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ABSTRACT

Federated Learning is a distributed machine learning approach which enables model training on a large corpus of

decentralized data. We have built a scalable production system for Federated Learning in the domain of mobile

devices, based on TensorFlow. In this paper, we describe the resulting high-level design, sketch some of the

challenges and their solutions, and touch upon the open problems and future directions.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a dis-

tributed machine learning approach which enables training

on a large corpus of decentralized data residing on devices

like mobile phones. FL is one instance of the more general

approach of “bringing the code to the data, instead of the

data to the code” and addresses the fundamental problems

of privacy, ownership, and locality of data. The general

description of FL has been given by McMahan & Ramage

(2017), and its theory has been explored in Konečný et al.

(2016a); McMahan et al. (2017; 2018).

A basic design decision for a Federated Learning infrastruc-

ture is whether to focus on asynchronous or synchronous

training algorithms. While much successful work on deep

learning has used asynchronous training, e.g., Dean et al.

(2012), recently there has been a consistent trend towards

synchronous large batch training, even in the data center

(Goyal et al., 2017; Smith et al., 2018). The Federated Aver-

aging algorithm of McMahan et al. (2017) takes a similar

approach. Further, several approaches to enhancing privacy

guarantees for FL, including differential privacy (McMa-

han et al., 2018) and Secure Aggregation (Bonawitz et al.,

2017), essentially require some notion of synchronization on

a fixed set of devices, so that the server side of the learning

algorithm only consumes a simple aggregate of the updates

from many users. For all these reasons, we chose to fo-

cus on support for synchronous rounds, while mitigating

potential synchronization overhead via several techniques

we describe subsequently. Our system is thus amenable to

running large-batch SGD-style algorithms as well as Feder-
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ated Averaging, the primary algorithm we run in production;

pseudo-code is given in Appendix B for completeness.

In this paper, we report on a system design for such algo-

rithms in the domain of mobile phones (Android). This work

is still in an early stage, and we do not have all problems

solved, nor are we able to give a comprehensive discussion

of all required components. Rather, we attempt to sketch the

major components of the system, describe the challenges,

and identify the open issues, in the hope that this will be

useful to spark further systems research.

Our system enables one to train a deep neural network, using

TensorFlow (Abadi et al., 2016), on data stored on the phone

which will never leave the device. The weights are combined

in the cloud with Federated Averaging, constructing a global

model which is pushed back to phones for inference. An

implementation of Secure Aggregation (Bonawitz et al.,

2017) ensures that on a global level individual updates from

phones are uninspectable. The system has been applied in

large scale applications, for instance in the realm of a phone

keyboard.

Our work addresses numerous practical issues: device avail-

ability that correlates with the local data distribution in

complex ways (e.g., time zone dependency); unreliable de-

vice connectivity and interrupted execution; orchestration of

lock-step execution across devices with varying availability;

and limited device storage and compute resources. These

issues are addressed at the communication protocol, de-

vice, and server levels. We have reached a state of maturity

sufficient to deploy the system in production and solve ap-

plied learning problems over tens of millions of real-world

devices; we anticipate uses where the number of devices

reaches billions.
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Figure 1: Federated Learning Protocol

2 PROTOCOL

To understand the system architecture, it is best to start from

the network protocol.

2.1 Basic Notions

The participants in the protocol are devices (currently An-

droid phones) and the FL server, which is a cloud-based

distributed service. Devices announce to the server that

they are ready to run an FL task for a given FL population.

An FL population is specified by a globally unique name

which identifies the learning problem, or application, which

is worked upon. An FL task is a specific computation for an

FL population, such as training to be performed with given

hyperparameters, or evaluation of trained models on local

device data.

From the potential tens of thousands of devices announcing

availability to the server during a certain time window, the

server selects a subset of typically a few hundred which are

invited to work on a specific FL task (we discuss the reason

for this subsetting in Sec. 2.2). We call this rendezvous

between devices and server a round. Devices stay connected

to the server for the duration of the round.

The server tells the selected devices what computation to run

with an FL plan, a data structure that includes a TensorFlow

graph and instructions for how to execute it. Once a round

is established, the server next sends to each participant the

current global model parameters and any other necessary

state as an FL checkpoint (essentially the serialized state of a

TensorFlow session). Each participant then performs a local

computation based on the global state and its local dataset,

and sends an update in the form of an FL checkpoint back

to the server. The server incorporates these updates into its

global state, and the process repeats.

2.2 Phases

The communication protocol enables devices to advance

the global, singleton model of an FL population between

rounds where each round consists of the three phases shown

in Fig. 1. For simplicity, the description below does not

include Secure Aggregation, which is described in Sec. 6.

Note that even in the absence of Secure Aggregation, all

network traffic is encrypted on the wire.

Selection Periodically, devices that meet the eligibility cri-

teria (e.g., charging and connected to an unmetered network;

see Sec. 3) check in to the server by opening a bidirectional

stream. The stream is used to track liveness and orchestrate

multi-step communication. The server selects a subset of

connected devices based on certain goals like the optimal

number of participating devices (typically a few hundred

devices participate in each round). If a device is not selected

for participation, the server responds with instructions to

reconnect at a later point in time.1

1In the current implementation, selection is done by simple
reservoir sampling, but the protocol is amenable to more sophisti-
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Configuration The server is configured based on the ag-

gregation mechanism selected (e.g., simple or Secure Ag-

gregation) for the selected devices. The server sends the FL

plan and an FL checkpoint with the global model to each of

the devices.

