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representing efficient sets in multiple objective mathematical programming. ~ 1997 John
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1. INTRODUCTION

The multiple objective mathematical programming problem ( MMP ) may be written

(MMP)’’maximize’’,~( z), subject to z E Z,

where j’= [J ,.fi, . . ,j;,] is a vector-valued function involving p >2 real-valued objective

functions;, j = 1, 2, . . . . p, defined on a nonempty feasible region Z g R A. Problem

( MMP ) has received a great deal of attention during the past 20 years, because numerous

real-world applications involve more than one objective function. Examples of applica-

tions of problem ( MMP) can be found in a wide variety of fields, including production

planning (Gravel et al. [27]), scheduling ( Bagchi [4], Prabuddha. Ghosh, and Wells

[40] ). environmental policy ( Leschine, Wallenius, and Verdini [34 ] ), nutrition planning

( Benson and Morin [12]), and numerous others (cf., e.g., Goicoechea, Hansen, and

Duckstein [26], Stadler [44], Steuer [47], White [50], Zeleny [ 54], and references

therein ). As explained in various texts and review articles (see, e.g., Cohon [ [5], Keeney

and Raiffa [32], Rosenthal [41], Yu [5 l], and Zeleny [54]). problem ( MMP) is typically

solved by a decision maker ( DM ) who, with the aid of an analyst, searches in Z for a most

preferred solution. Whenever the DM feels that “more is better” for each objective function

J in problem ( MM P), these searches can be confined to the subset of efficient solutions,

where an efficient solution is defined as follows.

DEFINITION 1: A point z‘)is said to be an eflcienf .sohf~ion for problem (MM P ) when

: “ G Z and there exists no point z G Z such that,~( z) >.f( z“) and.f( z) +.~( zO).

We will use the notation 21: to represent the set of efficient solutions for problem
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( MM P). Solution procedures for problem ( MMP) can be classified into three categories of

approaches according to the time at which the DM must express his preferences among

alternative solutions (cf. Dyer et al. [20], Evans [23], Hwang and Masud [30]). In par-

ticular, each solution procedure either requests preference information from the DM prior

to, during, or after some type of optimization phase.

Unfortunately, none of the procedures for implementing these approaches is wholly ad-

equate. Each procedure either makes overly restrictive assumptions, demands information

that is beyond the abilit y of the DM to provide, calls for excessive computation, or fails to

adequately represent the efficient set.

The purpose of this article is twofold. The first purpose is to suggest to researchers that

in order to help solve problem ( MM P), a worthy goal is to attempt to derive truly gtobal

representations of the et%cient set. The second purpose is to illustrate the potential benefits

of this goal by conveying the essence of an approach that we have recently formulated that

seeks global representations of Zk for many cases of the problem. The approach is imbed-

ded in a procedure that we call the global shooting procedure. The essence of the approach

is to transform the problem to a lower-dimensional space wherein a simplex containing the

feasible region of the problem is constructed. Global representations of the efficient set of

the original problem ( MMP ) are then obtained by shooting toward a certain facet S0 of

this simplex, starting from a special point that does not lie on S0.

The content of this article is as follows. In Section 2 we first give a brief critique of the

strengths and weaknesses of current approaches for solving problem (MMP). We then

propose and justify the proposition that finding global representations of the efficient set of

problem ( MMP) would be a valuable goal. In Section 3, we summarize the derivation and

steps of the global shooting procedure, and we illustrate its use on a simple example. To

demonstrate some of the possible implementations of the global shooting procedure, Sec-

tion 4 reports some experimental results obtained by using the procedure four times to

generate four different global representations of the efficient set of a sample problem. Con-

clusions and directions for further research are given in the last section. For brevity, proofs

of theorems are omitted. The interested reader is referred to Sayin [42] for proofs and

further details.

2. CURRENT APPROACHES AND A PROPOSITION

As a preliminary to proposing an appropriate strategy for solving problem ( MMP). we

first present a very brief critical review of the three current approaches for solving the prob-

lem. Readers desiring a more detailed analysis are referred to [ 15, 20.23, 26, 30, 32, 33,

41-43,47, 51, 54] and to references therein.

The a priori procedures for solving problem ( MMP ) seek first to derive a value function

v that represents the preferences of the DM. Subsequent] y, a most preferred solution z* is

found by maximizing u[J(z)] over all points z in Z and choosing any optimal solution

thereby obtained as z*. The attraction of the a priori methods is that after a value function

v has been found, the optimization phase is often accomplished relatively easil y.

