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A weakness of classical methods for solving Markov de-
cision processes is that they scale very poorly because of
the flat state space, which subjects them to thecurse of di-
mensionality. Fortunately, many MDPs are well-structured,
which makes it possible to avoid enumerating the state
space. To this end,factored MDP representations have
been proposed (Boutilier, Dearden, & Goldszmidt 1995;
Koller & Parr 1999) that model the state space as a cross
product of state features, represent the transition function
as a Bayesian network, and assume the rewards can be ex-
pressed as sums of compact functions of the state features.

A challenge in creating algorithms for the factored rep-
resentations is that well-structured problems do not always
lead to compact and well-structured solutions (Koller & Parr
1999); that is, an optimal policy does not, in general, retain
the structure of the problem. Because of this, it becomes
necessary to resort to approximation techniques. Approxi-
mate linear programming (ALP) has recently emerged as a
very promising MDP-approximation technique (Schweitzer
& Seidmann 1985; de Farias & Roy 2003). As such, ALP
has received a significant amount of attention, which has
led to a theoretical foundation (de Farias & Roy 2003) and
efficient solution techniques (e.g., (de Farias & Roy 2004;
Guestrinet al. 2003; Patrascuet al. 2002)). However, this
work has focused only on approximating theprimal LP, and
no effort has been invested in approximating thedual LP,
which is the basis for solving a wide range of constrained
MDPs (e.g., (Altman 1999; Dolgov & Durfee 2004)).

Unfortunately, as we demonstrate, linear approximations
do not interact with the dual LP as well as they do with
the primal LP, because the constraint coefficients cannot
be computed efficiently (the operation does not maintain
the compactness of the representation). To address this,
we propose an LP formulation, which we call acomposite
ALP, that approximates both the primal and the dual op-
timization coordinates (the value function and the occupa-
tion measure), which is equivalent to approximating both
the objective functions and the feasible regions of the LPs.
This method provides a basis for efficient approximations
of constrained MDPs and also serves as a new approach to
a widely-discussed problem of dealing with exponentially
many constraints in ALPs, which plagues both the primal
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and the dual ALP formulations alone. As viewed from the
latter point of view, the benefit of our composite-ALP ap-
proach, which symmetrically approximates the primal and
dual coordinates, is that in some domains it might be easier
to choose good basis functions for the approximation than it
is to find good values for the parameters required by other
approaches (e.g., a sampling distribution over the constraint
set as used in (de Farias & Roy 2004)).

MDPs and Primal ALP
A standard MDP can be described as〈S,A, p, r〉, where:
S = {i} is a finite set of states,A = {a} is a finite set of
actions,p = [piaj ] : S × A × S 7→ [0, 1] defines the tran-
sition function, andr = [ria] : S × A 7→ R defines the
rewards. A solution to such an MDP is a stationary, history-
independent, deterministic policy. One way of solving a dis-
counted MDP is to formulate it as the following minimiza-
tion LP in the value function coordinatesvi:

min
∑

i

αivi

∣∣∣ vi ≥ ria + γ
∑

j

piajvj , (1)

or, as an equivalent dual:

max
∑
i,a

riaxia

∣∣∣ ∑
a

xja − γ
∑
i,a

xiapiaj = αj , xia ≥ 0,

wherex is called theoccupation measure(xia is the ex-
pected discounted number of timesa is executed ini).

Approximate linear programming (Schweitzer & Seid-
mann 1985; de Farias & Roy 2003) aims to approximate
the primal LP (1) by lowering the dimensionality of the
problem by restricting the space of value functions to a
linear combination of predefined basis functionsh:

v(~z) =
∑

k

hk(~zk)wk ⇐⇒ v = Hw, (2)

wherehk(~zk) is thekth basis function defined on a subset of
the state features~zk ⊆ ~z, andw are the new optimization
variables. Thus, LP (1) can be approximated as:

minαT Hw
∣∣ AHw ≥ r, (3)

where we introduce a constraint matrixAia,j = δij − γpiaj

(whereδij = 1 ⇔ i = j). The key property of this approx-
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imation is that the objective function coefficientsαT H and
the constraint coefficients for each state-action pair(AH)ia

can be computed efficiently (Guestrinet al. 2003). The pri-
mal ALP (3) reduces the number of optimization variables
from |S| to |w|, but the number of constraints remains expo-
nential at|S||A|. To mitigate this, several techniques have
been proposed, such as sampling (de Farias & Roy 2004)
and exploiting problem structure (Guestrinet al.2003).