Reporting The server waits for the participating devices

to report updates. As updates are received, the server ag-

gregates them using Federated Averaging and instructs the

reporting devices when to reconnect (see also Sec. 2.3). If

enough devices report in time, the round will be success-

fully completed and the server will update its global model,

otherwise the round is abandoned.

As seen in Fig. 1, straggling devices which do not report

back in time or do not react on configuration by the server

will simply be ignored. The protocol has a certain tolerance

for such drop-outs which is configurable per FL task.

The selection and reporting phases are specified by a set

of parameters which spawn flexible time windows. For ex-

ample, for the selection phase the server considers a device

participant goal count, a timeout, and a minimal percentage

of the goal count which is required to run the round. The

selection phase lasts until the goal count is reached or a

timeout occurs; in the latter case, the round will be started

or abandoned depending on whether the minimal goal count

has been reached.

2.3 Pace Steering

Pace steering is a flow control mechanism regulating the

pattern of device connections. It enables the FL server both

to scale down to handle small FL populations as well to

scale up to very large FL populations.

Pace steering is based on the simple mechanism of the server

suggesting to the device the optimum time window to re-

connect. The device attempts to respect this, modulo its

eligibility.

In the case of small FL populations, pace steering is used

to ensure that a sufficient number of devices connect to

the server simultaneously. This is important both for the

rate of task progress and for the security properties of the

Secure Aggregation protocol. The server uses a stateless

probabilistic algorithm requiring no additional device/server

communication to suggest reconnection times to rejected

devices so that subsequent checkins are likely to arrive con-

temporaneously.

For large FL populations, pace steering is used to random-

ize device check-in times, avoiding the “thundering herd”

problem, and instructing devices to connect as frequently as

needed to run all scheduled FL tasks, but not more.

cated methods which address selection bias.

Pace steering also takes into account the diurnal oscillation

in the number of active devices, and is able to adjust the

time window accordingly, avoiding excessive activity during

peak hours and without hurting FL performance during other

times of the day.

3 DEVICE

App Process
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Figure 2: Device Architecture

This section describes the software architecture running on

a device participating in FL. This describes our Android

implementation but note that the architectural choices made

here are not particularly platform-specific.

The device’s first responsibility in on-device learning is to

maintain a repository of locally collected data for model

training and evaluation. Applications are responsible for

making their data available to the FL runtime as an exam-

ple store by implementing an API we provide. An appli-

cation’s example store might, for example, be an SQLite

database recording action suggestions shown to the user

and whether or not those suggestions were accepted. We

recommend that applications limit the total storage footprint

of their example stores, and automatically remove old data

after a pre-designated expiration time, where appropriate.

We provide utilities to make these tasks easy. Data stored

on devices may be vulnerable to threats like malware or

physical disassembly of the phone, so we recommend that

applications follow the best practices for on-device data

security, including ensuring that data is encrypted at rest in

the platform-recommended manner.

The FL runtime, when provided a task by the FL server,

accesses an appropriate example store to compute model

updates, or evaluate model quality on held out data. Fig. 2

shows the relationship between the example store and the

FL runtime. Control flow consists of the following steps:

Programmatic Configuration An application configures
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the FL runtime by providing an FL population name and

registering its example stores. This schedules a periodic

FL runtime job using Android’s JobScheduler. Possibly the

most important requirement for training machine learning

(ML) models on end users’ devices is to avoid any negative

impact on the user experience, data usage, or battery life.

The FL runtime requests that the job scheduler only invoke

the job when the phone is idle, charging, and connected to

an unmetered network such as WiFi. Once started, the FL

runtime will abort, freeing the allocated resources, if these

conditions are no longer met.

Job Invocation Upon invocation by the job scheduler in

a separate process, the FL runtime contacts the FL server

to announce that it is ready to run tasks for the given FL

population. The server decides whether any FL tasks are

available for the population and will either return an FL plan

or a suggested time to check in later.

Task Execution If the device has been selected, the FL

runtime receives the FL plan, queries the app’s example

store for data requested by the plan, and computes plan-

determined model updates and metrics.

Reporting After FL plan execution, the FL runtime reports

computed updates and metrics to the server and cleans up

any temporary resources.

As already mentioned, FL plans are not specialized to train-

ing, but can also encode evaluation tasks - computing qual-

ity metrics from held out data that wasn’t used for training,

analogous to the validation step in data center training.

Our design enables the FL runtime to either run within the

application that configured it or in a centralized service

hosted in another app. Choosing between these two requires

minimal code changes. Communication between the appli-

cation, the FL runtime, and the application’s example store

as depicted in Fig. 2 is implemented via Android’s AIDL

IPC mechanism, which works both within a single app and

across apps.

