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Abstract—Coupled with the rise of Deep Learning, the wealth
of data and enhanced computation capabilities of Internet of
Vehicles (IoV) components enable effective Artificial Intelligence
(AI) based models to be built. Beyond ground data sources, Un-
manned Aerial Vehicles (UAVs) based service providers for data
collection and AI model training, i.e., Drones-as-a-Service (DaaS),
is becoming increasingly popular in recent years. However, the
stringent regulations governing data privacy potentially impedes
data sharing across independently owned UAVs. To this end,
we propose the adoption of a Federated Learning (FL) based
approach to enable privacy-preserving collaborative Machine
Learning across a federation of independent DaaS providers for
the development of IoV applications, e.g., for traffic prediction
and car park occupancy management. Given the information
asymmetry and incentive mismatches between the UAVs and
model owners, we leverage on the self-revealing properties of
a multi-dimensional contract to ensure truthful reporting of
the UAV types, while accounting for the multiple sources of
heterogeneity, e.g., in sensing, computation, and transmission
costs. Then, we adopt the Gale-Shapley algorithm to match the
lowest cost UAV to each subregion. The simulation results validate
the incentive compatibility of our contract design, and shows the
efficiency of our matching, thus guaranteeing profit maximization
for the model owner amid information asymmetry.

Index Terms—Federated Learning, Incentive Mechanism, Un-
manned Aerial Vehicles, Contract theory, Matching

I. INTRODUCTION

Following the advancements in the Internet of Things (IoT)

and edge computing paradigm, traditional Vehicular Ad-Hoc

Networks (VANETs) that focus mainly on Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) communications

[1], [2] are gradually evolving into the Internet of Vehicles

(IoV) paradigm [3], [4].

The IoV is an open and integrated network system which

leverages on the enhanced sensing, communication, and com-

putation capabilities of its component data sources, e.g.,

vehicular sensors, IoT devices, and Roadside Units (RSUs)

[5], to build data-driven applications for Intelligent Transport

Systems, e.g., for traffic prediction [6], traffic management [7],

and other smart city applications. Coupled with the rise of

Deep Learning, the wealth of data and enhanced computation
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capabilities of IoV components enable effective Artificial

Intelligence (AI) based models to be built [8].

Beyond ground data sources, aerial platforms are increas-

ingly important today given that modern day traffic networks

have grown in complexity. In particular, Unmanned Aerial

Vehicles (UAVs) are commonly used today to provide data

collection and computation offloading support in the IoV

paradigm. The UAVs feature the benefits of high mobility,

flexible deployment, cost effectiveness [9], and can also pro-

vide a more comprehensive coverage as compared to ground

users. UAVs can be deployed, e.g., to capture images of car

parks for the management and analysis of parking occupancy

[10], to capture images of roads and highways for traffic

monitoring applications [11], [12], and also to aggregate data

from stationary vehicles and roadside units that in turn collect

data of other passing vehicles periodically [13]. Apart from

data collection, the UAVs have also been used to provide

computation offloading support for resource constrained IoV

components [14].

As such, studies proposing the Internet of Drones (IoD) and

Drones-as-a-Service (DaaS) [15] have gained traction recently.

Moreover, the DaaS industry is a rapidly growing one [16]

that comprises independent drone owners which provide on-

demand data collection and model training for businesses and

city planners.

Naturally, to build a better inference model, the indepen-

dently owned UAV companies can collaborate by sharing their

data collected from various sources, e.g., carparks, RSUs, and

highways, for collaborative model training. However, in recent

years, the regulations governing data privacy, e.g., General

Data Protection Regulation (GDPR) are increasingly stringent.

As such, this can potentially prevent the sharing of data across

DaaS providers. To this end, we propose the adoption of

a Federated Learning (FL) based [17] approach to enable

privacy-preserving collaborative machine learning (ML) across

a federation of independent DaaS providers [18].

Our proposed approach has three advantages. Firstly, the

resource constrained IoV components are aided by the UAV

deployment for completion of time sensitive sensing and

model training tasks. Secondly, it preserves the privacy of

the UAV-collected data through eliminating the need of data

sharing across UAVs. Thirdly, it is communication efficient.

The reason is that traditional methods of data sharing will

require the raw data to be uploaded to an aggregating cloud

server. With FL, only the model parameters need to be

transmitted by the UAVs.

However, there exists an incentive mismatch between the

model owner and the UAVs. On one hand, the model owners
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Fig. 1: Our proposed system model involving UAV-subregion

contract-matching, and FL based collaborative learning within

a federation of multiple UAVs. Note that each hexagon indi-

cates a subregion, and within the subregion are nodes, e.g.,

RSUs, to visit as stipulated by the model owner.

aim to maximize their profits by selecting the optimal UAVs

which can complete the stipulated task at the lowest cost,

e.g., in terms of sensing, transmission, and computation costs.

On the other hand, the UAVs can take advantage of the

information asymmetry and misreport their types so as to seek

higher compensation. To that end, we leverage on the self-

revealing properties of contract theory [19] as an incentive

mechanism design to appropriately reward the UAVs based on

their actual types. In particular, given the complexity of the

sensing and collaborative learning task, we consider a multi-

dimensional contract to account for the multi-dimensional

sources of heterogeneity in terms of UAV sensing, learning,

and transmission capabilities.

In general, our system model is as presented in Fig. 1. A

client, hereinafter model owner, is interested in collecting data

from a region for model training, e.g., for traffic prediction.

Given the energy constraints of UAVs [20], the region is

further divided into smaller subregions. The model owner first

announces an FL task (step i), e.g., the capturing of real-time

traffic flow over multiple subregions for model training. For

each subregion, a bundle of contracts, i.e., subregion coverage-

reward pairs, are designed to motivate the UAVs’ participation.

After considering the contract bundles of each subregion, the

UAVs announce their preferences (step ii). The UAVs are then

matched through the Gale-Shapley (GS) [21] matching-based

algorithm to assign the optimal UAVs to each subregion (step

iii). After the UAV collects the sensing data, model training

takes place on each UAV charging station separately, following

which only the updated model parameters are transmitted to

the model owner for global aggregation (step iv).

The contribution of this paper is as follows:

• We propose an FL based sensing and collaborative learn-

ing scheme in which UAVs collect the data and participate

in privacy-preserving collaborative model training for ap-

plications in the IoV paradigm towards the development

of an Intelligent Transport System.

• In consideration of the incentive mismatches and infor-

mation asymmetry between the UAVs and model owner,

we propose a multi-dimensional contract-matching based

incentive mechanism design that aims to leverage on the

self-revealing properties of an optimal contract, such that

the most optimal UAV can be matched to a subregion.

• Our incentive mechanism design considers a general UAV

sensing, computation, and transmission model, and thus

can be extended to specific FL based applications in the

IoV paradigm.

The organization of this paper is as follows. Section II

reviews the related works, Section III introduces the system

model and problem formulation, Section IV discusses the

multi-dimensional contract formulation, Section V consid-

ers a matching-based UAV-subregion assignment, Section VI

presents the performance evaluation of our proposed incentive

mechanism design, and Section VII concludes.

II. RELATED WORK

In recent years, given the rising popularity of UAVs, there

is an increasing number of UAV-related studies in the liter-

ature. One group of studies focus on the fundamental issues

related to the challenges of UAV deployment, e.g., trajectory

optimization [20], communication constraints [22], [23], as

well as the efficient assignment and deployment of UAVs

[24]. Another group of studies propose specific applications of

UAVs, e.g., as flying base stations [25], with mobile cloudlets

for computation offloading [26], and for search and rescue

missions [27]. In particular, the UAVs are also increasingly

considered for providing sensing services, i.e., data collection,

[28] and for the development of IoV related applications, e.g.,

for traffic prediction [11], localization of ground vehicles [29],

and to facilitate vehicular communications [3], [30].

