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Abstract

It has been long speculated that expression of emotions from different modalities have the same underlying

‘code’, whether it be a dance step, musical phrase, or tone of voice. This is the first attempt to implement this

theory across three modalities, inspired by the polyvalence and repeatability of robotics. We propose a unifying

framework to generate emotions across voice, gesture, and music, by representing emotional states as a

4-parameter tuple of speed, intensity, regularity, and extent (SIRE). Our results show that a simple 4-tuple can

capture four emotions recognizable at greater than chance across gesture and voice, and at least two emotions

across all three modalities. An application for multi-modal, expressive music robots is discussed.
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1 Introduction

Music robots have succeeded in entertaining and enthral-

ling audiences around the world with their virtuoso per-

formances. Take Shimon [1], a music robot that has

toured Europe and the United States–this robot plays the

marimba and interacts harmoniously with human musi-

cians on stage. LEMUR bots, orchestrated teams of robot

musicians, play complicated scores for piano and percus-

sion with perfect timing, synchronization and repeatability

[2]. In Japan, a flute-playing robot [3] plays Flight of the

Bumblebee with speed, precision, and endurance compar-

able to the world’s top human flutists. From a technical

standpoint, these performances are not unlike watching an

amazing guitarist on stage–they are awe-inspiring and

extremely fun to watch.

We propose that the next great challenge is to create

music robots that engage listeners in a different way:

playing the piece in a way that stirs up emotions and

moves the listener. Needless to say, this is an extremely

difficult task for robots, as they lack emotions themselves.

Neurologist and musician Clynes [4] gives us insight into

the power that skilled (human) musicians possess, p. 53:

“In the house of Pablo Casals in Puerto Rico, the

Master was giving cello master classes. On this occa-

sion, an outstanding participant played the theme

[...] from the Haydn cello concerto, a graceful and

joyful theme. Those of us there could not help

admiring the grace with which the young master [...]

played. Casals listened intently. “No,” he said, and

waved his hand with his familiar, definite gesture,

“that must be graceful!” And then he played the

same few bars–and it was graceful as though one

had never heard grace before, so that the cynicism

melted in the hearts of the people who sat there and

listened. [...] What was the power that did this? A

slight difference in the shape between the phrase as

played by the young man and by Casals. A slight dif-

ference–but an enormous difference in power of

communication, evocation, and transformation.”

Although achieving Casals’ level of expression is still far

off, there remains a large gap to be filled between his play

and that of current music robots. The problem is known

ironically as “playing robotically”, stepping from note to

note exactly as written, without expression. Casals him-

self attributed his mastery of expression to a divine talent,

saying, “It comes from above” [4]. Trying to algorithmi-

cally describe this “divine talent” of score shaping could* Correspondence: angelica@kuis.kyoto-u.ac.jp
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help us better understand not only the difference

between an amateur and expert musician, but perhaps

also the difference between a human and a robot.

1.1 Definitions

Expression is the most important aspect of a musician’s

performance skills, reports a survey of music teachers [5].

But what is expression exactly? It has been often defined

as “deviations from the score”, but this definition is

rather vague. Music psychologist Juslin provides a useful

break down of these “deviations” into five components

[6]: generative rules, emotional expression, random fluc-

tuations, motion principles, and stylistic unexpectedness

(GERMS). Generative rules are similar to speech prosody,

varying features such as dynamics, timing, and articula-

tion to clarify piece boundaries, harmonic structure, and

so on. Emotional expression communicates emotions like

joy or tenderness through variations of features like

tempo and volume. Adding random fluctuations and

mimicking human motion principles of dynamics have

been shown to improve perception of naturalness. Stylis-

tic unexpectedness describes deviation from stylistic con-

vention to add tension and unpredictability.

An ultimate goal is to create a robot with all of these

expressive dimensions, but as a first step, we focus on

emotional expression. The majority of responses to an

open-ended survey of 135 of expert musicians defined

expression in terms of “communicating emotions” or

“playing with feeling” [7]. Listeners also report that music

communicates emotion; 76% of participants in [5]

respond that music expresses emotion “often”. On a

practical level, emotion-laden music has also been shown

to be therapeutic: patients that listen to positive music

show increased tolerance to pain by 20-25% [8]. For

these reasons, improving expression of emotion for

music robots is the main focus of this study.