Multi-Tenancy Our implementation provides a multi-

tenant architecture, supporting training of multiple FL pop-

ulations in the same app (or service). This allows for co-

ordination between multiple training activities, avoiding

the device being overloaded by many simultaneous training

sessions at once.

Attestation We want devices to participate in FL anony-

mously, which excludes the possibility of authenticating

them via a user identity. Without verifying user identity,

we need to protect against attacks to influence the FL result

from non-genuine devices. We do so by using Android’s

remote attestation mechanism (Android Documentation),

which helps to ensure that only genuine devices and applica-

tions participate in FL, and gives us some protection against

data poisoning (Bagdasaryan et al., 2018) via compromised

devices. Other forms of model manipulation – such as con-

tent farms using uncompromised phones to steer a model –

are also potential areas of concern that we do not address in

the scope of this paper.

4 SERVER

The design of the FL server is driven by the necessity to

operate over many orders of magnitude of population sizes

and other dimensions. The server must work with FL popu-

lations whose sizes range from tens of devices (during de-

velopment) to hundreds of millions, and be able to process

rounds with participant count ranging from tens of devices

to tens of thousands. Also, the size of the updates collected

and communicated during each round can range in size from

kilobytes to tens of megabytes. Finally, the amount of traffic

coming into or out of any given geographic region can vary

dramatically over a day based on when devices are idle and

charging. This section details the design of the FL server

infrastructure given these requirements.

4.1 Actor Model

The FL server is designed around the Actor Programming

Model (Hewitt et al., 1973). Actors are universal primitives

of concurrent computation which use message passing as

the sole communication mechanism.

Each actor handles a stream of messages/events strictly

sequentially, leading to a simple programming model. Run-

ning multiple instances of actors of the same type allows a

natural scaling to large number of processors/machines. In

response to a message, an actor can make local decisions,

send messages to other actors, or create more actors dynam-

ically. Depending on the function and scalability require-

ments, actor instances can be co-located on the same pro-

cess/machine or distributed across data centers in multiple

geographic regions, using either explicit or automatic con-

figuration mechanisms. Creating and placing fine-grained

ephemeral instances of actors just for the duration of a given

FL task enables dynamic resource management and load-

balancing decisions.

4.2 Architecture

The main actors in the system are shown in Fig. 3.

Coordinators are the top-level actors which enable global

synchronization and advancing rounds in lockstep. There

are multiple Coordinators, and each one is responsible for

an FL population of devices. A Coordinator registers its

address and the FL population it manages in a shared locking

service, so there is always a single owner for every FL

population which is reachable by other actors in the system,
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Figure 3: Actors in the FL Server Architecture

notably the Selectors. The Coordinator receives information

about how many devices are connected to each Selector and

instructs them how many devices to accept for participation,

based on which FL tasks are scheduled. Coordinators spawn

Master Aggregators to manage the rounds of each FL task.

Selectors are responsible for accepting and forwarding de-

vice connections. They periodically receive information

from the Coordinator about how many devices are needed

for each FL population, which they use to make local deci-

sions about whether or not to accept each device. After the

Master Aggregator and set of Aggregators are spawned, the

Coordinator instructs the Selectors to forward a subset of its

connected devices to the Aggregators, allowing the Coordi-

nator to efficiently allocate devices to FL tasks regardless of

how many devices are available. The approach also allows

the Selectors to be globally distributed (close to devices)

and limit communication with the remote Coordinator.

Master Aggregators manage the rounds of each FL task.

In order to scale with the number of devices and update

size, they make dynamic decisions to spawn one or more

Aggregators to which work is delegated.

No information for a round is written to persistent stor-

age until it is fully aggregated by the Master Aggregator.

Specifically, all actors keep their state in memory and are

ephemeral. Ephemeral actors improve scalability by remov-

ing the latency normally incurred by distributed storage.

In-memory aggregation also removes the possibility of at-

tacks within the data center that target persistent logs of

per-device updates, because no such logs exist.

4.3 Pipelining

While Selection, Configuration and Reporting phases of a

round (Sec. 2) are sequential, the Selection phase doesn’t

depend on any input from a previous round. This enables

latency optimization by running the Selection phase of the

next round of the protocol in parallel with the Configura-

tion/Reporting phases of a previous round. Our system

architecture enables such pipelining without adding extra

complexity, as parallelism is achieved simply by the virtue

of Selector actors running the selection process continu-

ously.

4.4 Failure Modes

In all failure cases the system will continue to make progress,

either by completing the current round or restarting from the

results of the previously committed round. In many cases,

the loss of an actor will not prevent the round from succeed-

ing. For example, if an Aggregator or Selector crashes, only

the devices connected to that actor will be lost. If the Master

Aggregator fails, the current round of the FL task it manages

will fail, but will then be restarted by the Coordinator. Fi-

nally, if the Coordinator dies, the Selector layer will detect

this and respawn it. Because the Coordinators are registered

in a shared locking service, this will happen exactly once.

5 ANALYTICS

There are many factors and failsafes in the interaction be-

tween devices and servers. Moreover, much of the platform

activity happens on devices that we neither control nor have

access to.

