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1. Introduction

As Parke and Taylor have shown for MHV amplitudes [1], it is sometimes possible to

obtain simple expressions for seemingly complicated Yang-Mills amplitudes in four space-

time dimensions. Using the pure spinor formalism [2] and its pure spinor superspace [3]

(see also [4]) it will be proved that the tree-level color-ordered five-point super-Yang-Mills

amplitude in ten dimensions can be written simply as

A5(1, 2, 3, 4, 5) =
〈L45L12V

3〉

s45s12
+ cyclic(12345), (1.1)

where V j is the unintegrated massless vertex operator and Lij is related to the OPE of a

unintegrated and an integrated vertex operator in a way to be defined below.

It will also be suggested that higher-point amplitudes might have simple forms like

the above, as there seems to be a direct correspondence between superspace expressions

and Feynman diagrams which use only cubic vertices as in the arguments of [5]. Using the

empirical method described in subsection 3.1, it will be argued that the super-Yang-Mills

6- and 7-point color-ordered amplitudes are given by

A6(1, 2, 3, 4, 5, 6) =
〈L12L34L56〉

3s1s3s5
+

〈L23L45L61〉

3s2s4s6
(1.2)

+
1

2

〈T123

s1t1
(
V 4L56

s5
+

L45V
6〉

s4
)−

1

2

〈T126

s1t3
(
V 3L45

s4
+

L34V
5〉

s3
) + cyclic(1. . .6)

and

A7(1, 2, 3, 4, 5, 6, 7) = +
〈T231L45L67〉

s2t1s4s6
+

〈T123T564V7〉

s1t1s5t4
+

〈T127T345V6〉

s1t7s3t3
(1.3)

−
〈T123T456V7〉

s1t1s4t4
−

〈T127T453V6〉

s1t7s4t3
−

〈T123L45L67〉

s1t1s4s6
+ cyclic(1. . .7)

where Tijk is related to the OPE of one unintegrated and two integrated vertices in a way

to be defined below and s1, . . ., s6 and t1, . . ., t3 (s1, . . ., s7 and t1, . . ., t7) are the 6-point

(7-point) generalized Mandelstam variables of [6,7]. Using a computer program [8], the 6-

and 7-gluon expansions of (1.2) and (1.3) are computed in the Appendix B and their form

lend support to their correctness2.

2 In the amplitude computations of [6,7] the results were written in the 4D helicity formalism

language, so a 10D comparison of results is not straightforward. However a comparison to the

result [9] should be made [10].
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Furthermore, given that the tree-level SYM 4-point amplitude can be written as [11]

A4(1, 2, 3, 4) =
1

s12
〈L12V

3V 4〉+
1

s41
〈L41V

2V 3〉, (1.4)

it is pointed out that the four-point Jacobi-like Bern-Carrasco-Johansson kinematic iden-

tity [5] becomes

〈L{12V3}V4〉 = 0, (1.5)

where {ijk} means a sum over cyclic permutations of (ijk). For the five-point amplitude

(1.1), the generalized BCJ identities of [12,13] hold in the form of

−
L45

s45
L{12V3} +

L42

s24
L{13V5} −

L12

s12
L{34V5} +

L51

s51
L{23V4} = 0, (1.6)

etc. It is well-known that there are powerful four-dimensional methods to compute scat-

tering amplitudes recursively (see [14] and references therein). The hints of a simplified

ten-dimensional parametrization of field theory tree-level amplitudes using pure spinors3

seem to suggest that there might be similar methods in a ten-dimensional pure spinor

superspace setup – which is desirable since there is no need to differentiate between MHV

and NMHV contributions as in the four-dimensional methods.

This paper is organized as follows. In section 2 an ansatz will be given for the tree-

level five-point SYM amplitude by analogy with the structure of the known four-point

amplitude. In section 3 the five-point ansatz will be derived from the field theory limit of a

BRST-equivalent expression of the superstring amplitude computed in [11]. In subsection

3.1 an empirical method to write down similar Ansätze for higher-point amplitudes is

presented, and expressions for the 6- and 7-point super-Yang-Mills amplitudes in ten-

dimensional space-time are conjectured. In Appendix A the BCJ kinematic relations and

its generalization [12,13] are written down using the pure spinor representations of the

previous sections. Finally, in Appendix B the first few terms of the (rather long) 5-, 6-

and 7-gluon expansions from (1.1), (1.2) and (1.3) are written down (the full expansions

can be easily generated with a computer using [8] or other methods).

