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Abstract—Visible light communication is envisaged as a
promising enabling technology for sixth generation (6G) and
beyond networks. It was introduced as a key enabler for
reliable massive-scale connectivity, mainly thanks to its simple
and low-cost implementation which require minor variations
to the existing indoor lighting systems. The key features of
VLC allow offloading data traffic from the current congested
radio frequency (RF) spectrum in order to achieve effective
short-range, high speed, and green communications. However,
several challenges prevent the realization of the full potentials of
VLC, namely the limited modulation bandwidth of light emitting
diodes, the interference resulted from ambient light, the effects
of optical diffuse reflection, the non-linearity of devices, and
the random receiver orientation. Meanwhile, centralized machine
learning (ML) techniques have exhibited great potentials in han-
dling different challenges in communication systems. Specifically,
it has been recently shown that ML algorithms exhibit superior
capabilities in handling complicated network tasks, such as chan-
nel equalization, estimation and modeling, resources allocation,
opportunistic spectrum access control, non-linearity compensa-
tion, performance monitoring, detection, decoding/encoding, and
network optimization. Nevertheless, concerns relating to privacy
and communication overhead when sharing raw data of the
involved clients with a server constitute major bottlenecks in
large-scale implementation of centralized ML techniques. This
has motivated the emergence of a new distributed ML paradigm,
namely federated learning (FL). This method can reduce the cost
associated with transferring the raw data, and preserve clients
privacy by training ML model locally and collaboratively at the
clients side. Thus, the integration of FL in VLC networks can
provide ubiquitous and reliable implementation of VLC systems.
Based on this, for the first time in the open literature, we provide
an overview about VLC technology and FL. Then, we introduce
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FL and its integration in VLC networks and provide an overview
on the main design aspects. Finally, we highlight some interesting
future research directions of FL that are envisioned to boost the
performance of VLC systems.

I. INTRODUCTION

THe recent advancements in indoor lighting systems, ac-

companied with the revolutionary solid-state progression

in light emitting diodes (LEDs), have motivated the emergence

of the visible light communication (VLC) concept. In partic-

ular, the ability of LEDs to switch rapidly between different

light intensity levels enables short range data transmission

without affecting the illumination function of LEDs, rendering

VLC a cost-effective easy-to-implement technology. VLC

systems have enabled a swarm of wireless applications, such

as indoor navigation, healthcare, underwater communication,

positioning systems, and vehicular communications. The key

driver underlying the emergence of such applications are the

promising features of VLC systems, such as high data rates,

inherent secure communication, enhanced capacity, and ultra-

low end-to-end latency.

On the other hand, machine learning (ML) is a sub-

field of artificial intelligence (AI), which has been recently

identified as an appealing data-driven solution for optical

wireless networks [1]. In centralized ML algorithms, mobile

nodes share their data, which are then uploaded, processed,

trained, and aggregated at cloud-based servers. Nevertheless,

the drawbacks of such cloud-centric algorithms are three-

fold. Firstly, data privacy is compromised in cloud-based

ML because participating devices are requested to send their

private data to centralized servers, exposing these data to

potential eavesdroppers. Secondly, centralized ML suffers

from long propagation delay, rendering it unsuitable for real-

time applications. Thirdly, data transmission yields increased

network overhead, which renders the implementation of cen-

tralized ML in resources-constrained internet-of-things (IoT)

devices challenging. This ultimately calls for a fundamental

transition from conventional centralized algorithms into novel

paradigms, in which the network can be trained in a distributed

manner.

In this respect, Federated Learning (FL) was recently

considered an efficient tool to train wireless networks, without

leaking private information or consuming network resources.
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Specifically, the enhanced on-board computational and storage

capabilities of mobile devices with the local datasets are

leveraged to enable decentralized local training. It is important

to note that adopting FL in VLC systems is particularly ap-

pealing in accommodating the ever-growing demand of data-

driven privacy-sensitive applications. With this motivation,

this article presents an overview of the implementation of FL

in VLC systems along with useful theoretical and technical

insights.

