

Towards flexible and scalable distributed monitoring with
mobile agents
Citation for published version (APA):
Liotta, A. (2001). Towards flexible and scalable distributed monitoring with mobile agents. [Phd Thesis 4
Research NOT TU/e / Graduation NOT TU/e), University College London]. University College London.

Document status and date:
Published: 01/01/2001

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/8d412831-ef2a-4105-b0e8-e51f6d375f29

Towards Flexible and Scalable Distributed

Monitoring with Mobile Agents

Antonio Liotta

A dissertation submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

of the

University of London

Department of Computer Science

University College London

July 2001

Abstract

The tremendous success of the Internet has made possible and even encouraged the realisation of systems
characterised by very large scale and high level of distribution. Managing such systems requires
systematic communication between a centralised station and distributed components. In many cases, a
pure ‘centralised’ model is adopted in which the management station retrieves information directly from
the managed elements and performs all the required computation. For large, distributed systems this
model is prone to information implosion, which tends to cause congestion both to the management station
and to its attached network. Therefore, pure centralised management, despite having the advantage of
simplicity, inherits the intrinsic limitations of centralised systems, namely their limited responsiveness,
accuracy, and scalability.

The approach traditionally followed to address those limitations is to decentralise management
intelligence. A natural approach is to introduce several ‘area’ managers in charge of collecting and pre-
processing raw data from different portions of the system. When possible, the event-driven model of
computation is adopted. In this case, the area managers or even the managed elements are equipped with
logic that performs semantic compression of local information and sends notifications to the manager only
under particular circumstances. In this way, the central station is alleviated and the traffic incurred in its
vicinity can be dramatically reduced. Event-driven and hierarchical management system organization can
cope with scalability problems only to a limited extent. Such approaches are inherently more complex that
centralised ones, while they still lack the flexibility, adaptability and relatively loose system organization,
which are desirable in large-scale, highly dynamic networked systems.

This thesis is focused on the design and evaluation of a dynamic distributed monitoring system based on
the use of mobile software agents. Agents act in the role of area managers but, differently from the case of
static distributed monitoring systems, they can be placed in strategic locations within the network by
accounting for the network state and for the type of task to be performed. In addition, at run time, agents
can migrate to other locations or clone other agents in order to provide adaptation to changes in the
underlying network.

The core of the thesis addresses the problem of efficiently computing the agent locations. In graph
theoretical terms, this is the problem of optimally placing p servers within a network of N nodes, which
falls in the class of the p-centre and p-median problems. These are NP-complete problems when striving
for optimality. The thesis proves that existing approximate solutions, computable in polynomial time, are
not viable. Consequently, a novel approximate solution, aiming at minimising the overall traffic and delay
incurred by the agent-based distributed monitoring system, is proposed. The proposed algorithm is proved
O(N*R(u)) (where R(u) is the network radius and N the number of monitored nodes). Moreover, it is
demonstrated that the computed agent locations are near-optimal.

The agent location algorithm is solved in a distributed fashion making use of agent weak mobility, which
is the ability of agents to move around the network from node to node carrying their code and data. The
algorithm relies also on agent cloning, the ability of an agent to create and dispatch copies of itself. Both
weak mobility and agent cloning are properties that so far have not been exploited to the full extent of
their potential in the field of management. A distributed monitoring system based on this algorithm is
assessed by simulation and it is shown that significant reductions in both network traffic and response time
can be achieved in addition to the increased flexibility and adaptability offered by agent mobility.

To Maria, obviously!

Acknowledgements

I would like to thank my two supervisors, Graham Knight and George Pavlou, for their

invaluable support, encouragement, constructive criticism, advice, and friendship throughout

these years. Very useful directions have been provided by Jon Crowcroft and Stevie Hailes,

who have examined my work on the way. Many thanks to other members of the Computer

Science Department of UCL, in particular David Griffin, Saleem Bhatti, Jose’ Borges, Jorge

Ortega-Arjona, Tom Quick, Rafael Bordini, Nadav Zin, and Adil Qureshi.

Special thanks go to Alberto Ferreira de Souza, a colleague, a friend, and a constant point of

reference. Without the long, broad-spectrum discussions I had with him, my PhD period

wouldn’t have been so enriching and stimulating.

I kindly acknowledge Chris Bohoris from the University of Surrey for providing measurements

of Mobile Agents overheads in the context of the Grasshopper Mobile Agent platform. Figure

3-1, Figure 3-2, and Figure 3-3 are based on those measurements.

The PhD adventure started when Lorenzo Coslovi, from Hewlett-Packard, believed in my

capabilities and decided to make a case to his company to fund my PhD. In a way, his decision

to ‘bet’ on me may have changed the course of my life. He introduced me to the right people at

Hewlett-Packard Labs Bristol and followed me through the difficulties of the initial period. I

am indebted with my Industrial supervisors, Keith Harrison and Jon Manley, for initiating me

to the avenues of the research world. Finally, I kindly acknowledge Hewlett-Packard for its

generous sponsorship.

Invaluable has been the support I have received by my friends, in particular Nickie Coleman,

Jon Wells, Pilar Sepulveda, and Cynthia Shaw (all from Imperial College). I am in dept with

Claudio Catania and Antonio Barili for encouraging me to step beyond the border of the Italian

University. Their constant friendship was a real support during this transition. Clearly my

partner and my family have played the key role of keeping me alive by providing first-class

oxygen.

 ii

Table of Contents

List of Figures... ix

List of Tables ..xiii

List of Algorithms ... xv

Abbreviations ... xvi

Thesis Related Publications ..xviii

Journal Papers..xviii

Conference Papers ...xviii

PART I THESIS BACKGROUND.. 1

Chapter 1 Introduction ... 1

1.1 Thesis Overview.. 1

1.2 Research Motivation.. 3

1.3 Thesis Objective .. 4

1.4 The Hypothesis .. 5

1.5 Research Methodology .. 5

1.6 Overview of the Contributions .. 6

1.7 What the Thesis is not About .. 6

1.8 A Road Map of this Thesis.. 7

Chapter 2 Background.. 10

2.1 Management of Networked Systems ... 11

2.1.1 What is Monitoring?.. 11

2.1.2 Classic Management Architectures... 13

2.1.3 A New Taxonomy of Management Paradigms .. 16

 iii

2.1.4 Approaches to Delegation of Management Responsibility 19

2.2 Mobile Agents Overview... 21

2.2.1 Code Mobility Mechanisms... 21

2.2.2 Design Paradigms... 24

2.2.3 Definition of Mobile Agent.. 26

2.2.4 Example Mobile Agent Platforms ... 27

2.2.5 Advantages Claimed for Mobile Agents.. 27

2.2.6 General Mobile Agent Applications.. 30

2.2.7 Issues Associated to Mobile Agents .. 31

2.3 Networks and Discrete Locations.. 34

2.3.1 The Agent Location Problem... 34

2.3.2 Classification of Location Problems... 35

2.3.3 Formulation of the p-centre Problem ... 37

2.3.4 Formulation of the p-median Problem.. 38

2.3.5 Medi-centre Problems... 39

2.3.6 Formulation of the Agent Location Problem .. 40

2.4 Conclusions ... 40

Chapter 3 Related Work... 42

3.1 Management by Delegation... 43

3.1.1 Evolution of the Original MbD Work.. 44

3.1.2 Agent Constrained Mobility .. 46

3.1.3 MbD in the Context of Internet Management ... 51

3.1.4 MbD in the Context of OSI Management.. 53

3.1.5 Remarks on MbD... 54

3.2 Management based on the Mobile Agent Paradigm.. 54

3.2.1 MA-based Fault Management... 55

 iv

3.2.2 MA-based Configuration Management... 56

3.2.3 MA-based QoS Management... 57

3.2.4 MA-based Routing... 58

3.3 Mobile Agent-based Monitoring ... 59

3.4 Evaluation of Management Applications based on Mobile Agents 62

3.5 Possible Approaches to the Agent Location Problem ... 67

3.5.1 Enumeration Approach ... 69

3.5.2 Graph Theoretic Approach ... 69

3.5.3 Heuristic Approach ... 69

3.5.4 Mathematical Programming Approaches ... 70

3.6 Conclusions ... 71

PART II THESIS CONTRIBUTIONS ... 73

Chapter 4 Mobile Agent based Distributed Monitoring.. 74

4.1 Centralised Location Algorithm for Agents Incapable of Cloning 76

4.1.1 Centralised Algorithm by Example ... 77

4.1.2 Centralised Algorithm by Flow-chart Diagram.. 78

4.1.3 Centralised Algorithm Formally ... 81

4.2 Distributed Location Algorithm for Agents Capable of Cloning.............................. 84

4.2.1 Distributed Algorithm by Example.. 84

4.2.2 Distributed Algorithm by Flow-chart Diagram.. 85

4.2.3 Distributed Algorithm Formally ... 88

4.3 Decomposition of Monitoring Tasks... 90

4.4 Main Features of Agent-based Distributed Monitoring .. 95

4.5 Adaptability to Network Changes with Agent-based Monitoring............................. 96

4.6 Summary and Conclusions .. 99

Chapter 5 Evaluation Methodology... 100

 v

5.1 Metrics ... 103

5.2 Analysis by Mathematical Modelling.. 104

5.2.1 Network Model .. 105

5.2.2 Fixed Parameters .. 105

5.2.3 Factors .. 106

5.2.4 Workloads.. 106

5.2.5 Data Analysis and Presentation.. 107

5.3 Simulations Design.. 107

5.3.1 Simulation Environment.. 107

5.3.2 Description of Simulations.. 109

5.3.3 Software Parameters ... 111

5.3.4 Hardware Parameters... 113

5.3.5 Factors .. 113

5.3.6 Simulation Complexity .. 114

5.3.7 Workloads.. 114

5.3.8 Simulation validation .. 115

5.3.9 Statistical Data Analysis and Presentation of Results.. 121

5.4 Conclusions ... 122

Chapter 6 Theoretical Evaluation of Agent Deployment Under General Conditions.. 123

6.1 Asymptotic Complexity of the Agent Location Algorithms 125

6.1.1 Asymptotic Complexity of the Centralised Location Algorithm.......................... 125

6.1.2 Asymptotic Complexity of the Distributed Location Algorithm.......................... 127

6.2 Upper bounds on Agent Deployment Time... 129

6.2.1 Upper Bounds on Deployment Time for the Centralised Algorithm................... 130

6.2.2 Upper Bounds on Deployment Time for the Distributed Algorithm 132

6.3 Upper Bounds on Agent Deployment Traffic ... 132

 vi

6.3.1 Upper Bounds on Deployment Traffic for the Centralised Algorithm................ 133

6.3.2 Upper Bounds on Deployment Traffic for the Distributed Algorithm 133

6.4 Discussion and Conclusions .. 135

Chapter 7 Theoretical Evaluation Under Near-Optimal Conditions............................. 138

7.1 Sufficient Conditions for Location Optimality.. 140

7.2 Steady-state Models of Naïve Centralised Polling under Near-Optimal Conditions

 146

7.2.1 Steady Traffic in Naïve Centralised Polling ... 147

7.2.2 Steady Response Time in Naïve Centralised Polling .. 148

7.3 Steady-state Models of Optimal Centralised Polling under Near-Optimal Conditions

 150

7.3.1 Optimal Centralised Polling Algorithm.. 151

7.3.2 Steady Traffic in Optimal Centralised Polling ... 154

7.3.3 Steady Response Time in Optimal Centralised Polling 155

7.4 Steady-state Models of Agent-based Distributed Polling under Near-Optimal

Conditions... 156

7.4.1 Steady Traffic in Distributed Agent-based Polling... 158

7.4.2 Steady Response Time in Distributed Agent-based Polling................................ 160

7.5 Comparative Steady-state Analysis ... 162

7.5.1 Analysis of Traffic Models at Steady State.. 162

7.5.2 Analysis of Response Time Models at Steady State .. 166

7.6 Transient Models of Distributed Agent-based Polling.. 170

7.6.1 Deployment Traffic in Agents Incapable of Cloning .. 170

7.6.2 Deployment Time in Agents Incapable of Cloning ... 171

7.6.3 Deployment Traffic in Agents Capable of Cloning... 171

7.6.4 Deployment Time in Agents Capable of Cloning.. 172

7.7 Comparative Transient Analysis ... 172

 vii

7.7.1 Analysis of Agent Deployment Traffic... 172

7.7.2 Analysis of Agent Deployment Time ... 175

7.8 Discussion and Conclusions .. 177

Chapter 8 Simulation Results... 180

8.1 Performance against Polling Rate.. 182

8.2 Performance against Number of Monitored Objects... 188

8.3 Performance against Network Diameter.. 193

8.4 Performance against Percentage of Agents ... 197

8.5 Distance from Optimality .. 201

8.5.1 Near-Optimal Agent Location... 203

8.5.2 Random Agent Location .. 207

8.5.3 Proposed Agent Location.. 212

8.5.4 Comparison ... 216

8.6 Adaptability ... 219

8.7 Discussion and Conclusions .. 221

Chapter 9 Conclusions .. 226

9.1 Thesis Summary .. 226

9.2 Discussion of Thesis Contributions... 227

9.2.1 Active, Distributed Monitoring ... 228

9.2.2 Employment of Agent Mobility in Management.. 228

9.2.3 Quantitative Comparative Performance Evaluation of MA-based Monitoring . 228

9.2.4 Preliminary Study of Adaptable, Self-reconfigurable MA-based Monitoring.... 230

9.2.5 Novel Near-optimal Solution to P-median Problem... 230

9.2.6 Extensions to NS simulator for Code Mobility.. 230

9.3 Conclusions ... 231

9.3.1 Performance and Scalability... 231

 viii

9.3.2 Near-optimality ... 233

9.3.3 Adaptability ... 234

9.4 Applicability .. 235

9.5 Future Directions ... 236

9.5.1 Experimentation with Active Distributed Monitoring... 236

9.5.2 Simulation Work and Experimentation on Adaptation 236

9.5.3 Exploration of MA-based Management .. 237

9.5.4 Exploration of Location Algorithm for other Classes of Network...................... 237

9.5.5 Modification of the Location Algorithm aiming at Response Time Minimisation

 238

9.5.6 Integration and Interoperability ... 238

9.5.7 Viability Study in Perspective ... 238

References.. 240

Appendix: Mathematical Developments... 259

 ix

List of Figures

Figure 2-1. Classification of location problems according to [Evans 92].36

Figure 3-1. Mean values and best linear fit of response times...48

Figure 3-2. Mean and best linear fit of total incurred TCP payloads, measured as the sum of all

the bytes incurred in the network to complete the given network performance monitoring

task. ...49

Figure 3-3. Memory requirements for the Java-based network performance monitoring systems.

...50

Figure 4-1: a) Main components of a mobile agent; b) Agents configuration...........................75

Figure 4-2: Example Network Topology. ..77

Figure 4-3: Agent configuration steps for the centralised algorithm...77

Figure 4-4. Final agent location and monitoring path..78

Figure 4-5. Flow-chart of centralised version of the agent location algorithm.80

Figure 4-6: Agent configuration steps for the distributed algorithm. ..85

Figure 4-7. Flow-chart of distributed version of the agent location algorithm..........................87

Figure 4-8. Example agent full re-deployment, following a link failure.97

Figure 4-9. Monitoring path for the example of agent full re-deployment................................98

Figure 4-10. Example adaptation through agent migration, following a link failure.98

Figure 5-1: Schematic representation of the assessment methodology.102

Figure 5-2. Transit-stub topology (from [Zegura 97]). ..112

Figure 5-3. Illustration of simulation complexity. ...114

 x

Figure 5-4. Example 50-node randomly generated network topologies.117

Figure 5-5. Snapshot of the NAM network animator. ...119

Figure 5-6. MA Migration time measurements on real MA platforms....................................121

Figure 6-1: Schematic representation of the focus of Chapter 6. ..124

Figure 6-2: Examples of agent deployment. a) the agents traverse different portions of the

distribution tree; b) the agents have overlapping distribution paths.131

Figure 6-3: Example showing the optimistic and pessimistic upper bounds on deployment

traffic in the distributed algorithm. ...134

Figure 7-1: Schematic representation of the focus of Chapter 7. ..139

Figure 7-2: An example spanning tree having n-ary balanced sub-trees.141

Figure 7-3: Example of agent location computation with the distributed algorithm, for a

network having a binary spanning tree..142

Figure 7-4: Example binary spanning sub-tree depicting the calculation of the total distances

between an agent and the nodes in its partition. ...143

Figure 7-5: Example of centralised naïve polling under near-optimal conditions...................147

Figure 7-6: Graphical solution of the disequation which proves theorem 2............................153

Figure 7-7: Example of centralised optimal polling under near-optimal conditions.154

Figure 7-8: Example of distributed agent-based polling under near-optimal conditions.158

Figure 7-9: Contour plots depicting steady-state traffic for the cases of centralised and agent-

based polling. ..163

Figure 7-10: 45º-section through the Z axis (Steady-state Traffic) in the n-R(u) plane.164

Figure 7-11: Steady-state monitoring traffic of centralised and agent-based systems plotted

against L. ...165

Figure 7-12: Contour plots depicting steady-state response time for the cases of centralised and

agent-based polling..167

Figure 7-13: 45º-section through the Z axis (Steady-state response time) in the n-R(u) plane.168

Figure 7-14: Steady-state monitoring response time of centralised and agent-based systems

plotted against L. ...169

Figure 7-15: Illustration of agent deployment under near-optimal conditions.170

 xi

Figure 7-16: Contour plots depicting deployment traffic for the case of agent capable and

incapable of cloning, respectively...173

Figure 7-17: Comparison between steady-state monitoring traffic and agent deployment traffic.

...174

Figure 7-18: Contour plots depicting deployment time for the case of agent capable and

incapable of cloning, respectively...175

Figure 7-19: Comparison between steady-state monitoring response time and agent deployment

time..176

Figure 8-1. Schematic representation of the focus of Chapter 8..181

Figure 8-2. Statistical box plots depicting the impact of polling rate on performance in the case

of centralised polling...184

Figure 8-3. Statistical box plots depicting the impact of polling rate on performance in the case

of agent-based polling. ..185

Figure 8-4. Linear best-fit performance functions based on the polling rate scalability indicator.

...186

Figure 8-5. Statistical box plots depicting the impact of number of monitored objects on

performance in the case of centralised polling..189

Figure 8-6. Statistical box plots depicting the impact of number of monitored objects on

performance in the case of agent-based polling. ...190

Figure 8-7. Linear best-fit performance functions based on the number of objects scalability

indicator...192

Figure 8-8. Statistical box plots depicting the impact of network diameter on performance in the

case of centralised polling...194

Figure 8-9. Statistical box plots depicting the impact of network diameter on performance in the

case of agent-based polling. ..195

Figure 8-10. Linear best-fit performance functions based on the network diameter scalability

indicator...196

Figure 8-11. Statistical box plots depicting the impact of the percentage of agents.198

Figure 8-12. Best-fit performance functions based on percentage of agents...........................200

Figure 8-13. Features of the model used to interpolate results. ...202

 xii

Figure 8-14. Statistical box plots depicting hop-distances achieved with the near-optimal,

lagrangian location algorithm..204

Figure 8-15. Best-fit hop-distance functions achieved with the near-optimal, lagrangian location

algorithm. ..205

Figure 8-16. Statistical box plots depicting weighted-distances achieved with the near-optimal,

lagrangian location algorithm..206

Figure 8-17. Best-fit weighted-distance functions achieved with the near-optimal, lagrangian

location algorithm. ..207

Figure 8-18. Statistical box plots depicting hop-distances achieved with the random location

algorithm. ..209

Figure 8-19. Best-fit hop-distance functions achieved with the random location algorithm...210

Figure 8-20. Statistical box plots depicting weighted-distances achieved with the random

location algorithm. ..211

Figure 8-21. Best-fit weighted-distance functions achieved with the random location algorithm.

...212

Figure 8-22. Statistical box plots depicting hop-distances achieved with the proposed location

algorithms..213

Figure 8-23. Best-fit hop-distance functions achieved with the proposed location algorithms.214

Figure 8-24. Statistical box plots depicting weighted-distances achieved with the proposed

location algorithms..215

Figure 8-25. Best-fit weighted-distance functions achieved with the proposed location

algorithms..216

Figure 8-26. Comparison based on hop distance. ..217

Figure 8-27. Comparison based on weighted distance. ...218

Figure 8-28. Adaptability. a) Traffic at steady state; b) Response time at steady state...........220

Figure 8-29. Impact of total number of agents on percentage of agent migration occurrences.220

Figure 8-30. Agent system near-optimality..223

 xiii

List of Tables

Table 4-1: Key symbols, procedures, and variables for the algorithm of Listing 4-182

Table 4-2: Main steps of the algorithm of the centralised algorithm for the example network of

Figure 4-2. ...83

Table 4-3: Key symbols, procedures, and variables for the algorithm of Listing 4-2.90

Table 5-1. Fixed parameters of mathematical modelling. ...106

Table 5-2. Factors of mathematical modelling. ...106

Table 5-3. Network simulator parameters..112

Table 5-4. Agent-based monitoring system fixed parameters. ..113

Table 5-5. Hardware and operating system parameters. ..113

Table 5-6. Simulations factors. ..113

Table 6-1: Computational contribution for the algorithm of Listing 6-1.................................127

Table 6-2: Summary of results on the theoretical evaluation of transient behaviour under

general conditions. ..135

Table 7-1: Summary of steady-state traffic results. ...166

Table 7-2: Summary of steady-state response time results..169

Table 7-3: Comparison of deployment traffic between general and near-optimal conditions.175

Table 7-4. Comparison of deployment time between general and near-optimal conditions. ..177

Table 7-5: Summary of results on steady-state performance under near-optimal conditions. 178

Table 7-6: Summary of results on agent deployment traffic and time under near-optimal

conditions. ...179

 xiv

Table 8-1: Summary of results on steady-state performance under near-optimal conditions

(from Chapter 7)..193

 xv

List of Algorithms

Listing 4-1: Centralised version of the agent location algorithm based on constrained mobility.