1.2 Related work

Within music robotics, a few studies address the problem

of “deadpan” or “robotic” performances. Ogata et al. [9]

developed a violin playing machine which could change

timbre according to adjectives such as “moist” or “dry”.

Solis et al. [10] developed an expressive flute-playing

robot, which learned parameters such as note length and

vibrato based on a human flutist’s performance. Nakano

and Goto extracted the vocal [11] and facial expression

from a famous singer, and later reproduced the perfor-

mance on the hyper-realistic android HRP-4C. Lim et al.

[12] used a programming by playing approach to transfer

expression from a human flute player’s performance to a

robot thereminist. In the last three cases, the expressive

content was learned with respect to a specific score; no

expressive generation for a novel score has yet been

reported. The power of expressive movement has also

been harnessed by some robot researchers. Instead of

using movements exclusively to play notes, the Shimon

marimba playing robot [1] performs expressive gestures

like head-bobbing to add humanness to its performance.

Humanoid violin and trumpet robots from Toyota shift

weight from one leg to the other, raising and lowering

their instruments [13]. To summarize, no experiments

have yet been conducted to assess the emotional commu-

nication between music robots and humans.

Of course, expressive generation has been long

explored in the field of computer music. The annual

RenCon competition welcomes researchers to render

expressive musical performances given a nominal score,

reviewed in [14]. Yet, we find three major advantageous

aspects of studying expression with embodied robot

musicians over computer-generated music.

Aspect #1. Multiple modalities for expression

We hypothesize that music robots with multi-modal

redundancy can convey a desired emotion to an audience

with a higher reliability than music alone. For instance, it

has been shown that non-musicians rely more heavily on

visual rather than audio information to determine emo-

tional content of a performance [15]. Features linked to

expressiveness, such as note length, can be perceptually

modified with gesture: [16] showed that marimba sounds

can be perceived as shorter or longer depending on the

percussionist’s arm trajectory. Emotionally expressive

robots such as Kobian [17] effectively convey emotions

using facial features and pose, such as a slouched posture

for sadness. By compounding multiple sources of affec-

tive information, a music robot may have a better chance

at communicating emotional intent to an audience.

Aspect #2. Situatedness

Context is a major factor controlling the emotion, if any,

induced by music. For instance, music performed at a

memorial service would have a different effect as the same

song played at a bustling restaurant. Adapting to the lis-

tener is important, too; “slow and soft” may indicate sad

music in normal situations, but would the same music

amplified for a listener who is hard of hearing still sound

sad, and why? The physical distance between a robot and

audience can also play a role; leaning closer to an interlo-

cutor can indicate aggression or anger, and farther away

imply fear. The fact that a robot is embodied and always

situated in a particular location opens the door to a new

area of research where these contextual factors of emotion

can be explored in a non-contrived manner.

Aspect #3. A platform for developing holistic models for

emotion

Simply playing music in an expressive manner is not

enough. As stated in [14], “neurological and physical

modeling of performance should go beyond [artificial

neural networks] and instrument physical modeling.

The human/instrument performance process is a
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complex dynamical system for which there have been

some deeper psychological and physical studies. How-

ever, attempts to use these hypotheses to develop com-

puter performance systems have been rare.” Indeed,

many automatic music expression systems emphasize

performance, to the detriment of general application

and explicative power. Humanoid robots are polyvalent,

and thus are perfect platforms for synthesizing the work

from specialized, disparate domains. The idea is to

develop a general ‘emotional intelligence’–an ability to

express emotion in music as well as speech, gesture, and

other modalities.

In this study, we explore in particular Aspect #3: we

develop and test an emotion framework that encompasses

voice, gesture, and music for humanoid robots. In particu-

lar, we research the “how"–how one plays music, how one

moves, or how one speaks, and test whether this emotional

“style” is consistent across modalities. The eventual goal is

to convey emotional music in a rich, multi-modal manner

(as described in Aspect #1) using one unified emotional

framework. If achieved, this could also give evidence to

speculations that emotional expressions in music, move-

ment and voice have a common form (e.g., [4,18]).

