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Abstract

Image captioning is a challenging multimodal task. Significant improvements could be obtained by deep learning. Yet, 

captions generated by humans are still considered better, which makes it an interesting application for interactive machine 

learning and explainable artificial intelligence methods. In this work, we aim at improving the performance and explainability 

of the state-of-the-art method Show, Attend and Tell by augmenting their attention mechanism using additional bottom-up 

features. We compute visual attention on the joint embedding space formed by the union of high-level features and the low-

level features obtained from the object specific salient regions of the input image. We embed the content of bounding boxes 

from a pre-trained Mask R-CNN model. This delivers state-of-the-art performance, while it provides explanatory features. 

Further, we discuss how interactive model improvement can be realized through re-ranking caption candidates using beam 

search decoders and explanatory features. We show that interactive re-ranking of beam search candidates has the potential 

to outperform the state-of-the-art in image captioning.

Keywords Image captioning · Deep learning · Explainable artificial intelligence (XAI) · Visual explanations · Interactive 

machine learning (IML) · Beam search · Re-ranking

1 Introduction

The goal of image captioning is to automatically generate 

descriptions for a given image, i.e., to capture the relation-

ship between the objects present in the image, generate 

natural language expressions (see an example in Fig. 1), 

and judge the quality of the generated descriptions. The 

problem, therefore, is seemingly more difficult than popular 

computer vision tasks, e.g., object detection or segmenta-

tion, where the emphasis is solely on identifying the differ-

ent entities present in the image. With recent advancements 

in training neural networks [26], the availability of GPU 

computing power, and large datasets [31], neural network 

driven approaches are the most popular choice for handling 

the caption generation problem. However, humans are still 

better at interpreting images and constructing useful and 

meaningful captions, with or without a particular application 

context, which renders it an interesting applications for IML 

[10, 43] and explainable artificial intelligence (XAI) [11]. 

Promising technologies include active learning [41], which 

was already applied for automating the assessment of image 

captioning [4, 5], IML methods to incrementally train, e.g., 

re-ranking models for selecting the best caption candidate 

similar to [3, 39], and XAI methods that can improve the 

user’s understanding of a model and, eventually, enable it to 

provide better feedback for a second IML process.

In this work, we adopt and extend the architecture pro-

posed in [49] since it is the most cited seminal work in 

the area of image captioning. It introduced the encoder-

decoder architecture and the visual attention mechanism 

for image captioning in a simple yet powerful approach. 

Compared to [49] other captioning approaches are task 

specific, more complex and derivative in nature. Moreo-

ver, we believe the simplicity of the Show, Attend and 
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Tell model, compared to it’s other counterparts, would 

help to add explainability into the captioning task. This 

approach uses a transparent attention mechanism which, 

in the domain of sequence-to-sequence tasks, translates 

to the ability to dynamically select important features in 

the image instead of maintaining one feature represen-

tation for the image at all times. However, the selected 

image features on which the attention mechanism works 

are obtained from a deep convolutional encoder which 

mostly capture high-level image abstractions and not the 

low-level object specific details. These high-level features 

are top-down in nature since their primary purpose is to 

provide context for the decoder in producing the next word 

based on the partially generated caption. In doing so, these 

features often fail to attend and provide direct visual cues, 

i.e., specific object details, to the decoder. We explore the 

possibilities to make this attention mechanism more effec-

tive, in particular towards novel IML and XAI approaches, 

by implementing a combination of top-down image fea-

tures and bottom-up object specific details.

We discuss a novel augmentation of the attention mecha-

nism in [49] with bottom-up features, in terms of localiza-

tion maps encoded in the feature space obtained by the deep 

convolutional encoder (see Fig. 2). For each input image, 

we embed the content of a constant number of localized 

bounding boxes from a pre-trained Mask R-CNN model [13] 

for augmenting the attention mechanism from [49]. We use 

Resnet-101 [14] pre-trained on the Imagenet dataset [7] for 

extracting fixed size feature vectors per bounding box. The 

resulting set of vectors represents object specific salient 

regions of the input image.