...81

Listing 4-2: Distributed version of the agent location algorithm based on strong mobility.89

Listing 4-3: Specification of a simple directly decomposable monitoring task.........................91

Listing 4-4: Specification of the resulting sub-tasks implementing the task of Listing 4-3.92

Listing 4-5: Specification of a non-directly decomposable monitoring task.93

Listing 4-6: Specification of the resulting sub-tasks implementing the task of Listing 4-5.94

Listing 6-1: Analysis of the centralised agent location algorithm presented in Chapter 4......126

Listing 6-2: Analysis of the distributed agent location algorithm presented in Chapter 4.128

Listing 7-1: Rescigno’s Optimal centralised polling algorithm...151

 xvi

Abbreviations

API Application Programming Interface

CE Computational Environment

CMIP Common Management Information Protocol

CMIS Common Management Information Service

COD Code on Demand

CORBA Common Object Request Broker Architecture

CS Client-Server

DAI Distributed Artificial Intelligence

DISMAN The IETF Distributed Management working group

DMTF Desktop Management Task Force

EU Executing Unit

FIPA Foundation for Intelligent Physical Agents

HTTP Hypertest Transfer Protocol

IA Intelligent Agent

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IN Intelligent Network

IP Internet Protocol

ISO International Organisation for Standardisation

ITU International Telecommunication Union

 xvii

ITU-T ITU Telecommunication Standardisation Sector

J-DMK Java Dynamic Management Kit

JIDM Joint Inter-Domain Management

JMAPI Java Management API Architecture

LAN Local Area Network

MA Mobile Agent

MAS Multi-Agent System

MbD Management by Delegation

MCS Mobile Code System

MIB Management Information Base

MO Managed Object

N&SM Network and System Management

ODMA Open Distributed Management Architecture

OMG Object Management Group

OSI Open Systems Interconnection

REV Remote Evaluation

RPC Remote Procedure Call

RMI Remote Method Invocation

RM-ODP Reference Model of the ISO Open Distributed Processing

RMON Remote Monitoring (an MIB)

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TINA-C Telecommunications Information Networking Architecture Consortium

TMN Telecommunications Management Network

WBEM Web-based Enterprise Management

 xviii

Thesis Related Publications

Journal Papers

[Liotta 01b] A. Liotta , G. Pavlou, G. Knight, Reducing the Cost of Large-Scale
Network Monitoring with Mobile Code, submitted to IEEE Network.

[Pavlou 98b] G. Pavlou, A. Liotta , P. Abbi, S. Ceri, CMIS/P++: Extensions to
CMIS/P for Increased Expressiveness and Efficiency in the
Manipulation of Management Information, IEEE Network, Special Issue
on Network Management - Today and Tomorrow, Vol. 12, No. 5, pp.10-
20, IEEE, (September/October 1998).

Conference Papers

[Liotta 01c] A. Liotta , G. Pavlou, G. Knight, A Self-adaptable Agent System for
Efficient Information Gathering, Proceedings of the 3rd International
Workshop on Mobile Agents for Telecommunication Applications
(MATA’01), Montreal, Canada, Springer-Verlag (August 2001).

[Liotta 01a] A. Liotta , G. Pavlou, G. Knight, Active Distributed Monitoring for
Dynamic Large-scale Networks, Proceedings of the IEEE International
Conference on Communications (ICC'01), Helsinki, Finland, IEEE,
(June 2001).

[Bohoris 00c] C. Bohoris, A. Liotta , G. Pavlou, Evaluation of Constrained Mobility
for Programmability in Network Management, To appear in the
proceedings of the 11th IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management (DSOM 2000), Austin,
Texas, USA, (December 2000).

 xix

[Bohoris 00b] C. Bohoris, A. Liotta , G. Pavlou, Software Agent Constrained Mobility
for Network Performance Monitoring, Proc. of the 6th IFIP Conference
on Intelligence in Networks (SmartNet 2000), Vienna, Austria, ed. H.R.
van As, pp. 367-387, Kluwer, (September 2000).

[Pavlou 00a] G. Pavlou, A. Liotta , C. Bohoris, D. Griffin, P. Georgatsos, Providing
Customisable Remote Management Sevices Using Mobile Agents. In
proc. of HP-OVUA, The Hewlett-Packard Openview University
Association Plenary Workshop 2000, Santorini, Greece, (June 12-14,
2000).

[Liotta 99c] A. Liotta , G. Knight, G. Pavlou, A Simulation-based Assessment of
Information Gathering Systems based on Mobile Agents. In proc. of
Simulation’99, London, UK, (October 1999).

[Liotta 99b] A. Liotta , G. Knight, G. Pavlou, On the Performance and Scalability of
Decentralised Monitoring Using Mobile Agents, Proceedings of the 10th
IFIP/IEEE International Workshop on Distributed Systems: Operations
Management (DSOM'99), (October 1999).

[Liotta 99a] A. Liotta , G. Knight, G. Pavlou, On the Efficiency of Decentralised
Monitoring using Mobile Agents. In proc. of HP-OVUA, The Hewlett-
Packard Openview University Association Plenary Workshop 1999,
Bologna, Italy, (June 1999).

[Liotta 98b] A. Liotta , G. Knight, Decomposition Patterns for Mobile Code-based
Management. In proc. of HP-OVUA, The Hewlett-Packard Openview
University Association Plenary Workshop 1998, ENST de Bretagne,
Rennes, France, (April 1998).

[Liotta 98a] A. Liotta , G. Knight, G. Pavlou, Modelling Network and System
Monitoring Over the Internet Using Mobile Agents, Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS
'98), New Orleans, USA, Vol. 2, pp. 300-312, (February1998).

[Pavlou 98a] G. Pavlou, A. Liotta , P. Abbi, S. Ceri, CMIS/P++: Extensions to
CMIS/P for Increased Expressiveness and Efficiency in the
Manipulation of Management Information. In proc. of IEEE Infocom'98,
Vol. 2, pp. 430-438, IEEE, San Francisco, USA, (29 March - 2 April
1998).

PART I

THESIS BACKGROUND

 - 1 -

Chapter 1

Introduction

1.1 Thesis Overview

The tremendous success of the Internet has made possible and even encouraged the realisation

of systems characterised by very large scale, and high level of distribution and dynamics.

‘Network-centric’ approaches such as Sun’s Jini architecture [Waldo 99] envisage large

numbers of comparatively simple devices (cellular phones, televisions, thermostats) all

accessible across the net. Management systems in the future will need to keep track of these

devices and determine which are present, which are functioning correctly and so on. Scalability

and high levels of dynamics are also key requirements of the third generation mobile networks

or 3G.

More generally, the ability to monitor a network or distributed system accurately and

effectively is of paramount importance for its operation, maintenance, and control. Network

monitoring, for instance, entails the collection of traffic information used for a variety of

performance management activities e.g. capacity planning and traffic flow predictions,

bottleneck and congestion identification, quality of service monitoring for services based on

service level agreements, etc. A key aspect is that collection of traffic information should be

supported in a timely manner, so that reaction to performance problems is possible, and without

incurring too much additional traffic on the managed network.

Given these motivations and constraints, efficient network or system monitoring is an

interesting research problem. The conventional approach is to poll managed devices from a

centralised management station where most of the intelligence is concentrated. An event-driven

 - 2 -

approach, in which managed devices notify the management station, is also possible but

requires complex functionality to be built into monitored elements. This increases their

complexity and cost and, more importantly, it is fixed and cannot be customized and augmented

as requirements change. As such, the polling model is being widely used because of its

simplicity and flexibility. An example is represented by the Simple Network Management

(SNMP) protocol which promotes polling of simple network elements [Stallings 93].

For large distributed systems, this model is prone to information implosion, which tends to

cause congestion both to the management station and to its attached network. Therefore, pure

centralised management, despite having the advantage of simplicity, inherits the intrinsic

limitations of centralised systems, namely their limited responsiveness, accuracy, and

scalability.

The approach traditionally followed to address those limitations is to decentralise management

intelligence by dividing the system into smaller “areas” and deploying one polling-based

monitoring station per area. We term this the static decentralised approach as the locations of

the ‘area’ monitoring stations are typically computed off-line and do not change after

deployment.

Area managers are in charge of collecting and pre-processing raw data from different portions

of the system. When possible, the event-driven model of computation is adopted. In this case,

the area managers or even the managed elements are equipped with logic that performs

semantic compression of local information and sends notifications to the manager only under

particular circumstances. In this way, the central station is alleviated and the traffic incurred in

its vicinity can be dramatically reduced. The static decentralised management system

organization can cope with scalability problems only to a limited extent. Such approaches are

inherently more complex that centralised ones, while they still lack the flexibility, adaptability

and relatively loose system organization, which are desirable in systems relying on large,

dynamic networks.

The ideal solution is dynamic or active distributed monitoring, with stations computing their

optimal location based on the target monitored objects. A station will move to that location and

will possibly adapt to network changes and move again when conditions change in order to

maintain optimality. Given the required mobility, proactivity and reactivity properties, a

monitoring station could be realised through a mobile software agent.

A key issue in the static decentralised approach is the calculation of the optimal locations for

the monitoring stations. Optimality in this case concerns the minimisation of network traffic

incurred due to (localised) polling and the minimisation of the required latency in collecting the

necessary information. The problem regarding the optimal placement of a number of servers in

 - 3 -

a large network has been studied in the literature. It is equivalent to the p-median and p-centre

location problems studied in the context of graph theory and location theory, as discussed in

Chapters 2 and 3. These problems are both NP-complete when striving for optimality.

Approximate algorithms exist but they are characterised by polynomial complexity of high

degree. An additional problem is that these algorithms are centralised, requiring the network

distance matrix at the monitoring station.

While this is less of a problem in off-line calculations for medium to long-term optimal

locations, it becomes an important problem for active distributed solutions in which network

conditions may vary rapidly. In this case, existing location algorithms are not suitable to solve

the problem of placing the area managers near-optimally. Therefore, given our proposal to use

mobile software agents as area monitoring stations, a new distributed algorithm is required.

This thesis proposes such an algorithm that relies on agents learning about the network

topology through node routing table information which is accessed through standard

management interfaces. The monitoring system is deployed through a “clone and send” process

starting at the centralised network-wide station. The same algorithm adopted for the initial

agent deployment is also used for agents to adapt to network changes through migration. Key

features of this algorithm are its distributed nature, i.e. each agent carries and runs the

algorithm, and its low computational complexity.

The proposed algorithm is proved O(N*R(u)), whereby N is the number of network nodes, u is

the location of the monitoring station, and R(u) is the network radius. The agent location

algorithm is solved in a distributed fashion making use of agent weak mobility – the ability of

agents to move around the network from node to node carrying code and data. The algorithm

relies also on agent cloning – the ability of an agent to create and dispatch copies of itself. Both

weak mobility and agent cloning are properties that, despite their potential, have previously

been exploited only marginally in the particular field of management. A distributed monitoring

system based on this algorithm is assessed by simulation and it is shown that significant

reductions in both network traffic and response time can be achieved.

1.2 Research Motivation

The original motivation which sparked the thesis was to investigate means to manage large-

scale, dynamic networks more efficiently than was offered by more conventional centralised or

hierarchical management systems. Code mobility was seen as the candidate enabler. The

Management by Delegation (MbD) work carried out in the Columbia University since the early

nineties had already shown the potentiality of the ‘push’ model, a mechanism to dynamically

 - 4 -

enhance the capabilities of remote servers and delegate simple management tasks [Yemini 91,

Goldszmidt 95a, Goldszmidt 96b]. After the success of the Java language [Java 95] and the

proliferation of Java-based Mobile Agent (MA) frameworks, the MbD idea was followed by

intensive research aimed at establishing the use of MAs into the network management arena.

One of the reasons why so many researchers started looking at MA-based management was that

MAs were already being successfully applied to domains as diverse as autonomous vehicles,

industrial process control, e-commerce, networking etc. Many advantages are commonly

associated with MAs; particularly relevant to this thesis is their ability to result in bandwidth

savings and reduced latency. Limited bandwidth and excessive latency are, in fact, the major

barriers of large-scale management systems.

Soon it became clear that, while most effort was directed towards the attempt to use MAs to

find improved solutions to specific network management problems, the real essence of mobile

software agents was not being fully exploited. In fact, the situation in which agents may move

around the network in a reactive or proactive adaptive manner, carry their code and data, and

clone/destroy themselves according to their intelligence has not yet been shown to achieve

better results than static approaches in network management.

Most of the applications found in the literature tend to adopt simpler degenerate forms of

mobility, such as Remote Evaluation, Code on Demand, constrained mobility, or the so called

push model. These models of mobility and their application to management systems will be

discussed in the next two chapters. It will be shown that those forms of mobility provide the

vehicle for programmability through the enhancement of pre-existing functionality. This

represents a first step ahead of static distributed management. A second step towards dynamic,

distributed management is represented by the introduction of weak mobility, which (in the

context of management) has not undergone in-depth study in recent years and whose

potentiality has not been fully measured.

Further motivation to the work is provided in Chapters 2 and 3 which highlight the issues and

literature gaps addressed herein.

1.3 Thesis Objective

The objective of this thesis is to fill some of the gaps mentioned in the previous section, beyond

the boundaries of network monitoring and in the more general context of monitoring of large-

scale, dynamic networked systems. Therefore, the main objectives are:

1. the investigation of agent mobility in the context of distributed monitoring;

 - 5 -

2. the proposal of a scalable, adaptive, and active distributed monitoring approach based

on the MA paradigm;

3. a comparative, quantitative evaluation based on performance, scalability, and flexibility

between the proposed agent-based monitoring and the more conventional ‘centralised’

or ‘static distributed’ monitoring;

4. The assessment of the hypothesis stated in the next section.

1.4 The Hypothesis

This thesis examines the following hypothesis:

The application of the ‘weak agent mobility’ paradigm to distributed monitoring

represents an effective complement to more conventional ‘centralised’ and ‘static

distributed’ monitoring approaches. In particular, the agent approach:

1. can lead to significant improvements in performance and scalability;

2. can be used to realise near-optimal distributed monitoring systems;

3. can be used to realise distributed monitoring systems which can adapt

effectively to changes in the network state;

1.5 Research Methodology

The hypothesis is evaluated partly by mathematical modelling and partly through simulation.

The former is adopted to study the more theoretical aspects of the work, such as:

• the asymptotic complexity of the proposed agent deployment algorithm, i.e. its

scalability;

• the typical order of magnitude of agent deployment overheads, i.e. deployment time

and traffic;

• the sufficient conditions on network topology for which the proposed agent location

algorithm places the agents near-optimally in the network;

• the study of the agent system under those near-optimal conditions and its comparison

with the static monitoring approach;

 - 6 -

Simulations are adopted to study the agent-based monitoring system under general conditions in

the case of realistic internetworks, covering aspects such as:

• the quantitative comparative evaluation of performance and scalability between static

monitoring and active, distributed monitoring;

• the assessment of the goodness of the agent locations computed by the proposed

algorithm, i.e., its distance from optimality;

• the preliminary assessment of the ability of the agent system to adapt to network

changes;

1.6 Overview of the Contributions

This thesis makes the following main contributions:

• the proposal and assessment of a novel approach to distributed monitoring, termed

active distributed monitoring, which is based on autonomous mobile software agents;

• the comparative quantitative evaluation of the proposed agent-based monitoring

approach against the more conventional ‘centralised’ or ‘static distributed’ monitoring;

• an initial study of the ability of such agent system to adapt to network changes to

maintain location near-optimality;

• a mathematical-based study of the p-median location problem (an NP-complete

problem when striving for optimality) and the formulation and evaluation of a novel

near-optimal solution to it, which is computed in polynomial time and is also viable for

the proposed agent system;

• extensions to the UCB/LBNL/VINT NS network simulator in order to support mobile

code capabilities [NS]. The extended simulator can be used to study agent-based

systems by simulation.

1.7 What the Thesis is not About

The are a number of other open issues that are strongly related to the thesis and worth

investigation but were either left out of the scope of the thesis or treated more marginally. Some

of them are listed below:

 - 7 -

• security and safety issues introduced by code mobility;

• search for the killer application of MAs to distributed monitoring;

• broad application of the same concepts involved in the proposed agent solution to the

more general area of management, i.e. involving other management functional areas

such as fault management, configuration management, accounting management,

performance management, and security management; it should be mentioned, though,

that ‘monitoring’ is a fundamental part of any of those functional areas;

• platform- language- or implementation-specific issues;

1.8 A Road Map of this Thesis

The thesis is composed of two parts. The first one includes this introductory chapter together

with Chapters 2 and 3. Chapter 2 provides some background information on the various topics

touched by this interdisciplinary thesis. These include a description of the various approaches

to performing monitoring, i.e. centralised, static distributed, dynamic or active distributed

monitoring; a survey of MAs theories, applications, benefits, problems, types of mobility, etc.;

and the presentation of the server location problem as it has been dealt with in the area of

transportation theory from a graph theoretical point of view.

Chapter 3 complements the previous one by focusing more closely on the review of work which

is related to the thesis. Management by Delegation (MbD) is thoroughly surveyed because it

represents the first concrete attempt to employ code mobility in the field of management. We

follow the evolution of MbD since 1991 up to more recent times. The result is that the MA

paradigm adopted in this thesis is much more powerful than the MbD idea. We then focus on

work which aimed at exploiting MAs in the particular field of management, dedicating more

space to the specific area of distributed monitoring. Finally, location algorithms are surveyed

and the need for novel solutions suitable to the problem of locating MAs optimally is

highlighted.

The second part of the thesis includes the description of the proposed approach and its

evaluation and discussion. This part is initiated in Chapter 4 which introduces the proposed

dynamic or active distributed monitoring approach. A simpler solution, which is computed in a

centralised fashion, allows focusing on the basic algorithmic ideas behind the proposal. The

same principles apply to the distributed version of that algorithm, which is described

afterwards. The main features of the proposed agent-based monitoring system are finally

summarised. These include its dynamic behaviour, i.e. agent locations are not pre-determined at

 - 8 -

design time but are computed on-the-fly depending on the state of the network and of the

monitoring task; its increased scalability with respect to network diameter, number of nodes,

and number of MAs; and its ability to adapt to network changes through agent migration and

cloning.

The method adopted to assess the proposed agent-based approach is described in Chapter 5. A

mixed approach is adopted. The hypothesis is assessed partly by mathematical modelling and

partly by simulations. The chapter goes through the method in detail, explaining and motivating

the various choices by relating them to the hypothesis under examination.

The assessment of the proposed approach starts with Chapter 6, which presents a theoretical

evaluation of the agent deployment process for general network topologies (the evaluation is

based on mathematical modelling). The asymptotic complexity of the proposed deployment

algorithm is studied in order to assess its scalability and typical overheads, including agent

deployment time and incurred traffic. These are overheads because they are not present in

conventional centralised or static distributed monitoring. The monitoring system does not

operate properly during agent deployment; therefore, deployment time is an issue. Upper

bounds on deployment time are calculated and are shown to increase linearly with the network

radius.

Chapter 7 elaborates more on the agent system optimality. It first theorises about the

topological conditions under which agents end up in near-optimal locations, which is to say

they result in near-minimal total traffic incurred by the monitoring system. Upon giving

sufficient conditions for location near-optimality, the chapter covers a detailed mathematical

study of the agent system both at transient time (i.e. during agent deployment time) and at

steady state (i.e. during the execution of the monitoring task) under the stated near-optimal

conditions. Mathematical models are given for the agent system and for two flavours of the

centralised polling approach, namely naïve centralised polling and optimal centralised polling

and a comparative study of the various approaches is presented.

Chapter 8 is dedicated to the study of the agent system at steady state, under general conditions.

The purpose is to concentrate on the phenomena that follow the initial agent deployment

process and achieve a quantitative evaluation of the performance benefits of the agent approach

in comparison to both centralised and static distributed monitoring. This simulation-based

analysis includes also the assessment of the goodness of the agent location algorithm by

evaluating their distance from optimality, and an initial study of the ability of the agent system

to adapt to variations in the network status through agent migration. The computed agent

locations are shown to be near-optimal whilst the algorithmic computational complexity is

polynomial. This is a key result of the thesis work. In fact, in Chapter 7 we found restraining

 - 9 -

conditions on the network topology for near-optimality. Whereas the simulations show that the

agent locations computed by the proposed algorithm are near-optimal even for general, Internet-

like networks.

In Chapter 8 we also carry out a preliminary study of the adaptability of the proposed agent

system with respect to changing network conditions. Simulation results show a particular

ability of the agent system to adapt to link failure or congestion.

Chapter 9 concludes this thesis, summarising the main results and contributions. It discusses the

whole work, drawing the conclusions, and elaborating on future developments of this research.

 - 10 -

Chapter 2

Background

This chapter provides an overview of the various topics involved in this interdisciplinary thesis.

Since the thesis examines a novel approach to realising distributed monitoring, the first area

involved is the one of management of distributed systems (Section 2.1); monitoring is, in fact, a

fundamental function of management systems. We first describe the three commonly agreed

management architectures; namely, centralised, hierarchical, and distributed architectures. The

focus is then shifted towards a more detailed taxonomy of management paradigms that will lead

to a categorisation of more innovative approaches to network and system management. The

active distributed monitoring system proposed in this thesis follows one of those approaches,

namely the strong distributed hierarchical paradigm.