A. Visible Light Communication

It is recalled that VLC technology is both particularly ef-

fective and rather simple to implement. The main principle of

VLC systems is to use LEDs or laser diodes at the transmitter

for modulating light intensity, and a photo-detector (PD) at

the receiver for converting light intensity into electrical signal

for detection purposes. Furthermore, the largely underutilized

and license-free visible light spectrum allows VLC to offload

data traffic from the current band-limited congested radio

frequency (RF) spectrum. Also, VLC systems are inherently

secure and are characterized by a high degree of spatial reuse

and immunity to electromagnetic interference. Nevertheless,

VLC systems are prone to a number of performance-limiting

factors, such as ambient light interference, non-linearity of the

LEDs, user mobility, and receivers’ orientations.

B. Federated Learning

ML algorithms have been shown particularly effective in

handling complicated network tasks, such as channel equal-

ization, estimation and modeling, resources allocation and

network optimization. By exploiting the data generated from

IoT and smart devices, advanced ML tools use these data for

network training purposes [2]. In conventional centralized ML

approaches, raw data generated and stored at local devices

(clients) are shared with centralized servers or data centers,

where are then processed and used in the training process to

evaluate a global model. Then, the global model is globally

utilized for centralized network optimization. However, de-

spite the promising capabilities of centralized ML techniques,

they suffer from privacy issues because participating devices

are requested to share their private data with a centralized

server. Moreover, the enormous amount of data shared by

the participating devices yields an increased communication

overhead. Finally, centralized training leads to higher latency

and waiting time.

The accelerating advancement in the power, storage, com-

puting, sensing, and communication capabilities of IoT and

smart devices has motivated the emergence of a new artificial

intelligence sub-field, referred as FL, which aims to overcome

privacy risk and communication overhead experienced in

traditional centralized learning techniques. FL allows a set

of local clients to locally and collaboratively participate in

the training process of a global model without having to

upload their raw local data to centralized servers. The role

Fig. 1: Learning steps in federated learning.

of the centralized servers in FL is to orchestrate the learning

process, coordinate the participating clients, and aggregate the

local model parameters received from clients. Specifically, a

subset of local clients in FL-based systems are selected and

updated with initial model parameters in order to participate

in the training process. Subsequently, local training process is

preformed at the clients’ side using their local datasets. Then,

the evaluated local models from all clients are transmitted to

a centralized server, where these models are aggregated and

trained to obtain the global model. The typical learning steps

in FL is summarized in Fig.1.

C. Related Work

Inspired by the promising advantages of FL for communi-

cation and networking, significant research efforts have been

devoted to explore FL in terms of architecture, challenges,

design aspects, and applications. Particularly, [3] presented

a comprehensive survey that highlights the fundamentals,

applications, enabling technologies, and learning mechanisms

of FL. On the contrary, [4] discussed open research problems

and challenges associated with FL, such as communication

efficiency, data privacy, data heterogeneity and model ag-

gregation. From a different perspective, [5] presented the

FL taxonomy, with emphasis on the main FL components,

including data distribution, ML model, privacy mechanism,

communication architecture, scale of federation, and motiva-

tion of federation. In [12], FL was explored from a security

perspective, while [6] discussed FL in mobile edge computing.

In the same context, [7] considered the characteristics, chal-

lenges, and future directions of FL in massive-scale networks

while [8] addressed the implementation and applications of
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TABLE I: Recent surveys on FL.

Reference Main focus of the survey

[3]
Discussion about the challenges of FL and different techniques to address these challenges.

Highlighting on some applications of FL in communication and networking.

[4] Extensive discussion about recent advances, challenges, and open problems in FL.

[5] Categorization of FL.

[6] FL in mobile edge networks.

[7] Characteristics, challenges, and future directions for FL in massive networks.

[8] FL and its applications and challenges in 5G networks.

[9]
A comprehensive study of FL and its enabling software and hardware platforms, protocols, real-life

applications and use-cases were discussed.

[10] Threats models and major attacks in FL.