The market of UAVs as service providers, e.g., in on-

demand data collection, is a rapidly growing one [16]. Given

the heterogeneity in UAV types, e.g., in energy constraints

and computation capabilities, the incentive mechanism design

for UAV systems is an important issue. The study in [31]

adopts a game theoretic approach to analyze the offloading

decisions of UAVs acting as flying cloudlets for IoT devices.

In contrast, the study in [32] proposes the contract-theoretic

approach to incentivize UAV base stations to contribute higher

transmit power for enhanced coverage over wireless networks.

In consideration of the limited availability of mobile charging

stations for UAVs, the study in [33] proposes an auction-based

approach to efficiently assign the UAVs to specific charging

time slots so as to reduce congestion.
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However, given the nascent field of FL, there are rela-

tively few works that propose FL based collaborative learning

schemes involving UAVs. To the best of our knowledge, the

study of [34], [35] are among the first to propose the imple-

mentation of FL for joint power allocation and scheduling of

UAV swarms and UAV for facilitating FL training respectively.

With the increasingly stringent regulations related to data

privacy, the adoption of FL can facilitate collaborative learning

for the development of effective AI models, without the

exchange of potentially sensitive raw data [36]–[38]. As such,

there is an urgent need to consider the incentive mechanism

design [39] for FL in UAV networks.

To that end, we can take reference from the growing

literature related to incentive mechanism design for FL. For

example, the study in [40] adopts a contract-theoretic approach

[41] to motivate workers to contribute more computation

resource for efficient FL. As an extension, the study in [42]

uses a Stackelberg game formulation together with Deep Rein-

forcement Learning to design a learning-based [39] incentive

mechanism for FL. For a comprehensive survey in this area,

we refer the readers to [43].

Apart from the traditional considerations of incentive design

in FL, the UAV systems involve other sources of heterogene-

ity in UAV types, e.g., traversal costs. As such, the multi-

dimensional sources of heterogeneity in UAVs have inspired

us to adopt the multi-dimensional contract theoretic approach

[44] in our incentive mechanism design. Moreover, in contrast

to traditional works in contract theoretic mechanism design,

our system model only involves the matching of a single,

optimal UAV type to each subregion. This necessitates the

use of the matching-based algorithm such as the GS algorithm.

The use of matching for UAVs to subregions have also been

studied in [28]. However, [28] does not have any mechanism

in place to ensure truthful reporting, while we leverage on the

self-revealing properties of contract theory to that end. While

the study of contract-matching has also been explored for re-

source allocation in vehicular fog computing [45], the contract

considered is single-dimensional with simpler considerations.

In summary, our study considers the adoption of FL to

facilitate privacy preserving sensing and collaborative learning

in the UAV services market, and proposes a multi-dimensional

contract-matching design that aims to match the most optimal

UAV to each sensing subregion, while accounting for the

multiple sources of heterogeneity in UAV types.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network in which a model owner aims to

collect data from stipulated nodes, e.g., from RSUs or images

of segments in the highway, in a target sensing region to

fulfill a time-sensitive task. One UAV is selected by the task

publisher to cover each of the subregions. Given information

asymmetry and the multiple sources of heterogeneity in UAV

cost types, the model owner leverages on the self-revealing

properties of a multi-dimensional contract theoretic approach

to choose one UAV suited to cover each of the subregion.

After data collection, the UAV returns to their respective UAV

bases for Federated Learning (FL) based model training.

Following [28], the target sensing region can be modeled

as a graph and divided into N smaller graphs, i.e., subregions

whose set is denoted N = {1, . . . , n, . . . , N}, e.g., through

the multilevel graph partition algorithm [46]. The set of nodes

in each subregion is denoted I = {I1, . . . , In, . . . , IN} with

the node i in subregion n, i.e., i ∈ In, located at xn
i ∈ R

3. The

Euclidean distance between two nodes i and i′ located within

subregion n, ∀i, i′ ∈ In, i 6= i′ is expressed as lni,i′ where

lni,i′ = ||xn
i − xn

i′ || <∞, i.e., all nodes are inter-accessible.

A set J = {1, . . . , j, . . . , J} of J unmanned aerial vehi-

cles (UAVs) are located at bases situated around the target

sensing region. Without loss of generality, we assume that

each base owns a single UAV and J ≥ N . Moreover, our

model can be easily extended to scenarios in which a UAV

swarm1 is required for sensing in each subregion. Denote

C = {C1, . . . , Cj , . . . , CJ} as the set of bases where Cj refers

to the base of UAV j located at yCj
∈ R

3. The Euclidean

distance between the base of UAV j and subregion n is

expressed as lnCj
, where lnCj

= ||yCj
−xn

ĩ
|| <∞ and ĩ denotes

a designated node of the subregion, e.g., selected2 due to its

importance for coverage.

There are two stages in our system model as follows:

1) Multi-Dimensional Contract Design: The UAV types,

e.g., characterized by heterogeneous sensing, traver-

sal, and transmission costs, are private information not

known to the model owner. As such, the model owner

designs a set of contracts comprising proportion of node

coverage-reward pairs for each subregion to offer to the

UAVs for selection.

2) UAV-Subregion Assignment: For each subregion, the

utility maximizing UAV announces its preferred con-

tract. Then, also considering the subregion’s preference,

a UAV-subregion matching is derived using the Gale-

Shapley (GS) algorithm.

In the following, we consider the sensing, computation, and

data transmission model of a representative UAV.

A. UAV Sensing Model

We consider a representative UAV j tasked by the model

owner to cover a proportion of nodes in the subregion n.

Denote the node coverage assignment of UAV j in subregion

n to be Aj,n =
{

aj,ni,i′ |∀i, i
′ ∈ In, i 6= i′

}

where aj,ni,i′ = 1

represents that the UAV has to fly through the segment

between nodes i and i′, and aj,ni,i′ = 0 implies otherwise.

The total distance lnj traveled for sensing by UAV j under

assignment Aj,n is as follows:

lnj =
∑

i′ 6=i,i′∈In

aj,ni,i′ l
n
i,i′ . (1)

Denote θnj =

∑
i′ 6=i,i′∈In

a
j,n

i,i′

|In|
where | · | indicates cardinality,

i.e., θnj refers to the proportion of node coverage by UAV j
in subregion n where 0 ≤ θnj ≤ 1.

1In that case, the model easily extends to when each UAV j is considered
as a UAV swarm instead.

2We consider that the designated node is given without loss of generality.
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TABLE I: Table of commonly used notations.

Notation Description

n Subregion

j UAV

Cj Base of UAV j

lnj Total sensing distance (node coverage and sensing task)

lnCj
Total traversal distance (charging point to target region)

τ
j,n
P

Total duration taken for traversal and sensing

E
j,n
P

Total energy taken for traversal and sensing

αn
j Marginal cost of node coverage for sensing

ψn
j Traversal cost

τ
j,n
C

Local computation duration

E
j,n
C

Total energy taken for computation

βj Marginal cost of node coverage for computation

τ
j,n
T

Total duration for transmission

ζnj Energy taken for transmission

unj UAV utility

Rn
j Contractual rewards

φ Unit cost of energy for the UAV

Π Model owner profit

Ωn, ωn Contract set and individual contract

R̃ Compensation for sensing and computation costs

R̂ Compensation for traversal and transmission costs

υ(αy , βz) Marginal cost of node coverage

Φi UAV auxiliary type

Apart from traveling between the nodes, the UAV has to

travel to and from its base. Denote the total distance traveled

by the UAV as Ln
j = lnj +l

n
Cj

. Hereinafter, we refer to lnj as the

sensing distance, whereas lnCj
refers to the traversal distance.