The thesis is about applying Software Agent concepts to Network and System Management

(N&SM) and, more specifically, examines the use of mobile autonomous agents for distributed

monitoring. The second area reviewed in this chapter is therefore that of mobile agents (MAs).

(Section 2.2.)

It should be noted that in the context of this thesis the term ‘agent’ is overloaded with two

completely different meanings, depending on whether it is used in the context of traditional

management or in the one of software agent theories. In the Network and System Management

community the word ‘agent’ is inherited from the manager-agent paradigm, one of the building

blocks of the OSI and SNMP management framework. Conversely, the software agents

community refers to the term ‘agent’ as an autonomous entity containing the logic to perform a

given task and migrate under its own control from machine to machine.

The third area involved in the thesis work is the one of Location Theory, which involves the

study of algorithms to find the location of p service facilities in a network with N nodes, that is

to solve so called facility location problems (Section 2.3). An extensive literature is available

 - 11 -

on this classic problem which has been tackled since the early 60’s in the context of

transportation theory and of computer networks. We shall focus on the centre problem and on

the median problem, which are strongly connected with our agent location problem, that is the

one of locating our MAs centrally in the network in order to minimise traffic and/or response

time involved in the monitoring process. Those problems are very complex to solve in general

and are usually NP-complete when striving for optimality. We shall formulate those problems

here, whereas some of the approximate algorithms available in the literature will be reviewed in

Chapter 3. Therein, we shall reach the conclusion that none of those algorithms satisfies the

requirements of the agent location problem.

It should be stressed that the purpose of the present chapter is to introduce the main concepts

and issues involved in each of the above three research areas and identify some of the gaps that

motivate the need for further work. A detailed and extensive review of those disciplines is

already present in the literature and is, hence, beyond the scope of this thesis. What will be

surveyed in greater detail is the work which is strongly related to the approach proposed in this

thesis, this is the subject of Chapter 3.

2.1 Management of Networked Systems

2.1.1 What is Monitoring?

The concepts involved in the process of monitoring distributed systems have been described

extensively in the literature. An annotated bibliography on network management is, for

instance, reported in [Znaty 94]. Hence, the purpose of this section is to recall some of those

fundamental concepts to set the scene of the thesis work rather than providing and exhaustive

background on distributed monitoring. This section is based on [Sloman 94, Hegering 98], and

[Leinwand 96] to which the interested reader may refer for further details.

Monitoring referred to by Sloman as <<the essential means for obtaining the information

required about the components of a distributed system in order to make management decisions

and subsequently control their behaviours>> [Sloman 94]. Whereas Joyce et al define

monitoring as <<the process of dynamic collection, interpretation and presentation of

information concerning objects or software processes under scrutiny>> [Joyce 87].

Monitoring is needed to perform a large variety of tasks; for instance, for program debugging,

testing, visualisation and animation. In the context of this thesis, monitoring is seen as an

important part of general management activities, which have a more permanent and continuous

 - 12 -

nature such as, performance management, configuration management, fault management or

security management. Moreover, particular reference to monitoring in the context of network

management is given, though the thesis intends to be applicable to the more general field of

monitoring of large-scale distributed, networked systems.

Sloman also identifies the following four monitoring activities performed in a loosely coupled,

object-based distributed system [Sloman 94]:

1. Generation: Important events are detected and event and status reports are

generated. These monitoring reports are used to construct monitoring traces, which

represent historical views of system activity.

2. Processing: A generalised monitoring service provides common processing

functionalities such as merging of traces, validation, database updating, combination,

correlation, and filtering of monitoring information. They convert the raw and low-

level monitoring data to the required format and level of detail.

3. Dissemination: Monitoring reports are disseminated to the users, managers or

processing agents who require them.

4. Presentation: Gathered and processed information is displayed to the users in an

appropriate form.

This thesis addresses more directly the first two activities by considering the use of MAs for

generating and processing monitoring information. Nevertheless, agents are naturally excellent

candidates to provide dissemination and presentation of monitoring information as well. For

instance, agents may be dual-role components receiving reports and passing processed

information ‘upwards’.

Monitoring data is generated in the form of status and event reports, and according to different

modalities. For example status reporting can be either periodic or on request, and events can be

detected by either software of hardware probes and reported in a variety of different formats. A

sequence of such reports is used to generate a monitoring trace. Finally, monitoring data can be

generated according to two different models: the polling model and the event-driven model.

As far as processing of monitoring data is concerned, herein we shall consider some of the

basic operations like merging of monitoring traces, combination of monitoring information (i.e.

to increase the level of abstraction of data), filtering of monitoring information (i.e. to reduce

the amount of data), and analysis of monitoring information (e.g. to determine average or mean

variance values of particular status variables, trend analysis, diagnosis etc.). Finally, we shall

consider only a simple dissemination scheme based on broadcasting of all reports to all users.

We should notice that this scheme only works if there are relatively few managers. In general

 - 13 -

more sophisticated dissemination schemes based on subscriptions are necessary ([Sloman 94]

page 321). In that case, specific reports are sent only to those management entities who have

preliminary expressed an interest in (i.e. they have subscribed to) those reports.

An important characteristic of monitoring systems is their intrusiveness, which can be defined

as <<the effect that monitoring may have on the behaviour of the monitored system>> [Sloman

94]. Intrusiveness results from the monitoring system sharing resources with the observed

system (e.g. processing power, communication channels, storage space). Intrusive monitors

may alter the timing of events in the system in an arbitrary manner and can lead to problems

such as: degradation of system performance; a change of the global ordering of these events;

incorrect results; an increase in the execution time of the application; masking or creating

deadlock situations. Delays in transferring information from the place it is generated to the

place it is used means that it may be out of date. For this reason it is very difficult to obtain a

global, consistent view of all components in a distributed system.

A fundamental property of monitoring systems is therefore their scalability. Scalability is

defined in [Casavant 94] as <<the ability to increase the size of the problem domain with a

small or negligible increase in the solution’s time and space complexity>>. Hence, in the

context of this thesis scalability can be defined as the ability to increase the size of the

monitored system and the accuracy of the monitoring system, with a small or negligible

decrease in performance.

It should be mentioned that accuracy is related to scale because a higher level of accuracy

usually results in larger resource consumption. For instance, if polling is used to collect

monitoring information, higher polling rates are necessary to increase the system accuracy.

Scalability is strongly dependent on the architectural features of the monitoring system that is,

in turn, part of a more general management system. Hence, the next sections review the key

management architectures and management paradigms.

2.1.2 Classic Management Architectures

Management systems can use various architectures to provide functionality. The three most

common ones are [Leinwand 96]:

• Centralised;

• Hierarchical;

• Distributed.

 - 14 -

A centralised architecture has the management platform on one computer system, at a location

that is responsible for all management duties. This system uses a single centralised database.

For instance, in the case of a network management system, the single location of a centralised

architecture is used to collect and process all network alerts and events, to retain all network

information, and to access all management applications.

Having all the management applications and information at one point is advantageous because

is useful for troubleshooting and problem correlation and provides convenience, accessibility

and security for the manager. However, this architecture is weak for various reasons, as pointed

out in [Goldszmidt 96b, Martin-Flatin 00], and [Pavlou 96]. First, it does not scale. As the

number of elements of the monitored system grows, monitoring traffic, in turn, increases and

tends to overload the network resources located in the proximity of the management station. In

addition, the processing load at the management station increases. Thus, this model suffers

from both communication and processing bottlenecks caused by the need to transmit and

process large amounts of data at the management station. There can also be an ‘implosion

effect’, with all the responses traversing the small area of the network adjacent to the

management station.

Another problem is that the centralised architecture is not robust because the management

station is a single point of failure. If the connection from the management station to the network

gets severed, all management capabilities are lost. In addition, this approach can be expensive

because it requires powerful management stations in terms of memory and processing

capability.

Furthermore, centralised management tends to be static and inflexible for different reasons. One

is that it may not be able to respond rapidly to dynamic changes in the state of the underlying

network infrastructure. It is in practice unfeasible for a central station to have an accurate

snapshot of the network status especially if the system is characterised by high-frequency

variations.

The other reason is that, in practice, systems following this approach concentrate all the

management intelligence in the management station and rely on pre-defined management

functionalities which require complicated software update procedure to be changed. In network

management this approach is exemplified by protocol-based SNMP management ([Stallings 93]

and [Stallings 96]). For instance, SNMP only supports basic operations such as ‘get’ and ‘set’

for the manipulation of network parameters. More sophisticated operators are provided by

RMOM; however, these are predefined and still limited in functionality.

One way to pursue increased performance and scalability is to adopt a hierarchical

management architecture, which uses multiple systems with one system acting as a central

 - 15 -

server (the main management station) and the others working as clients. Some of the functions

of the management system reside within the server; others run on the clients, which act in the

role of ‘area managers’. For instance, in network management separate client systems can be

configured to collect and pre-process raw data from different portions of the network.

Hierarchical monitoring can be realised in the Telecommunications Management Network

(TMN) [M3010 91], which uses currently OSI Systems Management (OSI-SM) as the base

management technology [Yemini 93]. In a similar fashion, in the context of SNMP simple

monitoring and statistical probes can be introduced using RMON [Waldbusser 95, Stallings

96], which is equivalent to an area manager that collects monitoring information about a

number of elements within a subnetwork.

The common denominator of these approaches is the adoption of simple, pre-defined

functionality that can result only in a limited level of decentralisation of management

intelligence. Monitoring functionality that can actually be decentralised is restrained to

operations such as low-level filtering of monitoring data, generation of alarms on the basis of

simple conditions, and collection of rudimentary statistical information. In addition, these

decentralised area managers operate in pre-defined network locations, which means that they

cannot easily adapt to network changes. Therefore, conventional hierarchical schemes, despite

coping with the scalability problem to a certain extent, inherit the other problems of centralised

management and cannot easily cope with frequently changing, dynamic environments. They are

still inflexible and static solutions. For instance, once a task has been defined in an agent (via

RMON, or CMIP/S with M_ACTION), there is no way to modify it dynamically; it remains

static. Moreover, those system have a limited range of pre-defined actions which can be

invoked but cannot be programmed in an arbitrary way.

The distributed architecture combines the centralised and hierarchical approaches. Instead of

having one centralised system or a hierarchy of area managers controlled by the main station,

the distributed approach uses multiple peer management systems; that is a network of managers

in which there is no clear-cut allocation of resources to management systems. The type of

allocation depends on many factors. For instance, the same resources can be allocated to several

managers if, say, one manager is responsible for security management and the other one for

performance management.

Distributed architectures have been the subject of intensive research in recent years and deserve

a more detailed categorisation. Hence, a more refined taxonomy of distributed architectures is

presented in the next section along with practical examples.

 - 16 -

2.1.3 A New Taxonomy of Management Paradigms

A less conservative taxonomy of management paradigms has been proposed by Martin-Flatin et

al in [Martin-Flatin 97a, Martin-Flatin 97b], and [Martin-Flatin 00]. The main concepts are

summarised herein because they help identifying the approach followed in this thesis. To begin

with they distinguish between two types of approaches: centralised and distributed paradigms.

The former, reflects the features of the centralised architectures discussed in the previous

section. Then, they further divide the distributed paradigms into three categories, leading to the

following paradigms:

• Centralised paradigms;

• Weakly distributed hierarchical paradigms;

• Strongly distributed hierarchical paradigms;

• Strongly distributed co-operative paradigms.

The weakly distributed hierarchical paradigms are substantially equivalent to the hierarchical

architecture discussed in the previous section. These are characterised by the fact that the

management-application processing is concentrated in few managers, whereas the numerous

agents are limited to the role of dumb data collectors.

Centralised and weakly distributed paradigms can be regarded as traditional management

paradigms, whereas strongly distributed paradigms encompass the more recent approaches to

network and system management. We shall describe the latter approaches and identify the

thesis scope.

Strongly distributed paradigms decentralise management processing down to every agent.

Management tasks are no longer confined to managers: all agents and managers take part in the

management application processing. The potential of large-scale distribution over all managers

and agents was anticipated by Yemini et al, in 1991, when they devised the manager-agent

delegation model [Yemini 91]. Those ideas were then fully demonstrated in Network and

System Management by Goldszmidt with his Management by Delegation (MbD) framework

which sets a milestone in this research field [Goldszmidt 96b]. With MbD, network devices

were suddenly promoted from dumb data collectors to the rank of managing entities.

MbD triggered extensive research work on strongly distributed network and system

management. In fact, many strongly distributed technologies have been suggested in the recent

past. Martin-Flatin et al group them into three sets of paradigms [Martin-Flatin 00]: mobile

code, distributed objects, and intelligent agents. The first two belong to the category of strongly

 - 17 -

distributed hierarchical paradigms, which are of major interest in the context of this thesis. The

latter, belongs to the category of strongly distributed co-operative paradigms.

Mobile code paradigms encompass a vast collection of very different technologies, which share

the idea of providing flexibility by dynamically transferring programs into agents and having

these programs executed by the agent. The application of code mobility and particularly of

MAs to network and system management is closely related to this thesis and will be discussed

in greater detail in Chapter 3. Examples of platforms used to implement this approach include

Agent Tcl, Ara, Sumatra, Telescript, Aglets, Facile, Mole, Obliq, and Tacoma (see references

in [Fuggetta 97]). In 1996, two working groups were created, one by IETF and another by the

ISO, in order to integrate mobile code concepts in their respective management frameworks.

This resulted in the definition of the Script MIB ([Levi 96, Levi 99, Schonwalder 97,

Schonwalder 99], and [Schonwalder 00]) and the Command Sequencer management function

[X753 97].

Distributed object technologies represent a second type of strongly distributed hierarchical

paradigms. For brevity, only the main ones are summarised below.

• The Common Object Request Broker Architecture (CORBA) [Siegel 96]. The Joint Inter-

Domain Management (JIDM) group has been created to provide tools that enable

management systems based on CMIP, SNMP, and CORBA to interoperate. CORBA

has received wide acceptance in telecommunications, where it is gradually becoming a

de facto standard. The Telecommunications Information Networking Architecture

Consortium (TINA-C) [Barr 93] selected CORBA for its distributed processing

environment in 1996 and, more recently, most telecommunication equipment vendors

are gradually incorporating it to manage their switches.

• Distributed Java. After Java Remote Method Invocation (RMI) [JDK-RMI] was

released in 1997 a new way of managing networks and systems gradually emerged.

Java RMI makes it possible to program a management application like a distributed

object-oriented application. When Java-RMI is combined with Object Serialisation

[JDK-OS] (which allows objects to be transferred from host to host) management

application designers have a powerful technology that allows exploitation of

combination of mobile code and distributed object technologies. The Java Management

API Architecture (JMAPI) is a set of tools to build management applets supporting

RMI [JMAPI 96]. It supports MIB-II (see [McCloghrie 91] and [McCloghrie 94]) by

mapping all managed objects onto Java objects. The Java Dynamic Management Kit (J-

DMK) [JDMK 98] is a component-oriented management toolkit based on JavaBeans

which comes with a library of core management services and can communicate via

 - 18 -

RMI, HTTP, and SNMP. This toolkit allows to both ‘push’ and ‘pull’ code and offers a

very powerful way of building a strongly distributed management application.

• Web-based Enterprise Management (WBEM). The WBEM consortium was launched by

Microsoft in 1996, about the same time that development started on the JMAPI, with

the goal of developing an open, vendor-neutral architecture for web-based enterprise

management. This initiative is now evolving under the influence of the Desktop

Management Task Force (DMTF), and it is difficult to assess whether it will succeed in

its attempt to establish new management standards [Thompson 98].

• The Open Distributed Management Architecture (ODMA) [ISO-WG4 95]. The purpose

of ODMA is to extend the OSI management architecture and, thus, the TMN

architecture with the Reference Model of the ISO Open Distributed Processing (RM-

ODP) framework, which provides the specification of large-scale, heterogeneous

distributed systems. In ODMA, there are no longer managers and agents with fixed

roles as in OSI management. Instead, computational objects may offer some interfaces

to manage other computational objects (manager role), and other interfaces to be

managed (agent role). ODMA also renders the location of computational objects

transparent to the management application.

Finally, strongly distributed co-operative paradigms are of marginal relevance to the thesis and

are only briefly discussed for the sake of completeness. In this case, the agents implementing

the management task originate from the Distributed Artificial Intelligence (DAI) community

and, more specifically, from Multi-Agent Systems (MASs), where researchers are modelling

complex systems with large groups of intelligent agents (IAs). What has not been achieved is a

common understanding of what an IA is. An approach which has encountered a great deal of

success outside the realm of DAI is the one proposed in 1994 by Wooldridge and Jennings.

Instead of coming up with a precise definition of what an IA should or should not be, they have

defined a core of compulsory properties and considered any other property to be application

specific. For them, IAs must exhibit four properties (see [Wooldridge 94] and [Wooldridge

96]):

• Autonomy. An IA operates without direct human intervention, and has some kind of

control over its actions and internal state.

• Social Ability. IAs co-operate with other IAs (and possibly people) to achieve their

goals, via some kind of agent communication language.

• Reactivity. An IA perceives its environment and responds in a timely fashion to changes

that occur in it.

 - 19 -

• Pro-activeness. An IA is able to take the initiative to achieve its goals, as opposed to

solely reacting to external events.

Whereas optional properties of IAs include mobility, veracity (IAs do not knowingly

communicate false information), and rationality (IAs are not chaotic, they act so as to achieve

their goal).

Later on, Franklin and Graesser revisited the mandatory and optional properties of IAs. For

them, IAs must be reactive, autonomous, goal-oriented (pro-active and purposeful), and

temporally continuous (continuously running). They can be optionally communicative (i.e. able

to communicate, co-ordinate, and co-operate with other agents), able to learn, mobile, and have

a human-like character [Franklin 96].

When IAs are co-operative, they are exposed to heterogeneity problems and, therefore, need

standards for agent management, communication languages, etc. The Foundation for Intelligent

Physical Agents (FIPA) consortium is currently working on such standards (see [Chiariglione

98, FIPA] and [FIPA 98]).

Finally, more and more researchers are now trying to use IAs to manage networks and systems.

Some examples are described in [Busuioc 94a, Busuioc 94b, El-Darieby 98, Grimes 96, Keller

96, Leckie 97, Lewis 97, Magedanz 95, Magedanz 96b, Mountzia 97a, Mountzia 97b, Mountzia

98, Sahai 97a, Somers 96, Steenekamp 96, Wies 97, Zhang 96, Zhang 97]. A state-of-the-art

paper on the application of IA to management is described in [Cheikhrouhou 98].

2.1.4 Approaches to Delegation of Management Responsibility

An important aspect of distributed management is the ability of delegating management

responsibility to area managers and peer management entities. In the enterprise world,

delegation has been defined as the process of transferring power, authority, accountability, and

responsibility for a specific task to another entity (see [Evans 86] and [Mullins 89]). In

distributed N&SM, delegation always goes down the management hierarchy [Martin-Flatin 00]:

a manager at level {N} delegates a task to a subordinate at level {N+1}. This is known as

downward delegation, which is an example of vertical delegation, typical of hierarchical

paradigms. Contrary to vertical delegation, horizontal delegation involves peer entities at the

same level and is typical of distributed co-operative paradigms used in DAI.

Delegation is normally a one-to-one relationship, between a manager and an agent in

hierarchical management, or between two peers in co-operative management. In the latter case,

there could also be one-to-many relationship where a task is collectively delegated to a group

 - 20 -

of entities. Many-to-many relationships are really in the realm of co-operation rather than

delegation [Martin-Flatin 00].

Mountzia and Dreo-Rodosek suggest that two additional forms of delegation are useful in

management: static and dynamic delegation [Mountzia 96]. With static delegation the

functionality is pre-allocated to distributed entities at management design time and cannot be

dynamically expanded or changed without re-programming and re-compilation on the remote

entity. This approach is usually acceptable for standard, routine management tasks such as low-

level monitoring with RMON [Stallings 96].

On the other hand, if dynamic delegation is supported, functions can be delegated during the

operational phase of management, which improves the flexibility of the management system.

This approach enables a management system to be adjusted to changes and/or new

requirements at run time. For instance, in network management, a flexible expansion of the

network element functionality is possible, as capability can be modified at any time by simply

uploading new executable code to the elements. This capability is, for instance, supported by

MbD and is particularly important for managing large-scale heterogeneous networks. These

networks may evolve very rapidly making it quite difficult for the management system designer

to foresee every single management need at design time.

Mechanisms for dynamic delegation can support both spatial distribution —i.e., distribution

over different nodes— and temporal distribution —i.e. distribution over time— of management

functionality ([Goldszmidt 96c] and [Goldszmidt 98]). Spatial distribution reduces the network

bandwidth used for management purposes and the delays involved in accessing remote data.

For example, applications that need to evaluate and react to transient events of short duration,

such as noise burst in a line, should be distributed to the devices. In general, spatial delegation

provides the means to distribute the monitoring functionality, compress data locally, and to

send to a manager only the most significant information.

Temporal distribution is the ability to dynamically delegate new management code to a device

when it is needed. Temporal distribution assists the developers of management applications to

modify their management policies as administrative requirements change, and as the managed

environment grows and evolves. Management applications can use dynamic code delegation to

address temporal problems, such as the detection of intrusion attempts on a networked

workstation, reacting to problem situations or performing load balancing. The network health-

checking example described in [Goldszmidt 93] shows the need for this capability. As the

parameters defining the health of a network vary among different systems and during different

times, health functions should be dynamically bound to agents when needed.

 - 21 -

Both spatial and temporal delegation can be initiated either by a manager or by system events.

The former is also called user-driven delegation, while the latter is usually referred to either as

event-driven or data-driven delegation. In other words, delegation can be caused either by the

changing requirements on the applications and services or by changes on the distributed system.