3 It was suggested a long time ago that pure spinors simplify the description of super-Yang-Mills

and supergravity theories [15]. The superspace results obtained with the pure spinor formalism

seem to realize those expectations.
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2. The field theory 5-pt tree-level amplitude from pure spinor cohomology

The color-ordered tree-level n-point amplitudes are denoted by A(1, . . ., n) = 〈A(1, . . ., n)〉.

The OPE between the unintegrated V i(z) = (λAi) and the integrated vertex operator4

U j(z) = ∂θαAj
α +ΠmAj

m + (dW j) + 1
2
F j

mnN
mn is given by V i(z)U j(w) →

L̃ij

z−w
, with [18]

L̃ij(θ) = Ai
m(λγmW j) + (λAi)(ki ·Aj), (2.1)

where [Aα, Am,Wα,Fmn] are the super-Yang-Mills superfields in ten dimensions satisfying

the equations of motion [4,19,17],

QFmn = 2k[m(λγn]W ), QWα =
1

4
(λγmn)αFmn, QAm = (λγmW ) + km(λA), QV = 0,

(2.2)

where Q = λαDα is the pure spinor BRST operator. Using (2.2) it follows that

QL̃ij = −sij(λA
i)(λAj), Q(Ai ·Aj) = L̃ij + L̃ji ≡ 2L̃(ij) (2.3)

where sij = (ki · kj). Using (2.3) and defining Lij = 1/2(L̃ij − L̃ji) the superfield L̃ij can

be written as5

L̃ij = Lij +
1

2
Q(Ai ·Aj). (2.4)

The massless 4-point super-Yang-Mills amplitude obtained from the field theory limit

of the open string amplitude is given by [11]

A(1, 2, 3, 4) =
1

s12
〈L̃12V

3V 4〉+
1

s41
〈L̃41V

2V 3〉 =
1

s12
〈L12V

3V 4〉+
1

s41
〈L41V

2V 3〉 (2.5)

where we used that 〈Q(Ai · Aj)V kV l〉 = 0, as can be checked by integrating the BRST

charge by parts. The other sub-amplitudes are obtained from (2.5) by relabeling,

A(1, 2, 3, 4) =
1

s12
〈L12V

3V 4〉+
1

s41
〈L41V

2V 3〉

A(1, 3, 4, 2) = −
1

s13
〈L13V

2V 4〉 −
1

s12
〈L12V

3V 4〉

A(1, 4, 2, 3) = −
1

s14
〈L41V

2V 3〉+
1

s13
〈L13V

2V 4〉. (2.6)

It is easy to check that the amplitudes in (2.6) satisfy QA(i, j, k, l) = 0.

4 For background material in the pure spinor formalism, see [16,17].
5 I thank Dimitrios Tsimpis for suggesting the separation of the BRST-trivial part of L̃ij.
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As emphasized in [5], a color-ordered 5-point tree-level amplitude consists of five

diagrams with purely cubic vertices specifying the poles,

A(1, 2, 3, 4, 5) =
n1

s45s12
+

n2

s51s23
+

n3

s12s34
+

n4

s23s45
+

n5

s34s51
. (2.7)

As the BRST variation of Lij is proportional to sij , the idea now is to construct a pure

spinor superspace expression using Lij and Lkl in the numerators of the terms containing

poles in sij and skl, in such a way as to obtain a BRST-closed expression. It is straight-