For this reason, we rely on analytics to understand what is

actually going on in the field, and monitor devices’ health

statistics. On the device side we perform computation-

intensive operations, and must avoid wasting the phone’s

battery or bandwidth, or degrading the performance of the

phone. To ensure this, we log several activity and health

parameters to the cloud. For example: the device state in

which training was activated, how often and how long it ran,

how much memory it used, which errors where detected,

which phone model / OS / FL runtime version was used,

and so on. These log entries do not contain any person-

ally identifiable information (PII). They are aggregated and

presented in dashboards to be analyzed, and fed into auto-

matic time-series monitors that trigger alerts on substantial

deviations.

We also log an event for every state in a training round,

and use these logs to generate ASCII visualizations of the

sequence of state transitions happening across all devices

(see Table 1 in the appendix). We chart counts of these

sequence visualizations in our dashboards, which allows

us to quickly distinguish between different types of issues.



Towards Federated Learning at Scale: System Design

For example, the sequence “checking in, downloaded plan,

started training, ended training, starting upload, error” is

visualized as “-v[]+*”, while the shorter sequence “check-

ing in, downloaded plan, started training, error” is “-v[*”.

The first indicates that a model trained successfully but the

results upload failed (a network issue), whereas the second

indicates that a training round failed right after loading the

model (a model issue).

Server side, we similarly collect information such as how

many devices where accepted and rejected per training

round, the timing of the various phases of the round, through-

put in terms of uploaded and downloaded data, errors, and

so on.

Since the platform’s deployment, we have relied on the ana-

lytics layer repeatedly to discover issues and verify that they

were resolved. Some of the incidents we discovered were

device health related, for example discovering that training

was happening when it shouldn’t have, while others were

functional, for example discovering that the drop out rates

of training participants were much higher than expected.

Federated training does not impact the user experience, so

both device and server functional failures do not have an

immediate negative impact. But failures to operate properly

could have secondary consequences leading to utility degra-

dation of the device. Device utility to the user is mission

critical, and degradations are difficult to pinpoint and easy to

wrongly diagnose. Using accurate analytics to prevent feder-

ated training from negatively impacting the device’s utility

to the user accounts for a substantial part of our engineering

and risk mitigation costs.

6 SECURE AGGREGATION

Bonawitz et al. (2017) introduced Secure Aggregation, a

Secure Multi-Party Computation protocol that uses encryp-

tion to make individual devices’ updates uninspectable by a

server, instead only revealing the sum after a sufficient num-

ber of updates have been received. We can deploy Secure

Aggregation as a privacy enhancement to the FL service that

protects against additional threats within the data center by

ensuring that individual devices’ updates remain encrypted

even in-memory. Formally, Secure Aggregation protects

from “honest but curious” attackers that may have access to

the memory of Aggregator instances. Importantly, the only

aggregates needed for model evaluation, SGD, or Federated

Averaging are sums (e.g., w̄t and n̄t in Appendix 1).2

2 It is important to note that the goal of our system is to provide
the tools to build privacy preserving applications. Privacy is en-
hanced by the ephemeral and focused nature of the FL updates, and
can be further augmented with Secure Aggregation and/or differ-
ential privacy — e.g., the techniques of McMahan et al. (2018) are
currently implemented. However, while the platform is designed
to support a variety of privacy-enhancing technologies, stating

Secure Aggregation is a four-round interactive protocol op-

tionally enabled during the reporting phase of a given FL

round. In each protocol round, the server gathers messages

from all devices in the FL round, then uses the set of device

messages to compute an independent response to return to

each device. The protocol is designed to be robust to a sig-

nificant fraction of devices dropping out before the protocol

is complete. The first two rounds constitute a Prepare phase,

in which shared secrets are established and during which

devices who drop out will not have their updates included

in the final aggregation. The third round constitutes a Com-

mit phase, during which devices upload cryptographically

masked model updates and the server accumulates a sum of

the masked updates. All devices who complete this round

will have their model update included in the protocol’s final

aggregate update, or else the entire aggregation will fail.

The last round of the protocol constitutes a Finalization

phase, during which devices reveal sufficient cryptographic

secrets to allow the server to unmask the aggregated model

update. Not all committed devices are required to complete

this round; so long as a sufficient number of the devices who

started to protocol survive through the Finalization phase,

the entire protocol succeeds.

Several costs for Secure Aggregation grow quadratically

with the number of users, most notably the computational

cost for the server. In practice, this limits the maximum

size of a Secure Aggregation to hundreds of users. So as

not to constrain the number of users that may participate in

each round of federated computation, we run an instance of

Secure Aggregation on each Aggregator actor (see Fig. 3)

to aggregate inputs from that Aggregator’s devices into an

intermediate sum; FL tasks define a parameter k so that

all updates are securely aggregated over groups of size at

least k. The Master Aggregator then further aggregates the

intermediate aggregators’ results into a final aggregate for

the round, without Secure Aggregation.

7 TOOLS AND WORKFLOW

Compared to the standard model engineer workflows on

centrally collected data, on-device training poses multiple

novel challenges. First, individual training examples are not

directly inspectable, requiring tooling to work with proxy

data in testing and simulation (Sec. 7.1). Second, models

cannot be run interactively but must instead be compiled

into FL plans to be deployed via the FL server (Sec. 7.2). Fi-

nally, because FL plans run on real devices, model resource

consumption and runtime compatibility must be verified

automatically by the infrastructure (Sec. 7.3).