Further, we compute visual attention on the joint embed-

ding space formed by the union of high-level features 

obtained from the encoder of the caption generator and the 

low-level features obtained from our object specific encod-

ing of salient regions of the input image. We show that with 

our approach we obtain better Bleu scores compared to the 

original scores in [49], specifically, we obtain higher scores 

in Bleu-2, Bleu-3, Bleu-4 metrics. In a separate experiment, 

we use beam search to expand the search space of the associ-

ated natural language generation problem [32]. Beam search 

is a greedy tree search algorithm which sorts possible lan-

guage generations based on a heuristic and keeps the best k 

options with k being the beam width. We show that effective 

re-ranking of caption candidates from a beam search decoder 

has a huge potential for improving results. Further, we dis-

cuss how interactive model improvements and explainability 

can be obtained.

To summarize our contributions: first, we implement a 

novel image captioning architecture that augments the visual 

attention mechanism introduced by [49]. We show that our 

approach achieves comparable or better results on the image 

captioning task compared to Show, Attend and Tell, while it 

Fig. 1  Image with caption generated using our approach: “a group of 

people riding on top of an elephant”

Fig. 2  Caption generation with augmented visual attention
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offers more explanatory cues for XAI at the same time. Sec-

ond, we show the potential of an implemented beam search 

generation process and how it improves the resulting cap-

tions by interactively re-ranking the candidates. Third, we 

discuss how our architecture can be used for novel IML and 

XAI approaches. We describe several directions of future 

work, concerning the bottom-up features and beam search 

results and the challenges towards explanatory interactive 

image captioning.

2  Related Work

Recently there has been renewed interest in the problem of 

image captioning in spite of considerable focus in the recent 

past on language grounding in perceptual data [12, 33, 38]. 

This is due to a wider push to investigate the intersection 

between vision and language. In this work, the caption gen-

eration method employs the neural framework proposed in 

[6] where instead of translating text from one language to 

another, an image is translated into a caption or sentence 

that describes it. In general, the image caption generator 

is a neural architecture consisting of a deep convolutional 

network [17] and a recurrent network [16]. Kiros et al. [24, 

25] is credited with the first attempt in this direction where 

the authors develop a joint multimodal embedding space 

and provide a natural way of performing both ranking and 

generation. As a slight modification, the works of [9, 47] 

employ LSTMs (Long Short Term Memory) instead of regu-

lar recurrent neural networks. Karpathy et al. [22], on the 

other hand, advocates learning a joint embedding space for 

both ranking and generation. As a matter of fact, their model 

learns to score sentence and image similarity as a function 

of convolutional network object detection with outputs of a 

bidirectional RNN (Recurrent Neural Network).

The caption generation problem also is a structured learn-

ing problem since both the input and output of this problem 

have a rich structure. That is, the image of a natural scene 

is made up of multiple random variables, such as, the posi-

tion of objects and their inter relationships and all of them 

have a rich joint distribution. Moreover, there needs to be 

an alignment between the output words of a caption with the 

spatial regions of the input image. So, to properly address 

the structured nature of this problem, we make use of an 

attention mechanism in our work. Hence, we have adopted 

the Show, Attend and Tell architecture by Xu et al. [49] 

which uses attention to generate the captions for images. 

The attention mechanism tries to learn the latent alignments 

between the objects in the image and output words of the 

caption or sentence from scratch. Thus, they learn to attend 

to the higher level dependencies between different entities 

present in the image. It is worthwhile to note that the use of 

an attention mechanism with neural networks is not entirely 

new. In fact, in the computer vision community there exists 

some works, such as, [8, 27] which employed attention with 

neural networks to handle different vision tasks.

In general, the attention mechanism operates on a grid 

of image features obtained from a layer of a convolutional 

neural network, where each feature represents a high-level 

abstraction of a region in the image, and provides a weight-

ing for each spatial region. There by, a higher weight would 

translate to more importance for the corresponding image 

region. However, often times it is difficult to find the opti-

mal number of image regions which should capture all the 

relevant details in the image. Additionally, the high-level 

image features may fail to capture the finer object specific 

details or low-level salient regions in the image. So in our 

approach, we try to augment the attention mechanism by 

combining low-level fine details in the image with the high-

level image abstractions. Previously, only a couple of works 

[19, 36] have tried to use salient image regions. The work 

in [19] utilizes a search technique proposed in [45] to iden-

tify salient image regions which are subsequently used in 

image captioning. Pedersoli et al. [36], on the other hand, 

uses spatial transformer networks [18] or edge-based boxes 

[50] for generating image features which are processed using 

a model based on three bilinear pairwise interactions. In our 

work, for the purpose of generating object specific local-

ized maps or salient regions, we utilize the Mask R-CNN 

[13], a close variant of the Faster R-CNN [37] technique. 

