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Secure lightweight block ciphers have become an important aspect due to the fact that they are a
popular choice for providing security in ubiquitous devices. Two of the most important attacks
on block ciphers are differential cryptanalysis [1] and linear cryptanalysis [2]. Calculating the
number of active S-boxes is one of the method to examine the security of block ciphers against
differential attack. In this paper, we count the minimum number of active S-boxes for several
rounds of the lightweight ciphers namely KLEIN, LED and AES. We utilized the method pro-
posed in [9], where calculation of the minimum number of active S-boxes is formulated as a
Mixed Integer Linear Programming (MILP) problem. The objective function is to minimize the
number of active S-boxes, subject to the constraints imposed by the differential propagation of
the cipher. The experimental results are presented in this paper and found to be encouraging.

Povzetek: Predstavljena je metoda na osnovi analize MILP problem za iskanje primernih šifer
za ambientalne naprave.

1 Introduction

In recent years, designing cryptographic primitives
has gathered attention from the research community
which are used in resource constrained devices. This
field of research is termed as lightweight cryptogra-
phy. Lightweight block ciphers are generally used
where the hardware resources are limited as well as
where power consumption is minimum. Lightweight
ciphers are very much effective for the transmission of
data which concerns security and speed. Wireless net-
works are becoming very popular because of their in-
creasing demands in the field of environmental mon-
itoring, defence and healthcare. Typically, some sce-
narios where the data to be transmitted over unpro-
tected communication links requires the secure and
fast transmission of the data and proxy signatures [5].
Design of lightweight ciphers require a trade-off be-

tween the efficiency and security parameters.
Linear programming (LP)[17] is the analysis of
minimizing or maximizing a linear objective func.
f(α1, α2, ..., αn), subject to linear inequalities which
involves decision variables αi , 1 ≤ i ≤ n. For crypt-
analysis problems, it is necessary to limit some deci-
sion variables to integer values, i.e. for some values
of i, it is required that αi ∈ Z. The method which
is used to construct as well as solve such problems
is called Mixed Integer Linear Programming(MILP).
These techniques have built many real-time scenarios
in the area of business and economy, but their appli-
cations in cryptology have been limited. For differ-
ential and linear cryptanalysis, MILP can be used to
solve the problem of determining the minimum no.
of differentially/linearly active S-boxes which in turn
can be used to search for the best differential/linear
characteristic for an r-round block cipher. There has
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been sufficient research in this area but not efficient
enough for many symmetric-key ciphers. Differen-
tial cryptanalysis and linear cryptanalysis are two ma-
jor methods for the analysis of symmetric-key ciphers.
Linear cryptanalysis (or plaintext attack) studies prob-
abilistic linear relations known as linear approxima-
tions between parity bits of the plaintext, the cipher-
text and the secret key. Differential cryptanalysis, pri-
marily applicable to block ciphers, precisely verifies
how i/p differences in the plaintext correspond to the
o/p differences in the ciphertext. Resistance against
most general cryptanalysis that is differential and lin-
ear cryptanalysis is a conventional benchmark for the
design of new ciphers. In this paper, the minimum
number of active S-boxes for differential cryptanal-
ysis (and therefore, the security bounds against this
attack) is calculated by solving an MILP problem.

1.1 Contribution

In this paper, we explored the use of MILP tech-
nique for differential cryptanalysis of block ciphers
like KLEIN, LED & AES. Our contributions in this
paper are as follows.

– We have generated MILP equations for KLEIN,
LED and AES.

– In this work, the generated MILP equations are
solved using the Cplex Optimizer (Solver)[12].

– Finally, we have calculated the active number of
S-boxes using MILP for the above block ciphers
which can be used for proving that whether these
ciphers are resistant to differential cryptanalysis
or not.

1.2 Organization of the paper

This paper is organized in the following manner: The
literature review of differential attack and finding ac-
tive S-boxes using MILP over past years is given in
Section 2. Section 3 briefs the summary of the math-
ematical preliminaries of MILP. MILP on KLEIN,
LED and AES ciphers is given in Section 4, 5 and
6 respectively. Finally, Section 7 concludes the paper.