Dual ALP
As mentioned above, we would like to extend this approach
to the dual LP, which is better suited for constrained MDPs.
By straightforwardly applying the techniques used in the
primal-ALP, we could restrict the optimization to a subset
of the occupation measures that are spawned by a certain
basisx = Qy, yielding the following approximation:

max rT Qy
∣∣AT Qy = α, Qy ≥ 0. (4)

At a superficial level, this ALP looks very similar to ALP
(3). However, their properties differ significantly.

As with any approximate method, an important question
is how close it is to the exact solution. It is known (de Farias
& Roy 2003) that the primal ALP is equivalent to a pro-
gram that minimizes anL1-norm of the difference between
the approximation and the optimal value function. We can
similarly show that (4) is equivalent to an LP that minimizes∑

i,a ria

[
x∗ia−(Qy)ia

]
, a measure of distance to the optimal

occupation measurex∗. However, this is not a norm (just a
weighted sum of signed errors) and thus does not provide
the same degree of comfort about convergence results (large
positive and negative errors might cancel out).

The second important question is whether the objective-
function and the constraint coefficients in (4) can be com-
puted efficiently. It turns out that the former can, but the lat-
ter cannot, and therein lies the biggest problem of the dual
ALP. This is due to the difference between the left-hand-
side operatorA(·), as used in the primal ALP (AH), and
the right-hand-side operator(·)A, as used in the dual ALP
(QT A). The former can be computed efficiently, because∑

a P (a|b) = 1 and a product of such terms drops out,
while the latter cannot, since a product of terms of the form∑

b P (a|b) is not as easy to compute efficiently.

Composite ALP
The primal ALP approximates the primal variablesv, which
is equivalent to approximating the feasible region of the
dual; the dual does the opposite. We can combine the two
approximations, by substitutingx = Qy into the dual of (3):

max rT Qy
∣∣∣HT AT Qy = HT α, Qy ≥ 0. (5)

This ALP still has|S||A| constraints (inQy ≥ 0), but this
can be dealt with in several ways: for example, using the
constraint-reformulation method of (Guestrinet al.2003) or
by only considering non-negative basesQ, and replacing the
constraints with strictery ≥ 0 (which introduces another
source of approximation error).

The benefit of the composite ALP is that it combines the
efficiency gains of the primal and the dual LPs: besides the
Qy ≥ 0 constraints that can be dealt with as above, it has
only |y| variables and|w| constraints. Furthermore, the con-
straint coefficients inHT AT Q can be computed efficiently
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Figure 1:Composite ALP: quality (a), efficiency (b).

(despite the problematic dual approximationAT Q) by first
applying the primal approximation and then the dual to the
result:(HT AT )Q. The composite ALP can be viewed as an
alternative method to constraint sampling (de Farias & Roy
2004): instead of throwing out all but a small subset of the
constraints, we are applying a more general transformation
of the feasible region into a smaller-dimensional space.

We implemented the composite ALP and evaluated it
on several unconstrained MDPs, including the “SysAdmin”
problem from (Guestrinet al. 2003), the results for which
we report here. To ensure feasibility of (5), we introduced
free variables|e| ≤ ε, changed the equality constraints to
HT AT Qy + e = HT α, and iteratively relaxedε until the
ALP became feasible. Figure 1a shows the value of policies
obtained by the composite and the primal ALPs, compared
to the exact solution (with random and worst policies shown
for comparison); the mean value of policies produced by the
composite ALP was88% of the optimal-random gap, and
the difference between the primal and the composite ALPs
was around7%. The number of primal and dual basis func-
tions used scaled linearly with the number of world features;
Figure 1b shows the relative efficiency gains, expressed as
the ratio of the size of the constraint matrix in exact LP (1)
to the one in the composite ALP (5). The main benefit of the
composite ALP comes from its applicability to constrained
MDPs; our preliminary experiments indicate that it might
perform competitively on unconstrained MDPs as well.
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