We extract the image regions inside the bounding boxes and 

embed them into the feature space learned by a pre-trained 

deep convolutional network.

Image caption generation, in addition to being an impor-

tant task in computer vision, is also a major problem in the 

area of natural language generation which requires proper 

evaluation. The common criteria here include readability or 

fluency, which refer to the linguistic quality of the text, and 

also accuracy or relevance relative to the input which shows 

the natural language generating system’s ability to satisfac-

torily reproduce content. In our evaluation we use standard 

metrics, such as Bleu [34], ROUGE [30], METEOR [2], 

CIDEr [46] and SPICE [1] which try to emulate human 

judgement.

3  Implementation

In this section, we describe our implementation of the neu-

ral encoder-decoder architecture for generating image cap-

tions based on [49] and our extension of the visual attention 

mechanism: we use bounding boxes from Mask R-CNN [13] 

to encode object specific bottom-up features which comple-

ment the currently used top-down representation. Further, 

we describe our beam search decoder and two heuristic 

approaches for re-ranking its generated caption candidates.
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3.1  Image Caption Generation

For generating the image captions, we use an own implemen-

tation of the Show, Attend and Tell method [49] as depicted 

in Fig. 3, with several modifications for extensions. Xu et al. 

[49] suggested to use a set of fixed dimensional vectors from 

a lower convolution layer of the CNN (Convolutional Neural 

Network) architecture instead of using a single fixed dimen-

sional vector to represent the image. This helps to maintain a 

fine grained correspondence between the different portions of 

a 2D image represented through the corresponding vectors. 

With this the decoder becomes more powerful as it can focus 

selectively on different parts of an image during the genera-

tion process by selecting a subset of the feature vectors. The 

detailed operations of the LSTM based decoder, used in [49] 

for generating the captions, are described through the follow-

ing equations:

The variables i
t
 , ft , ct
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t
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t
 denote input, forget, memory, 
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⊙ represent the logistic sigmoid and element-wise multipli-

cation respectively. The model implementation and training 

details are as follows:

• We use the MSCOCO dataset for training the model [31], 

adopting the data splits proposed in [21]: the training set 

contains 113,287 images with 5 corresponding captions, 

the validation and test sets contain 5000 images each 

with 5 groundtruth captions per image.

• We build our vocabulary by dropping word types with a 

frequency < 5 , resulting in a vocabulary of size = 10,000 

words.

• The dimensions for the LSTM hidden state, image, word 

and attention embeddings are set to 512 for our model.

• We train our model under the cross entropy objective, 

using the ADAM [23] optimizer.

• We use the PyTorch [35] framework for our implementa-

tion and the RESNET-101 [15] neural architecture with 

101 layers for extracting image features.

• We do not perform any pre-processing on the images by 

way of cropping or rescaling them. Instead we utilize the 

final convolution layer of Resnet for encoding the full 

image.

• We apply spatially adaptive max-pooling which results 

in a fixed size output of 14 × 14 × 2048.

3.2  Augmented Attention Mechanism

The visual attention mechanism used in image captioning 

models can be described as the expectation of an annotation 

function. In general, this expectation is computed over a set 

of image features and the previous history of the genera-

tion process. This form of attention works primarily with 

high-level abstractions captured by the convolution network 

which may or may not include specific objects and salient 

regions in the image. We propose a strategy to enrich the 

Fig. 3  Neural caption generation mechanism based on [49] depicting the processing of a red double decker bus
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present attention mechanism by incorporating object-spe-

cific localized maps from the region proposal network Mask 

R-CNN [13] (see Fig. 4 for examples).

We represent an input image I as a set which 

includes a constant number of fixed size feature vectors: 

I = {f1, f2,… , fn} , fi ∈ ℝ
d . Each feature vector represents 

the encoding of a bounding box detected by Mask R-CNN 

that is encoded using the Resnet-101 model. At every spatial 

location of an image, Mask R-CNN predicts an objectiveness 

score accompanied by refinement of anchor boxes of vary-

ing scales and aspect ratios which result in tighter bounding 

boxes. These bounding boxes are further refined using non-

maximum suppression: 

1. We extract the image regions inside the final bounding 

boxes and embed them into the feature space learned by 

Resnet-101 pre-trained on the Imagenet dataset.

2. We re-train Resnet-101 on MSCOCO images and set a 

high threshold for the classification probability for the 

regions to be selected.

