
Towards Fast Computation of Certified Robustness for ReLU Networks

Tsui-Wei Weng * 1 Huan Zhang * 2 Hongge Chen 1 Zhao Song 3 4 Cho-Jui Hsieh 2 Duane Boning 1

Inderjit S. Dhillon 4 Luca Daniel 1

Abstract

Verifying the robustness property of a general

Rectified Linear Unit (ReLU) network is an NP-

complete problem. Although finding the exact

minimum adversarial distortion is hard, giving a

certified lower bound of the minimum distortion is

possible. Current available methods of computing

such a bound are either time-consuming or deliver

low quality bounds that are too loose to be useful.

In this paper, we exploit the special structure of

ReLU networks and provide two computationally

efficient algorithms (Fast-Lin,Fast-Lip) that are

able to certify non-trivial lower bounds of mini-

mum adversarial distortions. Experiments show

that (1) our methods deliver bounds close to (the

gap is 2-3X) exact minimum distortions found by

Reluplex in small networks while our algorithms

are more than 10,000 times faster; (2) our meth-

ods deliver similar quality of bounds (the gap is

within 35% and usually around 10%; sometimes

our bounds are even better) for larger networks

compared to the methods based on solving linear

programming problems but our algorithms are 33-

14,000 times faster; (3) our method is capable of

solving large MNIST and CIFAR networks up to

7 layers with more than 10,000 neurons within

tens of seconds on a single CPU core. In addi-

tion, we show that there is no polynomial time

algorithm that can approximately find the mini-

mum �1 adversarial distortion of a ReLU network

with a 0.99 lnn approximation ratio unless NP=P,

where n is the number of neurons in the network.

*Equal contribution 1Massachusetts Institute of Technol-
ogy, Cambridge, MA 2UC Davis, Davis, CA 3Harvard Uni-
versity, Cambridge, MA 4UT Austin, Austin, TX. Full ver-
sion is available at https://arxiv.org/pdf/1804.09699. Correspon-
dence to: Tsui-Wei Weng <twweng@mit.edu>, Huan Zhang
<ecezhang@ucdavis.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1. Introduction

Since the discovery of adversarial examples in deep neural

network (DNN) image classifiers (Szegedy et al., 2013),

researchers have successfully found adversarial examples

in many machine learning tasks applied to different areas,

including object detection (Xie et al., 2017), image caption-

ing (Chen et al., 2018a), speech recognition (Cisse et al.,

2017), malware detection (Wang et al., 2017) and reading

comprehension (Jia & Liang, 2017). Moreover, black-box

attacks have also been shown to be possible, where an at-

tacker can find adversarial examples without knowing the

architecture and parameters of the DNN (Chen et al., 2017;

Papernot et al., 2017; Liu et al., 2017b).

The existence of adversarial examples poses a huge threat to

the application of DNNs in mission-critical tasks including

security cameras, self-driving cars and aircraft control sys-

tems. Many researchers have thus proposed defensive or de-

tection methods in order to increase the robustness of DNNs.

Notable examples are defensive distillation (Papernot et al.,

2016), adversarial retraining/training (Kurakin et al., 2017;

Madry et al., 2018) and model ensembles (Tramèr et al.,

2018; Liu et al., 2017a). Despite many published contribu-

tions that aim at increasing the robustness of DNNs, theo-

retical results are rarely given and there is no guarantee that

the proposed defensive methods can reliably improve the ro-

bustness. Indeed, many of these defensive mechanism have

been shown to be ineffective when more advanced attacks

are used (Carlini & Wagner, 2017c;a;b; He et al., 2017).

The robustness of a DNN can be verified by examining a

neighborhood (e.g. �2 or �∞ ball) near a data point x0. The

idea is to find the largest ball with radius r0 that guarantees

no points inside the neighborhood can ever change classifier

decision. Typically, r0 can be found as follows: given

R, a global optimization algorithm can be used to find an

adversarial example within this ball, and thus bisection on R
can produce r0. Reluplex (Katz et al., 2017) is one example

using such a technique but it is computationally infeasible

even on a small MNIST classifier. In general, verifying

the robustness property of a ReLU network is NP-complete

(Katz et al., 2017; Sinha et al., 2018).

On the other hand, a lower bound βL of radius r0 can be

given, which guarantees that no examples within a ball of ra-

Towards Fast Computation of Certified Robustness for ReLU Networks

dius βL can ever change the network classification outcome.

(Hein & Andriushchenko, 2017) is a pioneering work on

giving such a lower bound for neural networks that are con-

tinuously differentiable, although only a 2-layer MLP net-

work with differentiable activations is investigated. (Weng

et al., 2018) has extended theoretical result to ReLU activa-

tion functions and proposed a robustness score, CLEVER,

based on extreme value theory. Their approach is feasible

for large state-of-the-art DNNs but CLEVER is an estimate

of βL without certificates. Ideally, we would like to obtain

a certified (which guarantees that βL ≤ r0) and non-trivial

(a trivial βL is 0) lower bound βL that is reasonably close

to r0 within reasonable amount of computational time.

In this paper, we develop two fast algorithms for obtaining

a tight and certified lower bound βL on ReLU networks. In

addition, we also provide a complementary theoretical result

to (Katz et al., 2017; Sinha et al., 2018) by further showing

there does not even exist a polynomial time algorithm that

can approximately find the minimum adversarial distortion

with a 0.99 lnn approximation ratio. Our contributions are:

• We fully exploit the ReLU networks to give two computa-

tionally efficient methods of computing tighter and guaran-

teed robustness lower bounds via (1) linear approximation

on the ReLU units (see Sec 3.3, Algorithm 1, Fast-Lin) and

(2) bounding network local Lipschitz constant (see Sec 3.4,

Algorithm 2, Fast-Lip). Unlike the per-layer operator-norm-

based lower bounds which are often very loose (close to

0, as verified in our experiments) for deep networks, our

bounds are much closer to the upper bound given by the

best adversarial examples, and thus can be used to evaluate

the robustness of DNNs with theoretical guarantee.

• We show that our proposed method is at least four or-

ders of magnitude faster than finding the exact minimum

distortion (with Reluplex), and also around two orders of

magnitude (or more) faster than linear programming (LP)

based methods. We can compute a reasonable robustness

lower bound within a minute for a ReLU network with up to

7 layers or over ten thousands neurons, which is so far the

best available result in the literature to our best knowledge.

• We show that there is no polynomial time algorithm that

can find a lower bound of minimum �1 adversarial distortion

with a (1− o(1)) lnn approximation ratio (where n is the

total number of neurons) unless NP=P (see Theorem 3.1).