In particular, event-driven delegation can provide a very powerful mechanism to increase

dramatically the autonomy and survivability of a system, providing a fast adaptability to

resource constrains [Goldszmidt 96a, Goldszmidt 96c].

To conclude we can say that this thesis falls under the umbrella of vertical delegation, whereby

a main management station distributes the main monitoring task to one or more MAs that, in

turn, may distribute their part of the sub-task to other agents. As will become clearer after the

proposed agent system will be described, agent location is computed dynamically and can

change over time. Hence, dynamic, spatial, and temporal distribution are pursued as well.

Finally, agent migration can be triggered by network or system events according to the event-

driven delegation concept.

2.2 Mobile Agents Overview

After almost a decade of discussion some concepts and definitions surrounding the agent world

are still blurred since no strong agreement has been reached by the various research

communities interested in this area. This thesis does not aim at contributing toward those

theoretical aspects involved in agent architectures and terminology. As such, we propose a

more pragmatic approach to introducing MAs that starts off by focusing on two important

features, code mobility mechanisms and distributed systems design paradigms. That will lead us

to the definition of MAs which is used in the thesis. To conclude, a panorama of the MAs main

advantages, open issues, and general applications is given. The particular application of MAs to

the management realm is of strong relevance to the thesis and is, therefore, covered in greater

detail in Chapter 3.

2.2.1 Code Mobility Mechanisms

In this section we introduce the main code mobility mechanisms [MCB] based on the

classification proposed in a seminal paper on this topic by Fuggetta et al [Fuggetta 97]. The

concepts presented there are also elaborated by other authors in [Baldi 97, Cugola 96, Cugola

97, Ghezzi 97], and [Carzaniga 97]. The large number of references to those papers suggests

wide acceptance of the concepts and terminology presented therein.

 - 22 -

The code mobility concept originates in the work aiming at supporting the migration of active

processes and objects (together with their state and associated code) at the operating system

level. For instance, migratory systems such as Locus [Thiel 91] and Cool [Lea 93] support

transparent process and object migration respectively, regardless of the underlying hardware

substrate. Transparent migration at operating system level addresses the issues that arise when

code and state are moved among the hosts of a loosely coupled, small-scale distributed system.

This approach does not tend to be suitable for large-scale networks and systems, particularly

those of the scale of the Internet. Papaioannou in his recent PhD thesis builds an argument

against location transparency in large-scale systems [Papaioannou 00a]. He argues that location

transparency, by creating the illusion that all components exist within the same machine, breaks

the fundamental computing layers of abstractions.

A more recent approach for large-scale distributed systems is the one of location-aware

programming based on Mobile Code. This approach, contrasts the philosophy of location

transparency and exhibits several innovations [Fuggetta 97]:

• Code mobility is exploited on a large scale rather than a small scale. In large-scale

systems networks are composed of heterogeneous hosts, managed by heterogeneous

authorities, connected by heterogeneous links.

• Programming is location aware and mobility is under the programmer’s control.

Location of computational entities may have a significant impact on heterogeneous,

large-scale systems. Location-aware applications may take actions based on the

knowledge of the locations of the other application components.

• Mobility is not performed just for load balancing. Contrarily to operating system level

migration, mobile code systems are oriented towards service customisation, dynamic

extension of applications functionality, and support for nomadic computing.

Existing Mobile Code Systems (MCSs) support two forms of code mobility for large-scale

systems: weak and strong mobility. A small parenthesis on MCSs needs to be open in order to

introduce some important concepts and terminology, before elaborating more on those forms of

mobility.

The main difference between traditional systems – e.g. those supporting location-transparent

migration at operating system level – and MCSs is that the former provide network

transparency by means of a True Distributed System layer; whereas the latter manifest to the

programmer the structure of the underlying computer network. An example of the first case is

CORBA in which the programmer is never aware of the network topology and always interacts

with a single well-known object broker [Siegel 96]. Conversely, in MCSs a Computational

 - 23 -

Environment (CE) is layered upon the network operating system of each network host. The CE

maintains the identity of the host where it is located and provides the application with the

capability to dynamically relocate computation onto different hosts.

Continuing to follow the approach presented in [Fuggetta 97], we can distinguish the

components hosted by the CE as Executing Unit (EU) and resources. EUs represent sequential

flows of execution, such as single-threaded processes or individual threads of multi-threaded

process. Resources are entities which can be shared among multiple EUs, such as a file or an

object shared by different threads. In turn, an EU may be modelled as a composition of a code

segment, which provides the static description of a computation behaviour, and a state

composed of a data space and an execution state. The data space is the set of references to

resources that can be accessed by the EU. The execution state contains private data that cannot

be shared, as well as control information related to the EU state, such as call stack and

instruction pointer.

Considering the above definitions, Fuggetta et al define strong mobility as the ability of an

MCS to allow migration of both the code and execution state of an EU between different CEs.

Whereas, weak mobility is the ability of an MCS to allow code movement across different CEs.

Code may be accompanied by some initialisation data but no migration of execution state is

involved in weak mobility.

A mobility mechanism orthogonal to execution state migration relates to data space

management. Upon migration of an EU to a new CE, its data space – i.e., the set of bindings to

resources accessible by the EU – must be rearranged. This may involve voiding bindings to

resources, re-establishing new bindings, or migrating some resources to the destination CE

along with the EU. Fuggetta et al describes this particular aspect of code mobility in detail in

[Fuggetta 97]. This is not a central theme in this thesis and is, hence, not discussed in greater

detail.

The most comprehensive form of code migration is termed higher-order mobility, the ability of

an MCS to allow migration of code, execution state, and data space of an EU between different

CEs. Higher-order mobility is usually realised over systems based on the continuation-passing

style. In this context, a function together with its defining scope is termed closure; a

continuation is a closure that represents the state of execution; and a closing environment

includes the data space. Hence, higher-order mobility is defined as the ability to transfer

arbitrary closures and continuations, together with their closing environment.

To summarise, there are five main code mobility mechanisms or paradigms:

 - 24 -

• Process Migration. Concerns the transfer of an operating system process from the

machine where it is running to a different one. Process migration facilities manage the

binding between the process and its execution environment and operate at operating

system level. This has been used in loosely coupled, small-scale distributed systems to

achieve load balancing across network nodes.

• Object Migration. Object migration makes it possible to move objects among address

spaces, implementing a finer grain mobility with respect to systems providing migration

at the process level. In some cases object migration is achieved transparently, that is

without user intervention or knowledge.

• Weak Mobility. Weak mobility is the ability of an MCS to allow code movement, along

with its initialisation data, across different CEs. This is the first type of mobility

supported in current MCSs which is meant to target the requirements of large-scale

distributed systems. This is the mobility mechanism exploited in the context of this

theses.

• Strong Mobility. Strong mobility is the ability of an MCS to allow migration of both the

code and execution state of an EU between different CEs. This mechanism involves

significant migration overheads related to the need to save the execution state along

with the code. These overheads may be contained with discrete migration, i.e., if

migration is triggered only at particular moments when the execution state is relatively

small. The work presented in this thesis does not exploit directly strong mobility,

although in principle it could exploit discrete strong mobility.

• Higher-order Mobility. Higher-order mobility is the ability of an MCS to allow

migration of code, execution state, and data space of an EU between different CEs. The

overheads associated to this mechanism are even heavier than those of strong mobility.

Hence, higher-order mobility is not exploited in this thesis. An in-depth study of

higher-order mobility is presented in [Halls 97].

It should be noted that a simple degree of data space management will be required also in weak

and strong mobility. What differentiates higher-order mobility from weak and strong mobility is

the focus on both execution state and data space management during migration.

2.2.2 Design Paradigms

While in the previous section we focused on the mobility mechanisms, here we identify the

main software design paradigm behind those mechanisms. The main design paradigms

 - 25 -

according to the classification presented in [Cugola 96, Baldi 97, Carzaniga 97, Fuggetta 97,

Ghezzi 97], and [Baldi 98] are:

• Client-server (CS). In the CS paradigm, a server component exports a set of services.

The code implementing those services is owned by the server component – i.e. the

server holds the know-how. It is the server who executes the services; thus, it has the

processor capability. The server also has the resources which are accessed by the client

through the server. The CS paradigm is widely adopted in network-centric applications

but cannot be viewed as a paradigm for mobile computations because no mobility takes

place.

• Remote Evaluation (REV) or Code Pushing. REV has been introduce by Stamos and

Gifford in their pioneering work described in [Stamos 90a] and [Stamos 90b]. In REV,

an application in the client role can dynamically enhance the server capability by

sending code to the server. Subsequently, clients can remotely initiate the execution of

this code that is allowed to access the resources collocated within the server. Therefore,

this approach can be seen as an extension of the CS paradigm whereby a client, in

addition to the name of the service requested and the input parameters, can also send

code implementing new services. Hence the client owns the code needed to perform a

service, while the server offers both the computational resources required to execute

the service and the access to its local resources. The REV principles have led to the

more recent approach usually referred to as code pushing. This design paradigm usually

relies on the object migration mechanism or on the weak mobility mechanism.

• Code on Demand (COD) or Code Pulling. In COD a client downloads or pulls required

code from a code repository (or code server) and links it dynamically in order to

perform a task. Hence, the client owns the resources needed to perform a service but

lacks part of the code (or logic) required to perform it. The COD principles have led to

the more recent approach usually referred to as code pulling. Similarly to REV, COD

usually relies on the object migration mechanism or on the weak mobility mechanism.

• Mobile Agent (MA). An MA is essentially an autonomous EU containing the logic to

perform a given task and migrate under its own control from machine to machine in a

heterogeneous network. While in execution at a given node, the MA is able to suspend

its execution at an arbitrary point, transport itself to another machine, seamlessly

resume execution from the point of suspension, and possibly gain local access to the

resources of the new node. Hence, the agent owns the code to perform a service but

lacks the resources needed to accomplish it. The server owns those resources and

provides an environment to execute the code sent by the client. The mobility

 - 26 -

mechanisms adopted to realise this design paradigm are weak, strong, or higher-order

mobility.

Since the work described herein adopts the MA design paradigm (and the weak mobility

mechanism), the MA topic deserves further space. This is the subject of the next sections.

2.2.3 Definition of Mobile Agent

The term ‘agent’ or ‘software agent’ is often abused and rarely defined precisely. The problem

of coming up with an agreed definition of agent boils down to identifying the features that

distinguish an agent from a common computational entity. This has raised controversial

arguments for nearly a decade and only recently those features have been identified. Theoretical

studies on agents and artificial intelligence have come to the conclusion that a computational

entity can be regarded as an agent if it exhibits some of the following properties: social ability,

autonomy, reactivity, pro-activity, adaptability, persistency, and ability to learn, communicate,

co-operate, and move [Wooldridge 95].

Some of those features actually characterise intelligent software agents. Mobility is an

orthogonal property with respect to the others, that is not all agents are mobile. So an MA has

the mandatory property of being mobile and exhibits a sub-set of the above agent properties.

Typically, MAs are computational entities that act on behalf of some other software entity,

exhibit some degree of autonomy, and are particularly featured with migration capability. In the

context of this thesis MAs exhibit also re-activeness, pro-activeness, adaptability, and cloning

capability, whereby agent cloning is the ability of agents to create and dispatch copies, or

‘clones’, of themselves.

In the proposed framework, MAs (or simply ‘agents’ for brevity) support weak mobility and are

used to realise strongly distributed hierarchical management. Agents are not constrained to

particular migration patterns and are not limited in the number of links they can traverse. For

this reason we say that these agents realise an unconstrained weak mobility mechanism.

Conversely, with constrained mobility an agent, upon its creation in the client site (by the client

application) is only allowed to migrate to a remote server where its execution will be confined

[Bohoris 00b] and [Bohoris 00c]. This means that only one-hop mobility is allowed since, upon

the first migration, the agent is not any more permitted to migrate to other nodes.

Finally, it should be mentioned that cloning is often used to realise agent migration [Shehory

98] whereas it is used herein to realise delegation of management responsibility. In particular,

agent migration and cloning are used to realise vertical, dynamic delegation, aiming at spatial

and temporal distribution.

 - 27 -

2.2.4 Example Mobile Agent Platforms

The thesis work is not tied up with any particular mobile agent platform because the hypothesis

is evaluated by simulations and theoretical analysis rather than by experimental work on a

prototype implementation. However, the continuation of the work described herein may involve

measurements on real systems and, in turn, the choice of a suitable agent platform. Moreover,

the feasibility study of the concepts developed herein has involved the consideration of the

features of existing platforms to make sure that the requirements of the proposed agent system

can be met by real systems. Hence, a short review of the some of the main agent platforms is

reported hereafter. This review is not meant to be comprehensive because such information is

already available in the literature [Cugola 96, Cugola 97, Fuggetta 97, Ghezzi 97, Gray 97,

Halls 97, Pham 98, Baumann 99, Papaioannou 00a]. The focus is on the identification of

platforms that might be suitable to further the thesis work. The main requirement is the support

of weak mobility.

Examples of platforms supporting weak mobility are: Obliq [Cardelli 95], Aglets [IBM 99],

Tacoma [Johansen 95a] and [Johansen 95b].

Examples of platforms supporting strong mobility are: Agent-Tcl [Gray 95], Mole [Straβer 96]

and [Straβer 97], Tycoon [Matthes 95], Telescript [White 94] [White 95a] and [White 95b],

Messenger [Di Marzo 95], Ara [Peine 97].

Examples of platforms supporting higher-order mobility are: Tube [Halls 97], Kali Scheme

[Cejtin 95], Sumatra [Ranganathan 96] and [Ranganathan 97].

2.2.5 Advantages Claimed for Mobile Agents

One of the first papers that tried to identify the potential benefits of MAs is the seminal white

paper by Harrison et al [Harrison 95], later published in [Chess 97]. The authors elaborate on

the possible individual advantages of MAs to reach the conclusion that the real benefits of MAs

are related to ‘aggregate’ rather than ‘individual’ advantages.

Examples of individual advantages identified by Harrison at el. are:

• MAs can provide better support for mobile clients. Mobile devices such as laptop

computers are only intermittently connected to a network, hence have only intermittent

access to a server. Clients may develop an agent request while disconnected, launch the

agent during a brief connection session, and then immediately disconnect. Another

advantage lies in the ability of an agent to perform information retrieval and filtering at

 - 28 -

a server and return to the client only the relevant information. This is particularly

beneficial even for relatively low-bandwidth connections and addresses the issues of

mobile devices characterised by limited storage and processing capacity. Therefore, an

agent can play a significant role in reducing network traffic, can support asynchronous

interaction, and realise remote searching and filtering.

• MAs facilitate real-time interaction with server. An agent executing locally at server

side has relatively low and certainly bounded latency and can provide more

opportunities for error recovery.

• MA-based queries and transactions can be more robust. Remote Procedure Call (RPC)

client-server computing, though reasonably robust in LAN-based systems, tends to be

less reliable over wide-area networks. MAs offer two advantages: 1) they can provide

reliable transfer between client and server without requiring reliable communication

(e.g. they can handle disconnected computing); and 2) they can deal with server

unavailability by means of recovery mechanisms.

• MAs may facilitate electronic commerce. Although MAs do not offer any technical

advantage here, they do offer advantages to vendors, service providers, and users. For

instance, MAs are a plausible method for vendors to distribute the client end of a

transaction protocol in a device-independent way.

However, these individual advantages can also be addressed in an ad hoc manner with

alternative approaches, such as Remote Procedure Call (RPC) [Birrell 84] or asynchronous

messaging [Cypser 91], or by redesigning communication protocols. MAs are particularly well

suited to addressing various issues, providing ‘aggregate’ rather than ‘individual’ advantages –

i.e., the situation in which more than one individual advantage is achieved through the use of

MAs.

The claims introduced by Harrison et al have sparked wide interest and seem to be still valid.

After half a decade of intensive research work the list of individual advantages claimed to MAs

has grown. However, nobody has yet found the killer application for MAs, though the

conditions which make the MA design paradigm a preferable choice have been identified more

clearly. In the rest of this section we summarise the latest individual advantages claimed for

MAs, highlighting some of the strongest points which favour them. Some of these advantages

are complementary to the ones suggested by Harrison et al, whereas others are included in their

list.

 - 29 -

The individual advantages of MAs, as claimed almost unanimously by [Gray 97, Rothermel 97,

Bieszczad 98c, Baumann 99, Lange 98, Lange 99, Papaioannou 00a, Papaioannou 00b], are the

following:

• They reduce network load. MAs allow users to package a conversation and dispatch it to

a destination host where interactions take place locally. MAs are also useful when

reducing the flow of raw data in the network by moving the computation to the data

rather than the data to the computation.

• They overcome network latency. For critical real-time systems, network latency may be

not acceptable. MAs offer a solution, because they can be dispatched from a central

controller to act locally and execute the controller’s directions directly.

• They can offload low-powered devices. MAs allow a low-powered client such as small

mobile devices to offload work to a high-powered proxy or an overloaded server

offload work to clients.

• They encapsulate protocols. As protocols evolve to accommodate new requirements for

efficiency or security, it is cumbersome if not impossible to upgrade protocol code

efficiently. As a result, protocols often become a legacy problem. MAs can move to

remote hosts to establish ‘channels’ based on proprietary protocols.

• They can dynamically enhance server capability. Because MAs can relocate

computational logic, servers become much simpler. Effectively, a server becomes

merely an executing environment for hosting MAs. The server capability can be

dynamically extended by sending new MAs. More generally, MAs can be used to

distribute or upgrade software on demand.

• They provide a natural approach to disconnected computing. Mobile devices often rely

on expensive or fragile network connections. Tasks requiring a continuously open

connection between a mobile device and a fixed network can be embedded into MAs

which can operate asynchronously and autonomously. In fact, MAs do not necessarily

require a permanent connection during their operation.

• They adapt dynamically. MAs can sense their execution environment and react

autonomously to changes. MAs can distribute themselves among the hosts to maintain

the optimal configuration for solving a particular problem.

• They are naturally heterogeneous. MAs are generally computer- and transport-layer-

independent, hence can provide optimal conditions for seamless system integration.

 - 30 -

• They are robust and fault-tolerant. MAs’ ability to react dynamically to unfavourable

situations and events makes it easier to build robust and fault-tolerant distributed

systems. For instance, MAs can be dispatched to a different host upon being warned

that their host is about to shut down.

• They provide natural support for distributed computation. MAs are inherently

distributed and, as such, can be a fundamental enabler for distributed computation.

• They potentially result in more scalable distributed applications. Because they can be

dynamically located and can maintain location optimality through migration, MAs can

result in increased scalability.

The work described in this thesis intends to exploit and assess some of the above advantages. In

particular, the MA’s ability to reduce network load and latency, to adapt dynamically to

network environment and to increase the scalability of a distributed monitoring application are

considered.

2.2.6 General Mobile Agent Applications

As mentioned in the section above, nobody has yet identified a single killer application for

MAs. However, there are plenty of applications that can benefit from using the MA paradigm.

Examples of applications that clearly benefit from the MA paradigm have been identified by

[Harrison 95, Chess 97, Fuggetta 97, Pham 98, Wooldridge 98, Baumann 99, Lange 99,

Milojicic 99]. These are:

• E-commerce and personal assistance. MAs may be used for real-time access to remote

resources in commercial transactions, and for acting and negotiating on behalf of their

creator.

• Secure brokering. In collaborations in which not all the collaborators are trusted, the

parties could let their MAs meet on a mutually agreed secure host.

• Distributed information retrieval. MAs can be dispatched to remote information sources

where they locally create search indexes or perform extended searches on behalf of the

originator.

• Telecommunication networks services. Support and management of advanced

telecommunication services are characterised by dynamic network reconfiguration and

user customisation. MAs may function as the glue keeping the systems flexible yet

effective.

 - 31 -

• Workflow applications. The flow of information between co-workers may be supported

by MAs. In addition to mobility, they provide a degree of autonomy to the workflow

item.

• Monitoring and notification. An MA can locally monitor a given information source and

notify specific events without being dependent on the system from which it originates.

• Information dissemination. MAs embody the so-called Internet ‘push’ model. Agents

can disseminate information such as news to a number of customers. They can provide

access policies and implement the functionality needed to display the news article in

accordance with the capability of the output medium.

• Software deployment. MAs can be used to automate the process of software installation

and upgrading. The agents can gather information about the target environment and

user preferences before transporting the software package.

• Parallel processing. MAs may create a cascade of clones and administer parallel

processing tasks.

The above list covers general applications. The more specific class of application in the

management arena is more closely related to this thesis and is, then, reviewed in greater detail

in the next chapter.

2.2.7 Issues Associated to Mobile Agents

Despite their numerous benefits and application scenarios, MAs still pose several problems that

require further study. Some of them are discussed in [Harrison 95, Chess 97, Rothermel 97,

Oppliger 99], and [Papaioannou 00b], and are highlighted below.

• Security. This is one of the most emotive issues raised when discussing MA systems.

Lack of security guaranties is one of the major arguments against MAs and a driver for

a wealth of research in this subject [Vigna 98]. It should be mentioned that much of the

effort in security has been towards host protection, whereas less work has addressed the

problem of protecting the MA integrity against malicious hosts and execution

environments. Another problem is that security measures often result in performance

and functional limitations. Finally, the real success of MAs is conditional to

overcoming security concerns in order to achieve trust on the part of third-party server

providers along with their willingness to allow users to customise server behaviour.

• Safety. A safe environment will make sure that MAs can be executed only ‘where’ and

‘if’ a sufficient amount of resources such as processing power and local storage

 - 32 -

capacity is available and that concurrent and consistent access to the resources

manipulated by the MAs is guaranteed. This also relates to the willingness of the third-

party service providers to sustain the MA’s computational load.

