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Abstract

Depth maps obtained by commercial depth sensors are

always in low-resolution, making it difficult to be used in

various computer vision tasks. Thus, depth map super-

resolution (SR) is a practical and valuable task, which up-

scales the depth map into high-resolution (HR) space. How-

ever, limited by the lack of real-world paired low-resolution

(LR) and HR depth maps, most existing methods use down-

sampling to obtain paired training samples. To this end,

we first construct a large-scale dataset named “RGB-D-D”,

which can greatly promote the study of depth map SR and

even more depth-related real-world tasks. The “D-D” in

our dataset represents the paired LR and HR depth maps

captured from mobile phone and Lucid Helios respectively

ranging from indoor scenes to challenging outdoor scenes.

Besides, we provide a fast depth map super-resolution

(FDSR) baseline, in which the high-frequency component

adaptively decomposed from RGB image to guide the depth

map SR. Extensive experiments on existing public datasets

demonstrate the effectiveness and efficiency of our network

compared with the state-of-the-art methods. Moreover, for

the real-world LR depth maps, our algorithm can produce

more accurate HR depth maps with clearer boundaries and

to some extent correct the depth value errors.

1. Introduction

As a supplement of the RGB modality, the depth map can

provide useful depth information, which has been applied

in bokeh rendering [25], AR modeling [26], face recogni-

tion [3], gesture recognition [27], etc. Meanwhile, the low-

power depth sensors equipped on mobile consumer elec-

tronics, such as Huawei and Samsung, have been popular

in our daily life. However, the resolution of depth maps

*Corresponding author: yzhao@bjtu.edu.cn

Input RGB

Time cost: 0.140s Time cost: 0.007s

GT
RMSE: 14.00 RMSE:11.38

RMSE: 15.98 RMSE: 9.09

DKN FDSR

Figure 1. RGB-D-D dataset display and depth map SR results

comparison. Depth map SR results given by DKN [16] and FDSR

is shown in the last two columns. The quantitive results in terms

of RMSE is shown blow each row (lower is better). The runing

time of DKN [16] and FDSR is shown on the top of the figure.

cannot match the resolution of RGB images, limiting prac-

tical applications to some extent. Therefore, investigating

the depth map SR is an effective solution for this issue.

Furthermore, downsampling as a straightforward strategy

has been widely used in the existing depth map SR algo-

rithms [16, 23] to construct paired training samples. But

the downsampling manner fails to comprehensively simu-

late the real-world complex correspondences between the

LR and HR depth maps. To bridge this gap, we construct

the first benchmark dataset towards the real-world depth

map SR. Furthermore, to meet the actual application re-

quirements, we provide a fast and accurate depth map SR

baseline model.

The existing “RGB-D” depth map SR datasets [37, 5, 13]

mainly focus on using a single HR depth map to generate

paired LR and HR depth map correspondences through the

downsampling strategy. In the real applications, the depth

map SR task is more challenging and complicated because

the real LR depth maps captured by depth sensors generally

contain some noise even depth holes. Therefore, for the real

scenes and real correspondences, we construct a large-scale
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paired depth map SR dataset named “RGB-D-D”, which in-

cludes 4811 paired samples ranging from indoor scenes to

challenging outdoor scenes. The “D-D” in our dataset rep-

resents the paired LR and HR depth maps captured from

the mobile phone (LR sensors) and Lucid Helios (HR sen-

sors) [1], respectively. The dataset can offer two LR depth

maps as input to evaluate the depth map SR task: LR depth

map downsampled from the HR ground truth like previous

research, and the raw LR depth map captured by LR sensor

facing the real application scene. Besides, our dataset can

contribute to many popular application scenarios of mobile

phone and other depth-related tasks, such as portrait pho-

tography [25], object modeling [17], depth estimation [20],

depth completion [44], etc.

Although numerous algorithms have been proposed for

depth map SR and presented impressive performance,

there are still some unsatisfactory points in detail preserv-

ing, computation complexity, and real-world application.