Following the works of [32], each UAV travels with an

average velocity vj and expends a fixed propulsion power

pj = cj,1v
3
j +

cj,2
vj

throughout the task for tractability, where

cj,1 and cj,2 refers to the required power to balance the

parasitic drag caused by skin friction and required power to

balance the drag force of air redirection respectively3. Note

that the propulsion power consumed by the UAV when it

changes its direction is negligible [20]. The total duration

taken for traversal and sensing is denoted τ j,nP =
Ln

j

vj
, whereas

the total energy consumed to cover the traversal and sensing

distance is as follows:

Ej,n
P =

Ln
j

vj
pj =

θnj l
n + lnCj

vj
pj

=
pj l

n

vj
θnj +

lnCj

vj
pj

= αn
j θ

n
j + ψn

j , (2)

where ln is the distance traveled by the UAV if it covers

all nodes, i.e., θnj = 1, αn
j =

pj l
n

vj
and ψn

j =
lnCj

vj
pj

for notation simplicity. Note that αn
j represents the sensing

cost, i.e., marginal cost of node coverage for sensing in the

subregion, whereas ψn
j refers to the traversal cost, i.e., the

energy cost of traveling to and from the base. A higher αn
j

can imply that the UAV j requires greater propulsion power to

complete the task, e.g., due to its larger weight or wing-aspect

ratio, whereas a higher ψn
j implies either a greater propulsion

3In practice, the propulsion power is in turn a function of other factors,
e.g., reference area of the UAV and wing aspect ratio and weight. For ease
of notation, we consider that pj accounts for these factors.

power to move, or a greater traversal cost, i.e., the subregion

is farther away from the base. While the value of αn
j varies

across subregions due to the varying ln, i.e., the marginal cost

of node coverage varies according to the sensing area of the

subregion, the ordering of the UAV types based on the sensing

costs is retained. On the other hand, the order of UAVs by

traversal costs varies across subregions, based on the distance

between the UAV base and each of the subregions.

B. UAV Computation Model

After the UAV j covers its assigned set of nodes fol-

lowing assignment Aj,n, it returns to the base Cj for an

FL based model training over K global iterations where

K = {1, . . . , k, . . . ,K} to minimize the global loss FK (w).
Each training iteration k consists of three steps [47] namely: (i)

Local Computation: the UAV trains the received global model

w(k) locally using the sensing data, (ii) Wireless Transmission:

the UAV transmits the model parameter update h
(k)
j to the

model owner, and (iii) Global Model Parameter Update:

all parameter updates derived from the N subregions are

aggregated to derive an updated global model w(k+1), where

w(k+1) = ∪j∈N (w
(k)
j +h

(k)
j ), which is then transmitted back

to the UAVs for the (k + 1)th training iteration.

In general, a series of local model training is performed by

the UAV to minimize an L-Lipschitz and γ-strongly convex

local loss function Gj up to the target accuracy A∗ defined by

the model owner to derive the parameter update. Note that a

larger value of A∗ implies greater deviation from the optimal

value. Moreover, 0 < A∗ < 1, i.e., the local solution h
(k)
j

does not have to be trained to optimality, e.g., to reduce local

computation duration especially for time sensitive tasks. In

particular, following the formulation in [48]:

Gj

(

w(k),h
(k)
j

)

−Gj

(

w(k),h
(k)∗
j

)

≤ A∗
(

Gj

(

w(k),0
)

−Gj

(

w(k),h
(k)∗
j

))

. (3)

The FL training is completed after K = a
1−A∗ global

iterations where a = 2L2

γ2ξ
and 0 ≤ ξ ≤ γ

L
. The total local

computation duration τ j,nC is as follows:

τ j,nC = K

(

V Cjθ
n
jD

n log2(1/A
∗)

fj

)

, (4)

whereas the energy consumption of UAV j for computation is

as follows:

Ej,n
C = K

(

κCjθ
j,nDnV log2(1/A

∗)f2j
)

= βjθ
n
j . (5)

κ is the effective switched capacitance that depends on the

chip architecture [49], Cj is the cycles per bit for computing

one sample data of UAV j, θj,nDn is the unit of data

samples collected by UAV j, V log2(1/A
∗) refers to the lower

bound on number of local iterations required to achieve local

accuracy A∗ [48] where V = 2
(2−Lδ)δγ , and fj refers to

the computation capacity of the UAV j, measured by CPU

cycles per second. For ease of notation, we denote βj =
κKCjD

nV log2(1/A
∗)f2j , i.e., a higher βj implies greater

energy cost for computation per additional node coverage.
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Similar to αn
j , the value of βn

j varies across subregion due to

the different units of data samples available for computation.

However, the ordering of the UAV types is retained since it is

dependent on computation capabilities.

C. UAV Transmission Model

After local computation, the wireless transmission takes

place from the selected UAVs to the model owner. For

simplicity, we denote the achievable rate of the UAV j to

be a product of its transmit power ρj and a scaling factor λnj
which covers other considerations, e.g., bandwidth allocation

and channel gain.

The total time τ j,nT taken by the UAV to upload parameter

update h
(k)
j of size H is as follows: τ j,nT = K H

λn
j
ρj

. Note that

the model upload size is constant regardless of the number

of global iterations or quantity of data collected, given the

fixed dimensions of the model update. The transmission energy

consumption, denoted ζnj , is as follows:

Ej,n
T = τ j,nT ρj = ζnj . (6)

D. UAV and Model Owner Utility Modeling

The utility function of a representative UAV j covering

subregion n can be expressed as follows:

unj (θ
n
j ) = Rn

j (θ
n
j )− φ

(

Ej,n
P + Ej,n

C + Ej,n
T

)

= Rn
j (θ

n
j )− φ

(

αn
j θ

n
j + ψn

j + βn
j θ

n
j + ζnj

)

,

(7)

where Rn
j (θ

n
j ) refers to the contractual rewards and φ refers

to the unit cost of energy.

Following [42], the FL model accuracy Υ(
∑N

n=1 θ
n
j∗D

n)
is a concave function of the aggregate data collected across

N subregions by the N selected UAVs. In particular, the

inference accuracy of the model is improved when more nodes

are covered, i.e., a model trained using data across a more

comprehensive coverage of classes may be built. Without loss

of generality, we consider the aggregate model performance to

be an average of node coverage across all regions, analogous

to the Federated Averaging algorithm:

Υ

(

N
∑

n=1

θnj∗D
n

)

=
1

N

N
∑

n=1

log(1 + µθnj∗D
n), (8)

where µ > 0 is the system parameter. The total profit obtained

from all UAVs is thus as follows:

Π(Ω) = σΥ

(

N
∑

n=1

θnj∗D
n

)

−
N
∑

n=1

Rn
j∗ (9)

where σ > 0 refers to the conversion parameter from model

performance to profits, and the contractual reward expense for

each selected UAV is denoted as Rn
j∗ . In the next section,

we devise the optimal contract which satisfies the Individual

Rationality and Incentive Compatibility constraints.