2. Background and related work

2.1. Solving the minimum adversarial distortion

For ReLU networks, the verification problem can be trans-

formed into a Mixed Integer Linear Programming (MILP)

problem (Lomuscio & Maganti, 2017; Cheng et al., 2017;

Fischetti & Jo, 2017) by using binary variables to encode

the states of ReLU activation in each neuron. (Katz et al.,

2017) proposed Reluplex based on satisfiable modulo theory,

which encodes the network into a set of linear constraints

with special rules to handle ReLU activations and splits the

problem into two LP problems based on a ReLU’s activa-

tion status on demand. Similarly, (Ehlers, 2017) proposed

Planet, another splitting-based approach using satisfiability

(SAT) solvers. These approaches guarantee to find the exact

minimum distortion of an adversarial example, and can be

used for formal verification. However, due to NP-hard na-

ture of the underlying problem, these approaches only work

on very small networks. For example, in (Katz et al., 2017),

verifying a feed-forward network with 5 inputs, 5 outputs

and 300 total hidden neurons on a single data point can take

a few hours. Additionally, Reluplex can find the minimum

distortion only in terms of �∞ norm (�1 is possible via an

extension) and cannot easily generalize to �p norm.

2.2. Computing lower bounds of minimum distortion

(Szegedy et al., 2013) gives a lower bound on the minimum

distortion in ReLU networks by computing the product of

weight matrices operator norms, but this bound is usually

too loose to be useful in practice, as pointed out in (Hein

& Andriushchenko, 2017) and verified in our experiments

(see Table F.1). A tighter bound was given by (Hein &

Andriushchenko, 2017) using local Lipschitz constant on

a network with one hidden layer, but their approach re-

quires the network to be continuously-differentiable, and

thus cannot be directly applied to ReLU networks. (Weng

et al., 2018) further provide the lower bound guarantee to

non-differentiable functions by Lipschitz continuity assump-

tion and propose the first robustness score, CLEVER, that

can evaluate the robustness of DNNs and scale to large

ImageNet networks. As also shown in our experiments in

Section 4, the CLEVER score is indeed a good robustness

estimate close to the true minimum distortion given by Relu-

plex, albeit without providing certificates. Recently, (Wong

& Kolter, 2018) propose a convex relaxation on the MILP

verification problem discussed in Sec 2.1, which reduces

MILP to LP when the adversarial distortion is in �∞ norm.

They focus on adversarial training, and compute layer-wise

bounds by looking into the dual LP problem.

2.3. Hardness and approximation algorithms

NP �= P is the most important and popular assumption in

computational complexity in the last several decades. It

can be used to show that the decision of the exact case

of a problem is hard. However, in several cases, solving

one problem approximately is much easier than solving it

exactly. For example, there is no polynomial time algorithm

to solve the MAX-CUT problem, but there is a simple 0.5-

approximation polynomial time algorithm. Previous works

(Katz et al., 2017; Sinha et al., 2018) show that there is no

polynomial time algorithm to find the minimum adversarial

Towards Fast Computation of Certified Robustness for ReLU Networks

distortion r0 exactly. A natural question to ask is: does there

exist a polynomial time algorithm to solve the robustness

problem approximately? In other words, can we give a

lower bound of r0 with a guaranteed approximation ratio?

From another perspective, NP �= P only rules out the poly-

nomial running time. Some problems might not even have a

sub-exponential time algorithm. To rule out that, the most

well-known assumption used is the “Exponential Time Hy-

pothesis” (Impagliazzo et al., 1998). The hypothesis states

that 3SAT cannot be solved in sub-exponential time in the

worst case. Another example is that while tensor rank calcu-

lation is NP-hard (Håstad, 1990), a recent work (Song et al.,

2017b) proved that there is no 2o(n
1−o(1)) time algorithm

to give a constant approximation of the rank of the tensor.

There are also some stronger versions of the hypothesis than

ETH, e.g., Strong ETH (Impagliazzo & Paturi, 2001), Gap

ETH (Dinur, 2016; Manurangsi & Raghavendra, 2017), and

average case ETH (Feige, 2002; Razenshteyn et al., 2016).

3. Robustness guarantees for ReLU networks

Overview of our results. We begin with a motivating

theorem in Sec 3.1 showing that there does NOT exist a

polynomial time algorithm able to find the minimum adver-

sarial distortion with a (1− o(1)) lnn approximation ratio.

We then introduce notations in Sec 3.2 and state our main

results in Sec 3.3 and 3.4, where we develop two approaches

that guarantee to obtain a lower bound of minimum adver-

sarial distortion. In Sec 3.3, we first demonstrate a general

approach to directly derive the output bounds of a ReLU net-

work with linear approximations when inputs are perturbed

by a general �p norm noise. The analytic output bounds

allow us to develop a fast algorithm Fast-Lin to compute

certified lower bound. In Sec 3.4, we present Fast-Lip to

obtain a certified lower bound of minimum distortion by

deriving upper bounds for the local Lipschitz constant. Both

methods are highly efficient and allow fast computation of

certified lower bounds on large ReLU networks.

3.1. Finding the minimum distortion with a 0.99 lnn
approximation ratio is hard

(Katz et al., 2017) shows that verifying robustness for ReLU

networks is NP-complete; in other words, there is no effi-

cient (polynomial time) algorithm to find the exact minimum

adversarial distortion. Here, we further show that even ap-

proximately finding the minimum adversarial distortion with

a guaranteed approximation ratio can be hard. Suppose the

�p norm of the true minimum adversarial distortion is r0,

and a robustness verification program A gives a guarantee

that no adversarial examples exist within an �p ball of ra-

dius r (r is a lower bound of r0). The approximation ratio

α := r0
r
> 1. We hope that α is close to 1 with a guarantee;

for example, if α is a constant regardless of the scale of the

network, we can always be sure that r0 is at most α times as

large as the lower bound r found by A. Here we relax this

requirement and allow the approximation ratio to increase

with the number of neurons n. In other words, when n
is larger, the approximation becomes more inaccurate, but

this “inaccuracy” can be bounded. However, the following

theorem shows that no efficient algorithms exist to give a

0.99 lnn approximation in the special case of �1 robustness:

Theorem 3.1. Unless P = NP, there is no polynomial time

algorithm that gives (1 − o(1)) lnn-approximation to the

�1 ReLU robustness verification problem with n neurons.

Our proof is based on a well-known in-approximability re-

sult of SET-COVER problem (Raz & Safra, 1997; Alon

et al., 2006; Dinur & Steurer, 2014) and a novel reduction

from SET-COVER to our problem. We defer the proof

into Appendix A. The formal definition of the �1 ReLU

robustness verification problem can be found in Defini-

tion A.7. Theorem 3.1 implies that any efficient (polyno-

mial time) algorithm cannot give better than (1− o(1)) lnn-

approximation guarantee. Moreover, by making a stronger

assumption of Exponential Time Hypothesis (ETH), we can

state an explicit result about running time using existing

results from SET-COVER (Moshkovitz, 2012a;b),

Corollary 3.2. Under ETH, there is no 2o(n
c) time al-

gorithm that gives (1 − o(1)) lnn-approximation to the

�1 ReLU robustness verification problem with n neurons,

where c ∈ (0, 1) is some fixed constant.