Firstly, the sharp boundaries and elaborate details in the

depth map SR are hard to recover especially when the scal-

ing factor is large. Therefore, color image guided meth-

ods [41, 43] are introduced to solve this problem. Different

from them, we design a high-frequency guided multi-scale

dilated structure to introduce the color guidance in an im-

age decomposition manner and exploit the contextual in-

formation under different receptive fields. Secondly, to be

applied on the platforms of the mobile devices and embed-

ded systems, the depth map SR algorithms should take into

account both the efficiency and accuracy. Inspired by [6],

we design a high-frequency layer in our network, where the

high-frequency features from RGB image are only used as

the guidance in the early stages of depth map reconstruction

branch, and the low-frequency components are suppressed

to reduce the parameters. Lastly, the existing methods use

downsample operation to get paired HR and LR depth maps

for training which fails to simulate the real correspondences

between HR and LR depth maps. We use the paired depth

maps in RGB-D-D dataset to train a model, which greatly

improve the value accuracy and visual effects in the real-

world depth map SR task.

Focused on the real-world applications and the practical

demands, we construct a large-scale and real-world depth

map SR benchmark dataset and provide a fast solution for

the depth map SR task. The contributions are highlighted in

the following aspects:

• We build the first and large-scale depth map SR bench-

mark dataset named RGB-D-D dataset1, towards the

real scenes and real correspondences. This dataset

bridges the gap between theoretical research and real-

world applications, and also flourishes the depth-

related tasks in terms of benchmark dataset.

1Refer to http://mepro.bjtu.edu.cn/resource.html for

the RGB-D-D dataset download link.

• We design a fast depth map super-resolution (FDSR)

baseline, in which a high-frequency guided multi-scale

structure is introduced to provide the frequency guid-

ance and exploit the contextual information. Such de-

composition strategy can improve the efficiency while

retaining the reconstruction performance.

• Our network achieves the superior performance on the

public datasets and our RGB-D-D benchmark dataset

in terms of the speed and accuracy. Moreover, for the

real-world depth map SR task, our algorithm can gen-

erate more accurate results with clearer boundaries and

to some extent correct the value errors.

2. Related Work

In this section, we will briefly introduce the related

benchmark datasets and algorithms for depth map SR.

Benchmark Datasets. There are various RGB-D datasets

used for training and evaluating the depth map SR task.

These datasets can be roughly divided into the synthetic

datasets and the real-scene datasets. The synthetic datasets

are built by synthetic computer graphic techniques and of-

fer relatively high-quality data, such as New Tsukuba [32],

Sintel [5] and ICL [11]. Limited by the discrepancy of

virtual scenes and real scenes, some datasets towards real

scene are constructed. Middlebury dataset [36, 35, 13, 34]

provides a few samples containing high-quality and noise-

free depth maps. Focusing on the indoor scenes, NYU v2

dataset [28] and SUN RGBD dataset [37] are built, where

NYU v2 [28] includes 1449 RGB-D pairs, and SUN RGBD

dataset [37] consists of three different RGB-D datasets (i.e.,

NYU v2 [28], B3DO [15] and SUN3D [2]). However, the

mentioned datasets only face to the real scenes but fail to

build the real correspondences between HR and LR depth

maps, which are important for real-world depth map SR.

To this end, we construct the first real-world depth map SR

dataset, which not only faces the real scenes in practical ap-

plications, but also meets the real correspondences of LR

and HR depth maps.

Algorithm Models. According to the characteristics of in-

put data, depth map SR algorithms can be categorized into

two categories: non RGB-guided depth map SR and RGB-

guided depth map SR. Non RGB-guided methods [33, 41]

only used LR depth maps as input to produce HR ones.