IV. MULTI-DIMENSIONAL CONTRACT DESIGN

In this section, we first consider a multi-dimensional con-

tract formulation. To solve the multi-dimensional contract, we

sort the UAV types according to an auxiliary variable which

reflects the marginal cost of node coverage. Then, we relax

the constraints for contract feasibility and include a fixed

compensation component for traversal and transmission costs

so as to solve for the optimal contract.

A. Contract Condition Analysis

Given that the sensing cost α, traversal cost ψ, computation

cost β, and transmission cost ζ are all private information

that are not precisely known by the model owner, we consider

the multi-dimensional contract theoretic incentive mechanism

design to leverage on its self-revealing properties.

The UAVs can be classified into different types to char-

acterize their heterogeneity. In particular, the UAVs can be

categorized into a set Ψ = {ψn
x : 1 ≤ x ≤ X} of X traversal

cost types, set A = {αn
y : 1 ≤ y ≤ Y } of Y sensing cost

types, set B = {βn
z : 1 ≤ z ≤ Z} of Z computation cost

types, and set C = {ζnq : 1 ≤ q ≤ Q} of Q transmission cost

types.

Without loss of generality, we also assume that the user

types are indexed in non-decreasing orders in all four dimen-

sions: 0 < ψ1 ≤ ψ2 ≤ · · · ≤ ψX , 0 < αn
1 ≤ αn

2 ≤ · · · ≤ αn
Y ,

0 < βn
1 ≤ βn

2 ≤ · · · ≤ βn
Z , and 0 < ζn1 ≤ ζn2 ≤ · · · ≤ ζnQ. For

ease of notation, we represent a UAV of traversal cost type x,

sensing cost type y, computation cost type z, and transmission

cost type q to be that of type-(x, y, z, q).
To enforce the UAVs to truthfully reveal their private

information, we adopt a two-step procedure for the contract

design:

1) Multi-Dimensional Contract Design: We convert the

multi-dimensional problem into a single-dimensional

contract formulation following the approach in [41].

In particular, we sort the UAVs by an auxiliary, one-

dimensional type Φ(αn
y , β

n
z ) in the ascending order

based on the marginal cost of node coverage, i.e.,

sensing and computation cost types. Then, we solve

for the optimal contract for each subregion n denoted

Ωn(A,B) = {ωn
y,z : 1 ≤ y ≤ Y, 1 ≤ z ≤ Z} where

n ∈ N to derive the optimal node coverage-contract

reward bundle {θny,z, R̃
n
y,z}.

2) Traversal Cost Compensation: In contrast to existing

works on multi-dimensional contracts, the UAVs also

incur the additional traversal cost and transmission cost

components, both of which are not coupled with the

marginal cost of node coverage. In other words, these

costs have to be incurred regardless of the number of

nodes a UAV decides to cover in the subregion. For each

contractual reward, we add in a fixed compensation R̂
to derive the final contract bundle {θny,z, (R̃

n
y,z + R̂)}.

We first discuss the multi-dimensional contract formulation

as follows. A contract is feasible only if the Individual

Rationality (IR) and Incentive Compatibility (IC) constraints

hold simultaneously.
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Definition 1. Individual Rationality (IR): Each type-(y, z)
UAV achieves non-negative utility if it chooses the contract

item designed for its type, i.e., contract item ωy,z .

uy,z(ωy,z) ≥ 0, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z. (10)

Definition 2. Incentive Compatibility (IC): Each type-(y, z)
UAV achieves the maximum utility if it chooses the contract

item designed for its type, i.e., contract item ωy,z . As such, it

has no incentive to choose contracts designed for other types.

uy,z(ωy,z) ≥ uy,z(ωy′,z′), 1 ≤ y ≤ Y, 1 ≤ z ≤ Z,

y 6= y′, z 6= z′. (11)

The multi-dimensional contract formulation is as follows:

max
Ω

Π(Ωn(A,B))

s.t. (10), (11). (12)

However, the optimization problem in (12) involves Y Z, i.e.,

IR constraints and Y Z(Y Z − 1), i.e., IC constraints, all of

which are non-convex. Therefore, we first convert the contract

into a single-dimensional formulation in the next section.

B. Conversion Into A Single-Dimensional Contract

In order to account for the marginal cost of node coverage,

we consider a revised utility ũy,z of the UAV type-(y, z) that

excludes the traversal and transmission costs as follows:

ũy,z(θ(y, z), R̃y,z) = η(αy, βz) + R̃y,z, (13)

where we denote η(αy, βz) = −φθ(y, z)(αy + βz) for ease

of notation, and R̃y,z refers to the contractual reward arising

from the multi-dimensional contract design. To focus on a

representative contract, we drop the n superscripts for now.

Given that the ranking of marginal cost types does not change

across subregion, note that our contract design is a general

one applicable to all subregions.

We derive the marginal cost of node coverage υ(αy, βz) for

the type-(y, z) UAV as follows:

υ(αy, βz) = −
∂η(αy, βz)

∂θ(y, z)
= φ(αy + βz). (14)

Intuitively,
∂η(αy,βz)
∂θ(y,z) < 0 since the coverage of an additional

node results in the additional expenses of sensing and com-

putation costs. A larger value of υ(αy, βz) implies a larger

marginal cost of node coverage, due to the greater sensing

and computation costs incurred for a particular UAV type.

We can now sort the Y Z UAVs according to their marginal

cost of node coverage in a non-decreasing order as follows:

Φ1(θ),Φ2(θ), . . . ,Φi(θ), . . . ,ΦY Z(θ), (15)

where Φi(θ) denotes the auxiliary type-Φi(θ) user. Given the

sorting order, the UAV types are in an ascending order based

on their marginal cost of node coverage:

υ(θ,Φ1) ≤ υ(θ,Φ2) ≤ · · · ≤ υ(θ,Φi) ≤ · · · ≤ υ(θ,ΦY Z),
(16)

Note that for ease of notation, we use type-Φi or type-

i interchangeably to represent the auxiliary type-i user. In

addition, we refer to ηi(θi) and η(θi,Φi) interchangeably

to represent the new ordering subsequently. Similarly, to

represent the marginal cost of node coverage, we use υi(θi)
and υ(θi,Φi). In the next section, we derive the necessary and

sufficient conditions for the contract design.

C. Conditions For Contract Feasibility

We derive the necessary conditions to guarantee contract

feasibility based on the IR and IC constraints as follows.

Lemma 1. For any feasible contract Ω{A,B}, we have θi <
θi′ if and only if R̃i < R̃i′ , i 6= i′.

Proof. We first prove the sufficiency, i.e., if R̃i < R̃i′ ⇒ θi <
θi′ . From the IC constraint of type-Φi UAV we have:

η(θi,Φi) + R̃i ≥ η(θi,Φi′) + R̃i′ ,

η(θi,Φi)− η(θi,Φi′) ≥ R̃i′ − R̃i > 0, (17)

which implies:

η(θi,Φi) ≥ η(θi,Φi′), (18)

Given that
∂η(θi,Φi)

∂θi
< 0, we can deduce θi < θi′ .

Next, we prove the necessity, i.e., θi < θi′ ⇒ R̃i < R̃i′ .

Similarly, we consider the IC constraint of the type-Φi UAV:

η(θi,Φi) + R̃i ≥ η(θi′ ,Φi) + R̃i′ ,

η(θi,Φi)− η(θi′ ,Φi) ≥ R̃i′ − R̃i. (19)

Given θi < θi′ , we deduce η(θi,Φi) < η(θi′ ,Φi), which

follows that R̃i′ < R̃i. The proof is now completed.