1.3 Requirements

A framework for emotional music robots should be

powerful, flexible, yet simple:

1. Simple: Music researchers have found an abun-

dant list of features to analyze and create emotional

music. For instance, high tempo is correlated with

happiness or anger, and low volume with sadness

[14]. How can we most economically account for the

differences in emotion? A good approach should

reduce this feature set to the most meaningful

dimensions.

2. Powerful: First, the model should be powerful

enough to be used for both analysis and generation of

emotional performances. The most popular affect

model, the Circumplex model of arousal-valence, is

commonly used for generation of emotion-laden

media (e.g., Kismet robot [19]). On the other hand, it

is not always clear how to map the dimensions for

analysis. Features ranging from speed to voice quality

to pitch changes have been found to be correlated

with pleasantness [20], which is why model-free clas-

sification using high-dimensional feature vectors is

such a popular approach for emotion recognition

(e.g., [21,22]). Second, the representation should be

nuanced, taking into account that a portrayal may be

a mix of emotions, instead of discrete states. As Fel-

lous argues: “Implementing emotions as ‘states’ fails

to capture the way emotions emerge, wax and wane,

and subside.” [23].

3. Cross-modal: The model should allow for emotion

expression across pieces, instruments and modalities.

Studies have shown that musicians of various instru-

ments can play arbitrary passages, even simple

repeated notes, in a given emotional style [24]. From

an engineering viewpoint, an instrument-independent

emotion approach is useful for robot portability as

well. Consider also that piano teachers may show a

student how to perform a furioso passage by singing,

and conductors transmit their expressive intent to

orchestra members through gesture. A model that

generalizes across pieces, instruments, and modalities

would reflect the essence of emotion that humans

store, which is important from an artificial intelli-

gence standpoint.

Our proposed requirements are well summarized in a

recent review of emotion/affect models:

“Despite the existence of diverse affect models, the

search for an (1) optimal low-dimensional represen-

tation of affect, (2) for analysis and synthesis, and

(3) for each modality or cue, remains open.” [25]

(our emphasis and numbering).

2 A representation and framework for emotion

across modalities

A grouping of common factors across modalities is the

basis of our proposed emotion representation. Here, we

refer the reader to key reviews for both emotion recogni-

tion and generation in music, speech, and gesture. For

instance, Livingstone et al. [26] provide an excellent up-to-

date review of research in musical emotion, and emotional

speech is reviewed in Cowie et al. [20]. Emotional gesture

has been less studied, though Pelachaud’s study in ani-

mated characters [27] may be the most state-of-the-art.

The results of our review and feature groupings are sum-

marized in Table 1.

Our review found that the most salient factors for emo-

tion recognition and generation could be clustered per-

ceptually into speed, intensity, regularity, and extent. The

most robust feature has been called speech rate, velocity

of gesture, or tempo; in other words, speed. The dichot-

omy between fast and slow is the simplest way to distin-

guish between happy and sad voices, music and gestures.

However, this simple distinction often confuses happi-

ness with anger or fear, which is why other features are

needed. Another major feature is intensity, which we

define as the perceptual distinction between gradual and

abrupt. For instance, anger is often characterized with

abrupt movements or attacked words and musical notes

[18,28]; sad voices, music, and gestures are correlated

with low intensity, gradual changes. Regularity is the
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perception of smooth versus rough. For example, fear can

be indicated in a voice with a breathy voice quality [20],

quivering (as opposed to smooth) gestures, and music

with irregular, sporadically played notes. Finally is the

idea of extent: for gesture, large, expansive movements

could be characteristic of happy or (hot) anger. Smaller

movements can indicate depression or making oneself

small due to fear.

2.1 DESIRE Framework

We propose a representation of emotion through the

parameters of speed, intensity, regularity, and extent,

based on the result of our literature review. For short,

we call this parameter set DESIRE: description of emo-

tion through speed, intensity, regularity, and extent, or

simply SIRE. The DESIRE framework in Figure 1 illus-

trates how we extract a SIRE representation, and express

it through different modalities.

In short, the DESIRE framework is:

1. DESIRE representation, dynamic parameters repre-

senting universally accepted perceptual features

relevant to emotion (SIRE). We define them as a 4-

tuple of numbers S,I,R,E Î [0, 1].

2. Parameter mappings, between the dynamic para-

meters and hardware-specific implementation.

The parameter mappings can be divided into two-

layers (see Figure 1):

- Hardware-independent layer: A mapping from

DESIRE to perceptual features. These mappings are

those outlined in Table 1.