These methods do not fully utilize the color informa-

tion that may induce unsatisfying performance. By con-

trast, RGB-guided methods [16, 23, 40, 14] have become

the mainstream of this task. For the unsupervised meth-

ods [31, 42, 9, 24], the depth map SR task is generally mod-

eled as an optimization problem. As for the learning-based

methods, the RGB information is used as features directly

or used to convert and produce other types of guidance in-
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Figure 2. Dataset statistic. (a) The scenes and corresponding hierarchical content structure of RGB-D-D. The inner ring represents the

classification of scenes. The legends express the number of samples and the depth range of corresponding subsets. (b) The fitted probability

density curves of return density for the raw depth maps from NYU v2 [28] and RGB-D-D. (c) Examples of the raw depth map and ground

truth from NYU v2 [28] and RGB-D-D. Black region indicates the missing depth value.

formation. In [19, 14, 40, 45, 16], the authors extract fea-

tures of multi-level from RGB image to solve the depth map

SR task. While [22, 30, 23] concern about the RGB images

and try to use the HR RGB images to produce more useful

features which achieves better performance. However these

methods only put more efforts on the accuracy improvement

which may lead to high computation complexity. Thus, we

propose a fast depth map SR method to well balance ef-

ficiency and accuracy. Though, there are some works[10]

use the real-scene LR depth maps to evaluate their methods,

they fail to solve the problem at source. We are the first to

use the paired depth maps in RGB-D-D dataset to train and

simulate the correspondences which greatly improve the ef-

fectiveness of depth map SR.

3. RGB-D-D Dataset

We collect the first real-world depth map SR dataset

which contains a total of 4811 RGB-D-D pairs. Each image

pair contains the HR color images from mobile phone, the

real-world LR depth maps captured by the low-power Time

of Flight (ToF) camera on mobile phone, and the HR depth

maps captured by industrial ToF camera.

3.1. Dataset Collection

Acquisition Devices. We use the Huawei P30 Pro to col-

lect color images and LR depth maps. The Huawei P30

Pro has a 40 million pixels Quad RYYB sensor which can

capture 3648 × 2736 HR color image, and a ToF camera

with 240 × 180 resolution. The HR depth maps are cap-

tured by Helios ToF camera [1] produced by LUCID vision

labs. They use the same depth acquisition principle which

ensures the depth values captured by them are almost the

same. Meanwhile, we guarantee little missing values of LR

depth maps by limiting the farthest distance of backgrounds.

Data Processing. We calibrate the primary camera of the

phone with the Helios ToF camera, and align them on the

640×480 resolution color image by the intrinsic and extrin-

sic parameters. Due to the different field of view (FOV) be-

tween them, the 640×480 raw point cloud of Helios is pro-

jected on the center area of the corresponding 640×480 res-

olution color image, and finally generate a dense and high-

quality depth map which is smaller than 640×480. Then we

crop it as the 512 × 384 HR depth map, which corresponds

to the central 192 × 144 area of the LR depth map with

the same scale variations. Towards the depth holes caused

by the occlusion effect of projection processing and some

low-reflection objects (such as glass surface and infrared

absorbing surface), we firstly use the over-segmentation al-

gorithm [29] to get plentiful boundary information of color

image. And the colorization method [21] is used to fill holes

in the supervision of boundary information. Clear depth

edges can be filled according to the obvious border between

foreground and background of color image, especially for

strip-shaped holes on background caused by the occlusion

effect of projection processing.

User Study. The four-round different people evaluation

scores the filled HR depth maps to judge whether they could

be the ground truth (the full mark of every round is 10). Af-
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ter four-round evaluation, the filled depth maps with total

scores beyond 35 become the part of ground truth samples.

Besides, some of the eliminated depth maps have high eval-

uation scores (beyond 30) and few repairable defects. We

further introduce the manual scribbles [39] on them to get

convincing depth maps by means of user intervention. Af-

ter the additional four-round blind selection, these remain-

ing depth maps which achieve good visual effects on edge

serve as the other part of ground truth samples.