forward to see that the amplitudes

A(1, 2, 3, 4, 5) =
〈L45L12V

3〉

s45s12
+

〈L51L23V
4〉

s51s23
+

〈L12L34V
5〉

s12s34
+

〈L23L45V
1〉

s23s45
+

〈L34L51V
2〉

s34s51

A(1, 3, 2, 4, 5) =
〈L45L13V

2〉

s45s13
−

〈L51L23V
4〉

s51s23
−

〈L13L42V
5〉

s13s24
−

〈L23L45V
1〉

s23s45
−

〈L42L51V
3〉

s24s51

A(1, 4, 3, 2, 5) =
〈L25L14V

3〉

s25s14
+

〈L34L51V
2〉

s51s43
+

〈L23L14V
5〉

s14s32
+

〈L25L34V
1〉

s43s25
+

〈L51L23V
4〉

s32s51

A(1, 3, 4, 2, 5) =
〈L25L13V

4〉

s25s13
−

〈L34L51V
2〉

s51s34
+

〈L13L42V
5〉

s13s42
−

〈L25L34V
1〉

s34s25
+

〈L42L51V
3〉

s42s51

A(1, 2, 4, 3, 5) =
〈L35L12V

4〉

s35s12
+

〈L42L51V
3〉

s51s43
−

〈L12L34V
5〉

s12s43
+

〈L35L42V
1〉

s42s35
−

〈L34L51V
2〉

s43s51

A(1, 4, 2, 3, 5) =
〈L35L14V

2〉

s35s14
−

〈L42L51V
3〉

s51s24
−

〈L23L14V
5〉

s14s23
−

〈L35L42V
1〉

s24s35
−

〈L51L23V
4〉

s23s51
(2.8)

are BRST-closed. One can also check that all sub-amplitudes in (2.8) are related to

A(1, 2, 3, 4, 5) by index relabeling, taking into account the antisymmetry of Lij and its

fermionic nature. The signs in (2.8) precisely match the ones presented in equation (4.5)

of [5], so one can identify

n1 = 〈L45L12V
3〉, n2 = 〈L51L23V

4〉, n3 = 〈L12L34V
5〉, n4 = 〈L23L45V

1〉

n5 = 〈L34L51V
2〉, n6 = 〈L25L14V

3〉, n7 = 〈L23L14V
5〉, n8 = 〈L25L34V

1〉

n9 = 〈L25L13V
4〉, n10 = 〈L13L42V

5〉, n11 = 〈L42L51V
3〉, n12 = 〈L35L12V

4〉

n13 = 〈L35L42V
1〉, n14 = 〈L35L14V

2〉, n15 = 〈L45L13V
2〉. (2.9)

As will be mentioned in the appendix, the above “solution” for the ni’s of [5] do not

satisfy the strict Bern-Carrasco-Johansson (BCJ) kinematic identities, but they do satisfy

the generalized BCJ’s of [12,13]. As explained in [12,13], a general parametrization of the

sub-amplitudes in terms of poles does not necessarily satisfy the BCJ Jacobi-like identities

of [5]. They must however satisfy “generalized BCJ identities”, for which the original BCJ

relations are just one out of many possible solutions.

The amplitudes in (2.8) will now be obtained from the field theory limit of a BRST-

equivalent expression of the pure spinor superstring amplitude computed in [11].

4



3. First principles derivation of the 5-pt ansatz (2.8)

The massless 5-point open superstring amplitude is given by [11]

A5(1, 2, 3, 4, 5) = L2131V
4V 5K1 − L2134V

5K2 − L2434V
1V 5K ′

1 + L2431V
5K3

−L2331V
4V 5K5 − L2334V

1V 5K ′
4 + L2314V

1V 4V 5K6, (3.1)

where Kj and K ′
j denote integrals which satisfy [20]

s34K2 = s13K1 + s23K4, s24K3 = s12K1 − s23K5, K1 = K4 −K5

s12K2 = s24K
′
1 + s23K

′
4, s13K3 = s34K

′
1 − s23K

′
5, K ′

1 = K ′
4 −K ′

5

(1 + s23)K6 = s34K
′
4 − s13K5 = s12K4 − s24K

′
5. (3.2)

and the various Lijkl have the following pure spinor superspace expressions

L2131 = +〈L12((k
1 + k2) ·A3)〉+ 〈(λγmW 3)

[

A1
m(k1 ·A2) + A1nF2

mn − (W 1γmW 2)
]

〉

+s12〈
[

(A1W 3)V 2 − (A2W 3)V 1
]

V 4V 5〉+ (s13 + s23)〈(A
1W 2)V 3V 4V 5〉,

L2134V
5 = L̃12L̃43V

5 + s12〈(A
4W 3)V 1V 2V 5〉+ s34〈(A

1W 2)V 3V 4V 5〉

L2314V
1V 4V 5 = (1 + s23)〈

[

(A2W 3) + (A3W 2)− (A2 ·A3)
]