3. In contrast to the original architecture in [49], we com-

pute visual attention on the joint embedding space 

formed by the union of high-level features obtained from 

the encoder of the caption generator and the low-level 

features obtained from the object specific salient regions 

of the input image, i.e., the embedded bounding boxes.

The augmented attention mechanism is shown in Fig. 2. For 

every image we use 10 additional feature vectors of dimen-

sion 2048 to represent the salient regions. Thus, at every 

time-step, our attention model produces a mask over 206 

spatial locations. This mask is applied to a set of image fea-

tures and then the result is spatially averaged to produce 

a 2048 dimensional representation of the attended portion 

of the image. Most hyper-parameters of the training proce-

dure stay the same. The initial learning rate for this model 

is 4 × 10
−4 which is annealed by a factor of 0.8 every three 

epochs. Further, we use batch size of 32. We evaluate the 

model at each epoch on the development set.

3.3  Beam Search and Re‑ranking

Beam search [32] as a decoding technique allows for the 

generation of a more diverse set of caption candidates. A 

previous investigation [4, 5] has shown that beam search 

is to be preferred over other techniques such as [28, 29] 

for generating diverse captions. We use a beam width of 

k = 20 to generate caption candidates that can be re-ranked 

in an additional step. To estimate the potential improvement 

for our caption generation method through re-ranking, we 

compute the upper bound of Bleu scores using the scores 

of all generated candidates. Our long-term goal is to lev-

erage the objects, or their respective embeddings, detected 

by Mask R-CNN for such a re-ranking. In this work, we 

implement and test two heuristic re-ranking methods that 

rely on the similarity between the generated captions and 

the corresponding object classes: we estimate the similarity 

using the Euclidean distance with (1) bag-of-words and (2) 

TF-IDF based text representations.

4  Evaluation

In this section, we evaluate the image caption generation 

process, the extended attention mechanism, and the beam 

search and re-ranking approach. We compare the perfor-

mance of our approach with and without beam search to the 

scores reported in [49]. Further, we investigate the potential 

improvement that can be achieved by the re-ranking of cap-

tion candidates of our beam search decoder.

We compute a set of common metrics as dependent 

variables: Bleu, METEOR, ROUGE-L, CIDEr and SPICE, 

which primarily focus on the n-gram overlap between the 

Fig. 4  Object-specific salient regions highlighted with corresponding bounding boxes as bottom-up features
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generated and ground truth captions. To be more specific, 

we provide short descriptions for each metric.

Bleu is an automatic metric for evaluating the quality 

of a machine generated text. Bleu scores are computed 

from individual machine generated sentences by direct 

comparison between them and with a set of good quality 

references or ground truth references. It is always between 

0 and 1 and indicates the similarity between the generated 

captions and the ground truth. So, a score of 0 indicates no 

overlap whereas 1 indicates complete overlap. Depending 

on the size of the n-grams we want to match between the 

candidate caption and the ground truth captions we have 

different BLEU scores, i.e, Bleu-1, Bleu-2, Bleu-3, Bleu-4.

METEOR is a metric for evaluating outputs from a 

machine translation system. The metric is based on the 

harmonic mean of unigram precision and recall, where, 

recall is weighted higher than precision. METEOR uses 

features, such as, stemming and synonymy matching along 

with the standard exact word matching. ROUGE-L meas-

ures the longest matching sequence of words. An advan-

tage of it is that it does not require consecutive matches 

but in-sequence matches that reflects sentence level order. 

One does not require a predefined n-gram length since 

it automatically includes longest in-sequence common 

n-grams. CIDEr denotes Consensus based Image Descrip-

tion Evaluation. It measures the similarity of a generated 

sentence against a set of ground truth sentences composed 

by humans and shows high agreement with consensus as 

assessed by humans. While SPICE stands for semantic 

propositional image caption evaluation.

The upper bounds for our architecture are estimated by 

sorting the generated caption candidates from the beam 

search by their Bleu-1 to Bleu-4 scores, i.e., assuming we 

had access to a perfect re-ranking. For all tests, we use the 

MSCOCO dataset [31] using the data splits as described 

above.

We hypothesize that our approach improves the cap-

tion generation process and, hence, outperforms the scores 

reported in Xu et al. [49].

Another hypothesis is that re-ranking of beam search 

candidates has a high potential for improving image 

captions and that our heuristic approaches supports this 

conjecture.