- Hardware-specific layer: A mapping of perceptual

features to a hardware-specific implementation (dis-

cussed in Section 4.2).

We have implemented the DESIRE framework on

three systems representing three modalities:

1. Voice: HRP-2 singing with Vocaloid real-time

opera synthesizer (used in [29])

2. Gesture: NAO (http://www.aldebaran-robotics.

com) gesturing robot (reported in [30]).

Table 1 DESIRE parameters and associated emotional features for modalities of voice, gesture and music

Modality mappings to relevant emotional features

Parameter Description Voice Gesture Music

Speed slow vs. fast speech rate [20], pauses [18] velocity [35], animation [36], quantity of
motion [28]

tempo [24,26]

Intensity gradual vs.
abrupt

voice onset rapidity [18],
articulation [20]

acceleration [35], power [37] note attack [24], articulation [26]

Regularity smooth vs.
rough

jitter [18], voice quality [18,20] directness [35], phase shift [38,39], fluidity
[27]

microstructural irregularity [26], timbral
roughness [24]

Extent small vs. large pitch range [20], loudness [18] spatial expansiveness [36,37], contraction
index [35]

volume [24,26]

Features in italics are used in our experiments.

Figure 1 Overview of DESIRE emotion framework, in which emotions are represented only though speed, intensity, regularity, and

extent. The bottom half of the figure outlines our current efforts in validating the SIRE representation, which check whether emotions can be

retained from one modality to another. White boxes show other input/output types as examples for future work.
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3. Music: NAO theremin-playing robot (based on

[31]).

We use these systems to evaluate the effectiveness of

the DESIRE in representing emotion, based on the

requirements in Section 1.3.

3 Experiments

In this study, we use the DESIRE model to see whether

portrayals of the same emotion in disparate contexts

and modalities have the same underlying form. If they

do, then we can use DESIRE to control multiple modal-

ities from one source. Therefore, the research questions

are as follows: (Q1) Does the same emotion in two dif-

ferent modalities have the same underlying form? (Q2)

Can DESIRE capture that form? and (Q3) If so, what are

the DESIRE values for each emotion? We first focus on

four basic emotions: happiness, sadness, anger, and fear.

Our paradigm to answer these questions is to perform

“cross-modality” emotion transfer. In each of three

experiments, we extract a DESIRE from human por-

trayals of emotion, and use that DESIRE to generate

robot portrayals in a different modality. Both the source

and generated portrayals are then evaluated by human

raters. If both the source and generated portrayals are

rated as the same emotion, then we can say that

DESIRE is sufficient to represent that emotion across

the two modalities.

The experiments, as shown in Figure 1, are as follows:

- Experiment 1: Gesture to Voice via SIE. A pilot

experiment using only 3 parameters of speed, inten-

sity, extent (SIE) from human gesture to synthesized

voice

- Experiment 2: Voice to Gesture via SIRE. Test-

ing all 4 SIRE parameters from emotional voice to

robot gesture

- Experiment 3: Voice to Music via SIRE. Testing

all 4 SIRE parameters from emotional voice to there-

min-playing robot

3.1 Experiment 1: gesture to voice via SIE

3.1.1 Method

We asked four naive students (3 male and 1 female)

from Kyoto University to generate gestural portrayals of

happiness, sadness, anger, and fear in front of a 3D sen-

sor. Each emotion was to be acted for around 5-10 s

and their anonymized gestures recorded with a standard

video camera (as in Figure 2). The participants were not

professional actors, but scenarios were provided to help

elicit a desired emotion (e.g., “You have just won the

lottery. Convey your happiness to the robot”).

A Kinect and the OpenNI library were used to detect

the position of the participants’ hands in 3D (see Figure

2), and the maximum speed, acceleration and extent of

the hands were extracted for each performance. Average

speed was also informally tested, but did not produce

any distinct difference between portrayals, perhaps

because speed was diluted over time. Our program con-

verted these values to SIE by linearly scaling them

between 0 and 1 based on maximum speed, accelera-

tion, and distance, respectively. The minimum and max-

imum values were experimentally set prior to the

experiment. Future study should explore other map-

pings: for instance variance relative to a person’s average

amount of movement would better capture the idea of

relatively slow or fast.