V 1V 4V 5〉. (3.3)

Furthermore, the following BCJ identities [11]

L2331V
4V 5 = L3121V

4V 5 − L2131V
4V 5, L2334V

1V 5 = L3424V
1V 5 − L2434V

1V 5 (3.4)

can be used to obtain L2331V
4V 5 and L2334V

1V 5 from (3.3) (the other L’s are obtained by

simple relabeling of the above ones). Using (3.2) one can show that all terms of the form

sij〈(A
kW l)V mV nV p〉 appearing in (3.3) and (3.4) cancel out from the amplitude (3.1).

As an illustration, the terms containing (A1W 2) are

[

(s13 + s23)K1 − s34K2 + s23K5

]

(A1W 2)V 3V 4V 5 =

= (s13K1 − s34K2)(A
1W 2)V 3V 4V 5 + s23(K1 +K5)(A

1W 2)V 3V 4V 5

= −s23K4(A
1W 2)V 3V 4V 5 + s23K4(A

1W 2)V 3V 4V 5 = 0.

5



All other cases can be similarly proved. From now on when we refer to Lijkl it means the

kinematic factors of (3.3) without those terms. Using the integral relation for K6 and the

expression for L2314,

L2314V
4V 5K6 = −(1 + s23)K6(A

2 ·A3)V 4V 5 = (s13K5 − s34K
′
4)(A

2 ·A3)V 4V 5

and therefore the amplitude (3.1) becomes

A5(1, 2, 3, 4, 5) = L2131V
4V 5K1 − L2134V

5K2 − L2434V
4V 5K ′

1 + L2431V
5K3

−(L2331 − s13(A
2 ·A3)V 1)V 4V 5K5 − (L2334 − s34(A

2 ·A3)V 4)V 1V 5K ′
4. (3.5)

If one defines6

Lijkj = Kijkj + Sijkj (3.6)

where

Sijkj =
1

2
sji((A

i ·Ak)V j − (Aj ·Ak)V i)−
1

2
(sjk + sik)(A

j ·Ai)V k, (3.7)

it is then a straightforward exercise to use the relations (3.2) and the definition (3.6)

together with the kinematic factors of (3.3) to show that (3.5) becomes

A5 = (K2131K1−K2331K5)V
4V 5−(K2434K

′
1+K2334K

′
4)V

1V 5+(L42L13K3+L12L34K2)V
5

(3.8)

where we used that (and similarly for other labels)

L2331 = L3121 − L2131 = K3121 −K2131 − S2131 + S3121

L2134V
5 = L̃12L̃43V

5 = −L12L34V
5 −

s12
2

(A3 ·A4)V 1V 2V 5 −
s34
2

(A1 ·A2)V 3V 4V 5.

To find a BRST-equivalent expression of (3.8) one uses the fact that Q(L45/s45) = −V 4V 5

to rewrite 〈KijklV
4V 5〉 as −〈KijklQ(L45/s45)〉, integrates the BRST-charge by parts and

uses the following relation

QKijkj = sji(LikV
j − LjkV

i)− (sjk + sik)LjiV
k, (3.9)

6 I thank Dimitrios Tsimpis for suggesting the relevance of using this definition in the context

of an ansatz for the 6-pt amplitude. It turns out to clean up the 5-pt formulæ too.
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which is easily obtained from the first expression in (3.3) and the definition (3.6). Doing

that one gets

〈K2131V
4V 5〉 = 〈L45L12V

3〉 −
s12
s45

〈L45L{12V3}〉 = n1 −
s12
s45

(n1 − n4 − n15) (3.10)

〈K2434V
1V 5〉 = 〈L42L51V

3〉+
s24
s51

〈L51L{23V4}〉 = n11 +
s24
s51

(n2 − n11 − n5) (3.11)

〈K2331V
4V 5〉 = −〈L23L45V

1〉 −
s23
s45

〈L45L{12V3}〉 = −n4 −
s23
s45

(n1 − n4 − n15) (3.12)

〈K2334V
1V 5〉 = −〈L51L23V

4〉+
s23
s51

〈L51L{23V4}〉 = −n2 +
s23
s51

(n2 − n11 − n5) (3.13)