Finally, we expect that our approach paves the way for 

novel IML and XAI methods that can be used to further 

improve the image captioning results. We qualitatively dis-

cuss this topic based on the results of this experiment.

4.1  Results

Table 1 shows the scores of the three approaches we evalu-

ated. Our approach without beam search obtains higher 

scores Bleu-2, Bleu-3, Bleu-4, measuring bi-gram, tri-gram 

and tetra-gram overlaps than the baseline approach [49]. 

This is a significant improvement because the Bleu met-

ric computation does not remove stop words and so higher 

scores should lead to more natural and pertinent genera-

tions. The Bleu-1 and METEOR scores are on par with the 

baseline approach. Additionally, we obtain high scores in 

ROUGE-L and CIDEr; unfortunately we cannot compare 

these results with the those from the baseline approach [49] 

since the original baseline does not report on these metrics.

Naturally, the results for the top-1 captions (beam search 

approach) are worse than the scores for the version without 

beam search. In particular, the scores for Bleu-3 and Bleu-4 

are significantly worse (see Sect. 5 for an extensive discus-

sion about this).

In addition to these quantitative results, we visually 

inspect generated captions from our approach without beam 

search and our baseline implementation based on [49] (see 

Fig. 5). A third caption is shown, which was selected from 

the 20 beam search candidates which have a zero Bleu-4 

score (beam candidate). Obviously, the Beam metric, which 

the international leader board uses, does not work properly 

on their own gold standard. To summarize, all generated 

captions distinctly describe the objects and their inter rela-

tionships in the corresponding images in natural language 

text. Our approach correctly aligns the image concepts, i.e., 

the objects with the output words in the generated captions. 

A more detailed qualitative analysis of generated captions 

can be found in the discussion Sect. 5. Further examples 

from the beam search decoder are shown in the Appendix 

Table 3, where we show all 20 generations for randomly 

selected images from the test set, along with the 5 ground 

truth captions.

The upper bounds for Bleu-1 to Bleu-4 metrics and the 

results from our heuristic re-ranking methods are reported 

in Table 2. The upper bounds are reported for top-i candi-

dates from our beam search decoder with i ∈ 3, 5, 10, 20 . 

The re-ranking methods perform slightly better compared 

Table 1  Different metrics computed for the captions generated on the MSCOCO test set

The values in bold represent higher scores

Classifier Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr SPICE

Xu et al. [49] 0.707 0.492 0.344 0.243 0.239 – – –

our approach (no beam search) 0.706 0.528 0.382 0.275 0.238 0.515 0.872 0.167

our approach (beam search top-1) 0.685 0.493 0.307 0.17 – – – –
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to the top-1 result, but with the same deterioration for 

Bleu-3 and Bleu-4 compared to our approach without 

beam search. We observe much better Bleu scores for the 

upper bounds compared to any other method, in particular 

for i = 20 : a plus of 0.153 for Bleu-1, 0.205 for Bleu-2, 

0.225 for Bleu-3, and 0.199 for Bleu-4 when compared 

to Table 1.

5  Discussion

5.1  Qualitative Analysis

Our approach without beam search outperforms the 

state-of-the-art method from [49] for several metrics and 

Fig. 5  Generated image captions with our approach (without beam search), the Show, Attend and Tell method and one of the beam candidates 

with zero Bleu-4 score
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achieves similar scores for the remaining metrics (see 

Table 1). In particular, we achieve better Bleu scores with 

long n-grams, i.e., 3-grams and 4-grams, showing a better 

alignment to formulations in the ground truth captions. 

This latent alignment is important because neural caption 

generation is often regarded as translating an image into 

a natural language description. Together with the qualita-

tive analysis (visual inspection) of generations, this shows 

that our architecture can effectively produce meaningful 

image captions. Results, as shown in Table 1 and com-

pared to [49], suggest that particular localized information 

in conjunction with the high-level features obtained from 

deep convolutional encoder improves the correspondence 

resolution problem (i.e., image and word entity alignment) 

at the heart of this multimodal task. The results underline 

the positive influence of bottom-up features (or object 

specific localized maps) for the image captioning task; 

also they deliver explainable features. We note that the 

application of Mask R-CNN [13] in obtaining the local-

ized maps or salient regions in our work puts in an impor-

tant step towards better exposition of the object features 

involved in the caption generation process compared to 

previous approaches including [49] which only uses high 

level image abstractions, i.e., the top-down features. The 

specific object masks in addition to the bounding boxes 

provide important explanatory cues for the generated text 

describing the corresponding image as is shown in Fig. 6 

where bounding boxes help localize the white refrigera-

tor and stove present in the generated caption. Similarly, 

for the other image in Fig. 6 the context for the gener-

ated caption is provided by bounding boxes localizing the 

man, woman and wine glasses. We believe the proposed 

approach is a good step in the direction of infusing image 

caption generation with explainable AI.