A priori procedures, however, are often not applicable to solving problem ( MMP ). This

is because, to use them, the DM’s preference structure is required to satisfy conditions that

tend to be quite restrictive [32, 33, 53]. Even when an a priori method can be used, the

value function u that it gives is frequently an inaccurate reflection of the DM’s true prefer-

ence structure. This is because to derive u, the DM is often asked to give preference judg-

ments that are very difficult to determine. Furthermore, a priori methods provide only one
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solution, and this solution need not belong to Z),. This is undesirable in situations where

the more is better assumption holds and many solutions may be consistent with the DM’s

preferences.

A second set of procedures for solving problem (MM P ), called inferactiw methods.

consist of DM-machine interactions that generate a discrete sample of points in Z or in Z/.
[1, 43, 47]. During each iteration of a typical interactive algorithm, a computer program

first finds a point in Z or in Z,; by solving an appropriate single-objective optimization

problem. Next, the DM is asked to assess his or her relative preference for this solution.

Based upon this information, the single-objective optimization problem is modified. and

another iteration begins. These DM–machine interactions are repeated until the DM indi-

cates that the current solution is a most preferred solution to problem (MM P ). A key

attraction of interactive methods is that the DM can typically more easily and accurately

supply the required preference information than in a priori methods. Also, interactive al-

gorithms allow the DM to explore portions of Z or of Z, , and they are computationally

tractable.
Unfofiunately, however, in practice the portion of Z or of Z/. explored by an interactive

algorithm is invariably quite small. This is mainly due to the limited information process-

ing ability and stamina of the DM. Because of this, the DM usually terminates the search

after only a handful of points in Z or in Zf: have been found [ I 1, 47]. In addition, some

interactive methods have been criticized for failing to generate points in Z)., and others use

arbitrary, unverified search paradigms.
The third category of solution approaches for problem (MM P ) consists of procedures

that do not call upon the DM to express preferences among alternative solutions until after

the optimization phase has been accomplished. In this approach, often called the vecfor

rna.vimizafion approach (cf. Geoffrion [25]). the goal is to generate either all of Z/,, or a

substantial portion of Z]., so that the DM can choose a most preferred solution from the

generated *t. The main strengths of the vector maximization approach are that it provides

a range of solutions from Z), for the DM to study and choose from and that the only

assumption that it needs to apply, namely that more is better, is almost always satisfied.
The vector maximization approach seems to offer promise, but implementations to date

are not yet adequate. There are several reasons for this.

The main disappointment of the current implementations of the vector maximization

approach is that they do not attempt to generate truly global, representative subsets of Z/,.

Instead, the procedures in this class either attempt to generate all of Z, or arbitrary subsets

of Z}.that do not necessarily globally represent ZL.

Because Z,. is generally a large and complicated nonconvex set. generating it in its en-

tirety is only possible in certain special cases (cf., e.g., Benson [7], Isermann [3 I], Ecker.

Hegner, and Kouada[21 ], Bitran [ 13], Villarreal and Karwan [49] ). Even in these special

cases, the computational effort required to generate all of Z}. becomes rapidly unmanage-

able and seems to grow exponentially with problem size (cf., e.g., Evans and Steuer [24 J,

Marcotte and Soland [36 ] and Steuer [47 ]). Furthermore, the sheer size of the efficient set

becomes so great that it becomes difficult to present and can overwhelm the DM to the

extent that he or she cannot choose a most preferred solution (cf. Steuer [45]).

In some cases of problem ( MMP), vector maximization procedures have been used

to generate certain subsets of Zf:. For instance, several methods have been proposed for

generating the set of efficient extreme points and directions for a multiple objective linear

program (see. e.g., Ecker and Kouada [22], Yu and Zeleny [52], and Evans and Steuer

[24 ]). It was soon discovered. however, that arbitrarily chosen subsets of Z, such as these
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do not necessarily provide adequate global representations of Z/,. Furthermore, like Z).

itself, it was found that such subsets could also be too large to generate and could over-

whelm the DM [17, 18, 37, 46-48],

It is our contention that if the goal of the vector maximization approach were redirected

to explicitly generate a truly globally representative but manageable subset of Zfi, then the

vector maximization approach could potentially alleviate many of the weaknesses of the

present three approaches for solving problem ( MMP ). Indeed. a few researchers have oc-

casionally alluded to this goal, but it has never been explicitly discussed or pursued (cf.,

e.g., Armann [3 ] and Steuer [47]). Instead, most researchers seem to have continued to

pursue algorithms that use local search ideas from traditional linear and nonlinear pro-

gramming. They seem to have done so in spite of the fact that these methods were never

intended to give a global or statistical y representative sample of a large, complicated non-

convex set such as Z~..

In particular, we propose that the goal of the first step of the vector maximization ap-

proach ought to be to generate a globally representative sample of points from ZK of as

manageable a size as possible. Given such a set, if it were of a reasonable size, the DM

could then choose a most preferred solution from it. Recent advances in the field of global

optimization could potentially contribute significantly toward the achievement of this goal

(cf. Horst and Pardalos [28 ], Horst and Tuy [29] ). Ideally, the sample of points generated

would provide a valid global representation of Zt, perhaps in a statistical sense, without

being redundant or overwhelming the DM.