The primary developer surface of model engineers working

specific privacy guarantees depends on the details of the applica-
tion and the details of how these technologies are used; such a
discussion is beyond the scope of the current work.



Towards Federated Learning at Scale: System Design

development environment production environment

TensorFlow

Model Program

simulate
generate deploy

FL Server

download

plan & model

upload

model & metrics

FL Plan

Figure 4: Model Engineer Workflow

with the FL system is a set of Python interfaces and tools to

define, test, and deploy TensorFlow-based FL tasks to the

fleet of mobile devices via the FL server. The workflow of a

model engineer for FL is depicted in Fig. 4 and described

below.

7.1 Modeling and Simulation

Model engineers begin by defining the FL tasks that they

would like to run on a given FL population in Python. Our

library enables model engineers to declare Federated Learn-

ing and evaluation tasks using engineer-provided Tensor-

Flow functions. The role of these functions is to map input

tensors to output metrics like loss or accuracy. During de-

velopment, model engineers may use sample test data or

other proxy data as inputs. When deployed, the inputs will

be provided from the on-device example store via the FL

runtime.

The role of the modeling infrastructure is to enable model

engineers to focus on their model, using our libraries to build

and test the corresponding FL tasks. FL tasks are validated

against engineer-provided test data and expectations, similar

in nature to unit tests. FL task tests are ultimately required

in order to deploy a model as described below in Sec. 7.3.

The configuration of tasks is also written in Python and

includes runtime parameters such as the optimal number

of devices in a round as well as model hyperparameters

like learning rate. FL tasks may be defined in groups: for

example, to evaluate a grid search over learning rates. When

more than one FL task is deployed in an FL population, the

FL service chooses among them using a dynamic strategy

that allows alternating between training and evaluation of a

single model or A/B comparisons between models.

Initial hyperparameter exploration is sometimes done in

simulation using proxy data. Proxy data is similar in shape

to the on-device data but drawn from a different distribution

– for example, text from Wikipedia may be viewed as proxy

data for text typed on a mobile keyboard. Our modeling

tools allow deployment of FL tasks to a simulated FL server

and a fleet of cloud jobs emulating devices on a large proxy

dataset. The simulation executes the same code as we run on

device and communicates with the server using simulated

FL populations. Simulation can scale to a large number of

devices and is sometimes used to pre-train models on proxy

data before it is refined by FL in the field.

7.2 Plan Generation

Each FL task is associated with an FL plan. Plans are

automatically generated from the combination of model and

configuration supplied by the model engineer. Typically,

in data center training, the information which is encoded

in the FL plan would be represented by a Python program

which orchestrates a TensorFlow graph. However, we do

not execute Python directly on the server or devices. The

FL plan’s purpose is to describe the desired orchestration

independent of Python.

An FL plan consists of two parts: one for the device and one

for the server. The device portion of the FL plan contains,

among other things: the TensorFlow graph itself, selection

criteria for training data in the example store, instructions

on how to batch data and how many epochs to run on the

device, labels for the nodes in the graph which represent

certain computations like loading and saving weights, and

so on. The server part contains the aggregation logic, which

is encoded in a similar way. Our libraries automatically split

the part of a provided model’s computation which runs on

device from the part that runs on the server (the aggregation).

7.3 Versioning, Testing, and Deployment

Model engineers working in the federated system are able to

work productively and safely, launching or ending multiple

experiments per day. But because each FL task may poten-

tially be RAM-hogging or incompatible with version(s) of

TensorFlow running on the fleet, engineers rely on the FL

system’s versioning, testing, and deployment infrastructure

for automated safety checks.

An FL task that has been translated into an FL plan is not

accepted by the server for deployment unless certain condi-

tions are met. First, it must have been built from auditable,

peer reviewed code. Second, it must have bundled test pred-

icates for each FL task that pass in simulation. Third, the

resources consumed during testing must be within a safe

range of expected resources for the target population. And
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finally, the FL task tests must pass on every version of the

TensorFlow runtime that the FL task claims to support, as

verified by testing the FL task’s plan in an Android emulator.

Versioning is a specific challenge for on-device machine

learning. In contrast to data-center training, where the Ten-

sorFlow runtime and graphs can generally be rebuilt as

needed, devices may be running a version of the TensorFlow

runtime that is many months older than what is required by

the FL plan generated by modelers today. For example,

the old runtime may be missing a particular TensorFlow

operator, or the signature of an operator may have changed

in an incompatible way. The FL infrastructure deals with

this problem by generating versioned FL plans for each task.

Each versioned FL plan is derived from the default (unver-

sioned) FL plan by transforming its computation graph to

achieve compatibility with a deployed TensorFlow version.

Versioned and unversioned plans must pass the same release

tests, and are therefore treated as semantically equivalent.

We encounter about one incompatible change that can be

fixed with a graph transformation every three months, and a

slightly smaller number that cannot be fixed without com-

plex workarounds.