As output, the Vocaloid [32] synthesized male opera

singer, Tonio was used. We chose a neutral utterance

string: “I’m going to the store. Do you want anything?”.

The phrase was given the hand-made prosody as shown

in Figure 3 to add naturalness. Then, the extracted SIE

triples were given as input to the voice module as per

Table 2. The vocal utterances were recorded as videos

with the robot head and shoulders in the frame, as in

Figure 4a.

The 16 human gesture videos and corresponding 16

robot voice videos were uploaded to the Internet in the

form of an anonymous survey. Rating was performed in

a forced-choice manner; according to [33], forced-choice

judgments give results similar to free-labeling judgments

when evaluators attempt to decode the intended emo-

tional expression. After watching a video of either a

human or speaking robot, the evaluator was asked to

select the emotion most conveyed, among happiness,

anger, sadness, and fear. An average of 9 evaluations for

each display of emotion, and 37 for each emotion class

were collected for this pilot study.

3.1.2 Results and discussion

The results of the emotion evaluations can be visualized

in the confusion matrices in Figure 5. The visualized

confusion matrix here can be thought of as a distribu-

tion of perceived emotion for a given portrayal class.

The intended emotion is shown in the titles, and the

average percentage of raters that selected each emotion

are given along the dimensional axes. For instance, Fig-

ure 5-1a shows that human portrayals of happiness

through gesture were recognized on average by raters as

happiness by 53% of raters, anger by 22%, sadness by

13% and fear by 13%. In this way, the graphs can also

be interpreted as componential representations of emo-

tion portrayals.

We look in particular for similar distribution shapes in

each column–this would indicate a similar perceived

emotion for both input gesture and output voice. For

instance, the voice generated using the same SIE values

as Figure 5-1a was rated as happiness by 58% of raters,

anger by 20%, sadness by 16%, and fear by 7%, as shown
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in Figure 5-1b. This large overlap, plus the result signifi-

cantly over chance (25%) suggests that SIE indeed was

sufficient for transferring happiness from gesture to

voice.

The reasons why the acted emotions were not per-

fectly recognized may be better interpreted upon analyz-

ing the gestural portrayals in a qualitative manner.

Fear was extremely well-recognized for human gesture

portrayals, but not for transferred voice. Gestural por-

trayals included pulling back in fear sporadically, arms

clutched to chest or to their sides. Two possibilities are

possible: pose may have had a great effect on the under-

stood emotion, which could not be transferred to the

voice, or the SIE parameters are not sufficient for trans-

ferring this emotion.

Anger was portrayed by two participants in a prototy-

pical manner–balled fists, gestures as if hitting a table,

and approaching the camera. Interestingly, these were

sometimes confused with sadness, presumably looking

similar to outbursts of grief. On the other hand, one

participant shook a finger at the camera, recognized by

100% of raters as anger. A stern, “cold anger” pose was

also well-recognized.

Sadness portrayals contained prototypical hunched

shoulders, hanging arms, and relatively low energy for

two participants. Two of the more dramatic participants

1& #( 2 %'# +( +$" *+( )" 0 !( .(, - '+  2'.2 +$ %'#/

$#%$#% $#& $#% $#% $#' $#% $#% $#' $#% $#% $#(
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Figure 3 Prosody for the utterance.

Figure 2 Body pose estimation using the Kinect 3D sensor to extract hand locations.
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showed sadness with both hands to head, and bending

at the waist in pain.

Happiness was an interesting case, as only one partici-

pant demonstrated prototypical “jumping for joy”. Another

participant danced, another one made gestures to the sky

in thankfulness, and the last shook her arms to the side in

excitement while running in place. Interestingly, the dan-

cing portrayal was the most well recognized by raters, not

“jumping for joy”, which was sometimes mistaken for

anger. The gestures toward the sky were often perceived

as grief or sadness.

This discussion, along with the results from Figure 5,

allows us to draw three observations:

1. Happiness, sadness, and anger were transferred at

greater than chance, despite the varied gestural inter-

pretations for each emotion.

2. Fear was not well transferred. The irregular,

sporadic backwards movements in fear portrayals

could not be captured solely through speed, inten-

sity, and range, which is one reason why we add the

regularity parameter to Experiments 2 and 3.