2 Related work

N. Mouha et al. [9] has given a new procedure to
prove security bounds against linear and differential
cryptanalysis. They have used mixed-integer linear

programming (MILP), a method which is practised in
business and economics to solve optimization prob-
lems for evaluating the resistance of the cipher against
differential and linear cryptanalysis. Generating the
simple equations which are i/p to an MILP solver min-
imizes the task of designers and attackers. As very
little programming is needed, both the possibility of
human errors and time spent on cryptanalysis are sig-
nificantly reduced. While designing secure and fast
block ciphers, it is mandatory to evaluate immunity
against linear and differential attacks. To evaluate
the resistance against differential attack, obtaining the
lower bound α on the number of active S-boxes is
an efficient technique. Based on MILP, authors [19]
have given a better technique for analysis of EPCBC.
The block and key size of EPCBC is 48-bit and 96-
bit respectively. In this paper, authors showed that
32 rounds of the cipher are secure enough to resist
differential attacks. Authors in their work [18] have
used the extended MILP technique to search linear
trails and differential characteristics of block ciphers.
Firstly, they show how to model an S-box operation by
linear inequalities and propagation of division prop-
erty of three primary operations (copy, bitwise AND,
XOR). Using these, they are able to construct a lin-
ear in-equality system. This linear in-equality system
precisely explains the division property propagations
of a block cipher given an initial division property.
Secondly, they have converted a search problem using
Todo’s framework into an MILP problem by choosing
an appropriate objective function. To search integral
distinguishers they have used this MILP problem sig-
nificantly.
To prove the security of Skinny-64/192, authors [20]
have used MILP which can categorize the non-linear
function and linear function in a round function.
By using the MILP program, they have automati-
cally found a 11-round differential characteristic for
Skinny-64/192 which is having the minimum num-
ber of active s-boxes. The experimental result shows
that Skinny-64/192 is resistant to 11-round differen-
tial analysis and verifies the efficiency of the MILP
method. Zhou Chunning et al. [21] have greatly im-
proved the effectiveness of the MILP-based search
algorithm for finding minimum no. of differen-
tially/linearly active S-boxes, and search for the bet-
ter differential/linear characteristics. By using divide-
and-conquer technique, authors have divided the sets
which consists of all feasible differential/linear char-
acteristics into various smaller subsets, then indepen-
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dently searched each subsets. Minimal solutions in
the compact subsets are grouped to produce the min-
imal solution in the entire set. The authors [22]
uses the mixed-integer linear programming (MILP)
method for automatic search for differential charac-
teristics of HIGHT cipher as well as LEA cipher. Au-
thors have shown that the differential property of mod-
ular addition with one constant input is illustrated with
fewer number of linear inequalities input to the MILP
solver compared to the common case. Hongluan Zhao
et al. [23] improved the search for differential trails of
Midori64 given by Banik et al. [16] by using MILP
technique. They have given a better 5-round differen-
tial characteristics of Midori64 with the MILP-based
model. The probabilities of 5-round differential char-
acteristics are 2−52 and 2−58 respectively.

3 Preliminaries

3.1 Differential cryptanalysis of block
ciphers using MILP

Let’s ∆ denote a string which consists of n bytes
∆ = (∆0,∆1, ...,∆n−1). The difference vector α =
(α0, α1, ..., αn−1) corresponding to ∆ is defined as α,
where α ∈ Fn

2 .

αi =

{
0 if ∆i = 0
1 otherwise

Example 1:
Suppose ∆ = { 01001000, 11110010, 00000000,
00011101 } then, α = { 1, 1, 0, 1 }. Non-zero byte
gives non-zero bit and zero byte gives zero bit.