7.4 Metrics

As soon as an FL task has been accepted for deployment, de-

vices checking in may be served the appropriate (versioned)

plan. As soon as an FL round closes, that round’s aggre-

gated model parameters and metrics are written to the server

storage location chosen by the model engineer.

Materialized model metrics are annotated with additional

data, including metadata like the source FL task’s name, FL

round number within the FL task, and other basic opera-

tional data. The metrics themselves are summaries of device

reports within the round via approximate order statistics and

moments like mean. The FL system provides analysis tools

for model engineers to load these metrics into standard

Python numerical data science packages for visualization

and exploration.

8 APPLICATIONS

Federated Learning applies best in situations where the on-

device data is more relevant than the data that exists on

servers (e.g., the devices generate the data in the first place),

is privacy-sensitive, or otherwise undesirable or infeasible to

transmit to servers. Current applications of Federated Learn-

ing are for supervised learning tasks, typically using labels

inferred from user activity (e.g., clicks or typed words).

On-device item ranking A common use of machine learn-

ing in mobile applications is selecting and ranking items

from an on-device inventory. For example, apps may ex-

pose a search mechanism for information retrieval or in-app

navigation, for example settings search on Google Pixel de-

vices (ai.google, 2018). By ranking these results on-device,

expensive calls to the server (in e.g., latency, bandwidth or

power consumption dimensions) are eliminated, and any

potentially private information from the search query and

user selection remains on the device. Each user interaction

with the ranking feature can become a labeled data point,

since it’s possible to observe the user’s interaction with the

preferred item in the context of the full ranked list.

Content suggestions for on-device keyboards On-device

keyboard implementations can add value to users by sug-

gesting relevant content – for example, search queries that

are related to the input text. Federated Learning can be used

to train ML models for triggering the suggestion feature,

as well as ranking the items that can be suggested in the

current context. This approach has been taken by Google’s

Gboard mobile keyboard team, using our FL system (Yang

et al., 2018).

Next word prediction Gboard also used our FL platform

to train a recurrent neural network (RNN) for next-word-

prediction (Hard et al., 2018). This model, which has about

1.4 million parameters, converges in 3000 FL rounds af-

ter processing 6e8 sentences from 1.5e6 users over 5 days

of training (so each round takes about 2–3 minutes).3 It

improves top-1 recall over a baseline n-gram model from

13.0% to 16.4%, and matches the performance of a server-

trained RNN which required 1.2e8 SGD steps. In live A/B

experiments, the FL model outperforms both the n-gram

and the server-trained RNN models.

9 OPERATIONAL PROFILE

In this section we provide a brief overview of some key

operational metrics of the deployed FL system, running pro-

duction workloads for over a year; Appendix A provides

additional details. These numbers are examples only, since

we have not yet applied FL to a diverse enough set of appli-

cations to provide a complete characterization. Further, all

data was collected in the process of operating a production

system, rather than under controlled conditions explicitly

for the purpose of measurement. Many of the performance

metrics here depend on the device and network speed (which

can vary by region); FL plan, global model and update sizes

(varies per application); number of samples per round and

3This is roughly 7× slower than in comparable data center
training of the same model. However, we do not believe this type of
comparison is the primary one – our main goal is to enable training
on data that is not available in the data center. In fact, for the model
mentioned different proxy data was used for data center training.
Nevertheless, fast wall-clock convergence time is important for
enabling model engineers to iterate rapidly, and hence we are
continuing to optimize both our system and algorithms to decrease
convergence times.
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computational complexity per sample.

We designed the FL system to elastically scale with the num-

ber and sizes of the FL populations, potentially up into the

billions. Currently the system is handling a cumulative FL

population size of approximately 10M daily active devices,

spanning several different applications.

As discussed before, at any point in time only a subset of

devices connect to the server due to device eligibility and

pace steering. Given this, in practice we observe that up

to 10k devices are participating simultaneously. It is worth

noting that the number of participating devices depends

on the (local) time of day (see Fig. 5). Devices are more

likely idle and charging at night, and hence more likely to

participate. We have observed a 4× difference between low

and high numbers of participating devices over a 24 hours

period for a US-centric population.

Figure 5: Round Completion Rate

Based on the previous work of McMahan et al. (2017) and

experiments we have conducted on production FL popula-

tions, for most models receiving updates from a few hundred

devices per FL round is sufficient (that is, we see diminish-

ing improvements in the convergence rate from training on

larger numbers of devices). We also observe that on aver-

age the portion of devices that drop out due to computation

errors, network failures, or changes in eligibility varies be-

tween 6% and 10%. Therefore, in order to compensate for

device drop out as well as to allow stragglers to be discarded,

the server typically selects 130% of the target number of

devices to initially participate. This parameter can be tuned

based on the empirical distribution of device reporting times

and the target number of stragglers to ignore.

10 RELATED WORK

Alternative Approaches To the best of our knowledge, the

system we described is the first production-level Federated

Learning implementation, focusing primarily on the Feder-

ated Averaging algorithm running on mobile phones. Nev-

ertheless, there are other ways to learn from data stored on

mobile phones, and other settings in which FL as a concept

could be relevant.