In the next section we present a method called the global shooting procedure to illustrate

some of the potential benefits of generating global representations of Z/;. The reader should

bear in mind that the global shooting procedure is presented as simply one concrete ex-

ample of how one might begin to attempt to achieve what we feel is a worthy goal of

generating manageable global representations of efficient sets. It is our hope that other

attempts of this sort will follow.

3. A GLOBAL SHOOTING PROCEDURE

The global shooting procedure works in the outcome space R“ of problem ( MMP) rather

than in the decision space RA. To understand how and why this is done, let Y‘ denote the

set~(Z)= {J(.z)lz=Z}, and let

Y’ = {yelR’’ly<J(z) forsomez EZ].

The set Y= is called the outcome sel (or image) of Z undery. The sets Y=and Y * have been

used to good effect by many researchers in multiple objective mathematical programming,

including, for instance, Benson [10 ], Bitran and Magnanti [14], Dauer [16], Dauer and

Liu [17], Dauer andSaleh[18]andYu[51 ]. Notice that in outcome space Rp, if we define

the efficient sets Y F and Y ~ by

Yi={j EY=l there is no y E Y = such that y > ~and y # ~}

and

Y;={ jGY’1 there is no y ● Y= such that y > jand y # j},
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respectively. then,l’( Z] ) = }’; = Y ?. We thus denote Y 7 = Y j; as simply Yl;, and we refer

to Y, as the eficie~?( ou[cwne .sct for problem ( MMP ).

To effectively generate global samples of manageable sizes of points in 21:, the global

shooting procedure finds samples of points in Ys that belong to the efficient outcome set

l’].. The rationale for this comes from the following three observations. First, in practice,

the number of objective functions in problem ( MMP) is generally much smaller than the

number of decision variables h-.As a result. the size and structure of Y‘ is invariably much

smaller and simpler than Z [17, 18,42]. Second, frequently many points in Z}.are mapped

by ./’onto a single outcome in YE[3. 10, 16-18]. Generating ~mples of points directly

from Y,. thus avoids risking redundancies of calculations that could occur if points from

Z} were generated instead. Finally, it has been shown that, in practice, decision makers

base their decisions on outcome space considerations rather than on decision space con-

siderations [ i 7, 18, 42].

Another important characteristic of the global shooting procedure is its generality. Stated

another way. the prerequisites for using the procedure are relatively minimal. Essentially,

the only requirement is that YEbe contained in some compact subset of the set Y‘. ASa

result. the global shooting procedure can be used on a wide variety of problems (MM P ).

including, for instance, multiple objective linear, quadratic, convex, and even nonconvex

programming problems.

There are a number of sets of assumptions under which }1 is guaranteed to be contained

in a compact subset of ]’” . For instance, this will hold if the outcome set Y = = J( Z ) is

compact. More generally, however, we may state weaker sufficient conditions for using the

global shooting procedure.

In particular, we will assume in the sequel that the following two relatively mild re-

quirements are fulfilled. First, the set Ys must be R’);-CW)7PUCI; that is. for each J E Y<, Y”

fl({ J) + R’; ) must beacompactset, where k!! denotes ~AEIR”lA ZO }(cf. [51]). Second,

there must exist a point i E R“ such that J’ z j for all J’ E YI.. Taken together, these two

requirements imply that YI # @J[5 1], and that Y],is a subset of the compact set Ygiven by

The global shooting procedure generates samples of points in the compact set Ythat belong

to }’/ s Y.

To seek a globally representative subset of Yk, the global shooting procedure begins by

constructing a special simplex that contains the compact set Y. To accomplish this, it uses

the following result (cf. [42. Theorem 5.2.1 and its proof]). Let c G R“ denote the vector

in which each entry is 1.0.

THEOREM 1: Let

$ = max(e, J’), subject to })= Y,

and, foreachi= 1.2 . . . ..p. let

D, = min y,, subject to ~’G Y.

Define(p + I )points v’=lR’’,.j = O, 1, . . . ,P, according to the formulas
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v:= @i, i=l,2 9...9P,

and, foreachj = 1, 2, . . . ,P,

{

If’, ifi+j,
v; =

D+ fl, -(e, v”), ifj=j.

Then the convex hull S of {U)l j = O, 1, . . ., p } is either a singleton or a p-dimensional

simplex, and S contains Y.

If the set S in Theorem 1 is a singleton, then S = {V“}. In this case, because S z Y z YE,

it follows that Y):= {V“}, so that the goal of representing YEis complete. We shall therefore

assume in the following that S is not a singleton.