3.2. ReLU Networks and Their Activation Patterns

Let x ∈ R
n0 be the input vector for an m-layer neural

network with m − 1 hidden layers and let the number of

neurons in each layer be nk, ∀k ∈ [m]. We use [n] to denote

set {1, 2, · · · , n}. The weight matrix W
(k) and bias vector

b(k) for the k-th layer have dimension nk × nk−1 and nk,

respectively. Let φk : Rn0 → R
nk be the operator mapping

from input layer to layer k and σ(y) be the coordinate-

wise activation function; for each k ∈ [m− 1], the relation

between layer k − 1 and layer k can be written as φk(x) =
σ(W(k)φk−1(x)+b(k)), where W(k) ∈ R

nk×nk−1 , b(k) ∈
R

nk . For the input layer and the output layer, we have

φ0(x) = x and φm(x) = W
(m)φm−1(x) + b(m). The

output of the neural network is f(x) = φm(x), which is a

vector of length nm, and the j-th output is its j-th coordinate,

denoted as fj(x) = [φm(x)]j . For ReLU activation, the

activation function σ(y) = max(y,0) is an element-wise

operation on the input vector y.

Given an input data point x0 ∈ R
n0 and a bounded �p-

norm perturbation � ∈ R+, the input x is constrained in

an �p ball Bp(x0, �) := {x | �x − x0�p ≤ �}. With all

possible perturbations in Bp(x0, �), the pre-ReLU activa-

tion of each neuron has a lower and upper bound l ∈ R

and u ∈ R, where l ≤ u. Let us use l
(k)
r and u

(k)
r to de-

Towards Fast Computation of Certified Robustness for ReLU Networks

note the lower and upper bound for the r-th neuron in the

k-th layer, and let z
(k)
r be its pre-ReLU activation, where

z
(k)
r = W

(k)
r,: φk−1(x) + b

(k)
r , l

(k)
r ≤ z

(k)
r ≤ u

(k)
r , and

W
(k)
r,: is the r-th row of W(k). There are three categories of

possible activation patterns – (i) the neuron is always acti-

vated: I+
k

:= {r ∈ [nk] | u
(k)
r ≥ l

(k)
r ≥ 0}, (ii) the neuron

is always inactivated: I−
k

:= {r ∈ [nk] | l
(k)
r ≤ u

(k)
r ≤ 0},

and (iii) the neuron could be either activated or inacti-

vated: Ik := {r ∈ [nk] | l
(k)
r < 0 < u

(k)
r }. Obviously,

{I+
k , I−

k , Ik} is a partition of set [nk].

3.3. Approach 1 (Fast-Lin): Certified lower bounds via

linear approximations

3.3.1. DERIVATION OF THE OUTPUT BOUNDS VIA

LINEAR UPPER AND LOWER BOUNDS FOR RELU

In this section, we propose a methodology to directly derive

upper bounds and lower bounds of the output of an m-

layer feed-forward ReLU network. The central idea is to

derive an explicit upper/lower bound based on the linear

approximations for the neurons in category (iii) and the

signs of the weights associated with the activations.

We start with a 2-layers network and then extend it to m
layers. The j-th output of a 2-layer network is:

fj(x) =
�

r∈I
+
1 ,I

−

1 ,I1

W
(2)
j,rσ(W

(1)
r,: x+ b(1)r) + b

(2)
j .

For neurons r ∈ I+
1 , we have σ(W

(1)
r,: x+b

(1)
r) = W

(1)
r,: x+

b
(1)
r ; for neurons r ∈ I−

1 , we have σ(W
(1)
r,: x+ b

(1)
r) = 0.

For the neurons in category (iii), we propose to use the

following linear upper bound and a linear lower bound to

replace the ReLU activation σ(y):

u

u− l
y ≤ σ(y) ≤

u

u− l
(y − l). (1)

Let d
(1)
r :=

u
(1)
r

u
(1)
r −l

(1)
r

, we have

d(1)
r (W(1)

r,: x+ b(1)r) ≤ σ(W(1)
r,: x+ b(1)r) (2)

≤ d(1)
r (W(1)

r,: x+ b(1)r − l(1)r).

To obtain an upper bound and lower bound of fj(x) with (1),

set d
(1)
r = 1 for r ∈ I+

1 , and we have

fU
j (x) =

�

r∈I
+
1 ,I1

W
(2)
j,rd

(1)
r (W(1)

r,: x+ b(1)r) (3)

−
�

r∈I1,W
(2)
j,r

>0

W
(2)
j,rd

(1)
r l(1)r + b

(2)
j ,

fL
j (x) =

�

r∈I
+
1 ,I1

W
(2)
j,rd

(1)
r (W(1)

r,: x+ b(1)r) (4)

−
�

r∈I1,W
(2)
j,r

<0

W
(2)
j,rd

(1)
r l(1)r + b

(2)
j ,

where fL
j (x) ≤ fj(x) ≤ fU

j (x). To obtain fU
j (x), we take

the upper bound of σ(W
(1)
r,: x+ b

(1)
r) for r ∈ I1,W

(2)
j,r > 0

and its lower bound for r ∈ I1,W
(2)
j,r ≤ 0. Both cases share

a common term of d
(1)
r (W

(1)
r,: x+ b

(1)
r), which is combined

into the first summation term in (3) with r ∈ I1. Similarly

we get the bound for fL
j (x).

For a general m-layer ReLU network with the linear approx-

imation (1), we will show in Theorem 3.5 that the network

output can be bounded by two explicit functions when the

input x is perturbed with a �-bounded �p noise. We start

by defining the activation matrix D
(k) and the additional

equivalent bias terms T
(k) and H

(k) for the k-th layer in

Definition 3.3 and the two explicit functions in 3.4.

Definition 3.3 (A(k),T(k),H(k)). Given matrices W(k) ∈
R

nk×nk−1 and vectors b(k) ∈ R
nk , ∀k ∈ [m]. We define

D
(0) ∈ R

n0×n0 as an identity matrix. For each k ∈ [m−1],
we define matrix D

(k) ∈ R
nk×nk as follows

D
(k)
r,r =





u
(k)
r

u
(k)
r −l

(k)
r

if r ∈ Ik;

1 if r ∈ I+
k ;

0 if r ∈ I−
k .

(5)

We define matrix A
(m−1) ∈ R

nm×nm−1 to be

W
(m)

D
(m−1), and for each k ∈ {m − 1,m − 2, · · · , 1},

matrix A
(k−1) ∈ R

nm×nk−1 is defined recursively as

A
(k−1) = A

(k)
W

(k)
D

(k−1). For each k ∈ [m − 1], we

define matrices T(k),H(k) ∈ R
nk×nm , where

T
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A

(k)
j,r > 0;

0 otherwise .