3.1.1 Equations for XOR operation:

For XOR operation, let the i/p difference vector and
the corresponding o/p difference vector be denoted as
(α⊕in1

, α⊕in2
) and (α⊕out) respectively. The minimum

number of input and output bytes that contain non-
zero differences is called as differential branch num-
ber. The differential branch number is 2 for XOR op-
eration. The represent the branch number in equation
form, a new binary dummy variable d⊕ is to be intro-
duced. Here,

d⊕ =

{
0, if (α⊕in1

, α⊕in2
, and α⊕out = 0)

1, otherwise

The following linear inequalities (in binary variables)
which illustrate the relation between the i/p and o/p

Figure 1: Input and Output for Xor Operation.

difference vectors:

α⊕in1
+ α⊕in2

+ α⊕out ≥ 2d⊕,

d⊕ ≥ α⊕in1
,

d⊕ ≥ α⊕in2
,

d⊕ ≥ α⊕out.

Example 2:
In figure 1, let (A,B) be the pair which is the first i/p
to the XOR operation and (C,D) be the pair which is
the second i/p to the XOR operation denote two sets
of n-bit input for the XOR operation. Let A,B,C,D
be represented as follows.

A = (a0, a1, ..., an−1)

B = (b0, b1, ..., bn−1)

C = (c0, c1, ..., cn−1)

D = (d0, d1, ..., dn−1)

– The difference vector for the first input, denoted
as α⊕in1

= A⊕B

– The difference vector for the second input, de-
noted as α⊕in2

= C ⊕D

– The output difference vector, denoted as α⊕out =
A⊕ C ⊕B ⊕D.

– Suppose α⊕in1
= (a0 ⊕ b0, a1 ⊕ b1, ..., an−1 ⊕

bn−1) = (1, 0, 0, 0, . . . , 0) and α⊕in2
=

(c0 ⊕ d0, c1 ⊕ d1, . . . , cn−1 ⊕ dn−1) =
(0, 0, 0, 0, . . . , 0)

– α⊕out = A⊕ C ⊕ B ⊕D = A⊕ B ⊕ C ⊕D =
α⊕in1

⊕ α⊕in2
= (1, 0, 0, 0, . . . , 0)

Difference in 1 input byte will result in a difference
of 1 output byte. Therefore, the differential branch
number is 2 for the XOR operation.
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3.1.2 Equations for linear transformation:

The equations for the linear transformation L, can be
given in the following manner. Suppose L modi-
fies the input difference vector (αL

in1
, αL

in2
, ..., αL

inm
)

to the output difference vector (αL
out1 , α

L
out2 , . . .

,αL
outm). For the differential branch number βD , once

more a new binary dummy variable dL is required to
define the relation between the i/p and o/p difference
vectors. dL variable is defined as ={

0, if αL
in1
, αL

in1
, ··, αL

inm
, αL

out1 , α
L
out1 , ··, α

L
outm = 0

1, otherwise

Hence, linear transformation L can be described by
the given linear inequalities:

xLin1
+xLin1

+..+xLinm
+xLout1+xLout1+..+xLoutm ≥ βDd

L

dL ≥ xLin1
,

dL ≥ xLin2
,

· · · · ·

dL ≥ xLinm
.

dL ≥ xLout1 ,

dL ≥ xLout2 ,

· · · · ·

dL ≥ xLoutm .

3.1.3 The objective function:

The objective function is to minimize the number
of active S-boxes. This function is computationally
equivalent to the summation of all independent vari-
ables that correspond to the S-box inputs.

3.1.4 Additional constraints

To avoid the trivial solution when the minimum ac-
tive S-boxes is zero, an additional constraint should
be added to ensure that the MILP solver does not out-
put the trivial solution, where the minimum number of
active S-boxes is zero. The constraint is that the sum
of the input variables to the S-boxes should be atleast
1.

Figure 2: KLEIN Encryption Routine.

3.2 Relation between the number of active
S-boxes and security against differential
cryptanalysis

Suppose the highest probability in the Difference Dis-
tribution Table(DDT) of an S-box is 2−m. Suppose
the minimum number of S-boxes that are active for r
rounds of the cipher is n. Then the differential prob-
ability of the entire cipher is 2−mn. Therefore the
number of plaintext-ciphertext pairs needed to carry
out differential cryptanalysis is 2mn. If 2mn exceeds
the amount available of today’s computational power
then the cipher with r rounds is resistant to differential
cryptanalysis.