The importance of the simplex Sin the global shooting procedure is shown in the next

result. To present this result, let S0 denote the subsimplex of S given by the convex hull of

{uJlj=l,2 , . . . . p}. Also, for each d ● S0, define the mathematical programming prob-

lem (Pd) by

(Pd) max(e, v“ + a(d– v(’)),

subject to V“+ a(d– V“) E Y, Cr>o,

where a E R is the only variable. Then we may state the result as follows.

THEOREM 2: A vector Y belongs to Y}:only if for some d IS SO, J* = v“ + a“( d –

V“), where a* is an optimal solution for problem ( l’d).

For a proof of Theorem 2, see [42, Theorem 5.2.2]. Theorem 2 guarantees that if problem

(P~) were solved for each d G SO, then all of Y, would be obtained. However, problem (Pd)

cannot generally be solved for every d e S(). The global shooting procedure will instead seek

global representations of Y1by solving problem (PJ) for each d chosen from various samples

of points in S0. For each d E S0 chosen, solving (PJ) amounts to shooting from the vertex v“

of S in the direction (d – U“) toward the subsimplex So of S as far as possible while remaining

in Y. Because S0 is a (p – 1)dimensional simplex with known vertices v’, j = 1, 2, . . . . p,

many possible types of samples of points from S“ can be constructed [42].

In practice, solving problem (F’d)for a given d G S0 is hampered by the presence of Y in

the formulation. It is easy to show, however, that in general, as a more practical alternative,

for any given d E SO, one may instead solve the equivalent problem (P~) given by

(Fd)max a,

subject to~(z) – (d– U“)a> 0(), ZEZ, Ck>o

(cf. [42, Theorem 5.2.3 ]).

For a given y“ G Y,;, Theorem 2 states that there must exist a point din the simplex S()

that generates Y* in the sense that when problem (P~) is solved for an optimal solution a*,

Y*can be found via the equation
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J’* = u(’+a*(d– u”). (2)

In fact. from the proofs of Theorems I and 2, it can be shown that for each J’* E Y,., the

vector d that yields J’* via(2) in this way is unique in S()( see [42, Theorem 5.2.4]).

Unfortunately. the condition in Theorem 2 for J’* E Y): to hold is a necessary, but not

sufficient. one. In other words. if d E S() is arbitrarily chosen, then attempting to find an

optimal solution CX*to problem (PJ) and using ( 2 ) may fail to produce a point J’* E Y,..

In particular, for each d G S[’, there are three possibilities for problem ( Pd). First, prob-

lem ( }’,1)may have an optimal solution a“ that yields a point ~’” E Y, via(2). Second, an

optimal solution a* may exist. but the point J’* that it yields via ( 2 ) may be a boundary

point of Y that does not belong to YI. Third, problem ( PJ) may be infeasible. Ideally, we

would like to avoid generating points d E S0 for which the second and third possibilities

occur. The global shooting procedure cannot always avoid these possibilities. However, it

often handles them in a reasonably efficient way. The next two theorems will help explain
when these possibilities can occur and how the procedure handles them.

Let D = {d= ,S()IProblem ( PJ) is feasible} . By the following result. in certain situations,

for a given d E S(), the possibility that problem ( P,,) is infeasible does not exist.

THEOREM 3:

( i ) If}’ is a convex set. then D is also a convex set.

(ii) Ifo”E Y-. then D= S(’.

Theorem 3 follows from [42, Remark 5.2.4 and Theorem 5.2.5]. From [ 5 1], it is easy

to see that the most common case of problem ( MMP) in which Y is guaranteed to be a

convex set is when Z is convex and, for each j = 1, 2. , p,.f; is a concave function on Z

[in this case, problem ( MMP) is a multiple objective convex programming problem].

Thus, from part (i) of Theorem 3, for any multiple objective convex programming prob-

lem. if problem (P,l) is feasible ford = d’ G S() and for d = dz E ,$(’, then problem ( PJ)

must also be feasible for any vector dthat is a convex combination of d’ and d2.

The condition in part ( ii ) of Theorem 3 that U(’E Y is sufficient to guarantee that D =

‘$(’ even if Y is not a convex set. Although we know of no general classes of RroblemL,

( MMP) for which this condition is guaranteed to hold, part ( ii ) of the theorem can be used

in many individual cases to help choose appropriate algorithms to solve problem (P~).
Whenever a vector d E S“ chosen in the global shooting procedure yields a feasible prob-

lem ( P,i). the procedure finds an optimal solution a* to the problem. From a* and ( 2), it

then generates a point J’* on the boundary of Y. Because J’*@ Y1.is possible, the point J’*

must be tested for efficiency. The next result provides the basis for this test. Fortunately,

when \’* @ Y,, the test generates a point in Y},that dominates J*. The proof of this result

follows easily from Benson [8]. Let int Rf = {AE R/]l X> O}.