• Secrecy. MAs can be entrusted with private information such as user profile

information, user authentication data, or user negotiation preferences. Protecting an

MA is not simple since agents are invariably interpreted within an execution

environment. Mechanisms that ensure that agents maintain the privacy of their

originator need further attention.

• Transactional support. A considerable part of today’s commercial applications requires

a high degree of robustness. Moreover, transactional support is a pre-requisite for an

increasing number of tasks. This will require a tight integration of agent technology and

transaction management. There are two challenges to achieve this integration

[Rothermel 97]. Firstly, the identification of transaction models which suit the

asynchronous nature of agents. Secondly, the development of agent recovery

mechanisms.

• Standardisation and interoperability. Despite the efforts toward standardising agent

systems in order to allow for full interoperability (see [MASIF 97, FIPA, FIPA 98], and

[Chiariglione 98]), further work is required before agents can fully interoperate and run

across different agent execution environments.

• Limited Availability of agent execution environments. Agent execution environments are

not widespread and it is difficult to propagate them onto the management site,

connectivity provider site, service provider site, and optionally also at the terminal side.

This is envisioned to happen in the near future but as of today it represents a problem.

• Complexity. MA-based management systems are likely to be quite complex to design

and debug because it will be difficult to determine their behaviour in a real, dynamic

network environment. Whereas their strength (in comparison to the CS design

paradigm) resides in easier implementation, deployment, and maintenance. Debugging

a distributed system is difficult. An MA distributed system is particularly difficult

because it involves mobile autonomous software entities whose behaviour is often

determined by the environment in which they sit and by their perception of it. Although

some work has been done on agent design [Aridor 98], on architectural styles for agent

distribution [Weir 97], and on decomposition patterns for mobile-code based

management [Liotta 98b], the application of these design techniques to the field of

management has not been investigated so far. Finally, it is not clear how agent-based,

 - 33 -

delegated management should be used to pursue a real automation of management

itself.

• Limited availability of quantitative performance evaluation. The ability of the MA

paradigm to result in increased performance, scalability and flexibility in comparison to

the CS one has been claimed by many authors. Though acceptable in principle, this

claim has not corresponded to a widespread application of the MA paradigm the

management arena. One of the reasons is that not enough work has been carried out to

assess its strength in a qualitative fashion. Opponents of the MA paradigm suggest that,

in fact, an alternative direction could be to enable RPC-based client-server interactions

to match the advantages of MAs.

• Migration overheads. Agent migration involves overheads that need careful

consideration. With today’s platforms, migration time between two hosts is in the order

seconds (see [Bohoris 00c] and [Knight 99]); migration traffic depends on agent size

and state and on the serialisation mechanism; finally, processing overheads are

associated with the serialisation and de-serialisation process. Further study is required

to reduce migration overheads which limit significantly the MA application domain.

• Control structures. Today’s MA systems allow the creation and cloning of agents, while

efficient mechanisms for controlling agent migration and termination have not been

sufficiently investigated. Algorithms for agent location, termination and for orphan

detection are discussed in [Baumann 99]. Agent autonomous migration is a potential

source of instability if the triggered mechanisms are not well thought out and fine

tuned. The stability of MA systems is another interesting subject which requires further

investigation. More generally, mechanisms to manage agent mobility in the context of

integrated fixed and mobile networks are needed. A mobile networking environment is

particularly dynamic as it involves a large number of simple, mobile terminals. Agent

control mechanisms are particularly important to prevent instability and require further

work.

This thesis tackles more closely the last three issues by providing a quantitative, comparative

study of performance and scalability between centralised and agent-based distributed

monitoring. The thesis evaluates the impact of migration overheads and presents a simple self-

controlled system based on autonomous agents.

 - 34 -

2.3 Networks and Discrete Locations

2.3.1 The Agent Location Problem

A major requirement on the active, distributed monitoring system proposed in this thesis is its

ability to place MAs efficiently within the monitored system. The system will be partitioned

into sub-systems, each of which will be monitored by one or more MAs acting as local area

managers. In this context, the agent location problem is the one of computing the system

partitioning and the location of MAs within those partitions. This problem introduces the

following constraints:

• The MAs implementing the monitoring operation have to be placed in strategic locations

which result in near-minimal overall incurred traffic and/or response time;

• The MA deployment time must be characterised by a predictable upper-bound which

must, in turn, be small compared with the overall duration of the monitoring operation

itself.

The first problem is analogous to the one of locating multiple emergency facilities in a transport

network. In that case, emergency facilities need to be placed in a way that minimises either the

total travelling cost (p-median problem) or the maximum travelling time (p-centre problem).

In the case of distributed monitoring, the total travelling cost is the equivalent of the total traffic

incurred by the agents in performing the monitoring operation, whereby network traffic is

assumed proportional to the total number of links traversed by packets (see Chapter 5 for a

specification of the adopted ‘traffic’ metric). For instance, if agents follow the “polling”

technique, the cost associated with request and response packets will be proportional to the

packet size and to the total number of links traversed by those packets.

Similarly, maximum travelling time is the related to the response time of the monitoring system

(see Chapter 5 for a specification of the adopted ‘response time’ metric). In the case of polling-

based monitoring, this is the span of time elapsed between issuing a request packet by the agent

and the arrival of the corresponding response packet. We should add to that the agent-to-

monitoring station communication time.

Due to the equivalence between the agent problem and the centre and median problems, the

former will be specified more rigorously through the formulation of the latter problems. The

formulations described below are extracted from textbooks on graph theory and location theory

to which the interested reader is referred for further details ([Handler 79, Tansel 83a, Tansel

 - 35 -

83b, Buckley 90, Evans 92, Daskin 95]). Herein we describe the basic concepts necessary to

formulate the agent location problem, a focal problem of this thesis. Existing approaches to

solving location problems relevant to this thesis are reviewed in Chapter 3.

2.3.2 Classification of Location Problems

Network location problems occur when a number of facilities or suppliers are to be located on a

network. The network of interest may be a road network, an air transport network, a network of

shipping lanes, or a communication network. Given a set of suppliers and a set of demand

points, the goal is to locate the suppliers in a way which minimises a given objective function

which reflects costs.

A comprehensive classification of location problems is presented in [Tansel 83a]. We report

here a simplified classification presented in [Evans 92] which classifies location problems

according to three characteristics:

• The potential location of the facilities to be located – either at vertices or anywhere on

the network;

• The location of demand points – either at vertices or anywhere on the network;

• Objective function – either to minimise the total cost to all demand points or to

minimise the maximum cost to any demand point.

A simple classification scheme is depicted in Figure 2-1, which highlights (with shaded boxes)

the particular class of problems within the scope of the thesis. Being interested in

communication networks both the facility and the demand nodes will be located at vertices.

More specifically, in our context, a facility is an area manager – i.e., an MA – and the demand

points are the monitored nodes.

 - 36 -

Location Problems

Unrestricted
Facility

Vertex
Facility

Unrestricted
Demand

Unrestricted
Demand

Vertex
Demand

Vertex
Demand

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

Min
Max
Cost

G
en

er
al

 A
bs

ol
ut

e
C

en
tr

e

G
en

er
al

 A
bs

ol
ut

e
M

ed
ia

n

A
bs

ol
ut

e
C

en
tr

e

A
bs

ol
ut

e
M

ed
ia

n

C
en

tr
e

M
ed

ia
n

G
en

er
al

 C
en

tr
e

G
en

er
al

 M
ed

ia
n

Figure 2-1. Classification of location problems according to [Evans 92].

In the case in which both facilities and demands occur only at vertices, the centre of a graph is

any vertex whose farthest vertex is as close as possible. Other terms are used in the case of

unrestricted locations. A general centre is any vertex whose farthest point in the graph is as

close as possible. An absolute centre is any point whose farthest vertex is as close as possible.

Finally, a general absolute centre is any point whose farthest point is as close as possible.

By analogy to each of these four types of location problems, we can define the median, general

median, absolute median, and general absolute median simply by changing the objective

function from minimising the maximum distance from the facility to a demand to minimising

the sum of the distances from the facility to all demand points. This thesis focuses on centre

and median problems.

In general, if the number of facilities to be located is p, the location problems are termed p-

centre and p-median, respectively. Finally, problems with more than one objective function are

termed multi-objective location problems.

Location problems are usually formulated as integer linear programming (LP) problems. A

formal specification of the problems tackled in the thesis is given below. LP problems are

usually formulated in terms of inputs (i.e. constants that are given in the problem definition and

 - 37 -

statement), decision variables (i.e the quantities that we are trying to find), and surplus

variables (i.e. used to convert inequalities constraints into equality constraints).

2.3.3 Formulation of the p-centre Problem

In this section, we specify the vertex p-centre problem or minimax problem as formulated in

[Daskin 95] (pp.160-162). We define the following notation:

Inputs

 dij = distance from demand node i to candidate facility j

 hi = demand at node i

 p = number of facilities to locate

Decision Variables

=
not if0

 site candidateat locate weif1 j
X j

 Yij = fraction of demand at node i that is served by a facility at node j

 W = maximum distance between a demand node and the nearest facility

With this notation the p-centre problem can be formulated as follows:

MINIMISE W (1a)

SUBJECT TO: ∑ =
j

ijY 1 ∀ i (1b)

 ∑ =
j

j pX (1c)

 Yij ≤ Xj ∀ i, j (1d)

 ∑≥
j

ijij YdW ∀ i (1e)

 Xj = 0, 1 ∀ j (1f)

 Yij ≥ 0 ∀ i, j (1g)

The objective function (1a) minimises the maximum distance between a demand node and the

closest facility to the node. Constraints (1b) requires each demand node i to be assigned to

exactly one facility j. Constraints (1c) stipulates that p facilities be located. Constraints (1d)

state that demands at node i cannot be assigned to a facility at node j unless a facility located at

node j. Constraints (1e) state that the maximum distance between a demand node and the

nearest facility to the node W must be greater than or equal to the distance between any demand

node i and the facility j to which it is assigned.

 - 38 -

For those cases in which we want to consider, the demand-weighted distance, constraint (1e)

can be replaced by

 ∑≥
j

ijiji YdhW ∀ i (1e’)

For the general graph and for variable values of p, the p-centre problem is NP-complete (see

[Kariv 79] and [Garey 79]). Conversely, when the number of facilities, p is fixed, the vertex p-

centre problem may be solved in polynomial time. In fact, for a network with N nodes, we need

only evaluate each of the)(pNO
p

N
O =

 possible combinations of p facility sites.

2.3.4 Formulation of the p-median Problem

In this section, we specify the vertex p-median problem or minisum problem as formulated in

[Daskin 95] (pp.200-203). This is to find the location of p facilities on a network so that the

total cost is minimised. The cost of serving demands at node i is given by the product of the

demand at node i and the distance between demand node i and the nearest facility to node i.

This problem may be formulated using the following notation:

Inputs

 dij = distance from demand node i to candidate facility j

 hi = demand at node i

 p = number of facilities to locate

Decision Variables

=
not if0

 site candidateat locate weif1 j
X j

=
not if0

 nodeat facility aby served are nodeat demands if1 ji
Yij

With this notation the p-median problem can be formulated as follows:

 - 39 -

MINIMISE ∑∑
i j

ijiji Ydh (2a)

SUBJECT TO: ∑ =
j

ijY 1 ∀ i (2b)

 ∑ =
j

j pX (2c)

 Yij - Xj ≤ 0 ∀ i, j (2d)

 Xj = 0, 1 ∀ j (2e)

 Yij = 0, 1 ∀ i, j (2f)

The objective function (2a) minimises the total demand-weighted distance between each

demand node and the nearest facility. Constraint (2b) requires each demand node i to be

assigned to exactly one facility j. Constraint (2c) states that exactly p facilities are to be located.

Constraint (2d) link the location variables Xj and the allocation variables Yij. They state that

demands at node i can only be assigned to a facility at location j (Yij = 1) if a facility is located

at node j (Xj = 1). Constraint (2e) and (2f) are the standard integrality conditions.

For fixed p, the p-median problem may be solved in polynomial time. Daskin observed that,

despite the fact that the problem is O(Np), the number of possible solutions that must be

enumerated tends to become exceptionally large in practice (see [Daskin 95] p. 203). In fact,

the time required to solve all p-median problems by enumeration for p=1 to p=N for any given

value of N is

 ()NN
N

j

O
j

N
212

1

=−=

∑
=

which is exponential in N. Hence, alternative algorithms, e.g. based on heuristics, need to be

found in practice to solve problems of realistic size in a reasonable amount of time.

2.3.5 Medi-centre Problems

Medi-centre problems combine the minisum objective of the median formulation with the

minimax objective of the centre formulation. There are various ways of combining median and

centre problems to meet the requirement of practical applications. While the concept of mixed

median-centre formulations was indicated in [Hakimi 64], relatively little effort has been

devoted to computational methods for such models, probably because the ‘pure’ problems were

not well solved until quite recently. Handler gives various formulations of medi-centre

problems in [Handler 79]. In this thesis we do not tackle medi-centre problems and focus on the

solution of the agent location problems formulating it as a p-median problem.

 - 40 -

2.3.6 Formulation of the Agent Location Problem

In general it would be preferable to formulate the agent location problem as a medi-centre

problem. However, because the main requirement is to find a solution which can be computed

efficiently, the agent location problem has been studied from the particular angle of a p-median

problem which aims at minimising total incurred traffic rather than response time. In practice,

reduction in traffic tends to have a positive impact on response time too. Hence the approach

has been to find a suitable approximate solution to the p-median problem and study the effects

on both total traffic and response time.

Therefore, the agent location problem specified as a p-median problem is formulated as in the

above Section 2.3.4. In addition, for the solution to be viable, we also need to be able to give

upper-bounds on the total computational time. This is needed because only those monitoring

tasks whose duration is reasonably longer than the span of time needed to compute their

location are beneficially implemented with MAs.

As such, the agent location problem is an NP-complete problem in general. This thesis provides

an efficient, provably near-optimal solution to it.

2.4 Conclusions

This chapter introduces the main research areas touched by this interdisciplinary thesis in the

form of a brief tutorial. It also provides the glue between those areas and drives the reader

through some open issues that arise when concepts from one field are brought into another. The

chapter serves not only as a tutorial but also to identify important research gaps and highlight

the ones which are tackled in the thesis, providing motivation for the thesis work.

The thesis marries the perspectives of strongly distributed hierarchical management and those

of autonomous, mobile software agents. The proposed active, distributed monitoring approach

falls under the umbrella of vertical delegation of management responsibility whereby a main

management station distributes a given monitoring task over one or more MAs. The use of MAs

allows for dynamic, spatial, and temporal distribution. Agent migration and cloning are

triggered by network or system events, following the event-driven delegation concept.

An important gap addressed by this thesis is the attempt to build a monitoring system targeted

for large-scale, dynamic systems. Code mobility offers a powerful means to pursue that but also

poses a number of problems. Focal point of the thesis is the investigation of efficient algorithms

to solve the agent location problem. This is an NP-complete problem when striving for

 - 41 -

optimality. Approximate solutions exist but do not suit the requirements of the agent location

problem. This aspect is further elaborated in Chapter 3 which complements Chapter 2 with a

more detailed break-down on the work related to the thesis.

 - 42 -

Chapter 3

Related Work

This chapter complements the previous one by focusing more closely on the review of work

related to the thesis. As already stated, this thesis investigates solutions for scalable, distributed,

and adaptable monitoring based on MAs in which the real essence of MAs is exploited. To the

best of the author’s knowledge, in the literature, there is not sufficient work targeting all of

those properties. This chapter reviews work that has pursued some of the following targets (not

necessarily all of them):

a) Application of MAs to fundamental functions of management. This thesis is focused on

monitoring, whereas other investigators have studied MAs in contexts such as fault,

configuration, or performance management.

b) Exploitation of the real essence of MAs. In addition to ‘mobility’ other important

features of MAs include ‘cloning’, ‘autonomy’, ‘reactivity’, and ‘pro-activity’.

c) MAs as a means for dynamic delegation of management functionality. MAs

encapsulate management logic delegated by another management entity. This

delegated logic actually travels with the MA itself.

d) Quantitative performance evaluation of non-functional properties of MA-based

management systems. The study of performance and scalability of the system in

comparison with weakly distributed hierarchical paradigms is fundamental. In MA

approaches part of the control of the system is encapsulated in the agents themselves.

Migration triggered by autonomous decisions may affect the stability of the system,

another important non-functional property. Non-functional properties can be assessed

by simulation, mathematical modelling or prototype-based experimentation.

 - 43 -

e) Viable solutions to the agent location problem. We have elaborated on the need for

efficient solutions to this problem in Chapter 2.

The above targets are also key requirements for the proposed agent system. Therefore, the

reviewing of work that addresses these requirements will lead to with a clearer view of which

literature gaps are addressed by the thesis.

3.1 Management by Delegation

A seminal work towards strongly distributed hierarchical management is the one introduced by

Yemini et al with their Management by Delegation (MbD) framework [Yemini 91]. MbD also

represents one of the first concrete attempts to make use of Mobile Code in Network

Management. Its inventors claim that MbD is not only a technique that allows for dynamic

decentralisation and automation of management functions, but it also introduces a paradigm

shift in the management arena [Goldszmidt 98].

The basic underlying principle of MbD is that management processing functions can be

delegated dynamically to the network elements and executed locally rather than centrally. Thus,

instead of moving raw data from the elements to a central management application, the

application itself is moved and executed at the elements where data actually resides. An MbD

platform is implemented as a set of elastic servers residing in the network elements. An elastic

server is a multithreaded process whose program code and process state can be modified,

extended and/or contracted during its execution [Goldszmidt 93]. Server elasticity contrasts

with the traditional client-server paradigm, which does not provide support for such a dynamic

transfer of functionality between client and server. Thus elastic servers introduce a new

paradigm of interaction between components in distributed applications and provide a powerful

mechanism to dynamically compose distributed applications by connecting and integrating

independently delegated programs.

A manager can dynamically dispatch delegated agents to remote elastic servers using a

delegation protocol and can then control their execution. This protocol includes service

primitives to delegate, instantiate, suspend, resume, abort and remove delegated programs.

Thus, by using this protocol, a manager application can augment, during execution time, the

functionality of a subordinate element, allowing it to perform an open-ended set of management

programs. Delegated agents can monitor, analyse, and control devices independently from the

manager, except where explicit co-ordination is required.

 - 44 -

MbD supports dynamic delegation [Mountzia 96] and provides mechanisms for both spatial

and temporal distribution [Goldszmidt 96c]. Several applications have been prototyped on this

MbD platform [Goldszmidt 96b], showing the advantages, and some of the fields of

applicability for the delegation framework. For instance, a scenario of ATM switch

management is reported in [Goldszmidt 96c]. Another example is an application for real-time

monitoring of the health of large-scale networks [Goldszmidt 95b] and for the management of

stressed networks [Meyer 95]. Further, some considerations describing how MbD can reduce

the management control loop and thus make networks more reliable, are reported in [Meyer 95,

Goldszmidt 96b]. More generally, a class of applications which might benefit from MbD is

described in [Meyer 95, Goldszmidt 96b]. Therefore, in this MbD framework, delegated scripts

can operate independently from the manager, and on behalf of it, whilst managers are

concerned with the management of delegated scripts. Thus, this platform is a feasible base-

framework for autonomous, hierarchical, and delegated management.

3.1.1 Evolution of the Original MbD Work

MbD has been used and further elaborated by many researchers. An application framework for

application management and system administration has been developed at INRS-

Telecommunications (Canada) [Gagnon 93, Gregoire 93a, Gregoire 93b, Gregoire 95].

Delegation is used to reduce the impact of management on applications and communications.

Particular emphasis is put on management applications rather than on network elements. A

manager can develop, deploy and co-ordinate delegated programs to different network

elements; and can, then, monitor their data logs. A thread management module provides an

environment to develop management programs through a formal specification language and

then to transform them into a corresponding implementation. The system supports not only

mechanisms to allow access of resources – e.g., reading, retrieving and configuring – and

delegation of functionality but also recursive delegation, called worms. Worms can be useful

for diagnostics, configuration and accounting [Gregoire 95], for instance, tracing the symptoms

of a fault across different machines using recursive delegation in search of the root of a

problem.

Another interesting aspect of this delegation environment is the fact that it is built around the

CAML language and the CAML-light Virtual Machine [Gagnon 93]. This language has an

important programming construct, known as continuation, which allows the execution of a

function within a previously saved context. Moreover, the authors have enhanced the virtual

machine to support multiple contexts of execution – i.e. multiple threads. Thus, new threads

can be developed independently and dynamically added to the set of running threads. This

 - 45 -

platform was prototyped to remotely manage a UNIX, distributed and heterogeneous system.

SNMP access mechanisms were integrated. The worm functionality – i.e., recursive delegation

– was used to track users, implement load balancing and experiment with several distributed

algorithms [Gregoire 95].

However, despite the valuable work, many of its aspects would need further research. No

quantitative results showing the performance benefits of this platform over traditional

management platforms have been reported. Furthermore, no conclusions can be inferred about

the scalability of the platform because this system was only applied to the administration of

UNIX systems over relatively small-scale networks. Besides, this framework seems to be

suitable for fine-grain management functions. In fact, relatively simple management tasks that

could be implemented with simple threads were specified. In other words, the system is not

meant to be used to delegate complex management application modules but only simple tasks.

Finally, although some of the operations for dynamic administration have been implemented in

order to show the flexibility and the power of delegation, many aspects of administration have

not been covered yet [Gregoire 93a] – e.g., the application to lower-level management should

be investigated. A limitation of this platform is that it is not language-independent. Also,

threads have to be compiled in the manager before being sent to their respective virtual machine

for execution; this could represent a processing bottleneck in the manager side.