[11]

Investigation of federated vehicular networks, their high-level architecture and enabling technolo-

gies. Additionally, introducing blockchain-based systems to mitigate any malicious behaviour.

Finally, discussing possible future research direction and open problems.

FL in the fifth generation (5G) networks. A comprehensive

study of FL and its enabling software and hardware platforms,

protocols, real-life applications and use-cases was carried-out

in [9]. Finally, the key techniques and fundamental assump-

tions adopted by various attacks in FL were explained in

[10]. Then, the authors provided a discussion about future

research directions towards more robust privacy preservation

in FL. For convenience, the related reported contributions are

summarized in Table I.

Notably, the aforementioned contributions considered the

implementation of FL in RF scenarios. Also, the interplay

between FL and VLC systems is barely addressed in the

literature. Accordingly, for the first time, this article pro-

vides an overview on the implementation of FL in VLC

systems, sheding light on the design aspects of FL in VLC.

Furthermore, it constructs a road-map towards open research

directions that need considerable investigation.

II. FEDERATED LEARNING IN VLC

A. Fundamentals

A typical VLC system that employs FL is illustrated in Fig.

2. The appealing features of VLC, such as inherent security,

high data rate transmission, energy efficiency and high spatial

reuse are the main drivers for utilizing VLC with FL, in order

to provide secure, accurate, and fast global model evaluation.

In the context of VLC, multiple LEDs connected through

RF or optical fiber links to a gateway and then to a server

represent an interface between the cloud-based server and the

participating clients. Specifically, the LEDs are exploited at

the downlink communication to assist with global model trans-

mission. Accordingly, the participating clients are determined

based on the field of view (FoV) of the LEDs. Therefore,

clients existing in the LEDs’ coverage area can only take

part of the learning process. Also, local model updates are

communicated with a gateway, connected to the cloud-based

server, through uplink RF or infrared links. This is attributed

to the clients limited energy and the undesired radiance from

the clients devices. On the other hand, VLC can be leveraged

to offload model update traffic in the downlink from the

overcrowded RF spectrum to the visible light band, allowing

enhanced allocation of the bandwidth resources in the uplink

communication.

The centralized cloud-based server in such scenarios is

responsible of fulfilling the following tasks: i) initialize the

global model evaluation process for a particular learning

task; ii) select the participating clients based on different

metrics, including the LEDs’ coverage area, the clients mobil-

ity, clients’ receivers orientation, etc; and iii) coordinate the

learning process and model aggregation. Hence, K clients,

out of a set comprising N nodes, are selected to receive

the initial global model parameters w
o, aiming to engage

them in the learning process. The kth client will utilize its

dataset Dk, which is stored locally, for training. Each dataset

is assumed to be composed of Dk input-output pair vectors

(xk,yk). Assuming stochastic gradient descent at the ith

communication round, the kth client calculates the gradient

of the loss function, namely

Fk(w
i) =

1

Dk

∑

j∈Dk

fjk(w
i) (1)

where fjk(w
i) is the loss function of the jth input-output

sample, which could be a linear regression, neural network,

or logistic regression.

B. Model Aggregation

After receiving all local gradients update from participating

clients in the ith communication round, the centralized server

performs aggregation in order to compute the global model

parameters. An aggregation model, referred to as federated

averaging (FedAvg), is used for this in which all local param-

eters are combined using model averaging. To calculate the

new global model parameters, the centralized server performs
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Fig. 2: System architecture of FL in VLC.

the following operation

w
i+1 = w

i
− η

1

D

K∑

k=1

Dk∆Fk(w
i) (2)

where D is the total data size of participating clients, η is

the learning rate, and ∆ is the derivative operation. Thus,

the server updates the global model parameters based on the

weighted average of the attained local parameters. Following

this, the server shares the updated global model parameters

with the clients in the next iteration to enhance the accuracy

of the global model. Notably, weights exchange is performed

over multiple rounds until a certain model accuracy level

is satisfied. Also, there are several variants of aggregation

models that have been proposed to enhance the performance of

FedAvg scheme, such as FedProx, FedPAQ, Turbo-Aggregate,

FedMA, and HierFAVG.