Lemma 2. Monotonicity: For any feasible contract Ω{A,B},

if υ(θi,Φi) > υ(θi,Φi′), it follows that θi ≤ θi′ .

Proof. We adopt the proof by contradiction to validate the

monotonicity condition. We first assume that there exists θi >
θi′ such that υ(θi,Φi) > υ(θi,Φi′).

We consider the IC constraints for the type Φi and Φi′ UAV:

η(θi,Φi) + R̃i ≥ η(θi′ ,Φi) + R̃i′ ,

η(θi′ ,Φi′) + R̃i′ ≥ η(θi,Φi′) + R̃i.

Then, we add the constraints together and rearrange the

terms to obtain:

[η(θi,Φi)− η(θi′ ,Φi)]− [η(θi,Φi′)− η(θi′ ,Φi′)] ≥ 0. (20)

By the fundamental theorem of calculus, we have:

[η(θi,Φi)− η(θi′ ,Φi)]− [η(θi,Φi′)− η(θi′ ,Φi′)]

=

∫ θi

θi′

∂η(θ,Φi)

∂θ
dθ −

∫ θi

θi′

∂η(θ,Φi′)

∂θ
dθ

=

∫ θi

θi′

[

∂η(θ,Φi)

∂θ
−
∂η(θ,Φi′)

∂θ

]

dθ

= −

∫ θi

θi′

[υ (θ,Φi)− υ (θ,Φi′)] dθ. (21)

Given (12), as well as the assumption θi > θi′ and η(θi,Φi) >
η(θi,Φi′), we can deduce that (21) is negative, which contra-

dicts with (20). As such, there does not exist θi > θi′ and
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η(θi,Φi) > η(θi,Φi′) for the feasible contract, which confirms

that the lemma is correct. The proof is now completed.

As such, Lemmas 1 and 2 give us the necessary conditions

of the feasible contract in the following theorem.

Theorem 1. A feasible contract must meet the following

conditions:

{

θ1 ≥ θ2 ≥ · · · ≥ θi ≥ · · · ≥ θY Z

R̃1 ≥ R̃2 ≥ · · · ≥ R̃i ≥ · · · ≥ R̃Y Z

(22)

Next, we further relax the IR and IC constraints. Due to

the independence of Φi on the contract item {θ, R̃}, i.e.,

Φi(θ, R̃) = Φi(θ
′, R̃′), θ 6= θ′, R̃ 6= R̃′, the UAV type does

not change with the node coverage and contract rewards. In

addition, the ordering of the type by marginal costs does

not change with the subregion n. As such, we are able to

deduce the minimum utility UAV Φmax = ΦY Z , i.e., the

UAV characterized by {αY , βZ} is the UAV which incurs the

highest marginal cost of node coverage, and hence it is the

minimum utility UAV.

Lemma 3. If the IR constraint of the minimum utility UAV

type ΦY Z is satisfied, the other IR constraints will also hold.

Proof. From the IC constraint and the sorting order η1(θ1) ≥
· · · ≥ ηi(θi) · · · ≥ ηY Z(θY Z), we have the following relation:

ηi(θi) + R̃i ≥ ηi(θY Z) + R̃Y Z ≥ ηY Z(θY Z) + R̃Y Z ≥ 0.

As such, as long as the IR constraint of the UAV type ΦY Z is

satisfied, it follows that the IR constraints of the other UAVs

will also hold.

Lemma 4. For a feasible contract, if ωi−1
PIC
⇔ ωi and ωi

PIC
⇔

ωi+1, then ωi−1
PIC
⇔ ωi+1.

Note that the relation ωi
PIC
⇔ ωi′ , i 6= i′ implies the Pairwise

Incentive Compatibility (PIC), which is fulfilled under the

following condition:

{

ui (ωi) ≥ ui (ωi′) ,
ui′ (ωi′) ≥ ui′ (ωi) .

Proof. Suppose we have three UAV types Φi−1, Φi, and Φi+1

where i − 1 < i < i + 1. The Local Upward Incentive

Constraint (LUIC), i.e., IC constraint between the ith and

(i+ 1)th UAV is as follows:

η (θi−1,Φi−1) + R̃i−1 ≥ η (θi,Φi−1) + R̃i

η (θi,Φi) + R̃i ≥ η (θi+1,Φi) + R̃i+1. (23)

In addition, we consider:

[η (θi+1,Φi)− η (θi,Φi)]− [η (θi+1,Φi−1)− η (θi,Φi−1)]

=

∫ θi+1

θi

∂η (θ,Φi)

∂θ
dθ −

∫ θi+1

θi

∂η (θ,Φi−1)

∂θ
dθ

=

∫ θi+1

θi

∂η (θ,Φi)

∂θ
−
∂η (θ,Φi−1)

∂θ
dθ

=−

∫ θi+1

θi

[υ (θ,Φi)− υ (θ,Φi−1)] dθ

=

∫ θi

θi+1

[υ (θ,Φi)− υ (θ,Φi−1)] dθ. (24)

Given the order of marginal cost of node coverage in (16), it

follows that (24) is positive. As such, we have:

η (θi+1,Φi)− η (θi,Φi) ≥ η (θi+1,Φi−1)− η (θi,Φi−1) .
(25)

Adding the LUIC inequalities presented in (32) together with

that of (25), we have:

η(θi−1,Φi−1) + R̃i−1 ≥ η(θi+1,Φi−1) + R̃i+1. (26)

By considering the Local Downward Incentive Constraint

(LDIC), i.e., IC constraint between the ith and (i− 1)
th

UAV,

as well as adopting the approach in (24), we derive that:

η(θi+1,Φi+1) + R̃i+1 ≥ η(θi−1,Φi+1) + R̃i−1. (27)

As such, given that the LUIC and LDIC hold, we have proven

that the PIC of the contracts hold, i.e., ωi−1
PIC
⇔ ωi+1.

With Lemma 3, we are able to reduce Y Z IR constraints

into a single constraint, i.e., as long as the minimum utility

type ΦY Z UAV has a non-negative utility, it follows that the

other IR constraints will hold. Moreover, with Lemma 4, we

are able to reduce Y Z(Y Z − 1) constraints into Y Z − 1
constraints, i.e., as long as the PIC constraint of the type Φi

and type Φi+1 UAV holds, it follows that the IC constraints

between the type Φi and all other UAV types will hold.

With this, we are able to derive a tractable set of sufficient

conditions for the feasible contract in Theorem 2 as follows.

The first condition refers to the reduced IR condition corre-

sponding to Lemma (3), whereas the second condition refers

to the PIC condition between the type Φi and type Φi+1 UAV

corresponding to Lemma (4).

Theorem 2. A feasible contract must meet the following

sufficient conditions:

1) ηY Z(θY Z) + R̃Y Z ≥ 0
2) R̃i+1 + η(θi+1,Φi+1) − η(θi,Φi+1) ≥ R̃i ≥ R̃i+1 +

η(θi+1,Φi)− η(θi,Φi).