Despite the similarities with the work developed at Columbia University, the INRS framework

shows some differences. The former is more focused on the infrastructure allowing delegation

and extension of server functionality. The latter is more concerned with the formal specification

and verification of delegated tasks at the application level. In the former case, scripts are

delegated to the server in order to extend its capabilities and to provide new services to be

performed locally. In the latter only simple management functions are compiled in the manager

and dispatched as threads to their respective virtual machines for execution. Thus, although the

delegation concepts are very similar, the actual implementation approaches and level of

management granularity are quite different. Therefore, these works can be considered as

complementary.

Many other researchers have used and elaborated MbD. Steenekamp and Roos have proposed a

framework that extends the delegated agent model to provide agents that implement system

management policies in terms of rules [Steenekamp 96]. Suzuki et al propose improving the

efficiency of delegated management operations by using a script binding mechanism that

divides an operation script into a script skeleton and operational objects [Suzuki 96].

Schonwalder presents some co-ordination primitives for co-operation among management

agents based on the MbD paradigm [Schonwalder 96]. Keller analyses the suitability of

 - 46 -

Common Object Request Broker Architecture (CORBA) for implementing MbD [Keller 96].

Mounzia has proposed a distributed MbD approach based on flexible agents [Mountzia 98].

A scenario showing the utility of delegation to increase security in distributed systems is

described in [Meyer 95] where the management of a distributed intrusion detection system is

presented. In this case a centralised management approach would require the collection of a

relatively large amount of audit data – typically in the order of 10 megabytes per hour and per

each audited machine and increasing linearly with the number of users – requiring a large

amount of network capacity and processing power. Management decentralisation leads to faster

reactivity to intrusion, which in turn may result in better security.

An application of MbD to an ISDN-based remote-access environment is described in [Payer

97]. Finally, a classification scheme including delegation types, phases, functional areas, trigger

modes and lifetimes of delegated tasks is reported in [Mountzia 96]. Requirements and

technologies for MbD are described in [Mountzia 97b, Mountzia 96]; and a comparative review

of decentralised network management techniques is reported in [Kahani 97, Martin-Flatin 97a,

Martin-Flatin 97b].

3.1.2 Agent Constrained Mobility

The author of this thesis has carried out some collaborative work to study MbD from the

particular perspective of MAs. This is reported here rather than in one of the experimental

chapters because this work does not meet requirement b) (page 42) by not considering the

application of multi-hop MAs to the field of management.

In [Bohoris 00b] we have looked at various models of agent mobility in the particular context of

network performance monitoring. We have introduced the concept of constrained mobility and

discussed its practical use for dynamically programming network elements. In essence, agent

constrained mobility is achieved when MA technologies are used in a constrained fashion; that

is by limiting the multi-hop migration ability of the agent according to a single-hop migration

scheme. The agent migrates from the management station (where it is created) to a remote

machine, where it executes a task and terminates upon completion. This concept is derived

from MbD with the difference that, in our case, what is shipped from source to destination is an

autonomous mobile software agent; whereas an MbD delegated agent may be seen as a

component aimed at dynamically enhancing the elastic server capability.

In our performance monitoring system, MAs are created at the network management level

according to the user requests and then migrate to network elements to perform monitoring

functions in a local manner. The behaviour of the monitoring algorithms can be customised,

 - 47 -

enabling dynamic programmable functionality to be provided directly in the managed network

elements.

The following is extracted from [Bohoris 00c] and summarises the outcomes of our

investigation on constrained mobility. Details on the method used to carry out the experimental

work are not repeated herein. The performance monitoring case study described in [Bohoris

00a] has been implemented over four different infrastructures to carry out a performance

comparative analysis. These were Java-RMI, CORBA, Code-Shell and Grasshopper. The case

study consisted essentially in providing traffic rates with thresholds, quality of service alarms

and periodic summarisation reports by simply observing raw information such as traffic

counters in network elements. This is a functionality similar to the OSI-SM metric monitoring

and summarisation facilities [X739 93, X738 93] but when it is provided through code

mobility, users of the service are also able to customize it according to the semantics of a

particular application as explained in [Bohoris 00a].

Grasshopper is not one of the most efficient MA platforms. It has been chosen because, due to

its functionality, it can be considered a general-purpose MA platform. Moreover, Grasshopper

follows the current standardization directions, since it is compliant with both the Mobile Agent

System Interoperation Facility Specification [MASIF 97] and the Foundation for Intelligent

Physical Agents [FIPA].

Java-RMI and CORBA have been chosen as representative of the most popular ‘static’

distributed object technologies. In addition, CORBA is emerging as a significant technology for

network and service management.

Finally, Code-Shell is a code mobility platform optimised for constrained mobility developed at

the University of Surrey, UK. This platform was prototyped with the objective of achieving

performance comparable to the one obtained with static distributed object technologies.

When constrained code mobility is deployed using either Code-Shell or Grasshopper, a

performance monitor object is created by a “master” object somewhere and is sent to execute

within a target node. When Java-RMI and CORBA are used, the performance monitor object is

created at the target node through an object factory and the relevant intelligence needs to pre-

exist at that node. The performance monitor gathers information locally, applies thresholds and

sends QoS alarms or periodic summarisation reports to the master object.

The agent creation and migration overheads, the cost of remote invocation that models the

reporting of results, both in terms of response time and packet sizes, and the computing

requirements at the target node were measured. In the cases of Grasshopper and Code-Shell,

measurements have been taken at steady state, that is after the code had been shipped to the

 - 48 -

remote elements. In this way, it was possible to perform a direct comparison with the

implementations based on Java-RMI and CORBA, respectively. The additional overheads

incurred by code mobility – namely code deployment time and network traffic incurred during

the transmission of the code from manager to network elements – were measured separately.

3.1.2.1 Response Time Measurements

The response time of management operations for each of the four cases of performance

monitoring systems are reported in Figure 3-1 which, for an easier comparison, combines in a

single chart the mean values and best linear fit of the results.

25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

110

 R
es

po
ns

e
T

im
e

[m
se

c]

List Size [number of elements]

 Mean Values
 MAs (Grasshopper)
 Code-Shell
 RMI
 Corba

Figure 3-1. Mean values and best linear fit of response times.

The first conclusion that can be drawn by observing the plots is that the system based on Code-

Shell exhibits the same degree of scalability as the one of the systems based on Java-RMI and

CORBA. In fact, the slopes of the curves of those three cases have a comparable value. On the

contrary, the Grasshopper system exhibited a much bigger slope showing its intrinsic inability

to perform well under more demanding conditions.

From the performance point of view the Code-Shell system gave a response time in the order of

2-3 times larger than the one of the Java-RMI system and in the order of 4 times larger than the

one of the CORBA system.

3.1.2.2 Traffic Measurements

The packet sizes in all four cases were also measured. An array of objects containing 25, 50, 75

and 100 “Double” numbers respectively was remotely sent using remote invocations in the

 - 49 -

Mobile Agent, Code-Shell, RMI and CORBA systems. Each time, the payload of the TCP

packets was measured. A chart of the results gathered can be seen in Figure 3-2.

25 50 75 100 125
400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

 List Size [Number of Elements]

 T
ot

al
 P

ay
lo

ad
 [b

yt
es

]

 Mean Values
 RMI
 MAs (Grasshopper)
 Code-Shell
 CORBA

Figure 3-2. Mean and best linear fit of total incurred TCP payloads, measured as the sum of all the

bytes incurred in the network to complete the given network performance monitoring task.

It is interesting to observe that, within the measured range of values, the four solutions incurred

a comparable level of traffic. The Grasshopper and RMI systems performed better for small

scales whilst the Code-Shell and CORBA systems exhibited better performance for larger

scales. The Code-Shell platform transparently optimises the transfer procedure and this is the

reason why, for a large number of elements, it incurred less traffic in the network compared

with the standard RMI system.

3.1.2.3 Memory Measurements

The memory requirements for the monitoring systems based on Grasshopper, Java-RMI, and

Code-Shell, are compared in Figure 3-3.

 - 50 -

Grasshopper RMI CodeShell
0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

T
ot

al
 J

V
M

 M
em

or
y

A
llo

ca
tio

n
[b

yt
es

]

 Free memory inside the JVM
 Memory held by objects inside the JVM

Figure 3-3. Memory requirements for the Java-based network performance monitoring systems.

It can be observed that Code-Shell performs as well as Java-RMI and significantly better than

Grasshopper. The latter, resulted in a fivefold occupation of memory which is yet another

dramatic drawback of relying on a general-purpose MA platform.

3.1.2.4 Code Migration Overheads

The delay and traffic involved during code migration have been measured for the two

programmable network performance monitoring systems based on Grasshopper and Code-Shell,

respectively. By substituting the generic code migration mechanism of Grasshopper with a

simpler code deployment protocol the time required to program a network element was reduced

by more than 4 times (from 1500 msec to 350 msec).

The additional traffic incurred by code migration was also measured. The transmitted data for

the Code-Shell system was 2,236 bytes; for the Grasshopper system it was 2,854 bytes.

3.1.2.5 Remarks on Constrained Mobility

Constrained mobility can be the vehicle to realise network programmability and MbD

functionality with current technologies. The implementation of Code-Shell has demonstrated

that it is possible to realise management systems based on the constrained mobility concept

achieving at the same time performance levels comparable to the ones of systems based on the

most popular static distributed object technologies. We also aimed at quantifying the

performance gain achievable by optimising general-purpose MA platforms, retaining only the

most basic form of code mobility exemplified by constrained agent mobility. The results

presented more extensively in [Bohoris 00b, Bohoris 00c] suggest that constrained mobility is

easily integrated in network management systems. Moreover, using constrained mobility it is

still possible to achieve performance and scalability typical of static distributed object

 - 51 -

technologies with the additional advantage of dynamic programmability. In addition to

performance monitoring it is believed that other functions such as configuration and fault

management can similarly benefit from constrained mobility but this is subject of future

investigation.

Finally, constrained mobility is a particularly suitable model for tasks requiring a relatively

long period of time to complete and in those cases where information intended for off-line

analysis is collected by the agent in the remote machine.

3.1.3 MbD in the Context of Internet Management

Another example of decentralised management through delegation is described in [Kooijman

95]. In this system a central manager can delegate monitoring tasks to area agents. Tasks are

not pre-defined and can be instantiated and uploaded to agents, at any time, as scripts. The

important aspect of this work is the application of event-driven management to delegation.

Scripts are only executed if certain events are generated. Otherwise the scripts are set in

sleeping mode, i.e. no processing resources are used. Events can be triggered either by external

requests – e.g. remote controlling network management systems – or by the core system of the

area agent. The operative environment for downloadable scripts consists of an extension of the

RMON MIB [Waldbusser 91]. One of the limitations of this delegation framework is that this is

targeted mainly for monitoring operations and no other management functions are considered.

Also it is not clear whether area agents can be added dynamically and whether a hierarchy of

agents can be defined in a flexible fashion – i.e. allowing more than two levels of managers.

Finally, no quantitative performance analysis and no information about the scalability of the

platform have been reported.

An extension of SNMPv2 providing elementary delegation facility is presented in [Siegl 95]. A

hierarchy of SubManagers, acting as intermediary between the Manager and the Devices can be

defined here. A Network Management Procedure (NMP) is represented in three tables stored in

the SubManager. One table contains general information about the procedure - e.g. the polling

interval. The second one is used to store the program (each statement is presented in a separate

row). Results and timestamps are stored in the third table. Programs are written in low-level

network-oriented script language. A manager can load an NMP and ship it to a SubManager.

The procedure is then executed by forking a worker process inside the SubManager. Results are

stored in the appropriate table and can be interpreted by any manager capable of SNMPv2.

The advantage of this platform is that it supports dynamic configuration of SubManagers – i.e.

run-time delegation of functionality – and hierarchical management. Also it can be easily

 - 52 -

integrated into existing network management systems as it presents interfaces to both managers

and agents conforming to SNMPv1 and SNMPv2. However, a performance analysis of the

script execution environment has not been reported. The efficiency of the adopted language was

not compared with any other interpreted approach. Also the number of NPMs that can run

simultaneously is limited as the execution of each script involves the forking of a new process.

Therefore, this approach is more resource consuming that others which implement a

management task as a thread instead of a UNIX process. Another limitation is that no

asynchronous report mechanisms were implemented, polling being the only means to retrieve

data.

More recently MbD has been looked at by standards bodies, such as IETF and ISO/ITU (the

latter will be discussed in the next section). Levi and Schonwalder have been working on the

integration of the MbD model in the IETF management framework since 1996 [Levi 96]. The

Distributed Management (DISMAN) working group of the IETF was chartered to define an

architecture where a main manager can delegate control to several distributed management

stations. The DISMAN framework provides mechanisms for distributing scripts, which perform

arbitrary management tasks to remote devices. To the DISMAN group, distributed management

does not mean management functionality distributed in a statically set way, but something that

is ‘movable’. The objective is to allow the ‘distributed management’ application to keep pace

(scalability) with the changing needs of large distributed system.

Proposals for several related Management Information Bases (MIBs) already exist. Among

these are DISMAN-SERVICES-MIB, TARGET-MIB (to express targets for traps and script

transfer), EVENT-MIB (based on the RMON alarm and event groups), Notification LOG-MIB,

Expression MIB, Schedule MIB (definition of MOs for scheduling management operations),

Remote Operations MIB, and Script-MIB. In particular, Script-MIB defines a standard interface

for the delegation of management functions based on the Internet management framework

[Schonwalder 97, Schonwalder 99, Levi 99, Schonwalder 00]. This comprises capabilities to

transfer management scripts; for initiating, suspending, resuming, and terminating scripts; to

transfer arguments and results; and to monitor and control running scripts.

These proposals are not yet standardised but signal the first steps the Internet has taken towards

implementing management as a dynamically distributed application. However, it is not yet clear

whether implementation costs will have an effect on the acceptance of the powerful DISMAN

concept. Currently, there is only a limited number of Script MIB implementations. Initial

evaluations have been provided based on the Jasmin platform [Schonwalder 00] but this

technology has not yet been thoroughly tested and evaluated. Another limitation of this

approach is that it is not generic and framework-independent, being specific to the Internet

Management framework.

 - 53 -

Finally, an enhancement of DISMAN based on MAs, called Mobile DISMAN, has been

proposed by Oliveira and Lopes [Oliveira 99, Lopes 00]. More recently, Quittek and Brunner

have realised the MbD concept over three different frameworks, Script MIB, Voyager, and

ABone [Quittek 01]. Voyager is a commercial MA platform, whereas ABone stands for Active

Networks Backbone and is a network of hosts running the same active networks technology.

The authors elaborate on the differences among the three approaches in terms of performance,

functionality, manageability, security, robustness, resource consumption, and extensibility. As

expected, Script MIB offers all the required MbD functionality whilst resulting in best

performance.

3.1.4 MbD in the Context of OSI Management

MbD has attracted interest in the OSI management community, though significantly less than in

the Internet community. Perhaps the reasons for that originate in the different philosophy of

OSI management, which is more complex and relies on a high degree of standardisation.

An early study towards the realisation of MbD in the context of OSI management has been

carried out by Vassila et al [Vassila 95]. Upon discussing the need for programmable

management facilities within the TMN environment, the authors propose the concept of Active

Managed Objects (AMOs) as opposed to the standardised, static Managed Objects (MOs).

AMOs offer the means to specify and express arbitrary management functions along with a

mechanism to dispatch and control management scripts to the Network Element (NE) using

existing TMN mechanisms. AMOs may be delegated to a TMN application in the agent role

and function close to other MOs they access.

Two years later, the authors describe a pilot implementation of AMOs [Vassila 97] within the

OSIMIS TMN platform [Pavlou 95]. They present two APIs which need to be available to

program scripts; one provides access to the local environment in which the script is embedded;

the other provides access to MOs in local and remote systems. The control of the script

execution is effected by representing the script and its execution as an MO.

Since AMOs use the normal TMN mechanisms for information modelling and access (GDMO

and CMIS/P), they might have been standardised. This never happened; however, a similar

approach was pursued by the ISO/ITU that has designed the CMIP command sequencer [X753

97, ISO-10164 98]. Again, management functionality are delegated as scripts which are

transferred to the location where they are to be executed. These scripts can be started remotely,

arguments can be passed to them, and results can be returned to the initiator. The scripts can

communicate in agent role with the delegating manager.

 - 54 -

3.1.5 Remarks on MbD

The powerful concepts introduced by the MbD work are the germs which have led to the MA

work of this thesis. In other words, MbD is extremely relevant for historical reasons, having

paved the way of dynamic, distributed management (strongly distributed management

paradigm) as opposed to more traditional centralised or weakly distributed management

approaches.

The MA work that has followed MbD has been built on the ideas laid out by MbD by adding an

extra degree of freedom to distributed management. With MAs the distribution mechanism is

not bound to a one-hop delegation mechanism. The MA paradigm is more powerful than that,

allowing for multiple-hop migration not only at delegation time but also during the execution of

the delegated task.

In addition, the agent concepts bring a new set of instruments and provide a more flexible

framework for the design of even more powerful strongly distributed management systems.

Other researchers have tried to go beyond MbD exploiting essential features of MAs such as

cloning, autonomy, reactivity, and pro-activity. Their work is reviewed in the next section.

3.2 Management based on the Mobile Agent Paradigm

Grasping the state-of-the-art of MA-based management is not an easy task because, since the

mid nineties, several researchers have attempted to study and exploit the MA paradigm aiming

at scalability and flexibility. However, if we take a closer look at the work produced, most MA

studies degenerated into MbD work, whilst agent mobility was mostly used as a general

mechanism for remote programming. The multi-hop capability offered by MA platforms was

not exploited in most cases. Another class of work degenerated even to a larger extent by

making use of ‘stationary’ agents. This is the case of most multi-agent approaches in which

inter-agent co-operation is key to increase the intelligence and adaptability of the management

system.

Both MbD and multi-agent approaches are possible ways of pursuing increased scalability and

flexibility in management. On the other hand, in this section we concentrate on approaches in

which agent mobility is the key feature. Our interest is to survey previous work that attempts to

exploit the multi-hop capability of MAs, similarly to the approach proposed in this thesis work.

Bieszczad and Pagurek have led extensive work on MA-based management during the last few

years. In a recent article they describe representative applications of MAs to network

 - 55 -

management [Bieszczad 98c]. They identify possible applications belonging to each of the five

OSI functional areas – i.e., fault, accounting, configuration, performance, and security

management. However, they describe only example applications to fault, configuration, and

performance management.

In the following sub-section we take a similar approach but describe a larger range of

representative applications which is not bound to network management. We do not survey MA-

based accounting and security management because very little work has been described in the

literature. In addition, these areas are not central to the thesis.

3.2.1 MA-based Fault Management

Network fault management refers to efforts made to identify, trace, and solve network

problems. This typically involves the following activities: 1) collecting messages from network

components; 2) generating alarms by filtering messages; 3) diagnosing faults that caused the

messages by correlating the alarms; 4) correcting faults; and 5) verifying that the network

problem is eliminated. El-Darieby and Bieszczad have presented a number of possible ways for

exploiting agent mobility to automate most of the above activities [El-Darieby 98]. They have

implemented proof-of-concept applications in which agents roam the network, accessing

information from each node, processing this information at each node locally, and carrying the

results of this processing during the migration. Their agents can filter alarms, eliminate multiple

occurrences of the same alarms, correlate the remaining alarms, and trigger auto-migration

depending on the processing results. They can also perform auto-diagnosis by attempting to

determine the causes of the generated alarms and whether those alarms are false.

The experimentation carried out by El-Darieby and Bieszczad identifies a number of conditions

which result in increased efficiency in comparison to centralised polling-based fault detection.

Agent migration is triggered primarily by the status of the network. Hence agent migration

overheads increase with fault rate. On the other hand, centralised polling-based fault

management incurs the same overheads regardless of the network status.

A PhD thesis has highlighted some of the issues related to MA-based fault management

[Grimes 96]. The author presents various scenarios in which agent mobility is particularly

advantageous, though these are described as future work rather than being the subject of

experimentation. A potential application is the tackling of routing problems in IP networks such

as permanent or intermittent link failures and routing loops. For instance, routing loop detection

may be a periodic check or a part of the testing repertoire of the MA as it migrates along a

problematic route. Route testing in a route with multiple paths is another example. In this case,

 - 56 -

in order to check each possible path between source and destination, an MA which forks itself

at branches may be employed to reduce test duration.

A more recent work addresses the additional problem of modelling managed resources for the

purpose of diagnostic testing and performance monitoring [Guiagoussou 01]. The authors

propose additions to the Java Management Extension API (JMX) specific to fault management

termed Java Fault Management Extension (JFMX). They present a diagnostic test client/server

scenario and discuss various implementations in order to highlight the performance advantages

introduced by agent mobility. They introduce roaming agents with enough skills to be able to

autonomously decide ‘when’, ‘where’, and ‘how’ to conduct test results, alarm filtering and

correlation.

3.2.2 MA-based Configuration Management

According to ISO, configuration management controls the configuration state of a system or

network and the relationships between components. It also initialises, configures, and shuts

down network equipment.

In the context of configuration management, MAs may be used for two different functions:

service provisioning and component provisioning [El-Darieby 98]. In the former case, MAs

may be used to streamline complex configuration processes involving several parties in a multi-

vendor, heterogeneous environment.

Pagurek et al have illustrated some of the opportunities for using MAs in the context of

Permanent Virtual Circuit provisioning in ATM networks [Pagurek 98a, Pagurek 98b]. In their

scenarios, MAs are used to negotiate all aspects of a PVC that need to be established between

two ATM switches manufactured by different vendors. If a PVC includes a path through

different operating companies, offering similar services with different prices, an agent can be

exploited to perform service negotiation, a task typically carried out manually by a human

operator. Agents can also hide network heterogeneity, allowing for automatic PVC setting up.