3.2. Dataset Statistic

Real Scenes. We collect the paired “RGB-D-D” samples

in various scenes as shown in Figure 2 (a). The RGB-D-D

dataset is divided into four main categories: portraits, mod-

els, plants, and lights. The portraits category is mainly for

the real applications of depth-of-field blur [25] in portrait

photography. The traditional stereo camera cannot acquire

satisfying depth information to simulate the large aperture

in the repeated or weak texture scenes, so we collect plenti-

ful samples containing the human body with pose variation

as the foreground in different backgrounds. The models cat-

egory can be used to optimize the edge of objects in depth

maps when modeling the object by LR depth maps in se-

quential views [26]. We collect different depth maps of the

relatively static objects on a rotating booth by discretely ex-

tracting video frames. The plants category which has dense

branches and leaves contains a lot of structural and hierar-

chical details that LR depth sensors cannot capture. It is

a challenge to the depth enhancement algorithms to infer

these details by low-quality depth map and RGB. So we

capture images containing various kinds of luxuriant plants

and flowers in close range. In addition, strong indoor light

sources and outdoor light have a great impact on the quality

of depth maps, especially for the low-power sensors. There-

fore, the lights category can be used to improve the quality

of depth maps as close to the high-performance camera as

possible, and to explore the effect of complex illumination

environment to the color guided depth SR algorithms.

Real Correspondences. Actually there are only LR depth

maps when applying the depth map SR algorithm in real-

world applications. The relationship between LR and HR

depth maps can not be simulated by traditional downsam-

pling operations. Hence, it is necessary to capture the paired

LR and HR depth maps by devices with different resolution.

Both the LR depth map and the color image captured by the

phone have aligned in 192 × 144 resolution. Meanwhile,

the projected HR depth map from Helios [1] also align with

color image in 512×384 resolution. The alignment of these

three depth maps at different scales guarantee the real cor-

respondences of LR and HR depth map.

High Quality. Because of the inevitable error values in the

filled depth maps, the quality of preprocessed depth maps

often degrade. Facing the practical applications, we cap-

ture the depth maps under the suggested distance to obtain

depth maps with low rate of missing values and clear bound-

aries. Besides, the existence of many-to-one relationship in

the process of raw point cloud projects to the image plane

ensures that our raw depth maps contain dense depth val-

ues. All these can guarantee the high quality of our raw

depth map. Figure 2 (b) shows the comparison between

RGB-D-D and NYU v2 [28] on the statistic distribution of

return density of which most of our raw HR depth maps are

more than 90%. As shown in Figure 2 (c), benefiting by the

higher return density, our ground truth has less depth values

errors and better boundaries than NYU v2 [28].

4. Proposed Framework

4.1. Problem Formulation

Given a LR depth map DL ∈ R
M×N×1 and the corre-

sponding HR RGB image G ∈ R
sM×sN×3, the purpose of

this work is to recover a HR depth map DH ∈ R
sM×sN×3

with the guidance of G, where M and N denote the height

and width of DL, respectively, s is the scaling factor. We

use bicubic interpolation to upscale DL to HR space, which

results in DU ∈ R
sM×sN×1. As shown in Figure 3, we

feed the paired DU and G into our network to learn the non-

linear mapping from DU to DH through residual learning.

Such process can be formulated as

DH = DU + F(DU ,H(G); θ) (1)

where F(·) is a function to learn the residual mapping

between DU and DH , the G is embedded into a high-

frequency extractor H(·) to provide high-frequency guid-

ance for depth map SR, and θ is the learned weights set.

4.2. Network Architecture

Figure 3 outlines the whole architecture of our fast depth

super-resolution network called FDSR, which consists of

a high-frequency guidance branch (HFGB) and a multi-

scale reconstruction branch (MSRB). Our framework pro-

gressively equip with four multi-scale reconstruction blocks

to exploit the contextual information under different recep-

tive fields in MSRB, meanwhile, the high-frequency guid-

ance extracted from the HFGB is integrated with the multi-

scale contextual information to enhance the ability of detail

recovery for depth map SR. Finally, the comprehensive and

discriminative reconstruction features are fed into a residual

mapping function to generate HR depth map.