H
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A

(k)
j,r < 0;

0 otherwise .

Definition 3.4 (Two explicit functions : fU (·) and fL(·)).
Let matrices A(k), T(k) and H

(k) be defined as in Defini-

tion 3.3. We define two functions fU , fL : Rn0 → R
nm as

follows. For each input vector x ∈ R
n0 ,

fU
j (x) =A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j),

fL
j (x) =A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j).

Now, we are ready to state our main theorem,

Towards Fast Computation of Certified Robustness for ReLU Networks

W(1)

f1

f2

f3

x1+δ1

x2+δ2

x3+δ3

f1
U

f1
L

f2
U

f2
L

f3
U

f3
L

W(2) W(3) W(4)

input

output

𝑙 𝑢
Linear upper
bound

Linear lower
bound

: activated

: inactivated

: uncertain

: linear bounds

Figure 1. Illustration of deriving output bounds for ReLU networks in Section 3.3. The final output upper bounds (fU
j) and lower bounds

(fL
j) can be derived by considering the activation status of the neurons with input perturbation �δ�p ≤ �. For neurons in I

+

k , their outputs

are identical to their inputs; for neurons in I
−

k , they can be removed during computation as their outputs are always zero; for neurons in

Ik, their outputs can be bounded by corresponding linear upper bounds and lower bounds considering the signs of associated weights.

Theorem 3.5 (Explicit upper and lower bounds). Given an

m-layer ReLU neural network function f : Rn0 → R
nm ,

there exists two explicit functions fL : Rn0 → R
nm and

fU : R
n0 → R

nm (see Definition 3.4) such that ∀j ∈
[nm], fL

j (x) ≤ fj(x) ≤ fU
j (x), ∀x ∈ Bp(x0, �).

The proof of Theorem 3.5 is in Appendix B. Since the input

x ∈ Bp(x0, �), we can maximize (3) and minimize (4)

within this set to obtain a global upper and lower bound of

fj(x), which has analytical solutions for any 1 ≤ p ≤ ∞
and the result is formally shown in Corollary 3.7 (proof

in Appendix C). In other words, we have analytic bounds

that can be computed efficiently without resorting to any

optimization solvers for general �p distortion, and this is the

key to enable fast computation for layer-wise output bounds.

We first formally define the global upper bound γU
j and

lower bound γL
j of fj(x), and then obtain Corollary 3.7.

Definition 3.6 (γL
j , γ

U
j). Given a point x0 ∈ R

n0 , a neural

network function f : Rn0 → R
nm , parameters p, �. Let

matrices A(k), T(k) and H
(k), ∀k ∈ [m− 1] be defined as

in Definition 3.3. We define γL
j , γ

U
j , ∀j ∈ [nm] as

γL
j = µ−

j + νj − ��A
(0)
j,: �q and γU

j = µ+
j + νj + ��A

(0)
j,: �q,

where 1/p+ 1/q = 1 and νj , µ
+
j , µ

−
j are defined as

µ+
j = −

m−1�

k=1

A
(k)
j,: T

(k)
:,j , µ−

j = −

m−1�

k=1

A
(k)
j,: H

(k)
:,j (6)

νj = A
(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: b

(k) (7)

Corollary 3.7 (Two side bounds in closed-form). Given

a point x0 ∈ R
n0 , an m-layer neural network function

f : Rn0 → R
nm , parameters p and �. For each j ∈ [nm],

there exist two fixed values γL
j and γU

j (see Definition 3.6)

such that γL
j ≤ fj(x) ≤ γU

j , ∀x ∈ Bp(x0, �).

3.3.2. COMPUTING PRE-ReLU ACTIVATION BOUNDS

Theorem 3.5 and Corollary 3.7 give us a global lower bound

γL
j and upper bound γU

j of the j-th neuron at the m-th layer

if we know all the pre-ReLU activation bounds l(k) and

u(k), from layer 1 to m − 1, as the construction of D(k),

H
(k) and T

(k) requires l(k) and u(k) (see Definition 3.3).

Here, we show how this can be done easily and layer-by-

layer. We start from m = 1 where A
(0) = W

(1), fU (x) =
fL(x) = A

(0)x+ b(1). Then, we can apply Corollary 3.7

to get the output bounds of each neuron and set them as

l(1) and u(1). Then, we can proceed to m = 2 with l(1)

and u(1) and compute the output bounds of second layer by

Corollary 3.7 and set them as l(2) and u(2). Repeating this

procedure for all m− 1 layers, we will get all the l(k) and

u(k) needed to compute the output range of the m-th layer.

Note that when computing l(k) and u(k), the constructed

W
(k)

D
(k−1) can be saved and reused for bounding the next

layer, which facilitates efficient implementations. Moreover,

the time complexity of computing the output bounds of an

m-layer ReLU network with Theorem 3.5 and Corollary 3.7

is polynomial time in contrast to the approaches in (Katz

et al., 2017) and (Lomuscio & Maganti, 2017) where SMT

solvers and MIO solvers have exponential time complexity.

The major computation cost is to form A
(0) for the m-th

layer, which involves multiplications of layer weights in a

similar cost of forward propagation. See the “ComputeT-

woSideBounds” procedure in Algorithm 1 in Appendix D.

3.3.3. DERIVING MAXIMUM CERTIFIED LOWER BOUNDS

OF MINIMUM ADVERSARIAL DISTORTION

Suppose c is the predicted class of the input data point x0

and the class is j. With Theorem 3.5, the maximum possible

lower bound for the targeted attacks ��j and un-targeted

attacks �� are

��j = max
�

� s.t. γL
c (�)− γU

j (�) > 0 and �� = min
j �=c

��j .

Though it is hard to get analytic forms of γL
c (�) and γU

j (�)
in terms of �, fortunately, we can still obtain ��j via a binary

search. This is because Corollary 3.7 allows us to efficiently

compute the numerical values of γL
c (�) and γU

j (�) given �.

It is worth noting that we can further improve the bound

by considering g(x) := fc(x)− fj(x) at the last layer and

apply the same procedure to compute the lower bound of

Towards Fast Computation of Certified Robustness for ReLU Networks

g(x) (denoted as �γL); this can be done easily by redefining

the last layer’s weights to be a row vector w̄ := W
(m)
c,: −

W
(m)
j,: . The corresponding maximum possible lower bound

for the targeted attacks is ��j = max � s.t. �γL(�) > 0. We

list our complete algorithm, Fast-Lin, in Appendix D.