In the context of component provisioning, configuring a device requires that a large number of

attributes in the network and on the device be set up as well as certain software components be

installed. MAs can be used to automate the necessary configuration by deploying plug-and-play

network components. Raza has illustrated this opportunity in the context of network printer

installation [Raza 98]. Agents are used to discover the network devices that will need printer

drivers, find those drivers in the Web and co-ordinate their installation.

 - 57 -

3.2.3 MA-based QoS Management

The concept of Quality of Service (QoS) has gained significant importance with the

introduction of an increasing number of multimedia services in data telecommunication

networks. QoS requirements are usually expressed by QoS parameters such as data error rate,

packet loss rate, throughput, end-to-end delay and delay jitter. QoS negotiation is an important

functionality of the connection set-up procedure, very important for effective QoS admission

control. QoS contracts (or service level agreements) are stipulated between users and providers.

The provider needs to employ suitable management policies in order to comply with those

contracts. QoS monitoring is another important function. Finally, QoS adaptation is an

important feature in view of the dynamic behaviour of current networked systems.

QoS functionalities are inherently distributed since they involve allocation, monitoring, and

control of distributed network resources. Some researchers have investigated the employment

of the MA paradigm in the context of QoS management, due to the dynamic nature of this

operation.

De Meer et al have proposed an architecture supporting MA-based QoS management, along

with simple application scenarios [deMeer 98a]. QoS is pursued by monitoring fix-rate traffic

and distributing equally the rest of the capacity for best-effort traffic. MAs are used to control

the bit-rate of the applications relying on best-effort traffic, and to decentralise this control

logic. The value of this initial work consists in the introduction of the MA paradigm to tackle a

problem that is becoming increasingly critical in the context of IP-based multimedia

networking.

The same authors take a more pragmatic approach in a second paper in which they propose a

method to provide guaranteed real-time services with the Resource reSerVation Protocol

(RSVP) in the presence of non-RSVP compliant routers [deMeer 98b]. MAs are dynamically

sent at the edges of non-RSVP clouds to create QoS tunnels across those clouds. Agents closely

monitor the tunnel and generate alarms in the case of QoS violations, allowing for

compensating measures. Agent mobility is exploited to re-tunnel traffic exceeding a given

threshold.

Some experimental results are presented in a more recent work by De Meer et al [deMeer 00].

The authors focus on QoS monitoring and realise a QoS management strategy with MAs that

can respond to variations of user requirements and network state. They elaborate on the benefits

of using IntServ/RSVP to realise QoS schemes a-la ATM. Agents are used to discover about

resources available inside the network and claim those resources on behalf of the user. Agent

can also trigger adaptation of applications inside the network on behalf of the user. This is

 - 58 -

performed based on sharing of excess resources. RSVP signalling is used by the agents for

resource reservation, admission control, and QoS adaptation control. Initial experimental results

demonstrate the potentiality of QoS management complemented by MAs.

Anastasi et al stress the use of MAs to a larger extent, for QoS provisioning in the context of

integrated fixed and mobile IP networks [Anastasi 00]. They complement De Meer’s work with

support for user and terminal mobility with both stationary and mobile agents. QoS

provisioning in a mobile environment poses additional problems. Dynamic QoS adaptation is a

critical problem because wireless networks are characterised by lower bandwidth and larger

packet loss ratio, which may vary abruptly over time due geographic impairments,

meteorological conditions, etc. The authors describe various possible uses for MAs but do not

report any experimental results.

A completely different approach if proposed by Guedes et al [Guedes 98]. The authors start

from the assumption that QoS negotiation is only simple if the resources are managed by a

single entity and by a set of entities supporting common negotiation protocols. Instead, in

distributed multimedia systems, negotiation and management of resources are complex tasks

since resources are diversified, distributed, and managed by autonomous entities. The proposed

approach does not impose any restriction on the distributed multimedia system or to the

underlying network. The agents responsible for QoS negotiation provide end-to-end control for

each flow. Hence only flow sources and sinks are directly involved in QoS negotiation and

management. In other words, the proposed agent architecture does not rely on any resource

reservation or traffic engineering mechanism and does not demand any change in sensitive

components such as routers. Unfortunately, the authors do not report any experimental or

simulation-based evaluation of this approach. Finally, another architecture for QoS-driven

connection management based on MAs is discussed in [Yucel 99].

3.2.4 MA-based Routing

Distributed, dynamic routing is very important in dynamic, large-scale networks. Mobile

networking makes the problem of finding efficient routing algorithm even more difficult to

tackle. Various authors have studied this problem from the MA perspective.

Schuringa and Remsak use genetic programming to build MAs that monitor the network status

and set the routing tables, aiming at maximising network throughput and minimising overall

packet delay [Schuringa 00]. Their work originates in biological-driven ant systems, which

compute shortest path by resembling the behaviour of social ant colonies [Appleby 94, Steward

94, Schoonderwoerd 96].

 - 59 -

Ants are simple MAs whose behaviour is modelled on the trail-laying abilities of real ants. The

ants move across the network between randomly chosen pairs of nodes; as they move, they

deposit simulated pheromones as a function of their distance from their source node and the

congestion encountered on their journey. They select their path at each intermediate node

according to the distribution of simulated pheromone at each node.

Schuringa and Remsak significantly improve the original AntNet algorithm [Di Caro 98] and

use genetic programming techniques to build MAs. Their agents take the same route as normal

packets, according to the routing table information and accumulate information on local queues

at each node they visit. When the agent arrives at its destination, it takes the same route

backwards and updates the routing tables, according to the collected information. This then is a

good example of the use of agent weak mobility for distributed routing.

A multi-agent co-operative approach is taken by Kramer et al [Kramer 99]. They use two kind

of agents in their simulated scenarios. Routing agents are MAs that roam the network to gather

topological information and modify routing tables. Message agents are smart data packets that

use those tables to route themselves. They make their decision about where they need to go

based on information that routing agents accumulate and cache.

The work found in the literature on MA-based routing finds its roots in artificial intelligence

since the logic embedded in the MAs is inspired to either biological or social behaviour.

Nevertheless, the approach aims at simplicity and consequently MAs tends to be relatively

simple and small in size. The principle is that by imitating natural behaviour at an individual

MA level it is possible to achieve a good collective behaviour. This approach has fostered

significant research across the world but has not yet led to concrete deployment. One argument

is that such collective behaviour may be difficult to control and cause unexpected problems.

3.3 Mobile Agent-based Monitoring

Monitoring is an essential part of network and system management. Monitoring the health and

stability of networks has become crucial to the management of distributed systems relying on

those networks. Tools and probes to measure the performance of networks for the purpose of

management, fault diagnosis, or performance evaluation have been studied by several research

groups. The agent approach has been envisioned as one possibility to deal with large-scale,

dynamic systems. In fact, monitoring has been identified as one of the application areas that

have the greatest potential of benefiting from agents.

 - 60 -

However, current prototypes tend not to exploit important features such as agent mobility and

cloning. Interesting work has tackled the problem using a stationary, multi-agent approach For

instance, agent co-operation can be exploited to support network-aware distributed applications

by capturing the state of the network and using this information to provide adaptability to the

changing condition of the network [Wijata 00]. Wijata et al propose an architecture to show

how static, distributed agents can maintain a view of the network state that is generally

dynamic, transient and sometimes tightly coupled with the semantics of the application.

Network state includes knowledge of the topology, availability of resources, and the available

QoS. Network agents provide integrated control of monitoring network elements and collected

performance information.

Static agents are also proposed by Dini et al [Dini 97]. The authors propose a model for

realising a monitoring agent system that adapts its polling frequency automatically according to

predefined criteria. Agents embed also generic functionality for filtering, and event creation.

The adaptation capability reduces the performance impact of the agents while increasing the

accuracy of management-relevant information. Different adaptation strategies allow a flexible

configuration of the agent system according to the individual requirements of the managed

components.

Static agents can only provide limited adaptability in the context of highly mobile, dynamic

networking environments. Agent mobility adds one degree of freedom to the adaptation

capability of the monitoring system. Gavalas has recently dedicated his PhD thesis to MA-

based performance management [Gavalas 01b]. His work has led to several publications

[Gavalas 99a-d, Gavalas 00a-d, Gavalas 01a-b] to which the interested reader may refer for a

survey of the field.

Gavalas’s work has several similarities with the work described herein, despite having been

developed independently. The author of this thesis was not even aware of Gavalas’s work until

recently. Gavalas starts from similar assumptions on the limitations of non-MA-based

approaches and describes mobility models which suit distributed monitoring. He illustrates

practical scenarios which show the potential benefits of MAs in the context of performance

monitoring. He has realised a prototype MA platform targeted for management purposes and

has experimented with practical performance management applications, carrying out a

comparative work between SNMP-based performance monitoring and MA-based alternatives.

Gavalas has experimented with intelligent filtering applications for decentralised performance

management. He has implemented simple applications to aggregate several MIB values

providing high-level performance indicators, efficiently acquire atomic snapshots of SNMP

tables, and filter tables’ contents through generic filters.

 - 61 -

Similarly to the author of this thesis, Gavalas aimed at assessing performance advantages as

well as overheads of MA-based monitoring. However, he followed a completely different

methodology based on experimentation and practical realisation of simple scenarios. For this

reason he was constrained to implementation difficulties and focused most of his work on the

realisation of a management-oriented agent platform, illustrating then its capability through

case studies.

From this point of view the work presented herein can be considered as complementary to the

one presented by Gavalas. In fact, the type of problems discussed here are, to a large extent,

orthogonal to his work. We approach the problem of placing agents optimally in graph-

theoretical terms, proposing a scalable algorithmic solution to it, and carrying out our

comparative work by a mixed mathematical-modelling and simulation-based methodology. On

the other hand, Gavalas’s work may be used to support the viability of our solution.

Agent optimal placement and adaptable monitoring are also central themes of the work by

Abdu et al [Abdu 99]. The authors present an adaptive model in which an initial configuration

of management agents is determined according to a set of user and system requirements. These

agents can later be dynamically re-configured – i.e., re-located – to adapt to changes in resource

availability and user or system constraints. Hence, the requirements and problems addressed by

Abdu et al are extremely similar to the ones of this thesis. The problem of computing number

and location of agents is formulated as an integer linear programming problem. The proposed

solution is based on modifications of an existing enumeration algorithm and aims at optimality.

This is the major difference with the thesis work. By aiming at location optimality the authors

come up with an algorithm characterised by exponential complexity, which is only viable for

relatively small-scale systems. On the contrary we study an approximate but scalable solution.

Another work on agent-based network monitoring is reported by Bivens et al [Bivens 99]. Their

work goes along similar lines of others as far as assumptions and objectives are concerned.

However, the work seems to be at its early stage because it does not demonstrate the

exploitation of agent mobility and reports only sketchy, partly contradictory experimental

results. What is actually exploited is one-hop agent mobility which may be seen as a particular

instance of MbD. Multi-hop mobility is envisioned for increasing robustness and fault-

tolerance; but this aspect is not demonstrated. What is new in this work is the idea of using the

agent for pro-active caching.

Very relevant to this thesis work is the study of agent dissemination models by Theilmann et al

[Theilmann 99]. The authors study precisely the same problem as we do herein, that is the agent

location problem. They present and in-depth formulation and analysis of the problem,

elaborating on the reasons why multicast routing algorithms are not suitable to it. Basically,

 - 62 -

multicast groups are persistent for a large number of messages. Their participants may change

over time, but the group as a whole (and its address) remains. That is why multicast routing can

adapt its paths over time according to the network conditions and to the group members. In

contrast to this, the group including all the agent hosts involved into a specific dissemination

problem is only valid for single message – i.e., the one bearing the actual agent being deployed.

Setting up a new multicast group for every single agent deployment process would impose an

extreme network load since group members are widely distributed. In other words, the cost of

building a whole multicast tree does not pay off if this is only used for agent deployment.

Like the author of this thesis, Theilmann et al find that one of the major obstacles for effective

agent dissemination is the computation of the number and location of agents, for a given

network and a given task. They also find a polynomial, approximate solution to this problem.

They carry out a thorough assessment of the proposed algorithm, which results in significant

performance improvements. The problem with their approach is that, similarly to all other p-

centre and p-median algorithms available in the literature, they rely on the knowledge of the

network distance map. They achieve that by using the tool traceroute, which determines the

routing path between two Internet hosts. This is clearly a major limitation when network scale

and dynamics is high, since in this case the computation of the network map involves excessive

overheads. In particular, network map computation will involve timescales which are far larger

than network dynamics.

3.4 Evaluation of Management Applications based on

Mobile Agents

The evaluation of MA-based management involves the comparison of different distributed

management paradigms on the one hand and the assessment of the underlying MA platform on

the other. The assessment of management systems and applications is not a simple task because,

to the best of the author’s knowledge, there are no agreed or standardised benchmarking

applications. Another problem is the difficulty in getting access to realistic traffic profiles

typically generated by management applications. For instance, we need to enter the realm of

telecom operators to measure and characterise traffic generated by network management

platforms. The lack of benchmarks and traffic patterns is, therefore, a major obstacle towards

the development of methodologies for comparing different management systems. This is not the

case in fields such as computer architecture, for which such methodologies do exist and are

well established.

 - 63 -

A similar problem is encountered by those who face the task of assessing and comparing

different MA platforms. Consequently, there are no methodologies to carry out the evaluation

of MA-based management, which is generally performed following ad hoc procedures.

It should be noted that the evaluation of MA-based management involves both functional and

non-functional properties. Most commonly investigations address the functional properties of

MA-based systems. Non-functional properties which include issues of performance, scalability,

adaptability, and stability are more difficult to assess (for the reasons mentioned above) and

have so far received only scant attention. In the remaining part of this section we review the

approach followed by other researchers to evaluate non-functional properties of MA systems

and MA-based management systems.

Three different methods have been followed: 1) by mathematical modelling; 2) by simulation;

and 3) by experimentation. These are ‘complementary’ rather than ‘alternative’ methods. For

instance, experimental measurements are necessary to fine-tune models and simulations;

modelling and simulations are often used to validate each other; and simulations are often used

to study the behaviour of the system under particular conditions.

Lee et al suggest an interesting method to assess the non-functional properties of multi-agent

systems, which unfortunately does not include agent mobility [Lee 98]. Performance models for

MA systems are proposed by Straβer and Schwehm [Straβer 97]. Mathematical models for

remote procedure calls and agent migration are used to carry out a comparative analysis

between those approaches. It is shown that optimality can be achieved by a mixed sequence of

the two. The models are validated by measurements of interactions among real agents in the

Mole MA system. This work follows a mathematical approach which is far simpler than the one

presented in this thesis and captures only higher-level behaviour of the system.

An interesting analytical comparison among the MA paradigm, the Client-Server paradigm, and

the Remote Evaluation approach is proposed by Puliafito et al [Puliafito 99]. The authors

present several models of Petri nets and draw similar conclusions to those of this thesis. They

identify conditions in which MAs are not the convenient paradigm due to their overheads.

An experimental evaluation of the MA paradigm is presented by Ismail et al [Ismail 99]. The

authors compare the performance of two different applications realised, first, over Java RMI

(Client-Server approach) and, then, over two different MA platforms. They demonstrate they

were able to implement an MA platform characterised by a more efficient migration mechanism

in comparison with the Aglets platform. They report agent migration times in the order of

hundreds of milliseconds. We have followed a similar path in [Bohoris 00c], implementing a

light-weight platform of constrained agent mobility and achieving migration times of the same

order of magnitude.

 - 64 -

Optimisation of agent migration is a key factor for MA platform efficiency. Soares and Silva

have implemented in the JAMES platform (a Java-based MA platform oriented for

telecommunications an network management) various optimisation techniques [Soares 99].

These include caching schemes, code prefetching, thread and socket pooling, as well as

protocol optimisations based on dynamic modification of buffer sizes. All those techniques are

shown to significantly impact the overall migration time. The open issue is how applicable

those techniques are in general, rather than for specific applications.

On the issue of code migration, Hohl et al propose new mechanisms to transport code [Hohol

97]. They consider MA systems that use modular code structure according to an object-oriented

approach. In this case, only an MA ‘skeleton’ is transported between nodes, whereas the

necessary classes are transported only when needed. The MA fetches its classes directly on the

local host or from neighbouring ‘code servers’. An additional way to make the code transport

faster is to prefetch classes that may be used in the future. This approach has a great potential

of reducing migration times, but no performance analysis has been provided yet, though the

author claimed their intention of experimenting on those mechanisms over the Mole MA

platform.

Efficient code deployment is also tackled by Lipperts [Lipperts 00]. His work shares with this

thesis the ideas of exploiting agent autonomy to provide adaptation to changes through agent

migration. However, the migration logic embedded in the agent is different. In our case the

agent senses the network routing tables and computes simple estimates on the bases of which it

decides whether or not to trigger migration. Instead, Lipperts studies a solution based on utility

theory. Agents’ preferences between different locations are expressed as utilities. Combining

utility states with probabilities of these states provides a means for solving the agent location

problem. This ‘utility logic’ originates in artificial intelligence and is rather complex to embed

within the agent if compared with the proposed thesis approach. That is why overheads

associated with Lipperts’s approach are larger. In fact, the performance results show that

relatively small improvements are associated with agents incorporating ‘utility logic’ in

comparison with agent solutions in which migration is triggered without this logic.

A methodological comparison among several existing MA platforms is carried out by Silva et

al [Silva 00]. The authors create a simple benchmarking application, run it over each of the

platforms under examination and measure computational time and incurred traffic. This work if

far from identifying benchmarking applications that may be valid in general but has the value of

starting off in the right direction. The interesting result is that agent migration time varies

between few hundred milliseconds and nearly two seconds. This is an important figure to be

considered when relying on general-purpose MA platforms.

 - 65 -

Dikaiakos and Samaras propose a novel performance analysis approach to gauge quantitatively

the performance characteristics of MA platforms [Dikaiakos 00]. They propose a hierarchical

framework of benchmarking designed to isolate performance properties at different level of

detail. They examine the behaviour of those benchmarks over various commercial, Java-based,

MA platforms.

The works reviewed above show that a lot of investigation has been addressing the evaluation

of MA platforms in general. Not so much literature is available on the assessment of the more

specific field of MA-based management systems.

Sahai et al have experimented with Network Management enabled with MA capabilities [Sahai

97b-c, Sahai 98a-c]. They demonstrate the functionality of the MAGENTA MA platform

through a network management application. They have implemented and evaluated a mobile

network manager to manage a network from a portable computer through a wireless link. MAs

are utilised to study the performance of network components, install software, audit network

component usage and for network discovery. Timescales to create and launch MAs were in the

order of half a second, while the time for an agent to return back to its manager with results,

after performing its task, was in the order of the second. The work by Sahai et al illuminates on

timescales and performance trade-offs but presents an ad hoc performance evaluation of a

specific application rather than having a general validity.

A more general approach has first been proposed by Baldi and Picco, who present a

quantitative model for traditional (Client-Server) and mobile code design of network

management functionality [Baldi 98]. Their aim is to provide guidelines on how to determine

the optimal design paradigm according to the model parameters. To do that they follow a

methodology based on mathematical modelling, similarly to the work of this thesis. However,

their models are extremely simplistic and are not accompanied by any simulation work. They

also take a different perspective, that is the one of software engineering. We take a more

pragmatic approach by trying to solve some of the hurdles towards realisation of automated

MA-based management. Baldi’s work has the value of having motivated more quantitative

studies, including the one presented herein.

On the contrary, Rubinstein et al follow a simulation-based approach with additional

experimentation over MA platforms but do not employ mathematical modelling [Rubinstein 98,

Rubinstein 99a-c, Rubinstein 00a-c, Rubinstein 01]. It is interesting that their choice is to adopt

NS, the same basic network simulator as the one of this thesis. However, their simulations are

conducted in a different way and are more limited in scope. They initially assume very simple

LAN topologies rather than conducting a methodological simulation study for general IP

network topologies. In more recent work, they extend topologies and include general IP

 - 66 -

networks generated by GT-ITM, the same topology generation tool adopted herein. However,

they only generate a few networks and do not seem to repeat the experiments to ensure

statistical significance.

In addition, a number of assumptions are questionable. For instance, they neglect migration

overheads by treating MAs as common UDP packets. This assumption makes the results

questionable because migration overheads are found in this thesis to be the main limiting

factors of MA-based management. Other simulation parameters are set up in a similar fashion

as herein, though at the time of designing the simulations the author of this thesis was not aware

of Rubinstein’s work. This is an encouraging finding which somehow strengthens our

simulation work.

Another significant difference with our work is that the itinerary of Rubinstein’s MAs is

predetermined by the management stations at MA creation time. In this way he does not exploit

agent reactivity and autonomy. An important contribution of this thesis is to devise a novel

algorithm to target those features which result in increased adaptability of the MA system and,

consequently, in increased scalability.

Valuable in Rubistein’s work is the comparison between the MA paradigm and SNMP-based

management.

MA-based Network Performance Management is evaluated by Gavalas in his recent PhD work

[Gavalas 01b]. His models are either inspired to or derived from work carried out by the author

of this thesis [Liotta 98a, Liotta 99a, Liotta 99b, Liotta 01a]. His main contribution consists of

the practical experimentation with his management-oriented MA platform. Gavalas work has

numerous similarities with this thesis and draws similar conclusions. Having been carried out

independently and having followed a different methodology, it can be seen as complementary

to this thesis.