3. The impoverished source gestures are not perfectly

recognized, underlying the importance of multimodal

redundancy. In addition, this suggests that studies

should not aim at perceiving one “correct” transferred

emotion at high rates, but also focus on the distribu-

tion of recognition, as in Figure 5. For instance, if a

gesture is rated as 50% angry looking and 50% happy,

the vocal output should also be 50% angry and 50%

happy.

Finally, we briefly discuss latency issues. The Vocaloid

system required around one second to generate high qual-

ity voice synthesis used in experiments, or around 200 ms

using a lower quality real-time mode. Although not a pro-

blem for our manually segmented, out-of-context evalua-

tions, this is an important consideration for any real-time

interactive system: a pause between a stimulus and an

emotion portrayal could potentially indicate a negative

emotion such as sadness or fear.

3.2 Experiment 2: voice to gesture via SIRE

3.2.1 Method

We recruited 20 normal-sighted evaluators from Kyoto

University Graduate School of Informatics. The participants

were males of Japanese nationality, ranging in age from

21-61 (mean = 27.1, SD = 8.9).

As input, we used 16 audio samples taken from the Ber-

lin Database of Emotional Speecha, which is a database of

emotional speech recorded by professional German actors.

Each sample was a normalized wave file at 16 kHz, 1.5 to

3.9 s long, all of the same sentence. Four samples each of

happiness, sadness, fear, and anger were used, all with

recognition rates of 80% or higher by German evaluators.

Given SIRE values extracted from these audio samples

as per Table 3, we generated 16 movement sequences

using a simulated NAO shown on a projected screen. A

full description of implementation can be found in [30].

Only one type of gesture was shown (an extension of both

arms in front of the robot), repeated four times in series

for each sequence. After each sequence, the participants

chose one of happiness, sadness, anger, or fear in a forced-

choice questionnaire.

3.2.2 Results

Figure 6 shows the confusion matrices for emotional

voice and gesture. Ratings of the German voices is taken

from the result of a stationary, speaking robot outlined in

[30]. We find that the recognition rates for all emotions

are significantly greater than chance (25%), suggesting

that the DESIRE framework indeed converts the source

vocal emotion to the same emotion in gesture. On the

other hand, we can see that happiness (Figure 6-1b) was

not clearly distinguished from anger. Further study in

[30] suggested interaction with a pose cue: the immobile

head of the robot. When compared with portrayals with

a moving robot head, the staring, forward-facing head of

the robot was significantly rated more often as anger.

3.3 Experiment 3: voice to music via SIRE

3.3.1 Method

Thirty-four participants were recruited over the Internet

without respect to cultural or musical background.

Average age was 33.2, SD = 12.2. Eight speech files (2

for each emotion) from the set of those used in Experi-

ment 2 were used as input. Self-reported musical experi-

ence indicated that 35% of raters had no musical

experience, 38% were beginner level, 21% intermediate

level, and 6% expert.

The output was generated by the NAO robot playing

the theremin with the parameter mappings as shown in

Table 4. The robot’s right arm was set to control the

pitch at 415 Hz. To avoid bias based on song mode (e.g.,

major or minor), the robot played a simple sequence of

quarter notes at the same pitch. This is a standard eva-

luation method used also in [24]. The left arm of the

robot controlled the note volume, which started, shaped

and ended the notes. The sounds of the theremin were

recorded as sound files and uploaded to the internet in

Table 2 Experiment 1 parameter mappings

Gesture mapping Parameter Voice mapping

Hand Velocity Speed Tempo

Hand Acceleration Intensity Attack (onset delay)

Inter-hand Distance Extent Volume
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the form of anonymous survey. Raters calibrated their

headphones or speakers so that they could hear the loud-

est and quietest samples comfortably, then rated the

sounds produced by the NAO thereminist in a forced-

choice response.

3.3.2 Results and discussion

The results of the music experiment are shown in Fig-

ure 7 in the usual confusion matrix visualization format.

We can see that the effectiveness of DESIRE using the

theremin modality is limited compared to speech and

 

(a)  HRP-2 singing robot 

 

 

(b) NAO gesturing robot 

 

                                            (c) NAO thereminist 

Figure 4 Robot platforms for voice, gesture and music experiments.
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gesture. In particular, happiness and anger could not be

reliably expressed. One reason for this may be the there-

min sound itself. The theremin is often used for science

fiction or horror films due to its eerie timbre, or for

romantic, wistful songs such as Rachmaninoff’s Vocalise.