3.3.4. DISCUSSIONS

We have shown how to derive explicit output bounds of

ReLU network (Theorem 3.5) with the proposed linear ap-

proximations and obtain analytical certified lower bounds

(Corollary 3.7), which is the key of our proposed algorithm

Fast-Lin. (Wong & Kolter, 2018) presents a similar al-

gorithmic result on computing certified bounds, but our

framework and theirs are entirely different – we use di-

rect computation of layer-wise linear upper/lower bounds

in Sec 3.3 with binary search on �, while their results is

achieved via the lens of dual LP formulation with Newton’s

method. Interestingly, when we choose a special set of lower

and upper bounds as in (2) and they choose a special dual

LP variable in their equation (8), the two different frame-

works coincidentally produce the same procedure for com-

puting layer-wise bounds (the “ComputeTwoSideBounds”

procedure in Fast-Lin and Algorithm 1 in (Wong & Kolter,

2018)). However, our choice of bounds (2) is due to com-

putation efficiency, while (Wong & Kolter, 2018) gives a

quite different justification. We encourage the readers to

read Appendix A.3 in their paper on the justifications for

this specific selection of dual variables and understand this

robustness verification problem from different perspectives.

3.4. Approach 2 (Fast-Lip): Certified lower bounds via

bounding the local Lipschitz constant

(Weng et al., 2018) shows a non-trivial lower bound of

minimum adversarial distortion for an input example x0

in targeted attacks is min
�
g(x0)/L

j
q,x0

, �
�
, where g(x) =

fc(x)−fj(x), L
j
q,x0

is the local Lipschitz constant of g(x)
in Bp(x0, �), j is the target class, c is the original class, and

1/p + 1/q = 1. For un-targeted attacks, the lower bound

can be presented in a similar form. (Weng et al., 2018) uses

sampling techniques to estimate the local Lipschitz constant

and compute an estimated lower bound without certificates.

Here, we propose a new algorithm to compute a certified

lower bound of the minimum adversarial distortion by upper

bounding the local Lipschitz constant. To start with, let us

rewrite the relations of subsequent layers in the following

form: φk(x) = Λ
(k)(W(k)φk−1(x) + b(k)), where σ(·) is

replaced by the diagonal activation pattern matrix Λ
(k) that

encodes the status of neurons r in k-th layer:

Λ
(k)
r,r =





1 or 0 if r ∈ Ik

1 if r ∈ I+
k

0 if r ∈ I−
k

(8)

and Λ
(m) = Inm

. With a slight abuse of notation, let

us define Λ
(k)
a as a diagonal activation matrix for neurons

in the k-th layer who are always activated, i.e. the r-th

diagonal is 1 if r ∈ I+
k and 0 otherwise, and Λ

(k)
u as the

diagonal activation matrix for k-th layer neurons whose

status are uncertain, i.e. the r-th diagonal is 1 or 0 (to be

determined) if r ∈ Ik, and 0 otherwise. Therefore, we have

Λ
(k) = Λ

(k)
a +Λ

(k)
u . We can obtain Λ

(k) for x ∈ Bp(x0, �)
by applying Algorithm 1 and check the lower and upper

bounds for each neuron r in layer k.

3.4.1. A GENERAL UPPER BOUND OF LIPSCHITZ

CONSTANT IN �q NORM

The central idea is to compute upper bounds of Lj
q,x0

by ex-

ploiting the three categories of activation patterns in ReLU

networks when the allowable inputs are in Bp(x0, �). L
j
q,x0

can be defined as the maximum norm of directional deriva-

tive as shown in (Weng et al., 2018). For the ReLU network,

the maximum directional derivative norm can be found by

examining all the possible activation patterns and take the

one (the worst-case) that results in the largest gradient norm.

However, as all possible activation patterns grow exponen-

tially with the number of the neurons, it is impossible to

examine all of them in brute-force. Fortunately, comput-

ing the worst-case pattern on each element of ∇g(x) (i.e.

[∇g(x)]k, k ∈ [n0]) is much easier and more efficient. In

addition, we apply a simple fact that the maximum norm

of a vector (which is ∇g(x),x ∈ Bp(x0, �) in our case)

is upper bounded by the norm of the maximum value for

each components. By computing the worst-case pattern on

[∇g(x)]k and its norm, we can obtain an upper bound of the

local Lipschitz constant, which results in a certified lower

bound of minimum distortion.

Below, we first show how to derive an upper bound of the

Lipschitz constant by computing the worst-case activation

pattern on [∇g(x)]k for 2 layers. Next, we will show how

to apply it repeatedly for a general m-layer network, and the

algorithm is named Fast-Lip. Note that for simplicity, we

will use [∇fj(x)]k to illustrate our derivation; however, it

is easy to extend to [∇g(x)]k as g(x) = fc(x)− fj(x) by

simply replacing last layer weight vector by W
(m)
c,: −W

(m)
j,: .

Bounds for a 2-layer ReLU Network. The gradient is:

[∇fj(x)]k = W
(2)
j,: Λ

(1)
a W

(1)
:,k +W

(2)
j,: Λ

(1)
u W

(1)
:,k .

The first term W
(2)
j,: Λ

(1)
a W

(1)
:,k is a constant and all we need

to bound is the second term W
(2)
j,: Λ

(1)
u W

(1)
:,k . Let C

(1)
j,k =

W
(2)
j,: Λ

(1)
a W

(1)
:,k , L

(1)
j,k and U

(1)
j,k be the lower and upper

bounds of the second term, we have

L
(1)
j,k =

�

i∈I1,W
(2)
j,i

W
(2)
i,k

<0

W
(2)
j,i W

(2)
i,k , U

(1)
j,k =

�

i∈I1,W
(2)
j,i

W
(2)
i,k

>0

W
(2)
j,i W

(2)
i,k

Towards Fast Computation of Certified Robustness for ReLU Networks

max
x∈Bp(x0,�)

|[∇fj(x)]k| ≤ max(|C
(1)
j,k+L

(1)
j,k |, |C

(1)
j,k+U

(1)
j,k|).

Bounds for 3 layers or more. For 3 or more layers, we

can apply the above 2-layer results recursively, layer-by-

layer. For example, for a 3-layer ReLU network,

[∇fj(x)]k = W
(3)
j,: Λ

(2)
W

(2)
Λ

(1)
W

(1)
:,k ,

if we let Y
(1)
:,k = W

(2)
Λ

(1)
W

(1)
:,k , then [∇fj(x)]k is re-

duced to the following form that is similar to 2 layers:

[∇fj(x)]k = W
(3)
j,: Λ

(2)
Y

(1)
:,k (9)

= W
(3)
j,: Λ

(2)
a Y

(1)
:,k +W

(3)
j,: Λ

(2)
u Y

(1)
:,k (10)

To obtain the bound in (9), we first need to obtain a lower

bound and upper bound of Y
(1)
:,k , where we can directly

apply the 2-layer results to get an upper and an lower bound

for each component i as C
(1)
i,k+L

(1)
i,k ≤ Y

(1)
i,k ≤ C

(1)
i,k+U

(1)
i,k .