In particular, Pihur et al. (2018) proposes an algorithm that

learns from users’ data without performing aggregation on

the server and with additional formal privacy guarantees.

However, their work focuses on generalized linear mod-

els, and argues that their approach is highly scalable due

to avoidance of synchronization and not requiring to store

updates from devices. Our server design described in Sec. 4,

rebuts the concerns about scalability of the synchronous

approach we are using, and in particular shows that updates

can be processed online as they are received without a need

to store them. Alternative proposals for FL algorithms in-

clude Smith et al. (2017); Kamp et al. (2018), which would

be on the high-level compatible with the system design

described here.

In addition, Federated Learning has already been proposed

in the context of vehicle-to-vehicle communication (Sama-

rakoon et al., 2018) and medical applications (Brisimi et al.,

2018). While the system described in this work as a whole

does not directly apply to these scenarios, many aspects of

it would likely be relevant for production application.

Nishio & Yonetani (2018) focuses on applying FL in dif-

ferent environmental conditions, namely where the server

can reach any subset of heterogeneous devices to initiate

a round, but receives updates sequentially due to cellular

bandwidth limit. The work offers a resource-aware selection

algorithm maximizing the number of participants in a round,

which is implementable within our system.

Distributed ML There has been significant work on dis-

tributed machine learning, and large-scale cloud-based sys-

tems have been described and are used in practice. Many

systems support multiple distribution schemes, including

model parallelism and data parallelism, e.g., Dean et al.

(2012) and Low et al. (2012). Our system imposes a more

structured approach fitting to the domain of mobile devices,

which have much lower bandwidth and reliability compared

to datacenter nodes. We do not allow for arbitrary dis-

tributed computation but rather focus on a synchronous FL

protocol. This domain specialization allows us, from the

system viewpoint, to optimize for the specific use case.

A particularly common approach in the datacenter is the

parameter server, e.g., Li et al. (2014); Dean et al. (2012);

Abadi et al. (2016), which allows a large number of workers

to collaborate on a shared global model, the parameter vec-

tor. Focus in that line of work is put on an efficient server

architecture for dealing with vectors of the size of 109 to

1012. The parameter server provides global state which

workers access and update asynchronously. Our approach

inherently cannot work with such a global state, because we

require a specific rendezvous between a set of devices and

the FL server to perform a synchronous update with Secure

Aggregation.

MapReduce For datacenter applications, it is now com-

monly accepted that MapReduce (Dean & Ghemawat, 2008)

is not the right framework for ML training. For the prob-

lem space of FL, MapReduce is a close relative. One can

interpret the FL server as the Reducer, and FL devices as
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Mappers. However, there are also fundamental technical

differences compared to a generic MapReduce framework.

In our system, FL devices own the data on which they are

working. They are fully self-controlled actors which at-

tend and leave computation rounds at will. In turn, the FL

server actively scans for available FL devices, and brings

only selected subsets of them together for a round of com-

putation. The server needs to work with the fact that many

devices drop out during computation, and that availability

of FL devices varies drastically over time. These very spe-

cific requirements are better dealt with by a domain specific

framework than a generic MapReduce.

11 FUTURE WORK

Bias The Federated Averaging (McMahan et al., 2017) pro-

tocol assumes that all devices are equally likely to partic-

ipate and complete each round. In practice, our system

potentially introduces bias by the fact that devices only train

when they are on an unmetered network and charging. In

some countries the majority of people rarely have access to

an unmetered network. Also, we limit the deployment of

our device code only to certain phones, currently with re-

cent Android versions and at least 2 GB of memory, another

source of potential bias.

We address this possibility in the current system as follows:

During FL training, the models are not used to make user-

visible predictions; instead, once a model is trained, it is eval-

uated in live A/B experiments using multiple application-

specific metrics (just as with a datacenter model). If bias in

device participation or other issues lead to an inferior model,

it will be detected at this point. So far, we have not observed

this to be an issue in practice, but this is likely application

and population dependent. Further quantification of these

possible effects across a wider set of applications, and if

needed algorithmic or systems approaches to mitigate them,

are important directions for future work.

Convergence Time We noted in Sec. 8 that we currently

observe a slower convergence time for Federated Learn-

ing compared to ML on centralized data where training is

backed by the power of a data center. Current FL algorithms

such as Federated Averaging can only efficiently utilize

100s of devices in parallel, but many more are available; FL

would greatly benefit from new algorithms that can utilize

increased parallelism.

On the operational side, there is also more which can be

done. For example, the time windows to select devices

for training and wait for their reporting is currently config-

ured statically per FL population. It should be dynamically

adjusted to reduce the drop out rate and increase round fre-

quency. We should ideally use online ML for tuning this

and other parameters of the protocol configuration, bringing

in e.g. time of the day as context.

Device Scheduling Currently, our multi-tenant on-device

scheduler uses a simple worker queue for determining which

training session to run next (we avoid running training ses-

sions on-device in parallel because of their high resource

consumption). This approach is blind to aspects like which

apps the user has been frequently using. It’s possible for

us to end up repeatedly training on older data (up to the

expiration date) for some apps, while also neglecting train-

ing on newer data for the apps the user is frequently using.