4 MILP on Klein cipher

KLEIN block cipher [13] follows a typical
Substitution-Permutation Network (SPN) struc-
ture. SPN structures used by other advanced block
ciphers are AES and PRESENT [7] etc. To obtain
a good amount of security as well as iterations,
authors have given the no. of rounds NR as 12/16/20
for KLEIN-64/80/96 respectively. A detailed block
diagram of the KLEIN encryption engine is given in
Figure 2.

4.1 The round transformation

The input and output of the KLEIN cipher are consid-
ered to be 1-D arrays of bytes. The operations will be
minimized with byte-oriented algorithms in the round
transformation process. Klein has major four opera-
tions, AddRoundKey, SubNibbles, RotateNibble and
MixNibbles in round transformation.
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x 0 1 2 3 4 5 6 7
S[x] 7 4 A 9 1 F B 0
x 8 9 A B C D E F
S[x] C 3 2 6 8 E D 5

Table 1: KLEIN S-box (4×4).

Figure 3: RotateNibbles

Add round key:

The round subkey is bitwise XORed to the input plain-
text. The XORed o/p will be split into sixteen blocks
of 4-bit nibbles and later each block will be the input
to the 4×4 KLEIN S-box.

The SubNibbles step:

The S-box of the KLEIN cipher is both a permuta-
tion as well as involution which is given in Table 1.
One can save the implementation costs for its inverse
by selecting an involutive S-box. The only non-linear
layer in KLEIN is the SubNibbles step, a natural re-
quirement is a minimal resistance against differential
and linear cryptanalysis.

The RotateNibbles steps:

The sixteen nibbles bi0, b
i
1, ···, bi15 will be rotated to the

left by two bytes in every round. During decryption,
these sixteen nibbles will be rotated to the right by the
two bytes in every round. For the ith round where
i ∈ [1, NR], the overall process is given in Figure 3.

MixNibbles step:

In the ith round, input nibbles will be divided into two
halves(tuples). Each tuple is considered as an element
of the polynomial ring F 8

2 [X] and is multiplied with a
fixed polynomial c(x) = 03 ·x3 +01 ·x2 +01 ·x+02
modulo x4 + 1. The output of this step si+1 will be
the input for the next round. The computation of the
state si+1 is given in Figure 4.

Figure 4: MixNibbles

Figure 5: The Variable in the First Round Update of
KLEIN.

4.2 Result: active S-boxes for N rounds of
KLEIN

KLEIN round function consists of four opera-
tions: AddRoundKey(AR), SubNibbles(SN), Ro-
tateNibble(RN) and MixNibbles(MN). The update of
the first KLEIN round is shown in Figure 4. Each of
the x variables corresponds to a nibble of the KLEIN
state.

xi =

{
1, if ∆i 6= 0
0, otherwise

The objective function is the sum of all the variables
that are input to the SubNibbles operation, this gives
the number of S-boxes that are active. The variable af-
ter the SubNibble operation remain unchanged, since
the 4×4 S-box used in the KLEIN cipher is an invo-
lutive permutation which implies that a non-zero in-
put difference would lead to nonzero output difference
and a zero input difference would result in a zero out-
put difference. After the RotateNibble step, the nib-
bles are grouped into bytes and given as input to the
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MixNibbles. These bytes are represented by the vari-
able Y and Z in the Figure 5.

S. No. of Time Time Ticks/ Active
No. Rounds (Secs.) (Ticks) Seconds S-box
1 01 0.01 1.2700 197.72 01
2 02 0.01 2.6300 345.62 05
3 03 0.01 6.0500 427.13 08
4 04 0.02 15.650 673.74 15
5 05 0.04 29.980 668.72 16
6 06 0.05 43.670 796.91 20
7 07 0.04 27.320 614.33 23
8 08 0.06 33.730 603.47 30
9 09 0.06 36.220 639.09 31
10 10 0.09 61.220 671.66 35
11 11 0.09 61.660 699.18 38
12 12 0.13 82.290 628.46 45
13 13 0.11 77.250 708.89 46
14 14 0.12 88.830 748.94 50
15 15 0.12 91.400 772.36 53
16 16 0.15 108.13 728.12 60

Table 2: Minimum Number of Differentially Active
S-boxes for N rounds of KLEIN Cipher.