Next, the first term W
(3)
j,: Λ

(2)
a Y

(1)
:,k in (10) can be lower

bounded and upper bounded respectively by
�

i∈I
+
2

W
(3)
j,i C

(1)
i,k +

�

i∈I
+
2 ,W

(3)
j,i

>0

W
(3)
j,i L

(1)
i,k +

�

i∈I
+
2 ,W

(3)
j,i

<0

W
(3)
j,i U

(1)
i,k

(11)
�

i∈I
+
2

W
(3)
j,i C

(1)
i,k +

�

i∈I
+
2 ,W

(3)
j,i

>0

W
(3)
j,i U

(1)
i,k +

�

i∈I
+
2 ,W

(3)
j,i

<0

W
(3)
j,i L

(1)
i,k

(12)

whereas the second term W
(3)
j,: Λ

(2)
u Y

(1)
:,k in (10) is bounded

by
�

i∈P
W

(3)
j,i (C

(1)
i,k +L

(1)
i,k)+

�
i∈Q

W
(3)
j,i (C

(1)
i,k +U

(1)
i,k)

with lower/upper bound index sets PL,QL and PU ,QU :

PL = {i | i ∈ I2,W
(3)
j,i > 0,C

(1)
i,k + L

(1)
i,k < 0},

QL = {i | i ∈ I2,W
(3)
j,i < 0,C

(1)
i,k +U

(1)
i,k > 0}; (13)

PU = {i | i ∈ I2,W
(3)
j,i < 0,C

(1)
i,k + L

(1)
i,k < 0},

QU = {i | i ∈ I2,W
(3)
j,i > 0,C

(1)
i,k +U

(1)
i,k > 0}. (14)

Let C
(2)
j,k =

�
i∈I

+
2
W

(3)
j,i C

(1)
i,k , U

(2)
j,k+C

(2)
j,k and L

(2)
j,k+C

(2)
j,k

be the upper and lower bound of [∇fj(x)]k, we have

U
(2)
j,k+C

(2)
j,k = (12)+(14) and L

(2)
j,k+C

(2)
j,k = (11)+(13),

max
x∈Bp(x0,�)

|[∇fj(x)]k|≤max(|L
(2)
j,k+C

(2)
j,k|, |U

(2)
j,k+C

(2)
j,k |).

Thus, this technique can be used iteratively to solve

maxx∈Bp(x0,�) |[∇fj(x)]k| for a general m-layer network,

and we can easily bound any q norm of ∇fj(x) by the q
norm of the vector of maximum values. For example,

max
x∈Bp(x0,�)

�∇fj(x)�q ≤

�
�

k

(max
x∈Bp(x0,�)

|[∇fj(x)]k|)
q

� 1
q

We list our full procedure, Fast-Lip, in Appendix D.

Further speed-up. Note that in the 3-layer example, we

compute the bounds from right to left, i.e. we first get the

bound of W(2)
Λ

(1)
W

(1)
:,k , and then bound W

(3)
j,: Λ

(2)
Y

(1)
:,k .

Similarly, we can compute the bounds from left to right

– get the bound of W
(3)
j,: Λ

(2)
W

(2)
first, and then bound

Y
(2)
j,: Λ

(1)
W

(1)
:,k , where Y

(2)
j,: = W

(3)
j,: Λ

(2)
W

(2). Since the

dimension of the output layer (nm) is typically far less

than the dimension of the input vector (n0), computing the

bounds from left to right is more efficient as the matrix Y

has a smaller dimension of nm × nk rather than nk × n0.

4. Experiments

In this section, we perform extensive experiments to eval-

uate the performance of our proposed two lower-bound

based robustness certificates on networks with different sizes

and with different defending techniques during training pro-

cess. Specifically, we compare our proposed bounds1 (Fast-

Lin, Fast-Lip) with Linear Programming (LP) based meth-

ods (LP, LP-Full), formal verification methods (Reluplex),

lower bound by global Lipschitz constant (Op-norm), es-

timated lower bounds (CLEVER) and attack algorithms

(Attacks) for toy networks (2-3 layers with 20 neurons in

each layer) and large networks (2-7 layers with 1024 or 2048

neurons in each layer) in Table 1. The evaluation on the

effects of defending techniques is presented in Table 2. All

bound numbers are the average of 100 random test images

with random attack targets, and running time (per image) for

all methods is measured on a single CPU core. We include

detailed setup of experiments, descriptions of each method,

additional experiments and discussions in Appendix F (See

Tables F.1 and F.2). The results suggest that our proposed

robustness certificates are of high qualities and are compu-

tationally efficient even in large networks up to 7 layers or

more than 10,000 neurons. In particular, we show that:

• Our certified lower bounds (Fast-Lin, Fast-Lip) are

close to (gap is only 2-3X) the exact minimum distortion

computed by Reluplex for small networks (Reluplex is only

feasible for networks with less 100 neurons for MNIST),

but our algorithm is more than 10,000 times faster than

Reluplex. See Table 1a and Table F.1.

• Our certified lower bounds (Fast-Lin, Fast-Lip) give

similar quality (the gap is within 35%, and usually around

10%; sometimes our bounds are even better) compared with

the LP-based methods (LP, LP-Full); however, our algo-

rithm is 33 - 14,000 times faster. The LP-based methods are

infeasible for networks with more than 4,000 neurons. See

Table 1b and Table F.2.

• When the network goes larger and deeper, our proposed

methods can still give non-trivial lower bounds comparing

to the upper bounds founded by attack algorithms on large

1https://github.com/huanzhang12/CertifiedReLURobustness

Towards Fast Computation of Certified Robustness for ReLU Networks

Table 1. Comparison of methods of computing certified lower bounds (Fast-Lin, Fast-Lip, LP, LP-Full,Op-norm), estimated lower

bound (CLEVER), exact minimum distortion (Reluplex) and upper bounds (Attack: CW for p = 2,∞, EAD for p = 1) on (a) 2, 3

layers toy MNIST networks with 20 neurons per layer and (b) large networks with 2-7 layers, 1024 or 2048 nodes per layer. Differences

of lower bounds and speedup are measured on the best bound from our proposed algorithms and LP-based approaches (the bold numbers

in each row). In (a), we show how close our fast bounds are to exact minimum distortions (Reluplex) and the bounds that are slightly

tighter but very expensive (LP-Full). In (b), LP-Full and Reluplex are computationally infeasible for all the networks reported here.