THEOREM 4: Assume that AE int R2 and ~= Y. Then ibelongs to Y1.if and only if

.Fis an optimal solution to the problem (Pi,~)given by

( ‘.i.A) max ( A y}
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Furthermore, problem (Pr,,) always has at least one optimal solution, and any optimal

solution ~ for problem (Pr,A)satisfies ~ E YL.
We may now state the global shooting procedure for problem ( MMP ) as follows.

STEP 1. 1.1. Construct thep-dimensional simplex Scontaining Yas described

in Theorem 1.

1.2. Generate a discrete sample d’, i = 1,2,. ... q, of points from the

subsimplex S0 of S.

STEP2. 2.1. Seti= land RYjj=@.

2.2. Let d = d’. If problem (Pd) is infeasible, go to Step 2.5. Otherwise,

find the optimal value a* of problem (Pd) and continue.

2.3. Lety’ = U“+ a*(d’ – U“).

2.4. Let ~= yi and A = e. Find any optimal solution ~ to the problem

(Pr,~). Set RY/, = RYEU {j}.
2.5. Set i = i + 1. If is q, go to Step 2.2. Otherwise, STOP: RY1, is the

discrete representation of Yfireturned by the procedure.

Let S@ denote the sample of points generated from the subsimplex S() of S in Step 1.2

of the procedure. For each point d E SS(), Step 2.2 of the procedure examines whether or

not problem (Pd) is feasible. If it is infeasible, then the procedure rejects the point d and

draws another point from SSO. But if problem (P~) is feasible, then it is solved, and its

optimal value a* is used in Step 2.3 to find the pointy’ on the boundary of Y. Intuitively,

the process of obtaining y’ in this way corresponds to shooting from V()in the direction (d
— U“) until the boundary of Y is hit at a point y’. The goal of this shooting process is to

obtain a pointy’ that satisfies y’ E Yl:. The test of whether or not this condition is satisfied

occurs in Step 2.4. In particular, from Theorem 4, y’ E Yf,if and only if the point $ found

in Step 2.4 equals y’. In this case, y’ is added to the discrete sample R Y/. of Y/.. If ~ # y’,

then $ is added to R YI; because, in this case, by Theorem 4, Y’% YE and j E Yt:.

The global shooting procedure thus reduces the issue of generating a sample of points

from Y]: to the simpler issue of generating a sample of points SS(l from the simplex S0

opposite to U“in S. By Theorem 2, in this way the potential exists to globally represent YE,

no matter’how vast or complicated the set YEis.

ILLUSTRATION: To illustrate the mechanics of the global shooting procedure, con-

sider the multiple objective mathematical program ( M MP ) where Z is the unit hypercube

in R ‘();that is,

z={ze R’o[o<z, <l, i=l,2, . . .,10},

p = 2, andj ( z) andji( z) are the linear functions given by

~(z)=- s z, + $(0.667)z, - ‘“z (0.750) Z,,
,=, ,=5 ,=q

and
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respectively, for each c G Z. Then problem ( MMP) is a multiple objective linear pro-

gramming problem. By examining the extreme points and faces of Z. it is not difficult to

show that Z has 34 efficient extreme points, 68 efficient edges, one two-dimensional effi-

cient face. and two four-dimensional efficient faces. In contrast, the outcome set Y‘ =

,/’(Z ) is a simple two-dimensional, compact polyhedron in Rz with only four efficient ex-

treme points and three efficient edges.

In general. of course, it is impossible or, at best. quite burdensome computationally to

obtain Y explicitly. even in the case of multiple objective linear programming [18]. How-
ever. we have chosen a special illustrative example wherein Y can be obtained explicitly

to enable us to demonstrate the steps of the global shooting procedure as graphically as

possible.

In particular, the outcome set 1’=, shown in Figure 1, is the six-sided, two-dimensional
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Table 1. Key to
coordinates.

Coordinates
Point W, Y2) in r

E (-5.500, 4.500)
F (-4.000, 4.000)
G (-1.333,2.667)
H (2.667, - 1.333)
I (1.167, -0.833)
J (-1.500,0.500)

polyhedron with extreme points E, F, G, H, 1, and J. The coordinates of these extreme

points are given in Table 1. The efficient outcome set Yl;consists of the union of the three——
line segments EF, FG, and Glf.

Because Y= is compact, it follows immediately that Ys is Rt-compact. Also, because y

=~forally=Y=, where

j, = –5.500 = minfl(z)
ZEz

and

$2 = –1.333 = min~2(z),
ZEx

we know that y > ~ for all y E YE. Thus, with this choice of ~, the two prerequisites for

using the global shooting procedure on this illustrative problem are fulfilled. Notice

from ( 1) that with this. choice of j, the compact set Y containing YEin this problem is

the compact polytope given by the convex hull of the five points E, F, G, H, and ~ (cf.