Plugging the above relations in (3.8) and using the relations (3.2),

A5(1, 2, 3, 4, 5) = n1K1 + n3K2 − n11K
′
1 + n4K5 + n2K

′
4 − n10K3

−
s12
s51

K2(n2 − n11 − n5)−
s24
s45

K3(n1 − n4 − n15). (3.14)

Once the integrals Kj are written in terms of the basis (T,K3) [20], as in the appendix of

[11], the amplitude (3.14) becomes

A5(1, 2, 3, 4, 5) = T AYM(θ) +K3 AF 4(θ), (3.15)

where AYM (θ) and AF 4(θ) are the superfields,

AYM(θ) =
〈L45L12V

3〉

s45s12
+

〈L51L23V
4〉

s51s23
+

〈L12L34V
5〉

s12s34
+

〈L23L45V
1〉

s23s45
+

〈L34L51V
2〉

s34s51
(3.16)

and

AF 4(θ) = −〈L45L12V
3〉

(

s23
s45

+
s34
s12

)

− 〈L51L23V
4〉

(

s34
s15

+
s45
s23

)

(3.17)

−〈L12L34V
5〉

(

s45
s12

+
s51
s34

)

− 〈L23L45V
1〉

(

s51
s23

+
s12
s45

)

− 〈L34L51V
2〉

(

s12
s34

+
s23
s51

)

+〈L12L34V
5 + L51L23V

4 −L13L42V
5 +L23L45V

1〉+
s13
s51

〈L51L{23V4}〉 −
s24
s45

〈L45L{12V3}〉

In the field theory limit T → 1 and K3 → 0 [20], so the first principles derivation of

(2.8) is completed.
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3.1. Higher-point amplitudes

It is worth checking whether the simple mappings between the cubic Feynman dia-

grams and pure spinor building blocks persist at higher-points. The discussion in section

2 suggests a way to write down n-point field theory amplitudes. For each one of the

2n−2(2n− 5)!!/(n− 1)! color-ordered diagrams specifying the kinematic poles [5], a ghost-

number-three numerator whose BRST transformation is proportional to those poles should

be written down. One then tries to find a combination with the correct dimension of a

n-point amplitude such that the sum of all diagrams is BRST-closed.

To help finding candidates for superfield building blocks, the first principles tree-level

superstring amplitude prescription [2,21] can be used as guide. For example, the superfield

L̃ij appears in the OPE of V i(z)U j(w) in the 4-pt string amplitude [18], and its BRST

transformation QL̃ij = −sijV
iV j has precisely the Mandelstam variable to cancel poles

in the 5-pt amplitude. Similarly, the superfield Ljiki comes from the numerator of the

1/zijzik pole in the OPE V i(zi)U
j(zj)U

k(zk) appearing in the 5-pt computation [11], and

its BRST transformation has the required Mandelstam variables to cancel poles in the 6-pt

amplitude,

QLjiki = sij(L̃jkV
i − L̃ikV

j + L̃ijV
k)− (sjk + ski + sij)L̃ijV

k, (3.18)

or, defining Tijk ≡ Kjiki,

QTijk = sijL{ijVk} − (sjk + ski + sij)LijVk. (3.19)

Following the above procedure for the 14 color-ordered diagrams of the 6-point am-

plitude7, a BRST-closed expression with the correct pole structure looks like8

A6(1, 2, 3, 4, 5, 6) =
〈L12L34L56〉

3s1s3s5
+

〈L23L45L61〉

3s2s4s6
(3.20)

+
1

2

〈T123

s1t1
(
V 4L56

s5
+

L45V
6〉

s4
)−

1

2

〈T126

s1t3
(
V 3L45

s4
+

L34V
5〉

s3
) + cyclic(1. . .6)

where s1 = s12, s2 = s23, . . ., s6 = s61, t1 = (s12 + s23 + s13), t2 = (s23 + s34 + s24) and

t3 = (s34 + s45 + s35) are the 6-point Mandelstam variables of [6]. The full component

7 Work is currently in progress to obtain the 6-pt field theory limit of the open superstring

amplitude [10].
8 I thank Oliver Schlotterer and Dimitrios Tsimpis for many valuable discussions.
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expansion for the 6-gluon amplitude obtained from (3.20) contains 6706 terms [8] and it

was checked to be gauge invariant. The first few terms of this expansion are given in

Appendix B.

