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Towards fivefold symmetry? 
Crystallography is inf or a minor upheaval, with the recognition off or bidden 
icosahedral symmetry by both construction and experiment. 

THAT crystals never have fivefold axes of 
symmetry has been part of the doctrine of 
crystallography since 1895, when Fedorov 
first classified the admissible symmetry 
groups. The reasons are straightforward. 
Consecutive rotations of an infinite crystal 
lattice in either sense about one or more 
symmetry axes must yield an identical 
structure, identically placed in space. But 
rotations by 2n/5 in opposite directions 
about neighbouring fivefold axes would 
break this rule. 

Grandly, it might be said that the 
inadmissibility of fivefold crystal 
symmetry says something about the 
character of two and three-dimensional 
space. Similarly, it is not possible to tile a 
plane with equilateral polygons or to fill 
three-dimensional space with icosahe
drons, the regular twenty-faced polyhedra 
most easily described as a pair of opposed 
pentagonal pyramids fashioned from 
equilateral triangles and joined together, 
base to base, by a band of ten opposed 
identical triangular faces. 

Both by accident and design, people 
have been whittling away at these 
restrictions for the past decade, ever since 
the demonstration by R. Penrose (Oxford) 
that, although it is not possible to tile the 
two-dimensional plane with regular 
pentagons, that can be done with a pair of 
specific rhombi so as to give a pattern with 
local fivefold symmetry (see figure). The 
price for this is that the pattern lacks the 
translational symmetry of a familiar 
lattice. The argument has been extended to 
three dimensions by A.L. Mackay 
(Birkbeck, London), who has shown that 
space can be packed by acute and obtuse 
rhombohedra (see, for example, Physica 
114A, 609; 1982). Again, translational 
symmetry is forfeit to the gain of local 
fivefold rotational symmetry. 

The bearing of all this on real 
crystallography is far from remote. The 
textbooks are mostly about infinite and 
perfect crystal lattices, but real crystals 
may be small and imperfect. Indeed, X-ray 
diffraction patterns with fivefold 
symmetry have been reported from gold, 
and interpreted as a consequence of 
twinning on the microscopic scale of the 
unit cell. But fivefold symmetry should 
also occur if, for example, metals are 
deposited from the vapour, when 
icosahedral packing should be ener
getically favoured. In November last year, 
Schechtman et al. (Phys. Rev. Lett. 53, 
1951; 1984) described the recognition by 

means of electron diffraction of 
icosahedral symmetry in grains of a 14 per 
cent alloy of Mn in Al, arguing for long
range order of some kind. 

This mixture of theorizing and 
observation has now been put on a broad 
foundation by D. Levine and P.J. 
Steinhardt (Phys. Rev. Lett. 53, 2477; 
1984) in a summary of largely unpublished 
theoretical investigations. The objective is 
to provide a framework for discussing what 
they call "quasi-crystals". 

Again, the starting point is the Penrose 
tiling of the plane. The outstanding feature 
of that network is that it lacks translational 
symmetry, but it has long-range order in 
that the orientations of the nearest
neighbour bonds (ten altogether, in five 
oppositely directed pairs) are constant 
throughout the network. This is the 
prototype of the quasi-crystal. Bond 
orientation takes over from translational 
periodicity. 

But how to describe a quasi-crystal 
analytically? Here is the recipe, for a two
dimensional net. Define a set of unit 
vectors e; oriented along the axes of the 
underlying polygon, where the index i runs 
from 1 to N, the order of the polygon. Each 
lattice point can be defined as a linear 
combination of any two of these vectors, 
with coefficients x; say, but the 
requirement that the lattice should be a 
quasi-crystal is that the sequence of 
projected lattice distances x; should be the 
same for all the vectors e ;-

This qualification is not a mere nuisance 
but the essence of the problem. Levine and 
Steinhardt conclude that the allowable 
coordinates for quasi-crystals in two or 
three dimensions are the positions oflattice 
points in some one-dimensional quasi
periodic sequence, itself constructed by 
means of a specific set of rules of which the 
simplest (leading to the Penrose lattice) is 
the sequence due to Fibonacci, the thirt
eenth century Italian who made arabic 
numerals fashionable in Europe. 

The rule is simple. Let there be two 
intervals of length, rands, and construct a 
sequence iteratively, by replacing r by rs 
ands by r. It is easily seen (by starting with a 
sequence consisting only of r ors) that the 
result is the successive addition of new 
pieces to what is otherwise a steadily 
lengthening string of intervals, which may 
be thought of as a one-dimensional lattice 
(defining the coordinates x ;) . The 
arrangement is plainly not random; pairs 
of the intervals s never occur in sequence, 
for example. But it is also not periodic. 
Moreover, for a sufficiently long sequence, 
the intervals rands occur in the ratio ( 1 + 
\(3/2, the golden mean of antiquity which 
is also one of the solutions of the equation 
T 2 = T + 1. If the intervals rand s are also 
in the ratio of the golden mean, the result is 
a quasi-periodic sequence that defines the 
Penrose pattern. 

Much of the interest in what Levine and 
Steinhardt have done is their generalization 
of this procedure. Their schemes for 
constructing other quasi-periodic 
sequences for defining lattice coordinates 
will provoke a search for other kinds of 
forbidden symmetry. The applications to 
three dimensions are described only 
heligraphically, but Levine and Steinhardt 
appear to have recovered Mackay's result 
that icosahedral symmetry in three 
dimensions can be obtained from a set of 
interpenetrating rhombic tricontrahedra 
(shapes with 30 faces, 32 vertices and 60 
edges). This analytical account should 
stimulate both the study of other quasi
symmetries and the calculation of their 
physical properties. 

Levine and Steinhardt produce their 
most startling success in this second 
connection, with a calculation of the X-ray 
diffraction pattern from a quasi-periodic 
icosahedral crystal. That a quasi-crystal 
should yield diffraction spots is not all that 
surprising, for the lattice must be built 
from a small number of recurring intervals. 
But the big surprise is that Levine and 
Steinhardt recover almost exactly the 
pattern found by Schechtman et al. 

For crystallographers, the implications 
are far-reaching. There will be a search for 
other forbidden symmetry. What the new 
theory suggests for crystal growth is 
intriguing; which regular lattices most 
closely correspond to those of which quasi
crystals? What about band-structure in 
quasi-crystals? Whatever the outcome, 
crystallographers will have to mug up some 
unfamiliar mathematics. John Maddox 
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