interpolation of atomic energies in compositions with many species. Phys. Rev.
B 96, 014112 (2017).

23. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized
interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

24. Bartók, A. P. et al. Machine learning unifies the modeling of materials and
molecules. Sci. Adv. 3, e1701816 (2017).

25. Glielmo, A., Sollich, P. & De Vita, A. Accurate interatomic force fields via
machine learning with covariant kernels. Phys. Rev. B 95, 214302 (2017).

26. Gastegger, M., Behler, J. & Marquetand, P. Machine learning molecular
dynamics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935
(2017).

27. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A.
Quantum-chemical insights from deep tensor neural networks. Nat. Commun.
8, 13890 (2017).

28. Yao, K., Herr, J. E. & Parkhill, J. The many-body expansion combined with
neural networks. J. Chem. Phys. 146, 014106 (2017).

29. Dral, P. O., Owens, A., Yurchenko, S. N. & Thiel, W. Structure-based
sampling and self-correcting machine learning for accurate calculations of
potential energy surfaces and vibrational levels. J. Chem. Phys. 146, 244108
(2017).

30. John, S. & Csányi, G. Many-body coarse-grained interactions using gaussian
approximation potentials. J. Phys. Chem. B 121, 10934–10949 (2017).

31. Huang, B. & von Lilienfeld, O. The “DNA” of chemistry: scalable quantum
machine learning with “amons”. Preprint at https://arxiv.org/abs/1707.04146
(2017).

32. Faber, F. A. et al. Prediction errors of molecular machine learning models
lower than hybrid DFT error. J. Chem. Theory Comput. 13, 5255–5264
(2017).

33. Huan, T. D. et al. A universal strategy for the creation of machine learning-
based atomistic force fields. NPJ Comput. Mater. 3, 37 (2017).

34. Schütt, K. et al. SchNet: a continuous-filter convolutional neural network for
modeling quantum interactions. Adv. Neural Inf. Process. Syst. 31, 991–1001
(2017).

35. Mardt, A., Pasquali, L., Wu, H. & Noé, F. VAMPnets for deep learning of
molecular kinetics. Nat. Commun. 9, 5 (2018).

36. Glielmo, A., Zeni, C. & De Vita, A. Efficient nonparametric n-body force fields
from machine learning. Phys. Rev. B 97, 184307 (2018).

37. Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics. Phys.
Rev. Lett. 120, 143001 (2018).

38. Lubbers, N., Smith, J. S. & Barros, K. Hierarchical modeling of molecular
energies using a deep neural network. J. Chem. Phys. 148, 241715
(2018).

39. Tang, Y.-H., Zhang, D. & Karniadakis, G. E. An atomistic fingerprint
algorithm for learning ab initio molecular force fields. J. Chem. Phys. 148,
034101 (2018).

40. Grisafi, A., Wilkins, D. M., Csányi, G. & Ceriotti, M. Symmetry-adapted
machine learning for tensorial properties of atomistic systems. Phys. Rev. Lett.
120, 036002 (2018).

41. Ryczko, K., Mills, K., Luchak, I., Homenick, C. & Tamblyn, I. Convolutional
neural networks for atomistic systems. Comput. Mater. Sci. 149, 134–142 (2018).

42. Kanamori, K. et al. Exploring a potential energy surface by machine learning
for characterizing atomic transport. Phys. Rev. B 97, 125124 (2018).

43. Pronobis, W., Tkatchenko, A. & Müller, K.-R. Manybody descriptors for
predicting molecular properties with machine learning: analysis of pairwise
and three-body interactions in molecules. J. Chem. Theory Comput. 14,
2991–3003 (2018).

44. Hy, T. S., Trivedi, S., Pan, H., Anderson, B. M. & Kondor, R. Predicting
molecular properties with covariant compositional networks. J. Chem. Phys.
148, 241745 (2018).

45. Smith, J. S. et al. Outsmarting quantum chemistry through transfer learning.
Preprint at https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_
Through_Transfer_Learning/6744440 (2018).

46. Yao, K., Herr, J. E., Toth, D. W., Mckintyre, R. & Parkhill, J. The TensorMol-
0.1 model chemistry: a neural network augmented with long-range physics.
Chem. Sci. 9, 2261–2269 (2018).

47. Chmiela, S. et al. Machine learning of accurate energyconserving molecular
force fields. Sci. Adv. 3, e1603015 (2017).

48. Wilson, E. Molecular Vibrations: The Theory of Infrared and Raman
Vibrational Spectra (McGraw-Hill Interamericana, São Paulo, Brasil, 1955).