Toy Networks Average Magnitude of Distortions on 100 Images

Network p Target

Certified Lower Bounds difference Exact Uncertified

Our bounds Our Baselines ours vs. Reluplex CLEVER Attacks

Fast-Lin Fast-Lip LP LP-Full LP(-Full) (Katz et al., 2017) (Weng et al., 2018) CW/EAD

MNIST

2× [20]

∞ rand 0.0309 0.0270 0.0319 0.0319 -3.2% 0.07765 0.0428 0.08060

2 rand 0.6278 0.6057 0.7560 0.9182 -31.6% - 0.8426 1.19630

1 rand 3.9297 4.8561 4.2681 4.6822 +3.7% - 5.858 11.4760

MNIST

3× [20]

∞ rand 0.0229 0.0142 0.0241 0.0246 -6.9% 0.06824 0.0385 0.08114

2 rand 0.4652 0.3273 0.5345 0.7096 -34.4% - 0.7331 1.22570

1 rand 2.8550 2.8144 3.1000 3.5740 -20.1% - 4.990 10.7220

(a) Toy networks. Reluplex is designed to verify �∞ robustness so we omit its numbers for p = 2, 1.

Large Networks Average Magnitude of Distortion on 100 Images Average Running Time per Image

Network p
Certified Bounds diff Uncertified Certified Bounds Speedup

Our bounds LP Op-norm ours CLEVER Attacks Our bounds LP ours

Fast-Lin Fast-Lip (Baseline) (Szegedy et al., 2013) vs. LP (Weng et al., 2018) CW/EAD Fast-Lin Fast-Lip (Baseline) vs. LP

MNIST

2× [1024]

∞ 0.03083 0.02512 0.03386 0.00263 -8.9% 0.0708 0.1291 156 ms 219 ms 20.8 s 133X

2 0.63299 0.59033 0.75164 0.40201 -15.8% 1.2841 1.8779 128 ms 234 ms 195 s 1523X

1 3.88241 5.10000 4.47158 0.35957 +14.1% 7.4186 17.259 139 ms 1.40 s 48.1 s 34X

MNIST

3× [1024]

∞ 0.02216 0.01236 0.02428 0.00007 -8.7% 0.0717 0.1484 1.12 s 1.11 s 52.7 s 47X

2 0.43892 0.26980 0.49715 0.10233 -11.7% 1.2441 2.0387 906 ms 914 ms 714 s 788X

1 2.59898 2.25950 2.91766 0.01133 -10.9% 7.2177 17.796 863 ms 3.84 s 109 s 126X

MNIST

4× [1024]

∞ 0.00823 0.00264 - 0.00001 - 0.0793 0.1303 2.25 s 3.08 s - -

2 0.18891 0.06487 - 0.17734 - 1.4231 1.8921 2.37 s 2.72 s - -

1 1.57649 0.72800 - 0.00183 - 8.9764 17.200 2.42 s 2.91 s - -

CIFAR

5× [2048]

∞ 0.00170 0.00030 - 0.00000 - 0.0147 0.02351 26.2 s 78.1 s - -

2 0.07654 0.01417 - 0.00333 - 0.6399 0.9497 36.8 s 49.4 s - -

1 1.18928 0.31984 - 0.00000 - 9.7145 21.643 37.5 s 53.6 s - -

CIFAR

6× [2048]

∞ 0.00090 0.00007 - 0.00000 - 0.0131 0.01866 37.0 s 119 s - -

2 0.04129 0.00331 - 0.01079 - 0.5860 0.7635 60.2 s 95.6 s - -

1 0.72178 0.08212 - 0.00000 - 8.2507 17.160 61.4 s 88.2 s - -

CIFAR

7× [1024]

∞ 0.00134 0.00008 - 0.00000 - 0.0112 0.0218 10.6 s 29.2 s - -

2 0.05938 0.00407 - 0.00029 - 0.5145 0.9730 16.9 s 27.3 s - -

1 0.86467 0.09239 - 0.00000 - 8.630 22.180 17.6 s 26.7 s - -

(b) Larger networks. “-” indicates the corresponding method is computationally infeasible for that network.

Table 2. Comparison of the lower bounds for �∞ distortion found by our algorithms on models with defensive distillation (DD) (Papernot

et al., 2016) with temperature = 100 and adversarial training (Madry et al., 2018) with � = 0.3 for three targeted attack classes.

runner-up target random target least-likely target

Network Method Undefended DD Adv. Training Undefended DD Adv. Training Undefended DD Adv. Training

MNIST

3*[1024]

Fast-Lin 0.01826 0.02724 0.14730 0.02211 0.03827 0.17275 0.02427 0.04967 0.20136

Fast-Lip 0.00965 0.01803 0.09687 0.01217 0.02493 0.11618 0.01377 0.03207 0.13858

MNIST

4*[1024]

Fast-Lin 0.00715 0.01561 0.09579 0.00822 0.02045 0.11209 0.00898 0.02368 0.12901

Fast-Lip 0.00087 0.00585 0.04133 0.00145 0.00777 0.05048 0.00183 0.00903 0.06015

networks. See Table 1b and Table F.2.

• For defended networks, especially for adversarial train-

ing (Madry et al., 2018), our methods give significantly

larger bounds, validating the effectiveness of this defending

method. Our algorithms can thus be used for evaluating

defending techniques. See Table 2.

5. Conclusions

In this paper we have considered the problem of verifying

the robustness property of ReLU networks. By exploit-

ing the special properties of ReLU networks, we have here

presented two computational efficient methods Fast-Lin

and Fast-Lip for this problem. Our algorithms are two or-

ders of magnitude (or more) faster than LP-based methods,

while obtaining solutions with similar quality; meanwhile,

our bounds qualities are much better than the previously

proposed operator-norm based methods. Additionally, our

methods are efficient and easy to implement: we compute

the bounds layer-by-layer, and the computation cost for each

layer is similar to the cost of matrix products in forward

propagation; moreover, we do not need to solve any inte-

ger programming, linear programming problems or their

duals. Future work could extend our algorithm to handle the

structure of convolutional layers and apply our algorithm

to evaluate the robustness property of large DNNs such as

ResNet on the ImageNet dataset.

Towards Fast Computation of Certified Robustness for ReLU Networks

Acknowledgment

The authors sincerely thank Aviad Rubinstein for the sug-

gestion of using set-cover to prove hardness. The authors

sincerely thank Dana Moshkovitz for pointing out some

references about the hardness result of set-cover. The au-

thors would also like to thank Mika Göös, Rasmus Kyng,

Zico Kolter, Jelani Nelson, Eric Price, Milan Rubinstein,

Jacob Steinhardt, Zhengyu Wang, Eric Wong and David

P. Woodruff for useful discussions. Luca Daniel and Tsui-

Wei Weng acknowledge the partial support of MIT-Skoltech

program and MIT-IBM Watson AI Lab. Huan Zhang and

Cho-Jui Hsieh acknowledge the support of NSF via IIS-

1719097 and the computing resources provided by Google

Cloud and NVIDIA.

References

Ailon, N., Bhattacharya, A., Jaiswal, R., and Kumar, A.

Approximate clustering with same-cluster queries. In

ITCS, 2018.

Alon, N., Moshkovitz, D., and Safra, S. Algorithmic con-

struction of sets for k-restrictions. ACM TALG, 2(2):

153–177, 2006.