Similarly, an ansatz for the 42 color-ordered 7-point diagrams which is BRST-closed

and has the correct pole structure is given by

A7(1, 2, 3, 4, 5, 6, 7) = +
〈T231L45L67〉

s2t1s4s6
+

〈T123T564V7〉

s1t1s5t4
+

〈T127T345V6〉

s1t7s3t3
(3.21)

−
〈T123T456V7〉

s1t1s4t4
−

〈T127T453V6〉

s1t7s4t3
−

〈T123L45L67〉

s1t1s4s6
+ cyclic(1. . .7)

where s1, . . ., s7 and t1, . . ., t7 are the 7-point Mandelstam variables of [7]. The ten-

dimensional 7-gluon expansion of (3.21) contains more than 130 thousand terms [8] and

a few are written in appendix B. As the results of [7] are written in the four-dimensional

helicity formalism, a direct comparison with the results quoted there is not possible.

The simplicity of the above Ansätze is remarkable and claims for a first principles

formalism. The compact results presented here provide strong evidence that the language

of pure spinor superspace is well-suited for writing down ten-dimensional scattering am-

plitudes. Furthermore, having these compact supersymmetric expressions is interesting

because there is no need to treat amplitudes differently, depending on whether the helicity

configuration is MHV or NMHV.
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knowledge support by the Deutsch-Israelische Projektkooperation (DIP H52).

Appendix A. The Bern-Carrasco-Johansson kinematic identities

The 4-pt BCJ kinematic relation nu = ns − nt is mapped to the superspace expres-

sion 〈L13V
2V 4〉 = 〈L12V

3V 4〉 − 〈L41V
2V 3〉. Using 〈L41V

2V 3〉 = −〈L23V
1V 4〉 it can be

rewritten as

〈L{12V3}V
4〉 = 0, (A.1)
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where {ijk} means to sum over the cyclic permutation of the labels. Furthermore, one can

check that (A.1) is true by expanding it in components. Note that

QL{ijVk} = −(sij + sjk + sik)V
iV jV k, (A.2)

which vanishes for the 4-pt amplitude because sik = −sij − sjk.

The 5-pt extended BCJ relations of [12][13] are given by

n4 − n1 + n15

s45
−

n10 − n11 + n13

s24
−

n3 − n1 + n12

s12
−

n5 − n2 + n11

s51
= 0 (A.3)

n7 − n6 + n14

s14
−

n10 − n11 + n13

s24
−

n8 − n6 + n9

s25
−

n5 − n2 + n11

s51
= 0 (A.4)

n10 − n9 + n15

s13
+

n5 − n2 + n11

s51
−

n4 − n2 + n7

s23
+

n8 − n6 + n9

s25
= 0 (A.5)

n4 − n1 + n15

s45
−

n10 − n9 + n15

s13
−

n5 − n2 + n11

s51
−

n3 − n5 + n8

s34
= 0. (A.6)

Using the mappings of (2.9) they become

−
L45

s45
L{12V3} +

L42

s24
L{13V5} −

L12

s12
L{34V5} +

L51

s51
L{23V4} = 0, (A.7)

−
L14

s14
L{23V5} +

L42

s24
L{13V5} −

L25

s25
L{13V4} +

L51

s51
L{23V4} = 0, (A.8)

+
L13

s13
L{25V4} −

L51

s51
L{23V4} −

L23

s23
L{14V5} +

L25

s25
L{13V4} = 0, (A.9)

−
L45

s45
L{12V3} −

L13

s13
L{25V4} +

L51

s51
L{23V4} +

L34

s34
L{12V5} = 0, (A.10)

which one can check to hold true when expanding in components. Using the momentum

conservation relations

s13 = s45 − s12 − s23, s14 = s23 − s51 − s45, s24 = s51 − s23 − s34

s25 = s34 − s12 − s51, s35 = s12 − s45 − s34, (A.11)

one finds that the LHS of (A.7) – (A.10) are BRST-closed. Roughly speaking, the extended

BCJ identities are BRST-closed expressions which do not have the correct pole structure

to be amplitudes.
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Appendix B. The 5-, 6- and 7-gluon amplitudes