III. DESIGN ASPECTS OF FL IN VLC

A. Client Selection and Scheduling

Client selection and scheduling constitute an important fac-

tor in the implementation of FL in VLC because of its effect

on the accuracy and convergence time of the training process.

In this regard, the need for developing efficient client selection

and scheduling schemes stems from the heterogeneity of

clients datasets, devices diverse computational capabilities,

available resources, and wireless channel conditions.

Thus, a random selection of clients to participate in the

FL process could reduce its efficiency. For example, selecting

a client with limited computational capabilities or severe

channel conditions will require additional time to compute its

updated local model parameters and send them to the server,

whilst it will drain the client resources. Accordingly, this will

result in a delayed global model aggregation procedure, that is

needed to accomplish the scheduled training process. Hence,

a key factor to improve the training convergence time and

achieve a high-performance training relies on how to properly

select the participating clients and assign the training tasks

among them.

Efficient clients selection and scheduling should be per-

formed while considering numerous aspects. Typical VLC

indoor environment is usually deployed with multiple LEDs,

each with limited coverage area. Therefore, in order to provide

ubiquitous coverage each LED acts as a VLC access point

(AP) that handles multiple clients located in its coverage

area. Consequently, clients and AP association is the first step

towards realizing efficient client selection and scheduling, and

subsequently successful implementation of FL in indoor VLC

environments. It is also recalled that in order to achieve ac-

ceptable performance in FL, a considerable number of clients

should participate in the local training process. Consequently,

this will lead to an increased communication overhead, due to

the limited bandwidth of the uplink and downlink channels, as

well as the constrained energy resources. Hence, developing

effective resource management schemes for the uplink and

downlink is essential in minimizing resources consumption,

while maximizing global model accuracy. Most of the avail-

able resource management techniques rely on formulating

optimization problems that are handled by heuristic or re-

inforcement learning tools. As most of these techniques are

developed for RF communications, their extension to VLC

systems needs be revisited.

From a different angle, a larger number of clients does not

readily imply faster model convergence, which is due to the

increased heterogeneity of the data among clients and the

waiting time, which may cause additional delay. Moreover,

reliability of the participating clients is another issue related

to increasing the number of the clients. Hence, the optimum

number of participating clients should be maximized while

taking into consideration these limitations. Within the same

context, straggler clients, which are dropped from the learning

process due to their low battery levels, the absence of LoS

links, or connectivity issues, is a common problem in FL

that yields a wasted resources of both the server and other

clients. Several research contributions shed light on these

issues, proposing numerous techniques to overcome straggler

clients problem, including, redundancy and asynchronicity.

Finally, given that global parameters in the downlink are

carried over the light intensity, maintaining the communication

while lights are off by switching to RF could guarantee

successful implementation of FL in VLC. Specifically, a

switch to conventional RF clients scheduling schemes should

be implemented in the off-light mode.
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B. Joint Communication and Learning

It is recalled that the communication process in FL for VLC

is carried out over two different wireless media. Specifically,

the first one is the downlink communication which is realized

through optical signals for sharing the global model parame-

ters after aggregating them at the server. The uplink is realized

over RF or infrared signals for uploading the updated local

models to the server. Indeed, communication over wireless

media is usually unreliable due to the effect of different

impairments such as noise, shadowing, fading, and path loss.

In addition to that, VLC introduces additional impairments,

including, ambient light and random receiver orientation.

Hence, the accuracy of the model and the convergence time

of FL is highly dependent upon the channel impairments, that

may introduce significant training errors.

In light of this, in order to ensure a realistic and accurate

implementation of FL in VLC, the effect of the transmission

errors in the uplink and the downlink need be addressed.