D. Contract Optimality

To solve for the optimal contract rewards R̃∗
i , we first es-

tablish the dependence of optimal contract rewards R on route

coverage θ. Thereafter, we solve the problem in (12) with θ

only. Specifically, we obtain the optimal rewards R∗(θ) given

a set of feasible node coverages from each UAV which satisfies

the monotonicity constraint θ1 ≥ θ2 ≥ · · · ≥ θi ≥ · · · ≥ θY Z .
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In addition, the multi-dimensional contract formulation that

we have thus far only considers the self-revelation for two

types, i.e., sensing and computation costs. To account for

traversal and transmission cost types, we add an additional

fixed compensation R̂ into the contract rewards. The traversal

cost can be derived from the historical information of the

UAV, and can be calibrated based on the response that the

model owner receives. In the following theorem, we prove

that the addition of a fixed rewards compensation does not

violate the IC constraints, i.e., the self-revealing properties of

the contract is still preserved, whereas it is inconsequential

even if the IR constraint is violated, given that R̃ has already

been designed to sufficiently compensate marginal costs, and

only one optimal UAV is required to serve each subregion.

The optimal rewarding scheme is summarized as follows.

Theorem 3. For a known set of node coverage θ satisfying

θ1 ≥ θ2 ≥ · · · ≥ θi ≥ · · · ≥ θY Z in a feasible contract, the

optimal reward is given by:

R∗
i =

{

R̂− η(θi,Φi), if i = Y Z,

R̂+ R̃i+1 + η(θi+1,Φi)− η(θi,Φi), otherwise.

(28)

Proof. There are two parts to the proof. Firstly, we prove by

contradiction that the reward design for the two-dimensional

contract is optimal. Assume there exists some R
† that yields

greater profit for the model owner, meaning that the theorem

is incorrect, i.e., Π(R†) > Π(R∗). For simplicity, we need

to consider only the rewards portion of the model owner’s

profit function in this proof, i.e.,
∑Y Z

i=1R
†
i <

∑Y Z
i=1R

∗
i . This

implies there exists at least a t ∈ {1, 2, . . . , Y Z} that satisfies

the inequality R†
t < R∗

t .

According to the PIC constraint of Lemma (4), we have:

R†
t ≥ R†

t+1 + η (θt+1,Φt+1)− η (θt,Φt) . (29)

In contrast from Theorem 3, we have:

R∗
t = R∗

t+1 + η (θt+1,Φt+1)− η (θt,Φt) . (30)

From (29) and (30), we can deduce that R†
t+1 < R∗

t+1.

Continuing the process up to t = Y Z, we R†
Y Z ≤ R∗

Y Z =
−η(θi,Φi), which violates the IR constraint. As such, there

does not exist the rewards R
† in the feasible contract that

yields greater profit for the model owner. Intuitively, the model

owner chooses the lowest reward that satisfies the IR and IC

constraints for profit maximization.

Secondly, we show that adding a fixed traversal cost reward

does not violate the IC constraint. Within a subregion, when

we consider the complete utility function of the auxiliary UAV

with type i, i 6= i′,

η (θi,Φi) + R̃i + R̂−ψn
i − ζni ≥

η (θi′ ,Φi) + R̃i + R̂− ψn
i − ζni . (31)

Intuitively, the traversal and transmission cost are structurally

separate from the marginal costs, i.e., sensing and computation

cost types of the UAV within a subregion n. As such, the fixed

reward terms cancel out and the self-revealing properties of the

contract is preserved.

Note that the IR constraint may no longer hold for some i
where

ψi > η (θi,Φi) + R̃i + R̂n. (32)

However, this is inconsequential given that unlike the con-

ventional contract theoretic formulations, we only require a

type of UAV to serve a subregion. Moreover, R̃n is already

designed such that the IR constraints hold to compensate

marginal costs sufficiently.

Following (28), we can re-express the optimal rewards as:

R∗
i = R̂− η(θY Z ,ΦY Z) +

Y Z
∑

t=i

∆t, (33)

where ∆Y Z = 0, ∆t = η(θi+1,Φi) − η(θi,Φi), and t =
1, 2, . . . , Y Z − 1.

Unlike conventional contract theoretic formulations, the

model owner only requires a single contract to be rewarded

per subregion n for the optimal UAV. From (9), we can

deduce that the optimal type-i∗ UAV to serve each subre-

gion is i∗ = argmaxΦi∈Φ Π(Ω{A,B}) = argminΦi∈Φ Φi.

Intuitively, for each region, the model owner leverages on

the self-revealing properties of the multi-dimensional contract

formulation to obtain an optimal UAV with the lowest marginal

cost of node coverage for profit maximization. In other words,

this is the UAV that can cover the largest proportion of the

subregion at the lowest cost, among all feasible UAVs that can

complete the task. We can substitute the optimal rewards into

the profit function of the model owner and rewrite the profit

maximization problem as follows:

max
(R,θn

i∗
)
Π(Ωn) =

N
∑

n=1

Gn(θni∗),

s.t.

C1 : θn1 ≥ θn2 ≥ · · · ≥ θni ≥ · · · ≥ θnY Z ,

C2 : 0 ≤ θn1 ≤ 1, (34)

where:

Gn =
σ

N
log(1 + µθni∗D

n)−R∗
i∗

=
σ

N
log(1 + µθni∗D

n)− R̂− φ(αn
i∗θ

n
i∗ + β1θ

n
i∗).

Note that C1 refers to the monotonicity constraint of the

contract whereas C2 specifies the upper and lower bounds

of the route coverage. To derive the optimal rewards for any

type-i∗ UAV, it is necessary to obtain the rewards for type-

i∗ + 1, . . . , type-Y Z UAV. To compute the rewards, we first

assume obtain a hypothetical RY Z . With this, we can then

work from backwards towards deriving RY Z−1, . . . , Ri∗ . If

the derived contract pairs satisfy the monotonicity conditions,

they are the optimal contract formulation. Otherwise, we use

the iterative adjusted algorithm, i.e., “Bunching and Ironing”

algorithm, to return the results that satisfy the monotonicity

constraint. The optimality of the results is preserved given the

concavity of Gn [50]. Thereafter, the model owner specifies

route assignment Ai∗,n for the optimal UAV such that θn∗i∗ =
∑

i′ 6=i,i′∈In
a
i∗,n

i,i′

|In|
.
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In the next section, we consider the UAV-subregion assign-

ment.

V. UAV-SUBREGION ASSIGNMENT

In this section, we consider the matching-based UAV-

subregion assignment using the GS algorithm. In Section IV,

we note that the optimal UAV for each subregion has to be

the lowest cost UAV type. However, given that the subregion

preferences may coincide, there exist a need to consider a two-

side matching such that the optimal UAVs are matched to the

subregions efficiently.

A. Matching Rules

Algorithm 1 GS Algorithm for UAV-Subregion Assignment

1: Input: N , τ̄n,J ,Ψ,A,B, C, Ej

2: Output: M∗(j), ∀j ∈ J
3: Phase I: Initialization

4: if τ j,nP (θ̂n) + τ j,nC (θ̂n) + τ j,nT ≤ τ̄n(θ̂
n) then

5: UAV j ∈ J report preferred contract to subregion n

6: Sort Φ(αn
j , β

n
j ) in an ascending order to derive Pn

7: Set R = N , M = ∅
8: Phase II: Iterative Matching

9: while R 6= ∅ and Pn 6= ∅, ∀n ∈ R do

10: for n in R do

11: j∗ = argminΦi∈Φ Φi

12: Formulate (θnj∗ , R
n
j∗) and propose contract

13: while n has more than one optimal UAV do

14: R̃n = R̃n −∆R̃n

15: if unj∗(θ
n
j∗) > un

′

j∗(θ
n′

j∗) then

16: M(j∗) = n
17: Remove n from R and add n′ to R
18: else

19: Remove j∗ from Pn

We introduce a complete, reflexive, and transitive binary

preference relation [51], i.e., “≻” to study the preferences of

the UAV. For example, n ≻j n
′ implies that the UAV j strictly

prefers subregion n to n′, whereas n �j n
′ indicates that the

UAV j prefers the subregion n at least as much as UAV j′.
We also consider the core definitions as follows:

Definition 3. Matching: For the formulated matching problem

(J ,N ,Pn,Pj), where J and N denote the set of UAVs and

the set of subregions respectively, whereas Pn and Pj denote

the preferences of the subregions and UAVs respectively. The

matching M(j) = n indicates that the UAV j has been

matched to subregion n, whereas the matching M(j) = ∅
implies that the UAV j has not been matched to any subregion.