An active byte(Y variable or Z variable is 1) implies
that only one of the left or right nibbles from which it
was grouped is active. For example; Y0 = X0||X1

is 1 then only one of X0 or X1 is 1. The matrix
over F 8

2 used in the MixNibble step has a differen-
tial branch number of 5. C program was written for
generating the constraints and the objective function
that has to be minimized, which is then given as input
to the CPLEX solver. The number of active S-boxes
for various rounds of KLEIN cipher are given in Table
2.

5 MILP on LED cipher

LED is a 64-bit block cipher [10] with two different
key sizes, 64-bit as well as 128-bit. The cipher state is
conceptually arranged in a (4×4) matrix where each
nibble represents polynomial of degree 3 overGF (2),
in other words it can be considered as an element
of F 4

2 constructed using the irreducible polynomial
X4 +X + 1.

S-boxes: LED cipher uses the same S-box as
PRESENT which has also been used in many
lightweight ciphers. The hexadecimal notation of
the PRESENT S-box is given in the following Table 3.

x 0 1 2 3 4 5 6 7
S[x] C 5 6 B 9 0 A D
x 8 9 A B C D E F
S[x] 3 E F 8 4 7 1 2

Table 3: Present S-box

MixColumnsSerial: The MDS matrix M over F 4
2

used in the MixColumnSerial step of LED is obtained
by multiplying a hardware-friendly matrix A over F 4

2

four times,

(A)4 =


0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2


4

=


4 1 2 2
8 6 5 6
B E A 9
2 2 F B

 = M

5.1 Specification of LED:

The 64-bit plaintext m of LED is divided into 16
nibbles m0||m1|| ...m14||m15. These nibbles are ar-
ranged in a 4×4 matrix.

m00 m01 m02 m03

m04 m05 m06 m07

m08 m09 m10 m11

m12 m13 m14 m15


This is the first initialized value of the cipher state and
the state is initialized in row manner, this gives us ex-
tra hardware-friendly choice [11]. In this, the key will
be divided into l nibbles as k0, k1, · · ·, kl. Each subkey
ski is arranged in a 4×4 matrix. Each element of the
matrix in the ith sub-key is obtained as skij = k(j + i
× 16 mod l) which is given below in a matrix form.

ski00 ski01 ski02 ski03
ski04 ski05 ski06 ski07
ski08 ski09 ski10 ski11
ski12 ski13 ski14 ski15


The same sub-key is used after every step for a 64-bit
key. In the case of a 128-bit key, two sub-keys are used
in alternate steps. The sub-key for the case when the
key is of size 64-bit is given below in a matrix form.

k00 k01 k02 k03
k04 k05 k06 k07
k08 k09 k10 k11
k12 k13 k14 k15


The AddRoundKey, bitwise XORs the nibbles of sub-
key SKi with the cipher output value. The encryption
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process is described using addRoundKey(state,SKi)
and a second operation, step(state). The block-wise
structure is given in Figure 6. The number of steps s
during the encryption process depends on the key size.
For 64-bit keys, the s value is 4.

Figure 6: Use of subkeys SKi in s-steps.

Each step consists of four rounds and each round
has AddConstants, SubCells, ShiftRows, and Mix-
ColumnsSerial that are executed in sequence. The
structure of these operations is given in Figure 7.

Figure 7: Single Round of LED Architecture.

AddConstants: The following state array is Xored
with the output of previous round as shown in Figure
8.

Figure 8: Round Constant with State.


x00 x01 x02 x03

x04 x05 x06 x07

x08 x09 x10 x11

x12 x13 x14 x15

→


x00 x01 x02 x03

x04 x05 x06 x07

x08 x09 x10 x11

x12 x13 x14 x15

→


x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

←


x00 x01 x02 x03

x05 x06 x07 x04

x10 x11 x08 x09

x15 x12 x13 x14

←↩

Table 4: The Variable in the First Round Update of
LED Cipher.