High-Frequency Guidance Branch. Motivated by pre-

vious methods [23, 45], we design a high-frequency layer

(HFL) to adaptively highlight the high-frequency compo-

nents and suppress the low-frequency component. Different

from existing methods, we put more efforts on the follow-

ing two aspects (1) a direct high-frequency decomposition
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Figure 3. Overview of FDSR architecture. MSRB uses input depth map, high-frequency components extracted from RGB image to generate

HR depth map. The blue lines and red lines in (a) indicate the low- and high-frequency components splited by HFL, respectively. (c) shows

how the HFL works.

method is designed, where the octave convolution [6] is uti-

lized to decompose the RGB features into high- and low-

frequency components. (2) the high-frequency components

are effectively used to guide depth map SR. Such design

focuses on the useful high-frequency detail information to

improve the performance, while it reduces the computation

complexity due to the low-frequency components are not

used in the MSRB. As shown in the Figure 3 (c), the pre-

vious high- and low-frequency feartures are embedded into

the HFL to generate the current ones, which can be formu-

lated as follows:

Y H
i+1 = f(Y H

i ;WH→H
i ) + up(f(Y L

i ;WL→H
i ), 2)

Y L
i+1 = f(Y L

i ;WL→L
i ) + f(down(Y H

i , 2);WH→L
i )

(2)

where Y H
i+1 and Y L

i+1 denotes the high- and low-frequency

features, respectively, the W is convolutional kernel,

f(Y ;W ) is a convolutional operation for Y with the ker-

nel W , up(Y, 2) is an upsample operation by a factor of

2 via nearest interpolation, and down(Y, 2) represents 2 ×
downsampling for Y by using average pooling operation.

Multi-Scale Reconstruction Branch. This branch aims

to progressively recover HR depth map through utilizing

mulit-scale contextual information. We first use one 3 × 3
convolution layer to initial feature extraction. Then, to ex-

ploit the contextual information under different receptive

fields, we combine two dilated convolutions to form a multi-

scale dilated block (MSDB), and one convolution layer is

used to integrate the concatenated features:

Mi(Fi) = W j
i (

∑

j∈K

(W j
Mi

∗ Fi + bjMi
)) + bji (3)

where Mi is the ith multi-scale block, Fi is the input of

Mi, K = {1, 2}, ∗ denotes dilated convolution operation,

W and b are parameters which the convolution layer should

learn. Our MSDB not only enlarges the receptive field, but

also enriches the diversity of convolutions, which results

in an ensemble of convolutions with different receptive re-

gions and dilation rates.

As for feature combination, three levels of high-

frequency features extracted by HLFs are fused with differ-

ent MSDBs respectively in the early stage of MSRB. What

we have to emphasize is that, we split the output of each

HLF and only use the extracted high-frequency component

as guidance. Each stage of feature fusion F i
add can be de-

scribed as follows:

F i+1 = Y H
i ⊕Mi(Fi) (4)

where i = 1, 2, 3, and ⊕ is concat operation. Then, the

final fusion features F 4 is embedded into the last MSDB to

generate reconstruction features.

In order to better apply FDSR in the platform of mo-

bile devices and embedded systems, we mainly use two key

operations to make our network faster. First, the designed

HFL adaptively extracts the high-frequency features what

we should focus on. Therefore, the parameters are reduced

proportionately while ensuring effective performance. Sec-

ond, in the stage of data preparation, we resample the input

data by transform the color image to gray scale. Then we

split the gray image and the input depth map to r2 pieces of

blocks of size h/r × w/r and stack them together. In the

end, we use pixel shuffle operation to recover the HR depth

map to the original size of h× w × 1.

4.3. Loss Function

We train our model by minimizing the L1 norm between

the output of our method F(·) and ground truth as follows:

L(F̂ ,Fgt) =
∑

P

‖Fgt
p − F̂p‖1 (5)
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Figure 4. Visual comparison of ×8 depth map SR results on NYU v2 [28]. (a) RGB images. (b) SDF [22]. (c) SVLRM [30]. (d) DJFR [23].