To this end, different error detection codes such as, parity

checking, cyclic redundancy check, or longitudinal redun-

dancy check can be utilized, aiming to determine if the global

and local models are erroneously received. Subsequently, the

server will discard the invalid local model updates, and aggre-

gate the error-free local model updates only. Similarly, clients

who experience a degraded optical signal in the downlink

global model transmission may be discarded from the training

process in a particular iteration. Moreover, by leveraging

error correction codes at the LEDs side, the clients will be

able to detect a certain number of errors in the corrupted

global model, and then correct them to avoid global model

re-transmission.

C. Model Compression

It is recalled that in large-scale FL-enabled networks, a

large number of parameters updates needs be exchanged in

each communication round. Hence, research efforts have been

devoted in achieving communication-efficient implementation

of FL. Specifically, three main directions exist, namely, model

updates size reduction, communication frequency reduction,

and communication type.

The aim of model updates size reduction is to reduce

the size of the messages carrying model updates, in both

uplink and downlink, through lossy and lossless compression

techniques. To this end, quantization and sparsification (lossy

compression techniques) have been extensively investigated

in the context of FL. In fact, quantization process compresses

each entry of model updates into a single quantum value with

finite number of bits, thus reducing its size. One the contrary,

in a sparsification procedure, a subset of model updates is

selected to be communicated, based on a pre-determined

threshold of the model gradient size. Hence, gradients with

sizes smaller than the threshold value will be replaced by

zeros while the larger ones are only transmitted.

Local data set

Random noise 

generator

Discriminator

Generator
Generated 

data

Network 

conditions

Accurate?

Update parameter

Local model 

training

GAN-enabled VLC

For channel 

estimation 

purposes

Accurate CSI

update

LEDLED

Gateway

Fig. 3: GAN-enabled VLC system for enhanced CSI

acquisition through FL.

D. Users Mobility Behaviour Prediction

Modeling and predicting users’ mobility in indoor VLC en-

vironment plays an important role in analyzing different com-

munication design aspects. In particular, mobility prediction

constitutes an efficient tool for location update, radio resource

management, signaling traffic needed for handover, and users’

association. In FL, users mobility limits the performance of FL

in VLC networks. This stems from the fact that the nature and

amount of available training datasets vary with mobility, in

addition to channel state information (CSI) fluctuation. There-

fore, enhancing model training and aggregation accuracy of

local updates in FL, requires consideration of users’ mobility.

Two different approaches are presented in the literature

for individual mobility prediction, namely, personal mobility

model with local-information and joint mobility model with

population information. In the former, user’s local mobility

data is utilized to predict its own mobility behaviour. In

such techniques, overcoming the sparsity of the mobility data

records requires collaborative model training. To that end,

FL can be leveraged, through a large number of clients, to

evaluate a global generalized model that can be utilized for

mobility prediction. Also, by leveraging mobility prediction

models, clients selection can be preformed according to the

mobility behavior of each user. Hence, only users with low

mobility can participate in local model training, in order to

prevent transmission errors that may occur during local model

updates.

IV. OPEN RESEARCH DIRECTIONS

A. Generative Adversarial Networks for Enhanced VLC

Channel Estimation

FL was recently considered in distributed CSI acquisition.

Also, it was effective in data transmission overhead reduction

compared to centralized learning, while ensuring reliable

model training and acceptable level of channel estimation

accuracy [13]. In this context, local datasets at each partic-

ipating device may fail to capture the VLC channels behavior

in different scenarios, including the presence of ambient
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light noise, receiver random orientation, shadowing, and user

mobility. In particular, when VLC channel conditions vary due

to specific scenarios, it is essential to re-estimate the channel

using pilots, and then collect data and update the local models

accordingly. This will result in an increased pilot overhead,

and therefore a higher loss in energy and time. In light of this,

developing generalized models for accurate channel estimation

in VLC, local models should be trained while considering

extreme network cases, imposing additional challenges on the

implementation of FL in VLC networks.

To this end, generative adversarial networks (GANs) rep-

resent an efficient solution to create a generalized framework

that experienced a wide range of special network conditions

[14]. Specifically, in a GAN, a generator, which is enabled

by a deep neural network, is trained to generate close-to-real

channel data, and then a discriminator is utilized to quantify

the learning accuracy. By leveraging GANs, the limited local

datasets, representing the behavior of VLC channels under

particular scenarios, will be extended to comprise real and

synthetic data, covering all network conditions. Therefore,

improved training models can be accomplished, and hence

a more accurate and generalized channel estimation can be

acquired.