Where the 8-bits (ks7, ks6, · · ·, ks0) represent the key
size in bits. The six bits (rc5, rc4, rc3, rc2, rc1, rc0)
are the round constants. The round constants from
the previous round are shifted to the left once and
the new value of rc0 is calculated as rc5 ⊕ rc4 ⊕ 1.
These newly updated round constants are used in
the current round. The round constants are simply
bitwise exclusive-or with the state.

SubCells: The values are substituted by the
PRESENT S-box given in Table 3.

ShiftRow: The first row remains unchanged. The sec-
ond row is circularly shifted to the left by one position.
The third and fourth rows are shifted to the left by two
and three positions respectively.

5.2 Result: active S-boxes for N rounds of
LED

Each round of the LED cipher consists of four
operations: AddConstants(AC), SubCells(SC),
ShiftRows(SR), and MixColumnsSerial(MC). An
AddRoundKey operation is performed after every
four rounds(called a step). The update of the first
round of LED is shown in Table 4.
Each nibble of the LED state is represented by a vari-
able x. The variable will assume the value 1, for a
non-zero difference, and the value 0 for a zero differ-
ence. The input and output difference after the Add-
Constants operation remains the same. The objective
function is the sum of all the variables that are input to
the subnibble operation, this corresponds to the num-
ber of active S-boxes. Since the 4×4 S-box used in
LED is a permutation, no new variable needs to be in-
troduced after the SubCell operation. The linear trans-
formation of MixColumnsSerial operation of LED ci-
pher has a differential branch number of 5(since it is
a 4×4 invertible matrix). C program was written for
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generating the constraints and the objective function
that has to be minimized which is then given as input
to the CPLEX solver. The number of active S-boxes
for various rounds of LED cipher are given in Table 5.

S. No. of Time Time Ticks/ Active
No. Rounds (Secs.) (Ticks) Seconds S-box
1 04 0.035 13.030 445.72 025
2 08 0.055 30.410 612.59 050
3 12 0.095 68.380 760.87 075
4 16 0.145 98.270 690.29 100
5 20 0.205 160.35 787.48 125
6 24 0.255 201.39 817.27 150
7 28 0.335 269.76 818.14 175
8 32 0.525 406.80 780.58 200

Table 5: Minimum Number of Differentially Active
S-boxes for N rounds of LED Cipher.

6 MILP on AES cipher

AES [14] is an iterative cipher and it is based on the
design principle known as substitution-permutation
network. All computations performed in AES are on
bytes. So, AES uses the same 16 bytes of block as
an input and output. The state matrix is used to store
these 16 bytes. Number of rounds in AES is totally
dependent on the length of the key. For 10, 12 and 14
rounds, the key size is 128, 192 and 256 bits respec-
tively. In each round of AES, the encryption process
uses a different 128 bit round sub-key and these round
sub-keys are generated by the key schedule algorithm
of AES.

6.1 Specification of AES:

In each round of the AES cipher, four processes are
involved which are SubBytes, ShiftRow, MixColumn
and AddRoundKey respectively. The description of
first round is given in Figure 9.

Figure 9: First Round.

Byte substitution (SubBytes):

The input to the sub-bytes is 128-bits (16-bytes), these
16 bytes will be substituted by looking up a fixed size
table called S-box. The output of the S-box is also 16
bytes and this output will be stored in a matrix of 4×4.

Shiftrows:

In the ShiftRow operation, each row of the state ma-
trix will be left shifted by a fixed number of bits.
The entries which are discarded by shift operation are
placed on the right side of the row. Shifting of the bits
is given below as.

– No shifting in the 1st row.

– 2nd row is circularly shifted one (byte) position
to the left.

– 3rd row is circularly shifted two (byte) positions
to the left.

– 4th row is circularly shifted three (byte) positions
to the left.