(e) FDKN [16]. (f) DKN [16]. (g) FDSR (trained on NYU v2). (h) GT. The GPU time is tested on a NVIDIA GTX TITAN XP GPU.

RMSE Bicubic MRF [7] GF [12] JBU [18] TGV [8] Park [31] SDF [22] FBS [4] DMSG [14] PAC [38] DJF [22] DJFR [23] DKN [16] FDKN [16] FDSR

×4 8.16 7.84 7.32 4.07 4.98 5.21 5.27 4.29 3.02 2.39 3.54 3.38 1.62 1.86 1.61

×8 14.22 13.98 13.62 8.29 11.23 9.56 12.31 8.94 5.38 4.59 6.2 5.86 3.26 3.58 3.18

×16 22.32 22.2 22.03 13.35 28.13 18.1 19.24 14.59 9.17 8.09 10.21 10.11 6.51 6.96 5.86

Table 1. Comparisons with the state-of-the-art methods in terms of RMSE on NYU v2 [28]. The depth values are measured in centimeter.

where F̂ and Fgt denote the depth SR result and ground

truth, respectively, ‖·‖1 computes the L1 norm, P is the set

of all pixels and p represents a pixel in an image.

5. Experiments

5.1. Datasets and Implementation Details

To evaluate the performance of different methods, we

conduct sufficient experiments on the public NYU v2

dataset [28] to and our real-world RGB-D-D dataset.

As for public dataset, we choose the widely used depth

map SR dataset NYU v2 [28], and evaluate ours and other

methods on it. Following [16], we sample 1000 RGB-D

image pairs of size 640 × 480 from the NYU v2 dataset

for training and the rest 449 image pairs for testing. As for

RGB-D-D dataset, we randomly split 1586 portraits, 380

plants, 249 models for training and 297 portraits, 68 plants,

40 models for testing. Our FDSR is implemented in Py-

Torch on a PC with an NVIDIA GTX TITAN XP GPU. A

MindSpore implementation version is also provided. Lim-

ited by the length of the paper, more details of experimental

settings can be found in the supplemental materials.

5.2. Experiments on NYU v2 Dataset

As for training on NYU v2 dataset [28], we obtain the

LR depth maps from ground truth by using bicubic down-

sampling operation. The initial learning rate is 0.0005 and

reduce to half every 80k iterators and the training is stopped

after 100 epochs since more epochs do not provide more

improvement. We compare our FDSR with other methods

Percentage
Value Errors (in 10 m) Edge Errors

×4 ×8 ×16 ×4 ×8 ×16

SDF [22] 0.42 1.28 3.52 4.20 10.19 25.06

SVLRM [30] 1.08 2.56 5.76 6.04 24.28 49.26

DJF [22] 1.05 2.74 6.25 9.87 30.38 55.35

DJFR [23] 1.04 2.72 6.25 6.78 25.01 53.98

FDKN [16] 0.04 0.24 1.00 0.83 3.27 13.03

DKN [16] 0.05 0.20 1.10 0.95 2.95 13.78

FDSR 0.04 0.18 0.69 0.78 2.60 9.44

Table 2. Value errors and edge errors on NYU v2 [28].

with the scaling factors of 4, 8, 16. The quantitative results

are shown in Table 1. It can be observed that our method

achieves the best performance on NYU v2.

To further analyze the robustness of our method, we con-

duct two extra experiments on NYU v2: (1) depth value er-

rors to inflect the global depth map SR accuracy, (2) edge

errors to measure the local accuracy. We report the value

errors which is calculated by the percentage of value errors

over 10% between ground truth and output. As for edge

errors, we report the percentage of errors over 1.2% in the

edge area. The details of calculation process for value er-

rors and edge errors will be described in supplement mate-

rial. Observing Table 2, FDSR has both less value errors

and edge errors, which means our method produces more

accurate results globally and locally.