From a different angle, GAN algorithm requires a large

dataset for accurate samples generation. Therefore, the learn-

ing process, synthetic data generation accuracy, and hence, the

reliability of the estimated channel behavior is constrained by

the limited available channel samples at each device. In this

regard, an extended version of GAN is proposed in [15] to

achieve network-wide channel estimation and modeling, in

which all participating devices collaborate in order to develop

generalized and comprehensive models. This developed GAN

architecture is known as distributed GAN (DGAN). Unlike

conventional distributed cooperative learning methods, where

devices share their datasets for exhaustive training, DGAN

brings up the advantage of ensuring users data privacy. In

particular, participating devices in DGAN share locally gen-

erated synthetic data, instead of their private raw data.

As a promising algorithm, research efforts should be di-

rected towards implementing GANs in VLC systems, outlin-

ing implementation challenges, practical design aspects, and

highlighting possible applications.

B. Reconfigurable Intelligence Surfaces

The reconfigurable intelligent surface (RIS) concept was

recently identified as a key enabler for beyond 5G networks,

offering extended coverage, enhanced signals reliability, and

improved energy efficiency. RIS comprises a number of re-

configurable metasurfaces with unique artificially-manipulated

electromagnetic properties, enabling them to control/adjust the

properties of impinging wireless signals. This can be achieved

by enabling a wide range of functionalities, including beam

focusing, splitting, reflection, absorption, and polarization.

Therefore, RIS can be of particular interest in FL-enabled

VLC systems from two different perspectives, namely, RIS-

assisted and RIS-equipped LEDs. Regarding the former, mul-

tiple RISs can be mounted on the walls of an indoor area

to enable a number of functionalities that assist with global

models transmission. Specifically, RIS can play a vital role in

assisting the establishment of LoS links between participating

devices and the server. It is recalled that having a LoS link

is an essential component in VLC systems, and therefore,

any blockage yields a service interruption. In this context,

RIS can be a promising candidate to tackle this issue [Fig.

4, (1)]. Also, signals reflected from the RIS can be used

for energy harvesting purposes, allowing power-constrained

device to communicate their models reliably [Fig. 4, (2)].

On the contrary, with a proper tuning of an RIS, which

is placed at the transmitter front-end, beam focusing can be

realized by a controlled adjustment of the LED’s FoV. This

results in an improved global model reception and increased

number of participating devices attributed to the improved

coverage [Fig. 4, (3)]. Within the same context, an RIS

can be exploited to enhance the physical layer security, by

blocking the transmitted global models and prevent them from

potential eavesdroppers [Fig. 4, (4)]. However, such promising

advantages, attained by the integration of RIS in FL-enabled

VLC systems, can be realized only if the RIS parameters

are properly optimized and tuned to deliver the anticipated

outcomes. It is worth highlighting that the optimization of FL-

enabled VLC with RIS has not been touched in the literature

yet, rendering it an attractive open research problem.

(1) 

(3) 

(2) 

Energy harvesting 

Beam steering 

LED 

RIS 

RIS 

LED 

(4) 

Beam blockage 

Beam focusing 

Fig. 4: RIS-enabled FL for VLC scenario.

C. Multiple Access

Multiple access (MA) schemes are indispensable parts

of future network generations, fulfilling the massive scale

connectivity associated with emerging applications. In VLC,

several optical orthogonal multiple access schemes exist,



7

including time-division multiple access, orthogonal frequency-

division multiple access, and optical code-division multiple

access. On the contrary, space-division multiple access ex-

ploits the spatial separation between users to provide full

time and frequency resources. Furthermore, non-orthogonal

multiple access has been recognized as a spectrally-efficient

multiple access scheme that allows different users’ signals to

be multiplexed in power domain, sharing the same frequency

resources simultaneously.