In addition, we use our beam search decoder for gener-

ating a more diverse set of caption candidates. Averaging 

over all test images, we computed the upper bounds for all 

Bleu metrics. For i = 20 , i.e., including all caption candi-

dates from the beam search with beam width k = 20 , all Bleu 

scores potentially outperform the state-of-the-art method and 

our method without beam search by 0.196 (average over all 

Bleu metrics). We find that the scores increase with higher 

values of k which is probably caused by a higher recall due 

to more captions from which the Bleu score can be selected. 

Of course, this gain in Bleu scores motivates an optimal 

method for selecting from the 20 candidates and indicates 

a high potential of re-ranking methods. The results from 

our evaluation show that simple heuristics-based re-ranking 

methods do not improve the caption selection process con-

siderably. This leaves the challenge to future research, i.e., 

Table 2  Bleu scores for the two 

re-ranking approaches based 

on bag-of-words (BoW) and 

TF-IDF and the estimated upper 

bounds for Bleu scores, i.e., top-

i are ranked according to Bleu-1 

to Bleu-4 scores

The values in bold represent higher scores

i Metric Re-ranking Upper bounds

BoW TF-IDF Bleu-1 Bleu-2 Bleu-3 Bleu-4

20 Bleu-1 0.701 0.694 0.860 0.845 0.830 0.823

Bleu-2 0.509 0.502 0.691 0.733 0.725 0.716

Bleu-3 0.321 0.315 0.513 0.587 0.607 0.603

Bleu-4 0.177 0.173 0.349 0.427 0.462 0.474

10 Bleu-1 0.701 0.695 0.839 0.826 0.816 0.810

Bleu-2 0.509 0.501 0.666 0.704 0.698 0.692

Bleu-3 0.319 0.313 0.482 0.548 0.565 0.562

Bleu-4 0.177 0.172 0.318 0.386 0.412 0.422

5 Bleu-1 0.697 0.691 0.801 0.792 0.784 0.781

Bleu-2 0.506 0.498 0.626 0.654 0.649 0.646

Bleu-3 0.317 0.310 0.438 0.485 0.500 0.498

Bleu-4 0.174 0.169 0.277 0.323 0.341 0.347

3 Bleu-1 0.695 0.690 0.768 0.762 0.756 0.755

Bleu-2 0.504 0.498 0.591 0.611 0.608 0.606

Bleu-3 0.316 0.312 0.402 0.434 0.445 0.444

Bleu-4 0.175 0.173 0.246 0.274 0.287 0.291

Fig. 6  Explanatory cues provided by localized object masks for one 

of the generated beam candidate captions
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to develop re-ranking methods that optimize the caption 

selection over the top-k results and, hence, approximate the 

upper bound of the caption generation pipeline. Examples 

include interactive training of a re-ranking model using the 

bottom-up features from Mask R-CNN as additional input 

(see Sect. 5.2.1).

Without a selection or re-ranking, the top-1 candidate 

from beam search yields worse results compared to all other 

methods. This phenomenon is well understood, beam search 

expands the search space for the natural language generation 

which does not guarantee that the first generation has the 

best overlap with the ground truth captions. This, however, is 

measured by the Bleu metric and can affect the correspond-

ing scores. The examples in Figs. 5 and 7 show semantically 

meaningful and fluent generations originating from the beam 

search with zero Bleu-4 score, which further demonstrates 

some shortcoming of the Bleu metric in this regards. More 

examples can be seen in the Appendix in Table 3. Com-

pared to greedy decoding which is locally optimal, can-

didates obtained from beam search may contain different 

words compared to corresponding ground truths which can 

dramatically harm Bleu scores since they measure only the 

overlap with the ground truths without taking into account 

the semantic meaning of the generations.

However, beam search alone and re-ranking with two 

heuristic methods (based on bag-of-words and tf-idf) turn 

out to fail in improving the overall scores. But we believe our 

approach with its use of Mask R-CNN producing bottom-

up features provides new opportunity for making image-

captioning an IML task apart from only generating captions 

which achieve higher metric scores.