As for qualitative results, we show the visual comparison

for ×8 depth map SR in Figure 4. The overall and details of

the results demonstrate that the proposed method FDSR can

9234



(a) RGB (b) SDF (c) SVLRM (d) DJFR (e) FDKN (f) DKN (g) FDSR (i) GT(h) FDSR+ / FDSR++(a) RGB (b) SDF (c) SVLRM (d) DJFR (e) FDKN (f) DKN (g) FDSR (i) GT(h) FDSR+ / FDSR++

Figure 5. Visual comparison of ×8 depth map SR results on RGB-D-D. The first two and last two rows are the results of FDSR+ and

FDSR++ respectively (a) RGB images. (b) SDF [22]. (c) SVLRM [30]. (d) DJFR [23]. (e) FDKN [16]. (f) DKN [16]. (g) FDSR (trained

on NYU v2 [28]). (h) FDSR+ / FDSR++ (Trained in downsampling manner / Trained in real-world manner on RGB-D-D). (i) GT.

RMSE SDF [22] SVLRM [30] DJF [22] DJFR [23] FDKN [16] DKN [16] FDSR FDSR+

×4 2.00 3.39 3.41 3.35 1.18 1.30 1.16 1.11

×8 3.23 5.59 5.57 5.57 1.91 1.96 1.82 1.71

×16 5.16 8.28 8.15 7.99 3.41 3.42 3.06 3.01

Table 3. Quantitative depth map SR results on RGB-D-D. FDSR+ is trained in downsampling manner on RGB-D-D)

obtain more accurate depth map values. Our results show

finer boundaries and more visual pleasant details without

the texture-copy artifacts and extra noise introduced .

The running time is also shown in Figure 4. The size of

input is 640× 480. Our FDSR method achieves the compa-

rable efficiency with DJFR [23] and FDKN [16] while the

performance of FDSR is better than anyone of them.

5.3. Experiments on RGB­D­D Dataset

To verify the generalizability of RGB-D-D, we conduct

sufficient experiments on it. The experiments on our dataset

also further demonstrate the performance of our algorithm.

Testing without Retraining on RGB-D-D. Firstly, to make

a fair comparison with other algorithms on our dataset,

we conduct experiments among models trained on NYU

v2 [28] without retraining. The quantitative results in terms

of RMSE are shown in Table 3. The value errors and edge

errors on RGB-D-D given by each algorithm are also re-

ported in Table 5. The smaller RMSE value, value errors

and edge errors of FDSR among evaluated methods demon-

strate the accuracy and effectiveness of our algorithm. Fig-

ure 5 illustrates the qualitative results. The evaluated meth-

ods, SDF [22], SVLRM [30] and DJFR [23] cannot re-

cover clear boundaries and fine details. Though DKN [16]

and FDKN [16] produce clear boundaries, they have larger

global errors and even some noises are brought in.

Training in Downsampling Manner on RGB-D-D. We re-

train our models on the training set of RGB-D-D dataset to

demonstrate the effectiveness of our dataset and our model.

We use downsampled LR depth maps as input. When train-

ing on RGB-D-D dataset, the initial learning rate is 0.0005

and reduce to half every 40k iterators and the training for

each scaling factor model is stopped after 40 epochs.

The results are appended in Table 3, Table 5 and Fig-

ure 5, which are obviously improved by training on our

training data. Benefiting by the more clearly and sharper

boundaries in our training and testing data, our model can

achieve better performance, especially on the boundaries of
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SDF [22] SVLRM [30] DJF [22] DJFR [23] FDKN [16] DKN [16] FDSR FDSR++

RMSE 7.16 8.05 7.90 8.01 7.50 7.38 7.50 5.49

Value Errors 2.86 3.62 3.62 3.67 2.85 2.83 2.90 1.71

Edge Errors 52.78 51.87 50.56 52.28 51.73 51.90 51.89 42.89

Table 4. RMSE, value errors and edge errors of depth SR results. FDSR++ is trained on RGB-D-D in real-world training manner.