Notably, the aforementioned schemes fundamentally rely on

advanced optimization algorithms, in order to coordinate users

access to the network resources. Owing to the inherent non-

convexity and infinite dimensionality of these optimization

problems, iterative algorithms are usually exploited with the

aim to obtain the optimum resource allocation scheme, allow-

ing fair users access to the network. Despite the satisfying

performance achieved by different optimization tools in MA

schemes, their performance is generally constrained by the

high computational overhead, which hinders their real-time

implementation. Moreover, due to the dynamic nature of VLC

networks, a frequent execution of the iterative algorithms will

occur.

Conventionally, classical ML constitutes the optimum tool

to facilitate solving such optimization problems, with the aid

of sensory data transmitted from the clients, such as current

allocated spectrum, device non-linearity information, and the

presence of interfering signals. However, ML algorithms have

shown some shortage in terms of privacy, delay, and energy

consumption, and hence, FL can be a prominent alternative

to generate locally trained models. In this regard, the global

feedback mechanism in FL allows participating devices to

utilize the globally trained model to perform on-site resource

allocation optimization, and hence, achieve cooperative coor-

dinated network access.

D. FL in Hybrid RF/VLC Systems

Typically, in VLC, light emitted from LEDs is confined

within small areas, limiting the participating devices to the

ones exist in the LEDs coverage area. Since VLC can pro-

vide interference-free communication, with co-existing RF

systems, hybrid integration of RF and VLC is expected to

provide ubiquitous coverage and enhanced user experience.

In a hybrid RF/VLC architecture, each LED serves as an AP

to provide high data rate transmission, and is supported by

one or multiple RF APs that guarantee uninterrupted moderate

data rate transmission, in case of blockage. Hence, each user

within the indoor environment is associated with either a VLC

or RF AP.

It is recalled that user selection is one of the most challeng-

ing issues in FL, particularly in RF systems due to the limited

resources. Therefore, hybrid RF/VLC architecture constitutes

an appealing solution to enhance the performance of FL by:

i) allowing a larger number of users to participate in the

model training process; ii) establish communication links for

VLC clients in case of blockage. However, to ensure efficient

integration of FL in hybrid RF/VLC systems, its performance

needs be optimized by considering APs-users association and

resource allocation.

E. FL for Augmented Reality Applications in VLC

Augmented reality (AR) application is one of the latest

technology trends, emerged to provide interactive and im-

mersive users experience, by combining virtual visual and

auditory contents with real environments. AR spans a variety

of applications in different disciplines starting from TV and

films production, weather sciences, disaster relief, medicine,

education, and entertainments. To provide immersive expe-

rience over the real world, these AR devices are equipped

with cameras, GPS modules, and sensors. However, AR ap-

plications are highly localized and sensitive to latency issues.

Meanwhile, AR applications generate enormous data from

multiple users such as images, which requires an intensive

data processing capabilities and bandwidth resources. Typical

high quality AR applications requires data rates of multiple

Gbps. Moreover, with the accelerating demands for multi-

object virtualization, the accuracy of detection and classifi-

cation is essential to enhance users immersive experience.

Hence, overcoming latency and enhancing clients privacy

whilst reducing communication overhead, demanding AR

algorithms can be processed at the AR users side with the

aid of FL. Conversely, VLC is characterized by the ability

to provide secure high data rate communication. Therefore, it

can establish high speed wireless links between a centralized

server and AR clients to offload models update traffic from

the current crowded RF spectrum, as a way to overcome the

aforementioned limitations. Hence, integrating FL into VLC

constitutes an important part in enhancing users experience in

AR applications.

V. CONCLUSION

We addressed the potential integration of the newly emerged

FL paradigm in VLC systems. In particular, we presented

a brief background about VLC technology and the basic

concepts of FL and aggregation mechanisms. Subsequently,

we provided the fundamentals for integrating FL into VLC

systems and highlighted design aspects and promising solu-

tions. Finally, we outlined some envisioned future research

directions, which need be investigated prior to real implemen-

tation of FL VLC systems.
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