We find that overall, the evaluations of this modality

were skewed towards 34% sadness and 32% fear,

whereas only 16% and 19% of all portrayals were per-

ceived as happiness or anger, respectively.

Another reason may be the maximum speed of the

theremin–unlike instruments such as piano or flute, the

theremin cannot change notes quickly without the

sounds becoming indistinct. The results are thus incon-

clusive as to whether the emotions were maintained

across voice to music, as the modality itself may have an

overwhelmingly large influence. On the other hand, if

our main purpose is a music robot that can play slow,

emotion-laden music as opposed to a virtuoso perfor-

mance, we find that there are SIRE parameters which

62% of raters recognize as sadness: S = 0.12, I = 0.44, R

= 0.72, and E = 0.42. In addition, the SIRE parameters

of S = 0.95, I = 1.0, R = 0.13, E = 0.37 produced a per-

formance recognized as fear by 53% of evaluators. In

experiment 2, these same SIRE parameters produced

gestures that were recognized as sadness at 76% and

fear at 65%. These results, coupled with the fact that the

source of these parameters were sad and fear voices,

suggest that emotions can be captured through SIRE

across three modalities. Further experiments with a

more versatile musical instrument such as piano are

needed to confirm the effectiveness for happiness and

anger.

Use of the theremin robot also highlighted the diffi-

culties of robot platforms over computer-based music

generation. For instance, for portrayals where intensity

was high, the robot swayed to absorb the impact of a

fast attack. Though not easily perceptible by ear, post-

experiment analysis of the theremin sound showed a

slight difference in the sound’s spectral envelope. In

physical robot gesture experiments in [30], the move-

ment of motors induced sounds that some raters com-

mented sounded “sad”. Strong movements also caused

residual vibration, which could look like a shivering or

fearful effect. Additionally, the maximum speed of the

robot motors limit the fastest movements it can make;

the maximum arm speed of the robot was limited such

Figure 5 Experiment 1: Visualization of confusion matrices for gesture and voice. Intended emotion is shown in the titles, and the

average percentage of raters that selected each emotion are given along the dimensional axes. Pointed triangles indicate that the one emotion

was greatly perceived on average. Similar shapes for a given number indicate similar perceived emotion for both input gesture and output

voice.

Table 3 Experiment 2 parameter mappings

Voice mapping Parameter Gesture mapping

Syllable rate Speed Arm velocity

Voice onset rapidity Intensity Arm acceleration

Jitter Regularity Inter-arm phase shift

Pitch range Extent Gesture extent

Table 4 Experiment 3 parameter mappings

Voice mapping Parameter Music mapping

Syllable rate Speed Tempo

Voice onset rapidity Intensity Note onset rapidity

Jitter Regularity Note timing offset

Pitch range Extent Maximum volume
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that it would not fall over after an intense gesture.

Although all efforts were made to reduce the effects of

using a real robot on the perceptual experiments, we

outline them here as precautions for future experiments.

4 Outlook and conclusions

The results of our three experiments give a promising

outlook for the DESIRE framework for both analyzing

and generating recognizable emotions. We can respond

to the research questions stated in Section 3.

- (Q1) Does the same emotion in two different mod-

alities have the same underlying form? Yes, our

results suggest that voice and motion have the same

underlying form for happiness, sadness, anger, and

fear. Voice and music have a similar form for at

least sadness and fear with our theremin

experiments.

- (Q2) Can DESIRE capture that form? Yes, but not

to the same extent for every portrayal; some values

are more cross-modally recognized than others.

Figure 6 Experiment 2: Visualization of confusion matrices for voice and gesture. Similar shapes for a column indicate similar perceived

emotion for both input voice and output gesture.

Figure 7 Experiment 3: Visualization of confusion matrices for voice and music. Similar shapes for a column indicate similar perceived

emotion for both input voice and output music.
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- (Q3) If so, what are the DESIRE values for each

emotion? Table 5 gives the SIRE values that, at rates

better than chance, underlie voice and gesture por-

trayals of happiness, sadness, anger, and fear.