Figure 1).

The global shooting procedure will generate a discrete sample of points in Ythat belongs

to Yl~.The particular sample obtained depends upon various factors, including, in partic-

ular, the choice made in Step 1.2 for the discrete sample of points SSOin the subsimplex S0

of S (cf. Section 4 below). What follows is a step-by-step summary of the calculations and

outputs that the global shooting procedure gives for this illustrative problem under one

choice for XSO.
In Step 1 of the global shooting procedure, a two-dimensional simplex S containing Y

must first be constructed via Theorem 1. To accomplish this, the values of/3, d 1, and /32

defined in Theorem 1 must be found. From the definitions of Yand of /3,f?,, and @2,these

three values can be found by maximizing (YI + YZ), minimizing y], and minimizing y2,

respectively, each subject to the linear constraints

f(z)2y2-j, ZEZ.

Solving the resulting three linear programming problems yields the values @= 1.333, /3, =

–5.500, and (32= – 1.333. From Theorem 1, the simplex S is then given by the convex hull

ofu’, j= O, 1, 2, where
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Table 2. Step 2 results for illustration.

Point j added

Execution no. i Sample point d’ Value of a” Coordinates of~’ to R Yj

1
2
3
4
5
6
7
8
9

(2.667. -1.333)
(1.646. –0.313)
(0.625. 0.708)
(–0.396, 1.729)
(–1.417,2.750)
(-2.438, 3.771)
(-3.458, 4.792)
(-4.479, 5.813)
(-5.500, 6.833)

1.000

1.000

I .000
1.000

0.993
0.9 I7
0.851
0.779

0.686

(2.667, - 1.333)
(1.646, -0.313)
(0.625, 0.708)
(–0.396, 1.729)
(–1.444, 2.722)
(–2.692, 3.346)

(–3.762, 3.881 )

(-4.705, 4.235)
(-5.500, 4.500)

(2.667, - 1.333)
( 1.646, -0.313)
(0.625, 0.708)
(–0.396, 1.729)
(–1,444,2.722)
(–2.692, 3.346)
(-3.762, 3.881 )
(-4.705, 4.235)
(-5.500, 4.500)

Simplex S is also shown in Figure 1.

The second part of Step I calls for generating a discrete sample d’, i = 1, 2, . . . . q, of

points from the subsimplex S0 of S, where S0 is given by the convex hull of u‘ and Uz.

Notice in this case that S()is the line segment connecting u‘ and u2. There are many possi-

ble choices for generating SSO = {d’ Ii = 1, 2, . . . . q}. For illustrative purposes, suppose

that q=9and, foreachi= 1,2, . . . , 9, let d’ be given by the convex combination

“=(=)”’+(++2
ofu’ anduz. Then thepointsu’ =d’, d2, d3, . . ., J8, dy = v’ subdivide S(’ into eight line

segments of equal length (cf. Figure 1).

Step 2 of the global shooting procedure is next executed q = 9 times. In a typical execu-

tioni E{l,2 . . . . ,9 }, with d = d’, problem ( F’d)i$ solved. This problem, as we have seen,

may be solved by solving the equivalent problem (Pal). In this illustration, by the definitions

of Z and f, problem (Pd) is a linear program in the nonnegative variables (a, z 7 ) E R‘’

with two constraints and simple upper bounds on z.

Recall that for each d = d’, the idea in solving problem ( PJ) is, starting at V(),to shoot in

the directi?n (d – u“) toward the subsimplex S“. If Y is never encountered in this way,

problem (Pd) is infeasible and this execution of Step 2 is terminated. Otherwise, problem

( Pd) has a finite optimal value a *, and, in Steps 2.2 and 2.3, by finding it, we shoot as far as

possible from vOin the direction (d’ – U“) until the pointy’ on the boundary of Yis found.

When problem ( P~) successfully generates a point on the boundary of Y for some d =

d’, this point Fis tested in Step 2.4 for efficiency by solving the problem ( Pi,,) with A = e.

In this case, by the definition of Y, with A = e, problem (Pr,~) may be solved by maximizing

(y, + }’2),subject to the linear constraints

that is, Step 2.4 can be accomplished by solving a linear programming problem.

Table 2 summarizes the results of executing Step 2 the required nine times on this prob-
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lem. In this table, all decimals are given to three significant digits. In this case, for each d =

d’, i=l,2,.. . ,9, problem (P~) has an optimal solution a* that immediately yields a point

y;= Y}:.Thus, the discrete sample RYE = {yil i = 1,2, . . . . 9 } of points in YEgenerated by

the procedure is given by the nine distinct points in the last column of Table 2. These

points are also shown in Figure 1. Notice that because the illustrative problem is a multiple

objective linear program, the optimization problems (Pd) and (Pr,A)with ~ = e that are

solved during the global shooting procedure are all linear programming problems.