Percentage
Value Errors (in 3 m) Edge Errors

×4 ×8 ×16 ×4 ×8 ×16

SDF [22] 0.33 0.90 2.37 3.22 8.74 20.71

SVLRM [30] 0.80 2.11 4.58 5.08 15.18 34.30

DJF [22] 0.82 2.19 4.89 5.65 17.07 35.32

DJFR [23] 0.79 2.15 4.78 5.26 15.66 34.54

FDKN [16] 0.11 0.28 0.94 1.39 3.41 11.73

DKN [16] 0.14 0.33 1.54 2.11 3.55 12.93

FDSR 0.10 0.26 0.76 1.38 3.09 12.47

FDSR+ 0.09 0.21 0.67 1.15 2.79 11.68

Table 5. Value errors and edge errors of depth SR results on RGB-

D-D. FDSR+ is trained in downsampling training manner.

objects and accuracy of depth values.

Training in Real-World Manner on RGB-D-D. To make

full use of our proposed RGB-D-D dataset, we train our

model on the training set by utilizing the LR depth maps

as input. Before evaluating, the missing holes of raw LR

depth maps are filled by the colorization method [21]. The

size of the LR depth map is 192 × 144 and the target res-

olution is 512 × 384. The settings and training strategies

are as same as we trained on HR depth maps of RGB-D-

D. We test all the evaluated methods on the filled LR depth

maps via using the existing ×4 models and the results can

be seen in Table 4. We append our results obtained by the

model trained on the paired LR and HR depth maps. It can

be observed that, all the evaluated methods have bad per-

formance facing the real-world depth map SR task, which

means the traditional downsample training strategy fails to

model the real-correspondence between LR and HR depth

maps. Observing the last two rows of Figure 5, after retrain-

ing FDSR on the paired LR and HR depth map in RGB-D-

D dataset, the visual effects and value accuracy are greatly

improved, which demonstrates that our dataset reflects the

real-correspondences characteristics between LR and HR

depth maps. Thus, the RGB-D-D dataset has great potential

to promote the development of real-world depth map SR.

We also conduct experiments on the group of lights in

our RGB-D-D dataset. It is a very challenging set of data,

because the illumination intensity is complicated and the

LR depth maps are in lower quality with bigger missing

holes. Observing the last two rows in Figure 5, we obtain

a better result with good boundaries, more accuracy depth

values and more pleasant visual effects, while other algo-

rithms fail to recover good HR depth maps.

5.4. Ablation Study

To demonstrate the effectiveness of the designed archi-

tecture of our depth map SR baseline, we conduct serveral

ablation studies. For such an ablation study, the basic setup

refers to the experiments above. The results in Table 6

clearly demonstrates that both the HFL and HFGB can be

used to improve the performance of FDSR. What’s more,

the improvement of FDSR implies that the employing HFL

components that HFGB to great extent.

Methods
NYU v2 [28] RGB-D-D

×4 ×8 ×16 ×4 ×8 ×16

w/o HFGB 2.02 3.90 7.58 1.16 1.88 3.47

w/o HFL 1.68 3.21 5.89 1.13 1.85 3.20

FDSR 1.61 3.18 5.86 1.11 1.71 3.01

Table 6. RMSE evaluation of HFL and HFGB.

6. Conclusion

Towards the real-world depth map SR, we build the first

benchmark dataset which satisfy both real scene and real

coorespondence. The dataset contains paired LR and HR

depth maps in multiple scenarios, and contributes the com-

pletely new benchmark dataset for real-world depth map SR

research. Furthermore, the “RGB-D-D” triples not only can

complete the traditional depth-related tasks, such as depth

estimation, depth completion, etc. but also have signifi-

cant potential to promote the application of depth maps on

portable intelligent electronics. We also provide a fast and

accurate depth map SR baseline adaptively focusing on the

high-frequency components of the guidance and suppress

the low-frequency components. Our algorithm achieves the

competitive performance on public datasets and our pro-

posed dataset, what’s more, it has an ability to cope with

the task of real-world depth map SR.
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