4.1 Applications and extensions to other modalities

Other modality mappings are certainly a source for

future study. For instance, a robot-controlled paintbrush

could be mapped to SIRE: a slow versus fast stroke rate,

a gradual versus abrupt start, a jagged versus straight

stroke, and a small versus large diameter. A virtual fish

could be given “emotions” by swimming faster or

slower, darting across abruptly or accelerating gradually,

making a direct line across a pool versus an irregular

path, and by occupying small versus large space.

Whether these mappings along with the DESIRE frame-

work produce emotional expressions are open questions.

Perhaps the most obvious source for emotional com-

munication is facial expression. Although facial expres-

sions differ from speech and music in that it can be

captured in one still-frame, it still may be possible to

map the SIRE dimensions to facial features. For

instance, the smile could be mapped to these para-

meters: S could map to slow versus fast smiles, I to a

gradual versus abrupt smile, R to a symmetric or irregu-

lar smile, and E to a small versus large smile. The differ-

ence between a slow versus gradual smile is not clear

here though, which is why it is difficult to claim that

DESIRE would be useful for facial expression without

further investigation.

Finally, the most useful extension would be to a music

robot that can move while playing its instrument, such

as a piano playing robot, violinist robot, or singing

robot. In these cases, instead of mapping the movements

to arm gestures, SIRE could be mapped to torso or head

motions of varying speed, intensity, regularity, and

extent. It should be noted that the theremin-playing

robot is not suited to making expressive motion while

playing, as any movement in the theremin’s electro-

magnetic space it would affect its sound.

4.2 Parameter mapping design

We briefly discuss how DESIRE mappings can be

extended for other modalities. The general principle is

to design each dimension such that the majority of

raters would perceive S = 0 portrayals as “slower” than

S = 1, I = 0 portrayals as less “intense” than I = 1, and

so on. In [30], we performed this experiment for ges-

ture: we held each dimension constant and modulated

only one parameter. The relative correctness for each

parameter was confirmed, although ideal absolute set-

tings remain to be explored. In our case, we designed

the maximum mappings such that the robot would still

operate safely. The minimum settings were set infor-

mally by the experimenter such that, for example, slow

speed would be just slightly higher than motionless, but

should be automatically set in future work. Indeed, this

kind of context-dependent adaptation illustrates the

challenge that situated robotics opens up for research,

as described in Section 1.2, Aspect #2.

4.3 Limitations of this work

In this study, we have followed the conventional proce-

dure of asking actors to generate expressive displays of

emotion (such as those in the German emotional data-

base). Although a standard research tool in emotion stu-

dies [4,34], it has a well-known flaw: these portrayals are

unrealistic because they induce extreme–rather than

natural–portrayals of each emotion. On the other hand,

this scheme is beneficial to consistently evaluate the

DESIRE model across multiple modalities. Music is fun-

damentally an on-demand performance modality, similar

to dance; therefore, we choose to evaluate with acted

portrayals as a first step.

The use of DESIRE for emotion is promising, but far

from complete. The reader should note that this study

is broad and exploratory in nature, to give intuition into

the effect of DESIRE parameters in emotion across

modalities. Further experiments involving more subjects

are necessary to give more support to this model. Future

study will also require realistic, continuous data to eval-

uate whether DESIRE can handle emotion trajectories as

hypothesized, and whether other emotions such as love,

pride, or disgust can be generated. In addition, the influ-

ence of other cues–such as instrument timbre or body

pose–has been observed to be important, but how they

interact and the extent of their effects still need to be

formally explored. Further, the results were processed

offline, nullifying the need for real-time extraction–how

to determine the ideal frame size to extract an

Table 5 Gestural sequences with agreement among evaluators and their corresponding SIRE values

Emotion Human voice (%) Robot gesture (%) Robot music (%) S I R E

Happiness 43 62 6 0.72 0.2 0.22 0.73

Sadness 95 76 76 0.12 0.44 0.72 0.42

Anger 95 86 27 0.71 0.46 0.04 0.73

Fear 33 43 53 0.95 1 0.13 0.37

Low scores for happiness and anger in music may be explained by the difficulty of the musical instrument (theremin) to express these emotions in general.
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emotional portrayal is an on-going problem in emotion

research in general [25].

Endnotes
ahttp://pascal.kgw.tu-berlin.de/emodb
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