4. SAMPLE IMPLEMENTATIONS

The computational requirements of the global shooting procedure depend to a great

extent upon the type of problem (MMP) that is being analyzed. For example, when prob-

lem ( MMP ) is a multiple objective convex programming problem with a compact feasible

region Z, all of the optimization problems that must be solved to implement the procedure

are either convex programming problems or concave minimizations over convex sets.

Therefore, in this case standard convex programming methods [6, 35] can be combined

with more recently developed concave minimization methods [9, 29] to implement the

global shooting procedure. Similarly, standard methods of linear programming [5 ] and of

integer linear programming [38, 39] can be used to implement the procedure when prob-

lem ( MMP) is a multiple objective linear program and a multiple objective integer linear

program, respectively.

The quality with which the sample of points R Yl~generatedby the global shooting procedure

represents YEseems to depend rather heavily upon the nature of the sample of points SSOfrom

S0 that it genemtes (cf. Step 1.2) [42]. Intuitively, it seems plausible that samples of points

from S0 that are excellent global representations of S0 would most likely generate the best

possible global representations of Ytiattainable by the procedure, but this remains to be seen.

To illustrate some of the possible implementations of the global shooting procedure and

to show how the results can vary as SS() varies, we will summarize the results that we

obtained from four of the experimental applications that we have performed. A full report

on these experimental applications can be found in [42].

Let k = 3, and let Z in problem ( MMP) be the nonempty, compact polyhedron in R3

given by

Z={ ZER31AZ<6, Z20},

where A and b are the matrix and vector defined by

[

6 IS 10
5 8 12

I
22 29 28

‘= 24 16 II

1 04

801

210
152
458

312

40

72

respectively. In addition, let p = 3 and, for each j = 1, 2, 3, let j; in problem ( MMP) be

defined byj( z) = z, for each ~ E R 3. Then problem ( MMP) is a multiple objective linear

program used previously by Dessouky, Ghiassi, and Davis [19] in another context. In this

example, Y= =j_( Z ) is compact, so that Y= is R~-compact. BecauseY( z) z 0 for all: e .ZI,
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(o,

Y1

(0,0,10)

1

/’

YI

Figure 2. Graphs of Z and Y, for example from [ 19].

G Z, we may choose J: = O E RI and be guaranteed that J’ z J; for all J’E Yi.. Thus, the

global shooting procedure can be applied to this problem. Notice that with ~ = O.( 1) yields

Y = Z. From [19], Z, = Y,. is known to be given by the union of the four shaded two-

dimensional faces of Z shown in Figure 2. Because this problem is a multiple objective

linear program, we were able to use standard linear programming techniques to solve the

optimizations required in the global shooting procedure.

For this example, we used the global shooting procedure four times to generate four

discrete representations of Y/.. To do so, we used two different methods to generate the

sample of poi nts S.S()from S“ required by the procedure. For each method, we generated

two samples. one of size 30 and one of size 50.

The first method that we used to generate SS() maybe called a meIh(MIofrund(un ~tci~ht,$.

This method is probabilistic in nature. We devised it by drawing upon some work of Steuer
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Table 3. Summary of experimental results.

Experiment Method of No. of distinct No. of distinct
no. obtaining S.S” points in .S.SO points in RYf, Display Rank

Random weights 30 30 Figure 3 4
; Successive bisection 30 30 Figure 4 1
3 Random weights 50 50 Figure 5 2
4 Successive bisection 50 50 Figure 6 1

[47 ]. In this method, random convex combinations of the vertices of S0 are used to gen-

erate flSO. In our implementation of the method, 5070 of these convex combinations were

drawn from a uniform distribution, and 50% from a Weibull distribution [42 ].

The second method that we used to generate S.S()may be called a mefhod Qfsuccessive

( simplicial) bisections. In global optimization, various procedures for successively parti-

tioning a given simplex into subsimplices have been created and used to good effect [29].
We adapted one of these methods, called simpficial bisec[ion, to the problem of generating

representations SSO of S(). This resulted in a deterministic method for generating such sets.

In the method, @ is successively bisected a prechosen number of times. This results in a

partition of~” consisting entirely ofsubsimplices. The set SS() is then generated by choos-

ing one element from each of these subsimplices [42 ].

The results of these four experiments are summarized in Table 3 and Figures 3-6. In

Table 3, for each representation R Y,; generated, rank is a number intended to help quantify

the quality of the representation. It is derived subjectively and can be interpreted according

to the scheme shown in Table 4. Notice that it is desirable for a representation of YEto

provide a good coverage of Yl: without significant clustering. Therefore, in this ranking

scheme, lower-numbered ranks are superior to higher-numbered ones. Although this rank-

ing procedure is not precise, it may aid in summarizing at least the relative quality of

alternate representations. Other possibilities exist for measuring the quality of representa-

tions of YE,but we will not stop to examine this issue here [2, 42].