Definition 4. Propose Rule: The UAV j ∈ J announces

its preferred contracts to all the eligible subregions based on

feasibility of task completion. Then, the subregion proposes

to its most preferred UAV j∗ in its preference set Pn , i.e.,

n∗ ≻j n
∗′, n∗∀n ∈ N , n∗ 6= n∗′. Note that the preference of

the subregion is managed by the FL model owner.

Definition 5. Reject Rule: The UAV j ∈ J rejects the

subregion if a better matching candidate exists. Otherwise, the

subregion that is not rejected will be retained as a matching

candidate.

However, given that the subregion preference for UAV

type is only based on two of four type dimensions, i.e.,

marginal costs, some subregions may have multiple preferred

UAVs with the same marginal costs. To that end, adopting

the approach in [45], we introduce the rewards calibration

rule by adjusting the traversal and transmission compensation

downward to further reduce the number of eligible UAVs

matched to each subregion.

Definition 6. Rewards Calibration Rule: For the subregion

n ∈ N that has more than one optimal UAV matched, the

contractual rewards can be adjusted downwards, following

which the preference of the UAVs are renewed for another

iteration of matching. The adjustment is as follows:

R̃n = R̃n −∆R̃n. (35)

B. Matching Implementation and Algorithm

We now explain the implementation procedure of the UAV-

subregion assignment.

Phase 1: Initialization

• The model owner announces the sensing subregions and

time constraint τ̄n for task completion to all UAVs in J .

Since θnj is not known apriori, it can be a pre-specified

lower bound, e.g., θ̂n given by the model owner4 (Line

4 of Algorithm 1).

• The UAVs consider the contracts and report its preferred

contract to the subregion (Line 5).

• We initialize (Lines 6, 7):

– M as an empty set

– R as the set of subregions that have yet to be

matched, i.e., R = N at initialization

– Pn as the set of subregion preferences based on

the ascending order of marginal costs Φ(αn
j , β

n
j ) as

discussed in Section IV-D.

Phase 2: Iterative Matching

Each iteration of matching consists of the four stages.

• Proposal: For each subregion n ∈ R, the node coverage-

contract reward pair is formulated for the most optimal

UAV j∗ = argminΦi∈Φ Φi in the preference set Pn.

Then, the subregion proposes to an optimal UAV (Lines

11-12).

• Rewards Calibration: If the subregion has more than one

optimal UAV, the contract reward is calibrated downward

until a one-to-one matching is achieved (Line 13-14).

• Rejection: If the UAV has a better matching candidate

unj∗(θ
n
j∗) < un

′

j∗(θ
n′

j∗), the subregion is rejected. If not,

the UAV keeps the subregion as a matching candidate.

• Update: If a subregion has been matched, remove it

from R (Line 17). If a prevailing matching candidate

has been rejected, add it back to R (line 17). Update Pn

by removing the UAV that has issued a rejection in this

iteration (Line 19).

4After the coverage is known, the UAV that is unable to complete the task
can then drop out.
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TABLE II: Table of Key Simulation Parameters

Simulation Parameters Value

UAV Sensing and Traversal Parameters

p 10 - 35

v 10 - 20 m/s

ln 1000 - 2000 m

lnCj
500 - 1000 m

UAV Computation Parameters

L 4

ε 1

3

δ 1

4

γ 2
A∗ 0.6

ε 1

3

C 10− 30 cycles/bit

K 24
V 4
κ 10−28

f 2 GHz

UAV Transmission Parameters

Dn 500− 1000 MB

λn 10000− 15000
H 1 MB

ρ 8− 18
UAV and Model Owner Utility Parameters

φ 0.05
µ 1
σ 100000

The iterations are repeated until all subregions have been

matched, i.e., R = ∅, or the remaining subregion has been

rejected by all UAVs in its preference list, i.e., Pn = ∅. The

pseudocode is presented in Algorithm 1.

The stability and optimality properties of the GS algorithm

are ensured following the proofs in [52]. As such, the self-

revealing properties of our multi-dimensional contract design

assures truthful type reporting, whereas the matching algo-

rithm ensures that the optimal UAV is matched to each region.

In the following, we perform the performance evaluation.

VI. PERFORMANCE EVALUATION

In this section, we consider the optimality of our devised

contract. To illustrate the contract optimality, we first consider

the case of six UAVs and a single subregion. Then, we

study a single iteration of matching between 5 UAVs and 3
subregions. Finally, we study the GS matching-based UAV-

subregion assignment that involves up to 7 UAVs and 6
subregions. Unless otherwise stated, the list of value ranges

for the key simulation parameters are as summarized in Table

II. The key parameters we use are with reference to studies

involving UAV and FL optimization [48].

A. Contract Optimality

To illustrate the optimality of our multi-dimensional contract

design, we first consider a highly simplified and demonstrative

case of a single subregion and six UAVs of ascending marginal

cost of route coverage. The values of α for the UAVs lie

in the range of [250, 875], with increments of 125, whereas

the β values lie in the range of [20, 70], with increments of

10. The values are varied as presented in Table II. Then, the

auxiliary types are derived following (16), and arranged in an

TABLE III: UAV Types For Preference Analysis with three

subregions considered.

UAV Type Coordinates α β Subregion Preference

1 (100, 100) 500 20 (2, 3, 1)
2 (900, 900) 500 20 (1, 3, 2)
3 (400, 400) 750 30 (3, 2, 1)
4 (450, 450) 750 30 (3, 2, 1)
5 (500, 500) 1000 40 (3)

ascending order for contract derivation. Type-1 UAV has the

lowest marginal cost of node coverage, whereas type-6 UAV

has the highest marginal cost of node coverage. To focus our

study on the optimality of our contract design, we hold the

traversal and transmission cost types of the UAV constant for

now. In addition, we assume that all the UAVs can complete

the task within the time constraints.

Fig. 2 and Fig. 3 consider the hypothetical scenarios in

which each particular UAV type takes turn to be matched

to the subregion. As an illustration, if UAV type-1 has been

matched to serve the subregion, the optimal node coverage is

1, whereas the contractual rewards is 35. In contrast, if UAV

type-6 is matched, the optimal node coverage is close to 0.4,

whereas the rewards is 20. From Fig. 2 and Fig. 3, we can

observe that the monotonicity condition discussed in Theorem

1 holds. In other words, the higher is the marginal cost of node

coverage, the lower is the optimal node coverage and contract

rewards.

In Fig. 4, we consider that each UAV type is awarded

different contract items meant for all varying types. Then,

the utility of each UAV is derived. Fig. 4 shows that the

IC constraints of the contract holds. As an illustration, we

consider the type-6 UAV, i.e., the UAV with the maximum

marginal cost of node coverage. The type-6 UAV derives

negative utility if it misreports its type, i.e., to imitate any

other lower marginal cost UAV types 1 − 5. As discussed in

Definition (2), each UAV derives the highest utility only if it

reports its type truthfully to the model owner. This validates

the self-revealing mechanism of our contract.