49. Longuet-Higgins, H. The symmetry groups of non-rigid molecules. Mol. Phys.
6, 445–460 (1963).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06169-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3887 | DOI: 10.1038/s41467-018-06169-2 | www.nature.com/naturecommunications 9

https://arxiv.org/abs/1707.04146
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
www.nature.com/naturecommunications
www.nature.com/naturecommunications


50. Pachauri, D., Kondor, R. & Singh, V. Solving the multi-way matching problem
by permutation synchronization. Adv. Neural Inf. Process. Syst. 26, 1860–1868
(2013)

51. Schiavinato, M., Gasparetto, A. & Torsello, A. Transitive Assignment Kernels
for Structural Classification (Springer International Publishing, Cham,
Switzerland, 2015).

52. Kriege, N. M., Giscard, P.-L. & Wilson, R. C. On valid optimal assignment
kernels and applications to graph classification. Adv. Neural Inf. Process. Syst.
30, 1623–1631 (2016).

53. Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R. & Borgwardt, K. M.
Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010).

54. Ferré, G., Haut, T. & Barros, K. Learning potential energy landscapes using
graph kernels. J. Chem. Phys. 146, 114107 (2017).

55. Umeyama, S. An eigendecomposition approach to weighted graph matching
problems. IEEE. Trans. Pattern Anal. Mach. Intell. 10, 695–703 (1988).

56. Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res.
Logist. 2, 83–97 (1955).

57. González, L., Mó, O. & Yáñez, M. Density functional theory study on ethanol
dimers and cyclic ethanol trimers. J. Chem. Phys. 111, 3855–3861 (1999).

58. Durig, J. & Larsen, R. Torsional vibrations and barriers to internal rotation for
ethanol and 2, 2, 2-triuoroethanol. J. Mol. Struct. 238, 195–222 (1990).

59. Wassermann, T. N. & Suhm, M. A. Ethanol monomers and dimers revisited: a
Raman study of conformational preferences and argon nanocoating effects. J.
Phys. Chem. A 114, 8223–8233 (2010).

60. Durig, J., Bucy, W., Wurrey, C. & Carreira, L. Raman spectra of gases. XVI.
Torsional transitions in ethanol and ethanethiol. J. Phys. Chem. A 79, 988–993
(1975).

61. Poggio, T. & Anselmi, F. Visual Cortex and Deep Networks: Learning Invariant
Representations (MIT Press, Cambridge, MA, 2016).

62. Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in
representation learning. Inf. Inference 5, 134–158 (2016).

63. Bereau, T., DiStasio, R. A. Jr, Tkatchenko, A. & Von Lilienfeld, O. A. Non-
covalent interactions across organic and biological subsets of chemical space:
physicsbased potentials parametrized from machine learning. J. Chem. Phys.
148, 241706 (2018).

64. De Luna, P., Wei, J., Bengio, Y., Aspuru-Guzik, A. & Sargent, E. Use machine
learning to find energy materials. Nature 552, 23 (2017).

65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

66. Tkatchenko, A. & Scheffler, M. Accurate molecular van der waals interactions
from ground-state electron density and free-atom reference data. Phys. Rev.
Lett. 102, 073005 (2009).

67. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered
orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

68. Parrish, R. M. et al. Psi4 1.1: an open-source electronic structure program
emphasizing automation, advanced libraries, and interoperability. J. Chem.
Theory Comput. 13, 3185–3197 (2017).

69. Ceriotti, M., More, J. & Manolopoulos, D. E. i-PI: a python interface for ab
initio path integral molecular dynamics simulations. Comput. Phys. Commun.
185, 1019–1026 (2014).

70. Case, D. et al. Amber 2018 (The Amber Project, 2018).

Acknowledgements
We thank Michael Gastegger for providing the AMBER force fields. S.C., A.T., and K.-R.
M. thank the Deutsche Forschungsgemeinschaft (project MU 987/20-1) for funding this
work. A.T. is funded by the European Research Council with ERC-CoG grant BeStMo.
K.-R.M. gratefully acknowledges the BK21 program funded by the Korean National
Research Foundation grant (no. 2012-005741). Part of this research was performed while
the authors were visiting the Institute for Pure and Applied Mathematics, which is
supported by the NSF.

Author contributions
S.C. conceived and constructed the sGDML models. S.C., H.E.S., A.T., and K.-R.M.
developed the theory. H.E.S. and A.T. designed the analyses. H.E.S. performed the DFT
and CCSD(T) calculations and MD simulations. S.C. and H.E.S. created the figures, with
help from other authors. All authors wrote the paper, discussed the results and com-
mented on the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-06169-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06169-2

10 NATURE COMMUNICATIONS |  (2018) 9:3887 | DOI: 10.1038/s41467-018-06169-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1038/s41467-018-06169-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Towards exact molecular dynamics simulations with machine-learned force fields
	Results
	Symmetrized gradient-domain machine learning
	Forces and energies from GDML to sGDML@DFT to sGDML@CCSD(T)
	MD with ab initio accuracy

	Discussion
	Methods
	Reference data generation
	Molecular dynamics
	Bipartite matching cost matrix
	Training sGDML

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