5.2  Towards Interactive and Explanatory 
Captioning

Based on our findings, we believe that our image caption-

ing system with its augmented attention mechanism and the 

beam search decoder has the potential to facilitate interac-

tive improvement of the captioning system and to improve 

the explainability of the caption generation process. In the 

following, we describe opportunities and challenges for 

future research in this direction.

5.2.1  Interactive Re‑ranking

Effective re-ranking can leverage the inherent potential of 

the beam search decoder to improve generated image cap-

tions. Besides the output of diverse image captions, our 

architecture yields several opportunities for user interaction 

such as interactive training of a caption re-ranking model: 

The additional bottom-up features can be used as input to 

a re-ranking that learns from continuous user feedback to 

score the 20 generated caption candidates. Corrective feed-

back to the model can be realized by selecting relevant areas 

of the image, that are important for generating the caption, 

based on the Mask R-CNN bounding boxes. This enables 

users to easily change the focus for the generation process, 

e.g., if the model wrongly puts emphasis on an irrelevant 

object. The challenge lies in the development of interac-

tive machine learning (IML) mechanisms that facilitate 

efficient and effective model training, i.e., that model train-

ing requires low annotation effort, is scalable and, yet, con-

verges to a model that improves image captioning. Active 

learning can be used to reduce the annotation effort for the 

humans involved in that process or, due to a better selection 

of training samples from an unlabelled pool, improving the 

overall quality of the model [41]. Including active learning 

techniques was shown to be effective for different natural 

language processing tasks, e.g., for reducing the number of 

training samples in machine translation without a loss in 

quality [20] and for training quality assessment models for 

image captioning [5]. The latter model for caption quality 

assessment can also be used as a baseline for a future re-

ranking system. Crowdsourcing can scale up the annotation 

process as shown for, e.g., dialogue systems [3, 39, 48] and 

in the context of image captioning [4, 5]. Promising tech-

niques for improving caption generation can also be found 

in coactive learning [42].

5.2.2  XAI Methods for Image Caption Generation

We discuss different future extensions of our work pertain-

ing to domain of XAI methods, particularly through deep 

explanations. The field of deep explanations subsumes 

methods that introduce more transparency in how black 

box models, in particular neural network models, work. A 

prominent approach is to generate visual explanations which 

describe how the objective is achieved by the neural model. 

Our approach provides a relation between image captions, 

bounding boxes, and pixel-wise segmentations from Mask 

R-CNN that localize regions that are important to the gen-

eration process. An interesting direction of future work is 
Fig. 7  Correctly generated one of the beam candidate captions with 

zero Bleu-4 score
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to develop segmentation-based visual explanation methods 

and to compare them with state-of-the-art approaches like 

Grad-Cam [40].

The specific object masks in addition to the bounding 

boxes provide important explanatory cues for the gener-

ated text describing the corresponding image as is shown 

in Fig. 6 where bounding boxes help to localize the white 

refrigerator and stove present in the generated caption. Simi-

larly, for the other image in Fig. 6 context for the generated 

caption is provided by bounding boxes localizing the man, 

woman and wine glasses. This can also be used as an exten-

sion to interactive re-ranking, e.g., as a part of explanatory 

interactive machine learning interfaces [44].

6  Conclusion

In this work, we presented a new architecture for image cap-

tioning that incorporates a top-down attention mechanism 

with bottom-up features of a scene: we encoded the object 

specific bounding boxes provided by the Mask R-CNN 

model [13] using the Resnet-101 architecture [14]. We 

show that our approach achieves scores on par with the state-

of-the-art, Show, Attend and Tell [49], for the Bleu-1 and 

METEOR metrics, and better scores for the Bleu-2, Bleu-3 

and Bleu-4 metrics using the MSCOCO dataset, while at 

the same time, providing explanatory features. In addition, 

we showed that using our beam search decoder has great 

potential for further improvements of the image captioning 

process. We discussed opportunities in interactive machine 

learning for leveraging this potential, in particular by inter-

actively training re-ranking models that effectively select the 

best options from the generated caption candidates. Further, 

we discussed how XAI method can be developed based on 

our image captioning system to better understand the image 

captioning process, which in turn delivers valuable feedback 

to users of such intelligent user interfaces for incremental 

model improvements.
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Table 3  Image caption candidates from our the beam search decoder
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