Fig. 5 shows that the model owner profits are the highest

when it is able to be matched with the UAV of the lowest

marginal cost of node coverage. This validates our discussion

in Section IV-D, and confirms the model owner preference. In

other words, among UAVs that are able to complete the task,

the model owner prefers the UAV that incurs the lowest cost.

B. UAV-Subregion Preference Analysis

To analyze the preferences of the UAVs and subregions

before we proceed with matching, we consider 5 UAV types

and 2 subregions. In particular, the auxiliary types of the UAVs

are shown in Table III. Similarly, the types are derived from

the calibration of the parameters listed in Table II. The UAVs

are sorted in the ascending order based on marginal cost of

node coverage. Besides, we consider three subregions 1, 2, 3 of

coordinates (1000, 1000), (50, 50), (500, 500). The subregion

preference for each UAV is also presented in the last column

of Table III.
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Fig. 5: The model owner profits vs. UAV auxiliary types.
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Fig. 6: The UAV utility for each subregion vs. types.

Following our discussion in Section IV-D, the subregions

prefer the UAV types with lower marginal cost. Naturally,

the preferences for all three subregions are similar as follows:

(1, 2, 3, 4, 5). Note that the subregions are indifferent between

types 1 and 2, as well as types 4 and 5 given that the pairs

have the same marginal cost of node coverage.

To consider the UAV preferences, we plot the potential

profits that each UAV may gain from covering the different

subregions in Fig. 6. Note that this profit is a hypothetical

one in some cases, since the profits can only be realized if

the UAV has been matched to cover the subregion. However,

given that the UAV is not aware if it will be matched to the

subregion apriori, the preference list of the UAV can only

be constructed with the assumption that it is indeed matched

to the subregion. We note that UAV 1 prefers subregion 2,

whereas UAV 2 prefers subregion 1 and so on. Intuitively,

the preference for subregions relies on the traversal costs, i.e.,

the cost of traveling to and from the subregion. As such, the

preferences for the UAVs 1 and 2 are (2, 3, 1) and (1, 3, 2)
respectively.

On the other hand, the UAV 5 prefers only the closest region

3, given the potential negative profits derived if it serves the

other two subregions, as a result of the high marginal costs

incurred for task completion. As such, we are able to derive

the matching of (Region 2, UAV 1) and (Region 1, UAV 2)

given that the UAV-subregion preferences match perfectly.

The consideration for subregion 3 is clearly more challeng-

ing than that of 1 and 2 given that the subregion is indifferent

between the two remaining UAVs 3 and 4, and that the UAVs

also rank the subregion highest, in terms of preference. To

that end, we consider the rewards calibration rule proposed in

Definition 6. The contract rewards are calibrated downwards

till a UAV emerges as the only choice left. In this case, after

the downward calibration of rewards R̃, UAV 4 will clearly

be matched with subregion 3, given its close proximity to the

subregion.

Through this relatively straightforward example, we are able

to derive an insight, i.e., a successful match will have the

lowest marginal cost type UAVs matched to the subregion

that it is situated closest to. Clearly, Fig. 6 also validates the

efficiency of our incentive mechanism design, i.e., the best

available UAV is matched to the respective subregion.

C. Matching-Based UAV-Subregion Assignment

In this section, we consider the matching-based UAV-

subregion assignment. In particular, we consider three scenar-

ios to illustrate the matching-based assignment.
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Fig. 7: UAV matching for homogeneous

subregions.
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with different data quantities and cov-
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Fig. 9: UAV matching where J > N .

In the first scenario, six UAVs of ascending marginal cost

types are initialized to choose among six subregions that are

of varying distances from each UAV. Each of the subregions is

calibrated to hold the same quantities of data (Dn) and sensing

area (ln) for coverage. For ease of exposition, the UAVs are all

able to complete their tasks within their energy capacities and

stipulated time constraint. The coordinates of the subregions

and UAVs, as well as the matching outcomes, are presented

in Fig. 7. The preference list of the UAVs are presented in

Table IV. Note that the preference list of each subregion is

simply (1, 2, 3, 4, 5, 6), i.e., among all feasible UAVs that can

cover the subregion within the time and energy constraints,

the UAV with the lowest marginal cost is preferred.

From Fig. 7, we observe that the UAV 1 is matched to

its most preferred subregion 6. Though UAV 2 also prefers

subregion 6, it is unable to be matched to the subregion given

that UAV 1 is higher up on the list of preferences of subregion

6. As such, UAV 2 is matched to its second choice. Naturally,

the matching between UAV 3 and subregion 3, UAV 4 and

subregion 2, as well as UAV 5 and subregion 5 is intuitive,

given the unavailability of the other more preferred UAVs for

the subregions to match with. We observe that UAV 6 is finally

matched with its fifth choice, given that the UAV 6 has the

lowest priority among subregions.

In the second scenario, we consider the same UAV types but

with heterogeneous subregions of different data quantities and

sensing areas for coverage. As was expected, the sizes of the

regions do not affect the matching outcomes and the matching

remains the same (Fig. 8). This is given that the preference

rankings of the subregion and the UAV remain constant. While

the varying values of Dn and ln affects the magnitude of

UAV types, the ordering of the UAV types, and thus their

preferences, is retained. This is important to ensure that the

monotonicity of our contract design holds across subregions,

so as to preserve the contract optimality.

In the third scenario, we consider the case where J > N ,

i.e., the number of UAVs exceed that of the number of

subregions available. As an illustration, we add in the UAV 7,

which has the lowest marginal cost of node coverage relative to

that of the other six available UAVs from the aforementioned

scenarios. We observe from Fig. 9 that the matching outcomes

have changed. UAV 7 is now matched with its most preferred

subregion, i.e., subregion 6, in place of UAV 1. Naturally, this

TABLE IV: UAV Type and Preference for Subregions.

UAV Type Subregion Preference

1 (6, 1, 5, 2, 3, 4)
2 (6, 1, 5, 3, 2, 4)
3 (3, 4, 5, 1, 2, 6)
4 (2, 5, 6, 1, 3, 4)
5 (2, 5, 3, 4, 1, 6)
6 (1, 5, 3, 6, 4, 2)

affects the assignment for the other UAVs. For example, UAV

1 has to be matched to its second choice now, whereas UAV 2
has to be matched to its third choice. We observe that the UAV

of the largest type, i.e., UAV 6 is left out of the assignment

as a result.

The simulation results allow us to validate the efficiency

of our mechanism design. Firstly, the contract design ensures

truthful type reporting and the incentive compatibility of our

contract is validated. Secondly, with consideration of the

preferences, the available UAV with the lowest marginal cost

of node coverage is matched to the subregion. This ensures

the profit maximization of the model owner.

VII. CONCLUSION

In this paper, we have considered an FL based sensing and

collaborative learning scheme involving UAVs for applications

in the IoV paradigm. Given the incentive mismatches between

the UAVs and the model owners, we have proposed a multi-

dimensional contract-matching incentive design such that the

UAV with the lowest marginal cost of node coverage is

assigned to each subregion for task completion. For future

works, we may consider the adoption of wireless charging

techniques with energy harvesting [53], [54] such that the

UAVs can perform sensing and model training simultaneously,

without the need to return to their bases. In that case, the incen-

tive mechanism design will involve the considerations of one

more player type, i.e., the wireless charging service provider.

Moreover, in consideration of the mobility of vehicles across

subregions, a deep reinforcement learning approach may also

be adopted to optimize resource allocation.
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