The 5-gluon amplitude is easily obtained by using [8], and one can check that the first

few terms are

2880A5(1, 2, 3, 4, 5) = (B.1)

−(k1 · e2)(k1 · e3)(k1 · e4)(e1 · e5)s−1
1 s−1

4 + (k1 · e2)(k1 · e3)(k1 · e5)(e1 · e4)s−1
1 s−1

4

−(k1 · e2)(k1 · e3)(k2 · e4)(e1 · e5)s−1
1 s−1

4 + (k1 · e2)(k1 · e3)(k2 · e5)(e1 · e4)s−1
1 s−1

4

−(k1 · e2)(k1 · e3)(k3 · e4)(e1 · e5)s−1
1 s−1

3 + . . .

The 6-gluon component expansion from the ansatz (3.20) generates 6706 terms of

which the first few are [8]

2880A6(1, 2, 3, 4, 5, 6) = (B.2)

[

(k1 · e2)(k1 · e3)(k1 · e4)(k1 · e6)(e1 · e5)− (k1 · e2)(k1 · e3)(k1 · e4)(k1 · e5)(e1 · e6)

−(k1 · e2)(k1 · e3)(k1 · e4)(k2 · e5)(e1 · e6) + (k1 · e2)(k1 · e3)(k1 · e4)(k2 · e6)(e1 · e5)

−(k1 · e2)(k1 · e3)(k1 · e4)(k3 · e5)(e1 · e6)+(k1 · e2)(k1 · e3)(k1 · e4)(k3 · e6)(e1 · e5)
]

s−1
1 s−1

5 t−1
1

−(k1 · e2)(k1 · e3)(k1 · e4)(k4 · e5)(e1 · e6)s−1
1 s−1

4 t−1
1 + . . .

Similarly, the 7-gluon component expansion of (3.21) has 134460 terms9 and the first ones

are

2880A7(1, 2, 3, 4, 5, 6, 7) = (B.3)

[

+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k1 ·e6)(e1 ·e7)−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k1 ·e7)(e1 ·e6)

+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k2 ·e6)(e1 ·e7)−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k2 ·e7)(e1 ·e6)

+(k1 · e2)(k1 · e3)(k1 · e4)(k1 · e5)(k3 · e6)(e1 · e7)
]

s−1
1 s−1

6 t−1
1 t−1

5 + . . .

It is curious to note that the coefficient of ±1/2880 is the same for all the terms in the 5-,

6- and 7-gluon amplitudes alike. This is the same coefficient which was observed in [21] to

be the conversion factor required to match the RNS amplitudes at tree-level.

9 Some of those terms contain ǫ10 tensors and are expected to vanish once rules for the vanishing

of things like ǫ
[m1...m10

10 δ
m11]
n are implemented in [8].
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Appendix C. Shortcut to compute QL

There is a shortcut to compute QL’s for n-points using only the L’s appearing at

(n− 1)-points. The definitions of L̃ij and Ljiki are [11],

V i(zi)U
j(zj) →

L̃ij

zij
, L̃ij(zi)U

k(zk) →
Ljiki

zik
, (C.1)

so that QL̃ij = limzj→zi zijQ(V i(zi)U
j(zj)) and QLjiki = limzk→zi zikQ(L̃ij(zi)U

k(zk))

leads to

QL̃ij = lim
zj→zi

zij∂V
j(zj)V

i(zi) = −sijV
iV j ,

QLjiki = − lim
zk→zi

zik(sijV
i(zi)V

j(zi)U
k(zk) + L̃ij(zi)∂V

k(zk))

= −sij(L̃ik(zi)V
j(zi) + V i(zi)L̃jk(zi)) + (sik + sjk)V

k(zi)L̃ij(zi), (C.2)

which agree with (2.3) and (3.18), respectively. In the above we used QU i(z) = ∂V i(z) =

Πm(z)kimV i(z) + ∂θαDαV
i(z) + ∂λαAi

α, which together with the OPE’s of the conformal

weight-one variables [22,16] implies that

lim
zi→zj

Q(U i(zi)V
j(zj)) = lim

zi→zj
∂V i(zi)V

j(zj) → −sij
V i(zi)V

j(zi)

zij
. (C.3)
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