Ambühl, C., Mastrolilli, M., and Svensson, O. Inapprox-

imability results for maximum edge biclique, minimum

linear arrangement, and sparsest cut. SIAM Journal on

Computing, 40(2):567–596, 2011.

Arora, S. and Safra, S. Probabilistic checking of proofs: A

new characterization of np. JACM, 45(1):70–122, 1998.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy,

M. Proof verification and the hardness of approximation

problems. JACM, 45(3):501–555, 1998.

Carlini, N. and Wagner, D. Adversarial examples are not

easily detected: Bypassing ten detection methods. In

AISec CCS, 2017a.

Carlini, N. and Wagner, D. Magnet and “efficient defenses

against adversarial attacks" are not robust to adversarial

examples. arXiv preprint arXiv:1711.08478, 2017b.

Carlini, N. and Wagner, D. Towards evaluating the robust-

ness of neural networks. In IEEE Symposium on Security

and Privacy (SP), pp. 39–57, 2017c.

Chen, H., Zhang, H., Chen, P.-Y., Yi, J., and Hsieh, C.-J.

Show-and-fool: Crafting adversarial examples for neural

image captioning. In ACL, 2018a.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J.

Zoo: Zeroth order optimization based black-box attacks

to deep neural networks without training substitute mod-

els. In AISec, 2017.

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J., and Hsieh, C.-

J. Ead: Elastic-net attacks to deep neural networks via

adversarial examples. In AAAI, 2018b.

Cheng, C.-H., Nührenberg, G., and Ruess, H. Maximum

resilience of artificial neural networks. arXiv preprint

arXiv:1705.01040, 2017.

Cisse, M. M., Adi, Y., Neverova, N., and Keshet, J. Houdini:

Fooling deep structured visual and speech recognition

models with adversarial examples. In NIPS, 2017.

Cohen-Addad, V., De Mesmay, A., Rotenberg, E., and Royt-

man, A. The bane of low-dimensionality clustering. In

SODA. SIAM, 2018.

Dinur, I. Mildly exponential reduction from gap 3sat to

polynomial-gap label-cover. In ECCC, 2016.

Dinur, I. and Steurer, D. Analytical approach to parallel

repetition. In STOC. ACM, 2014.

Ehlers, R. Formal verification of piece-wise linear feed-

forward neural networks. In ATVA, 2017.

Feige, U. Relations between average case complexity and

approximation complexity. In STOC. ACM, 2002.

Fischetti, M. and Jo, J. Deep neural networks as 0-1

mixed integer linear programs: A feasibility study. arXiv

preprint arXiv:1712.06174, 2017.

Håstad, J. Tensor rank is np-complete. Journal of Algo-

rithms, 11(4):644–654, 1990.

He, W., Wei, J., Chen, X., Carlini, N., and Song, D. Adver-

sarial example defenses: Ensembles of weak defenses are

not strong. In USENIX WOOT, 2017.

Hein, M. and Andriushchenko, M. Formal guarantees on the

robustness of a classifier against adversarial manipulation.

arXiv preprint arXiv:1705.08475, 2017.

Impagliazzo, R. and Paturi, R. On the complexity of k-

sat. Journal of Computer and System Sciences, 62(2):

367–375, 2001.

Impagliazzo, R., Paturi, R., and Zane, F. Which problems

have strongly exponential complexity? In FOCS. IEEE,

1998.

Jia, R. and Liang, P. Adversarial examples for evaluating

reading comprehension systems. In EMNLP, 2017.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-

fer, M. J. Reluplex: An efficient smt solver for verifying

deep neural networks. In CAV, 2017.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial

machine learning at scale. In ICLR, 2017.

Towards Fast Computation of Certified Robustness for ReLU Networks

Liu, X., Cheng, M., Zhang, H., and Hsieh, C.-J. Towards

robust neural networks via random self-ensemble. arXiv

preprint arXiv:1712.00673, 2017a.

Liu, Y., Chen, X., Liu, C., and Song, D. Delving into

transferable adversarial examples and black-box attacks.

In ICLR, 2017b.

Lokshtanov, D., Marx, D., and Saurabh, S. Lower bounds

based on the exponential time hypothesis. Bulletin of

EATCS, 3(105), 2013.

Lomuscio, A. and Maganti, L. An approach to reachability

analysis for feed-forward relu neural networks. arXiv

preprint arXiv:1706.07351, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. In ICLR, 2018.

Manurangsi, P. and Raghavendra, P. A birthday repetition

theorem and complexity of approximating dense csps. In

ICALP, 2017.

Moshkovitz, D. The projection games conjecture and the

np-hardness of ln n-approximating set-cover. In Approx-

imation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques, pp. 276–287. Springer,

2012a.

Moshkovitz, D. The projection games conjecture and the

np-hardness of ln n-approximating set-cover. In Approx-

imation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques, pp. 276–287. Springer,

2012b.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,

A. Distillation as a defense to adversarial perturbations

against deep neural networks. In IEEE Symposium on

Security and Privacy (SP), pp. 582–597, 2016.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,

Z. B., and Swami, A. Practical black-box attacks against

machine learning. In AsiaCCS, 2017.

Raz, R. and Safra, S. A sub-constant error-probability low-

degree test, and a sub-constant error-probability pcp char-

acterization of np. In STOC. ACM, 1997.

Razenshteyn, I., Song, Z., and Woodruff, D. P. Weighted

low rank approximations with provable guarantees. In

STOC, 2016.

Sinha, A., Namkoong, H., and Duchi, J. Certifiable distribu-

tional robustness with principled adversarial training. In

ICLR, 2018.

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approx-

imation with entrywise �1-norm error. In STOC. ACM,

2017a.

Song, Z., Woodruff, D. P., and Zhong, P. Relative er-

ror tensor low rank approximation. arXiv preprint

arXiv:1704.08246, 2017b.

Song, Z., Woodruff, D. P., and Zhong, P. Towards a zero-one

law for entrywise low rank approximation. 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties of

neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., and Mc-

Daniel, P. Ensemble adversarial training: Attacks and

defenses. In ICLR, 2018.

Wang, Q., Guo, W., Zhang, K., Ororbia II, A. G., Xing, X.,

Liu, X., and Giles, C. L. Adversary resistant deep neural

networks with an application to malware detection. In

SIGKDD. ACM, 2017.

Weng, T.-W., Zhang, H., Chen, P.-Y., Jinfeng, Y., Su, D.,

Gao, Y., Hsieh, C.-J., and Daniel, L. Evaluating the

robustness of neural networks: An extreme value theory

approach. In ICLR, 2018.

Wong, E. and Kolter, J. Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

In ICML. https://arxiv.org/pdf/1711.00851v2, 2018.

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., and Yuille,

A. Adversarial examples for semantic segmentation and

object detection. In ICCV, 2017.