Notice from Table 3 that in each of the four experiments, for each sample point din

SSO, the global shooting procedure generated a distinct point in YE. In this problem, Yis a

compact, convex set, and ( uO)7’= (O,O,O) E Y=. Therefore, by Theorems 3 and 4 and Steps

2.2-2.5 of the procedure, for each d c SSO, the global shooting procedure is guaranteed to

generate a point in Y);. However, the fact that in each of the four runs, each point in SSO

generated a distinct point in Yl; is a fortuitous result that could not have been predicted.

Based on sheer numbers of points in R YE, the four runs are indistinguishable.

Also notice from Figures 3-6 that in each run, the representation R Yli of Yljgenerated is

not limited to certain types of locations in Y. For instance, unlike in many existing vector

maximization methods for multiple objective linear programming, the points in R Yt. are

not arbitrarily confined to extreme points or edges of Y/.

Table 4. Key to ranks.

Rank Coverage Clustering

Good Insignificant
; Good Significant
3 Poor Insignificant
4 Poor Significant
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61

Figure 3. Graph of R Y,, for Experiment No, 1.

However, according to the rank column of Table 3, and from Figures 3-6, the qualit y of

the four experimental representations of Y}:varies significantly. In particular, for this prob-

lem. the runs in which SS() were generated by the method of successive bisections seemed

subjectively to generate global representations of YI superior to those generated by the

method of random weights. This superiority appears to have been achieved both in the

coverage of Y/,and in the amount of clustering.

We caution that no precise conclusions regarding the computational abilities of the

global shooting procedure should be drawn from these four applications. There area num-

ber of reasons for this. not the least of which concerns the issue of evaluation. In particular,
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Figure 4. Graph of R Y}, for Experiment No. 2.

before any method such as the global shooting procedure can be evaluated, it is essential

that means be developed for assessing the qualit y of the representations of the efficient sets

that are obtained for various problems, including for problems whose outcome spaces are

of dimensions larger than three [42].

5. CONCLUSIONS AND DIRECITONS FOR FURTHER RESEARCH

Current procedures for implementing the three major approaches for solving problem

(MMP) are not wholly adequate. This is because these procedures either make overly re-
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Y1

/

Figure 5. Graph of R Y, for Experiment No. .3.

strictive assumptions, demand more preference information than the DM can provide, call

for excessive computation. or fail to adequately globally represent the efficient set of the

problem. A potential means of alleviating many of these weaknesses is to focus on a goal of

generating truly global representations of the etlicient set Z, of problem ( MM P).

The global shooting procedure that we have recently formulated illustrates the potential

benefits of seeking global representations of Z,.. It takes a global, rather than a local. ap-

proach, so that it has the potential to provide the DM a means of truly learning about the

entire efficient set without the complications of bookkeeping, degeneracy, and exponential
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/\ YI

Figure 6. Graph of R YI, for Experiment No. 4.

growth in computational effort that have been observed with local approaches. Further-

more, approaches such as the global shooting procedure could be used without requiring

the DM to provide complicated preference information or to endure tiresome iterations

with the computer. Instead, the DM must agree only that his or her preferences dictate that

more is better. in addition, by working in the outcome space rather than in the decision

space, approaches such as the global shooting procedure could reduce the computational

effort required to learn about Z];, decrease the likelihood of overwhelming the DM, and

decrease the likelihood of generating clusters of similar points in the representation of ZE.
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The global shooting procedure also illustrates that the potential exists to construct global

representations of Z] for a variety of cases of problem ( MMP ). This is in part because the

approach of the procedure is applicable. for instance, to any problem ( M MP ) with a com-

pact outcome set or, more generally. to problems ( M MP ) where the efficient outcome set

YJ,is compact. Furthermore, recent advances in global optimization have created a wide

variety of new techniques for solving nonconvex problems [29]. It therefore seems that

many other approaches based on global optimization ideas besides the global shooting

procedure approach can potentially be formulated for generating global representations of

Z/ for the various cases of problem ( MMP ).

The set Z, is generally a complex, nonconvex set. Therefore. to find practical methods

of generating global representations of Z/,, much work will have to be done. perhaps the

most important tasks to be accomplished are as follows.

1. Rigorous definitions of truly global representations of the eficient set of prob-

lem ( MMP) must be found.

2. Methods of quantifying and comparing the quality of alternate global repre-

sentations of Z]..must be formulated.

3. Practical means of generating adequate global representations of Z/. for real-

world problems must be found. Ideally, these representations should avoid

redundancies, represent the entire set Zj:, and not overwhelm the DM.

It is hoped that the observations and results that we have provided will serve as a stimulant

toward the achievement of these goals.
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