Any optimization here, though, has to be carefully evaluated

against the biases it may introduce.

Bandwidth When working with certain types of models,

for example recurrent networks for language modeling, even

small amounts of raw data can result in large amounts of

information (weight updates) being communicated. In par-

ticular, this might be more than if we would just upload

the raw data. While this could be viewed as a tradeoff for

better privacy, there is also much which can be improved.

To reduce the bandwidth necessary, we implement compres-

sion techniques such as those of Konečný et al. (2016b) and

Caldas et al. (2018). In addition to that, we can modify

the training algorithms to obtain models in quantized rep-

resentation (Jacob et al., 2017), which will have synergetic

effect with bandwidth savings and be important for efficient

deployment for inference.

Federated Computation We believe there are more appli-

cations besides ML for the general device/server architec-

ture we have described in this paper. This is also apparent

from the fact that this paper contains no explicit mentioning

of any ML logic. Instead, we refer abstractly to ’plans’,

’models’, ’updates’ and so on.

We aim to generalize our system from Federated Learning

to Federated Computation, which follows the same basic

principles as described in this paper, but does not restrict

computation to ML with TensorFlow, but general MapRe-

duce like workloads. One application area we are seeing is

in Federated Analytics, which would allow us to monitor

aggregate device statistics without logging raw device data

to the cloud.
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A OPERATIONAL PROFILE DATA

In this section we present operational profile data for one of

the FL populations that are currently active in the deployed

FL system, augmenting the discussion in Sec. 9. The subject

FL population primarily comes from the same time zone.

Fig. 6 illustrates how availability of the devices varies

through the day and its impact on the round completion

rate. Because the FL server schedules an FL task for exe-

cution only once a desired number of devices are available

and selected, the round completion rate oscillates in sync

with device availability.

Figure 6: A subset of the connected devices over three days

(top) in states “participating” (blue) and “waiting” (purple).

Other states (“closing” and “attesting”) are too rare to be

visible in this graph. The rate of successful round comple-

tions (green, bottom) is also shown, along with the rate of

other outcomes (“failure”, “retry”, and “abort”) plotted on

the same graph but too low to be visible.

Fig. 7 illustrates the average number of devices participating

in an FL task round and the outcomes of the participation.

Note that in each round the FL server selects more devices

for the participation than desired to complete to offset the

devices that drop out during execution. Therefore in each

round there are devices that were aborted after a desired

number of devices successfully complete. Another notewor-

thy aspect is drop out rate correlation with the time of day,

specifically the drop out rate is higher during the day time

compared to the night time. This is explained by higher

probability of the device eligibility criteria changes due

interaction with a device.

Fig. 8 shows distribution of round run and device partici-

pation time. There are two noteworthy observations. First

is that the round run time is roughly equal to the majority

of the device participation time which is explained by the

fact that the FL server selects more than needed devices

for participation and stops execution when enough devices

complete. Second is that device participation time is capped.

Figure 7: Average number of devices completed, aborted

and dropped out from round execution

This is a mechanism used by the FL server to deal with

straggler devices; i.e., the round run time capped by the

server.

Figure 8: Round execution and device participation time

Fig. 9 illustrates the asymmetry in server network traffic,

specifically that download from server dominates upload.

There are several aspects that contribute. Namely each de-

vice downloads both an FL task plan and current global

model (plan size is comparable with the global model)

whereas it uploads only updates to the global model; the

model updates are inherently more compressible compared

to the global model.

Figure 9: Server network traffic

Tab. 1 shows the training round session shape visualizations

generated from the clients’ training state event logs. As

shown, 75% of clients complete their training rounds suc-

cessfully, 22% of clients complete their training rounds but

have their results rejected by the server (these are the de-

vices which report back after the reporting window already

closed), and 2% of clients are interrupted before being able
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Session Shape Count Percent

-v[]+ˆ 1,116,401 75%

-v[]+# 327,478 22%

-v[! 29,771 2%

Table 1: Distribution of on-device training round sessions.

Legend: - = FL server checkin, v = downloaded plan,

[ = training started, ] = training completed, + = upload

started, ˆ = upload completed, # = upload rejected, ! = inter-

rupted.

to complete their round (e.g., because the device exited the

idle state).
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B FEDERATED AVERAGING

In this section, we show the Federated Averaging algorithm

from McMahan et al. (2017) for the interested reader.

Algorithm 1 FederatedAveraging targeting updates

from K clients per round.

Server executes:

initialize w0

for each round t = 1, 2, . . . do

Select 1.3K eligible clients to compute updates

Wait for updates from K clients (indexed 1, . . . ,K)

(∆k, nk) = ClientUpdate(w) from client k ∈ [K].

w̄t =
∑

k
∆k // Sum of weighted updates

n̄t =
∑

k
nk // Sum of weights

∆t = ∆k
t
/n̄t // Average update

wt+1 ← wt +∆t

ClientUpdate(w):

B ← (local data divided into minibatches)

n← |B| // Update weight

winit ← w
for batch b ∈ B do

w ← w − η▽ℓ(w; b)
∆← n · (w − winit) // Weighted update

// Note ∆ is more amenable to compression than w
return (∆, n) to server