After completion of ShiftRow operation, the new 16
bytes are stored in a matrix.
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x00 x04 x08 x12

x01 x05 x09 x13

x02 x06 x10 x14

x03 x07 x11 x15

→


x00 x04 x08 x12

x01 x05 x09 x13

x02 x06 x10 x14

x03 x07 x11 x15

→


x16 x20 x24 x28

x17 x21 x25 x29

x18 x22 x26 x30

x19 x23 x27 x31

←


x00 x04 x08 x12

x05 x09 x13 x01

x10 x14 x02 x06

x15 x03 x07 x11

←↩

Table 6: Variables after First Round Execution of
AES.

MixColumns:

In MixColumns transformation four bytes of each col-
umn is transformed by a special mathematical func-
tion. Here, four bytes of one column is completely
transformed into four new bytes, which replaces the
previous column. The result is stored in another new
matrix consisting of 16 new bytes. In the last round,
MixColumns transformation step is not performed.

AddRoundKey

This step is the simple XOR between the 16 bytes of
the matrix and 16 bytes of round subkey. Output ma-
trix of this function is 16 bytes (128 Bits). For the
last round of the cipher, after the AddRoundKey step,
the resulting 16 bytes is the ciphertext and for any
other rounds, the 16 bytes goes as the input for an-
other round.

6.2 Result: active S-boxes for N rounds of
AES

The number of active S-boxes in a linear or differen-
tial characteristic of four AES rounds is at least 25
is proved by the four-round propagation theorem of
AES [4]. In AES round Function, there are basically
four major operations: AddRoundKey(AR), Sub-
Bytes(SB), Shift-Rows (SR) and Mix-Columns(MC).
The variables after the first round of AES update is
shown in Table 6.
Each variable in the AES state is a byte. If the dif-
ference is non-zero, the variable is 1 and vice-versa.
The objective function is the addition of all the vari-
ables that are i/p to the SubByte operation, this corre-
sponds to the number of active S-boxes. C program
was written for generating the constraints and the ob-
jective function that has to be minimized which is then
given as input to the CPLEX solver. The number of

active S-boxes for various rounds of AES cipher are
given in Table 7.

S. No. of Time Time Ticks/ Active
No. Round (Secs.) (Ticks) Seconds S-box
1 01 0.001 0.300 62.471 01
2 02 0.025 03.10 179.55 05
3 03 0.030 07.15 263.95 09
4 04 0.030 13.03 501.27 25
5 05 0.030 17.26 564.57 26
6 06 0.045 19.99 466.95 30
7 07 0.046 29.30 614.66 34
8 08 0.055 30.46 644.10 50
9 09 0.057 42.97 700.31 51
10 10 0.085 49.81 737.10 55
11 11 0.089 66.71 782.41 59
12 12 0.095 68.38 782.48 75
13 13 0.098 78.52 883.74 76
14 14 0.125 97.39 929.00 80

Table 7: Minimum Number of Differentially Active
S-boxes for N rounds of AES Cipher.

7 Conclusion

In this paper, we have examined the MILP procedure
to analyse the robustness of ciphers against differen-
tial cryptanalysis. The most important requirement is
the input cipher should be a combination of s-box op-
erations, linear permutation layers and/or Exclusive
OR operations. The objective function of the MILP
is to calculate the minimum number of differentially
active S-boxes. Some of the off-the-shelf optimiza-
tion packages like CPLEX can be used to solve MILP
problems. The MILP technique is applied to KLEIN,
LED and AES Ciphers. Since a very little program-
ming is required to achieve above results, a program-
mer with limited experience can modify the cipher im-
plementation and get the required MILP program. In
the above scenario of KLEIN, LED and AES, CPLEX
has taken comparatively very less time for proving the
security against differential cryptanalysis.

7.1 Future work

As the extension of this work, the symmetries in the
round function can be used to further speed-up the
search. In addition to this, in scenarios where large
number of rounds are present, the split approach can
be used to get an approximate rough lower bound. In
future, our research intention is also to tweak the in-
ternal parameters of CPLEX solver for evaluating the
bounds against differential cryptanalysis in compara-
tively less amount of time.
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