We can conclude that, despite the fact that a lot of work has addressed the problem of

evaluating MA-based management applications, methodological studies of this approach exist

but do not provide in-depth evaluation. Existing work based on mathematical modelling

provides high-level models which capture only superficial aspects of the system. Simulation-

based approaches are rare and are not conducted at the necessary level of detail. Experimental

work tends to focus more on the performance evaluation of MA platforms rather than on the

management application.

This thesis is inspired by existing work on mathematical modelling but provides more detailed

models; provides extensive simulation results; re-uses the experimental measurements of

 - 67 -

overheads involved in the agent migration process; and brings a novel algorithm towards

automation and efficiency in agent dissemination.

3.5 Possible Approaches to the Agent Location Problem

While in the previous sections we have elaborated on works that have used MAs in various

ways to solve typical management problems, here we review existing location algorithms that

may, in principle, be applied to solve the agent location problem. This has been specified in

Chapter 2 as a p-median, or minisum problem in which, for a given monitoring task, we want to

find the number of agents, p and their location which results in minimal incurred traffic by the

monitoring system as a whole. We have also seen that this is an NP-complete problem; hence,

the agent location problem seeks, in practice, a near-optimal solution computable in polynomial

time. For this solution to be actually viable, we also need to be able to give upper-bounds on the

total computational time. This is needed because only those monitoring tasks whose duration is

reasonably longer than the span of time needed to compute their location are beneficially

implemented with MAs.

An important contribution of this thesis is the proposal of a novel solution to the agent location

problem. This work has been motivated by the fact that existing p-median algorithms do not

meet all the requirements of our agent system – i.e. they do not satisfy at least one of the

properties enumerated below. In the following subsections we shall review those algorithms

and show why they are not viable solutions to the agent location problem.

The main requirements on (or properties of) the agent location algorithm are summarised

below:

1. The algorithm can be computed in polynomial time with relatively low polynomial

degree. The polynomial degree should be relatively low (ideally of first degree or at

most of second degree) with maximum number of agents, number of monitored

objects, and network diameter. Some of the algorithms proposed in the literature are

not accompanied with any computational analysis or do not satisfy this requirement.

2. The algorithm solves the problem for general network topologies. Some algorithms

proposed in the literature solve the problem only for particular classes of topologies,

such as tree networks.

 - 68 -

3. The algorithm solves the p-median problem for any p ≥ 1 and smaller than the

number of network nodes. Some algorithms proposed in the literature can only

tackle particular cases such as p=1 or p=2.

4. The algorithm admits upper-bounds on computational time. As already mentioned

above, only those monitoring tasks whose duration is reasonably longer than the

span of time needed to compute their location are beneficially implemented with

MAs. Hence it is important to be able to foresee the agent computational time which

represents an unwanted overheads for the agent system.

5. The algorithm provides an indication of the ‘goodness’ of the computed locations.

By having an indication of the distance from optimality of a given facility system it

is possible to take the important decision of whether or not it is worth refining the

location procedure. A near-optimality threshold can be adopted to stop the search

for better locations. Moreover, in the case of applications such as the agent location

problem, one might want to employ a provably near-optimal algorithm to justify the

cost of building the system in the first place.

6. The algorithm does not use the network matrix as input parameter. Many of the

algorithms proposed in the literature are based on the principle that a complete map

of the network (or network topology) – e.g. the network distance matrix – is

available at the node where the location algorithm is executed. This is a major

limitation towards scalability. As network scale grows the assumption that an up-to-

date topological information is available at a central node becomes more and more

unreasonable.

7. The algorithm can be computed in a distributed fashion. Again, for scalability

reasons it is unreasonable to have to try to solve a highly distributed problem (the

agent location algorithm) using a centralised approach. This will result in heavy

load at the monitoring station which will be the sole responsible entity for collecting

and processing topological information. What is envisioned is an algorithm which

can be computed in a distributed fashion to limit the collection overheads and

‘parallelise’ computational load.

Location theory tackles location problems according to four different approaches [Handler 79]:

a) enumeration; b) graph theoretic; c) heuristic; and d) mathematical programming. These will

be discussed separately in the following sub-sections. An extensive survey of location

algorithms is presented in [Handler 79, Tansel 83a, Tansel 83b, Buckley 90, Evans 92], and

[Daskin 95]. Here we only report a selection of the most relevant approaches and comment on

their advantages and limitations in tackling the agent location problem.

 - 69 -

3.5.1 Enumeration Approach

Enumerating all possible solutions to determine the optimal solution is a naïve approach, and

for large networks the required computational effort is unwieldy. As already mentioned in

Chapter 2, the p-median problem for fixed p is O(Np) in a network with N nodes, whereas the

time required to solve all p-median problems for p=1 to p=N for any given value of N is

([Daskin 95] p. 203)

 ()NN
N

j

O
j

N
212

1

=−=

∑
=

which is exponential in N. This breaches requirement (1) necessary for the p-median algorithm

to be a viable agent location algorithm.

A number of polynomial algorithms characterised by low degree has been proposed to solve the

1-median and the 2-median problems. These meet requirement (1) but breach either

requirement (2) or (3). For instance, Hakimi presented a simple enumeration procedure for

determining an absolute median in a non-oriented network [Hakimi 65]. This approach is

actually based on the distance matrix; hence this algorithm breaches also requirement (6).

Enumeration algorithms have also been proposed to solve the p-median problem optimally and

in polynomial time on a tree network [Kariv 79]. However, these do not meet requirement (2).

3.5.2 Graph Theoretic Approach

Graph-theoretic approaches take advantage of the underlying network structure to determine the

p-medians. These approaches have been successful only when the underlying network has a

non-oriented tree structure [Handler 79]. In particular, Goldman has presented an algorithm that

solves the 1-median problem on a tree in just O(N) steps [Goldman 71]. Matula and Kolde

proposed an algorithm which solves the p-median problem on a tree (where p>1) in O(N3p2)

steps [Matula 76]; while an O(N2p2) is presented in [Kariv 79].

Therefore, graph-theoretic approaches proposed in the literature breach either requirements (2)

and (3).

3.5.3 Heuristic Approach

Heuristic procedures rely on intuitive trial-and-error methods and cannot guarantee an optimal

solution, but they can be applied to any general network structure – i.e., they meet requirement

 - 70 -

(2). Heuristic procedures are especially useful when ‘good’ rather than ‘optimal’ solution is

required. Some of them are based on intuitive notions about the optimal solution of the p-

median problem, while others attempt to generate common-sense approximate solutions to

exact mathematical formulations, mostly integer programming formulations. In fact, some of

these heuristics are used to generate better initial solutions and/or branching decision rules to

obtain faster convergence in the mathematical programming algorithms.

A comprehensive revision of heuristic algorithms is reported in [Handler 79, Tansel 83a, Tansel

83b, Buckley 90, Evans 92], and [Daskin 95]. Those algorithms belong to the following

categories: node partitioning, myopic approach, node substitution, heuristic branch-and-bound,

and improvement algorithms. The interested reader may refer to the above references for the

details.

The revision of the algorithms proposed in the literature led to some important conclusions.

Several algorithms proposed in the literature meet requirement (1), (2), and (3). The major

problem of any heuristic approaches is that they do not provide a measure of ‘goodness’ of the

solution – i.e., requirement (5) is not met. (See [Daskin 95] p.221.). Most of them do not satisfy

requirement (6) either. Requirement (4) is met in some algorithms. Finally, requirement (7)

depends on the implementation. However it should be observed that none of the reviewed

algorithm is oriented towards distributed computation, being mostly based on an input network

distance matrix.

In conclusion it should be mentioned that the agent-based solution proposed in this thesis falls

under the umbrella of heuristic procedures.

3.5.4 Mathematical Programming Approaches

The mathematical programming approaches are based on an integer programming formulation

of the p-median problem. A comprehensive review of mathematical programming algorithms is

reported in [Handler 79] and [Buckley 90]. Because of the availability of several integer

programming computer routines and the large theoretical base in mathematical programming,

these approaches have attracted wide attention and have proved rather successful for general

networks. The major impediment to using this approach for the agent location problem is that it

relies on the network distance matrix – i.e. does not meet requirement (6). Moreover, despite

the number of authors reporting computational times (see [Khumawala 72, Jarvinen 72, El-

Shaieb 73, Garfinkel 74, Schrage 75]), there is not much literature on theoretical computational

complexity of those algorithms.

 - 71 -

Particularly relevant to this thesis are algorithms based on Lagrangian Relaxation (this

technique is discussed in [Geoffrion 74, Held 74, Fisher 75, Cornuejols 77, Narula 77, Daskin

95]). These are optimisation-based approaches based on relaxations of the integer-programming

formulation of the p-median problem. When coupled with one or more heuristic algorithms, the

lagrangian approach often gives results that are provably optimal or very close to optimal

[Daskin 95] – i.e., it meets requirement (5). This is an extremely useful metric for establishing

the distance from optimality of other heuristic algorithms. For instance, in this thesis we prove

that the proposed algorithm leads to a near-optimal solution of the p-median problem by

showing that this solution is upper-bounded by the one achievable with a provably near-optimal

lagrangian algorithm presented in [Daskin 95].

Nevertheless, lagrangian algorithms are not viable to the agent location problem because they

do not meet requirements (1) and (6). Computational times are reported in [Cornuejols 77] and

[Daskin 95], which show that this approach is only suitable for moderate-sized networks.

3.6 Conclusions

In this Chapter we have surveyed work that is strongly related to the thesis in order to identify

gaps in the literature and provide motivation for addressing some of them. We have also

highlighted work which is complementary to the thesis as well as issues that are orthogonal to

the ones addresses herein. Clearly, this thesis does not address all the unsolved problems, but it

is useful to set up the whole picture before concentrating on particular issues.

An important target is to advance towards the realisation of automated MA-based management.

Many hurdles delay this process. We tackle one of them, that is the study of algorithms to

automate the agent dissemination process in a way which results in near-optimal distribution of

monitoring agents.

Another problem is carrying out the evaluation of MA-based management in a methodological

manner, aiming at results which are statistically significant and of practical use. We have

discussed literature gaps on methods, benchmarks, traffic profiles, and models. This thesis

proposes models (both mathematical and for simulation) and follows a mixed mathematical and

simulation-based methodology. The thesis, though, does not take a software engineering

perspective. As such, it does not have the aim of providing general models or proposing a

general methodology. Nevertheless, the approach followed here may serve as a starting point

for other researchers.

 - 72 -

We can see from the literature survey that MAs are associated with a variety of properties.

However, when it comes to MA-based management, MAs tend to lose most of them and to

degenerate into a mechanism for dynamic programming remote elements. The gap here is the

exploitation of the real essence of ‘agents’ and MAs. The position of this thesis is to try and

exploit to a larger extent agent mobility, autonomy, cloning, reactivity, and pro-activity. The

hypothesis is that those properties may lead to increased performance and scalability, and may

facilitate adaptation.

This Chapter concludes the first part of this thesis which has introduced the thesis work, the

research hypothesis, the main objectives and motivations, and has surveyed background

material and related work.

 - 73 -

PART II

THESIS CONTRIBUTIONS

 - 74 -

Chapter 4

Mobile Agent based Distributed Monitoring

This Chapter initiates the second part of the thesis which includes the various research

contributions. Chapter 4 introduces the proposed active distributed monitoring approach in an

incremental fashion. A simpler solution, which is computed in a centralised fashion, allows

focusing on the basic algorithmic ideas behind the proposal. The same principles apply to the

distributed version of that algorithm which is described afterwards. We can say that the thesis

proposes two flavours of a single algorithm that solves the agent location problem.

Given two systems, the monitored system and the monitoring system, the former is exemplified

by a set of interconnected nodes. When they are monitored, nodes are seen by the agents as

Monitored Objects (MO). The monitoring system includes a set of algorithms implementing the

actual monitoring operations. We recall from the previous chapters that the difference between

centralised and distributed monitoring systems is that in the former case the monitoring

algorithms are executed in a single node by a single manager; whereas with distributed

monitoring the monitored system is partitioned into subsystems each of which is monitored by a

separate area manager.

In a static distributed monitoring system both the location and operations of the area managers

are predetermined at design time by the main manager. In contrast, in an active distributed

monitoring system the area manager locations and operations are computed dynamically and

can be changed even during the execution of the monitoring algorithms, in order to provide

adaptation to changes in the network status.

The application of code mobility to distributed monitoring is conditional on efficiently solving

the agent location problem introduced in Chapters 2 and 3.

 - 75 -

In the vision of this thesis, area managers are implemented with mobile agents following the

weak mobility paradigm. Given a monitoring task specified by a manager, the agent system

needs to determine the following, as depicted in Figure 4-1: 1) the number of agents required to

implement the task in a distributed fashion; 2) the set of managed objects monitored by each

agent; 3) the location of each agent; and 4) the operations implemented by each agent.

Service
Operation

Agent
Location

Monitored
Objects

Agent
Operators

L0

MO0 O0

L1

MO1 O1

L2

MO2 O2

Lp

MOp Op

a) Mobile Agent b) Mobile Agents Configuration

Figure 4-1: a) Main components of a mobile agent; b) Agents configuration.

The aim is to efficiently place the agents in the network in a way that optimises the traffic

incurred by the monitoring system as well as its overall response time.

In accordance with the focus of the thesis, this chapter is mainly dedicated to the description of

two different flavours of the proposed agent location algorithm which finds an approximate

solution to problems 1-3. This algorithm aims at placing p monitoring agents appropriately in

the network. The centralised algorithm uses the constrained mobility concept during the agent

deployment phase (Section 4.1). The distributed one, uses the weak mobility approach and

assumes agents capable of cloning (Section 4.2).

The main difference between the two flavours of the proposed algorithm regards their

algorithmic computational complexity, as described in Chapter 6. The performance of a

distributed monitoring system based on the proposed agent location algorithm is assessed by

simulation in Chapter 8.

The agent location algorithm computes, for a given monitoring task, a suitable number of area

managers (or agents) and their location, and partitions the network in order to create

associations between portions of the network and area managers. Problem 4 identified above –

i.e., the automatic agent task decomposition for the determination of the actual operations

realised by each agent – has assumed a more marginal role in this thesis. This relates to the

classic problem of specifying routines which can be executed in a parallel or distributed

fashion. Research in the area of parallel computing suggests that this problem is very difficult,

if not impossible, to solve in a general fashion. In Section 4.3 we elaborate a bit on the

 - 76 -

possibility of solving it for a particular class of monitoring tasks. However, we shall only

provide some reasoning without actually solving the problem in a general fashion.

Section 4.4 captures the main features of the proposed agent-based distributed monitoring

system. Finally, Section 4.5 elaborates on the possibility of further exploiting agent weak

mobility to build active distributed monitoring systems capable of adapting to changes in the

network state even after the agent deployment. This is another topic which, despite its interest,

has been investigated only marginally in this thesis.

4.1 Centralised Location Algorithm for Agents Incapable of

Cloning

We describe here a centralised algorithm that, given a monitoring task specified by the

manager, finds an approximate solution to the agent location problem. The algorithm is

computed at the monitoring station and assumes the availability of a simple code mobility

infrastructure supporting constrained mobility. It makes use of simple routing information – i.e.

next-hop address and costs such as hop-counts – obtainable from network routers through

standard network management interfaces. This could be obtained, for example, through the use

of SNMP.

It should be emphasised here that this usage of information that is already available in the

network is significant. It removes the need for the agent system to perform additional network

performance tasks and, consequently, improves efficiency. Routing tables are used but not

manipulated by the agent system. They are maintained by routing algorithms, which operate

independently from the agent system. In this way the resulting network partitioning reflects

indirectly the status of the network.

The algorithm is initially illustrated by showing its basic steps for the simple example network

topology of Figure 4-2 (nodes are routers or hosts connected by point-to-point links). After that,

a more formal specification is given.

 - 77 -

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station Nodes Links

Figure 4-2: Example Network Topology.

4.1.1 Centralised Algorithm by Example

In the case of the centralised algorithm, agent location and deployment are performed

sequentially. The agent location is computed at the monitoring station. Agents are, then, created

at the monitoring station and dispatched to their target destinations.

The core of the algorithm is represented by a recursive network partitioning process which

relies on a heuristic procedure. This procedure computes the partitioning starting from the

monitoring station node by appropriately processing the ‘next_hop’ addresses and routing costs

between the current node and every other node to be monitored. This information is typically

stored in local routing tables.

1 2 3

4 5 6 7 8 9 10

0

a)

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

b)

d) e)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

0 Monitoring Station

c)

f)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

Mobile Agents during execution Mobile Agents during Deployment

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

Routing distribution tree Agents deployment path

Figure 4-3: Agent configuration steps for the centralised algorithm.

Figure 4-3 illustrates the basic steps of the partitioning process for the example network of

Figure 4-2. It is assumed that the monitoring station monitors nodes 1 to 14; hence, the routing

 - 78 -

tree rooted at node 0 is depicted (Figure 4-3a). One of the heuristic components of the

procedure consists in estimating the number of agents required to implement the given

monitoring task in a distributed fashion. This is done by considering parameters such as total

number of monitored nodes and network radius, and constraints such as the maximum allowed

deployment time.

In the example, approximately two thirds of the nodes are reached through node 2. Most of the

remaining nodes are reached through node 1. There are not enough nodes through node 3 to

justify a third partition, since separate partitions are meant to be monitored by independent

agents. Thus, the network is partitioned into two sub-partitions (Figure 4-3b). One agent is

associated with the smaller partition and other two are associated with the larger one. The

larger partition needs now to be further divided into two. Node 2 becomes the current node

from which the partitioning process continues (Figure 4-3c). Eventually three agents are

created, each one associated with a different partition (Figure 4-3d), and the deployment

process is initiated (Figure 4-3e). Finally, the agents start monitoring the nodes (Figure 4-3f).

Each agent concentrates the information collected from its partition before returning it to the

central monitoring station in the form of periodic notifications or reports and events or alarms.

Figure 4-4 depicts the situation upon deployment completion. The number of agents has been

established along with their location and the system has been partitioned. We can observe that

the monitoring path – i.e., the agent-to-monitored nodes communication path – does not

necessarily coincide with the agent deployment path.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station

Network links
Monitoring path

Other Nodes

Nodes with agents

Figure 4-4. Final agent location and monitoring path.

4.1.2 Centralised Algorithm by Flow-chart Diagram

The centralised version of the proposed agent location algorithm is depicted in Figure 4-5 in the

form of a flow-chart diagram. This is a recursive algorithm which visits the network

 - 79 -

distribution tree following a depth-first approach. The algorithm is computed on the network

matrix which has to be provided as one of the input parameters. Another parameter is the

percentage of agents (P) with respect to the number of monitored nodes (P=p/N whereby p is

the actual number of MAs as well as the number of network partitions, since one agent per

partition is assumed).

Other input parameters include the routing tables (one per network node); the monitoring

station node (u); and the heuristic function used to subsequently create the network partitioning

at each iteration. The heuristic utilised for the simulations of the centralised algorithm is very

simple. It utilises as input parameters, a network node (v) acting in the role of root node; the

number of agents candidate for that node; the number of monitored nodes reached through that

node; and the sum of routing costs extended to all the monitored nodes reached through the

given root node. Routing costs are extracted from the routing table of the root node.

The heuristic function provides as output an estimate of the number of agents that should be

forwarded to each of the root’s neighbour nodes. MAs are associated to neighbour nodes

proportionally to the number of monitored nodes (reached through the neighbour node) and to

their associated routing costs. Hence, network partitions including a larger number of

monitored nodes or/and whose associated routing cost is higher are allocated with a

proportionally large number of agents.

 - 80 -

Network Topology
Routing Tables

Agent Percentage, P
Heuristic Function

Monitoring Station node, u

START END

INITIALISATION
Compute N from topology
set v = u ; p = N*P
create p agents at u

COMPUTE ROOT’s
NEIGHBOURS

neigh(v) are labelled as
“all-non-visited”

Have all
neigh(v) been

visited?

pick up next unvisited
neighbour from neigh(v)

COST COMPUTATION
calculate number of monitored objects reached
through v and total associated cost (summing the
costs extracted from the relevant routing table)

Heuristic function estimates number of agents
that will go to node v Å (estimate(v))

estimate(v)
the sub-tree
rooted at v is a
new partition

any pending
sub-partition?

attach pending
partition to
sub-tree

allocate one
MA to the new
partition

START RECURSION

v is the new root node. estimate(v) is the
total number of MAs available. N is the

number of nodes in the sub-tree rooted at v

Inside a
recursion?

EXIT RECURSION
(one level up)

Sub-tree
rooted at v
will be
appended to
the next new
partition (this
is a pending
partition)

Y

Y

Y

N

N

N

1

>1

0

Figure 4-5. Flow-chart of centralised version of the agent location algorithm.

 - 81 -

4.1.3 Centralised Algorithm Formally

A more formal description of the proposed algorithm is given in Listing 4-1. The key symbols,

procedures, and variables are specified in Table 4-1 and a commentary on the MA algorithm is

given below.

1 p Ä heur_1(|V|; min_deploy_time; R(u);...)
2 FOR x = 1 to p
3 ma_ID Ä new_ma(x)
4 MAs Ä MAs ∪ ma_ID
5 node(ma_ID) Ä u
6 monitored(ma_ID) Ä {}
7 curr_nd_ID Ä u
8 MA(curr_nd_ID) Ä MAs
9 MO(curr_nd_ID) Ä V \ u
10 neigh(curr_nd_ID) Ä {v | v ∈ V & dist(curr_nd_ID; v)= 1}
11 FOR EACH v ∈ neigh(curr_nd_ID)
12 MO(v) Ä {x | x ∈ MO(curr_nd_ID) &
13 next_hop(curr_nd_ID; x) = v }
14 cost(v) Ä ∑(y|y ∈ MO(v)) [routing_cost(curr_nd_ID, y)]

15 FOR EACH v ∈ neigh(curr_nd_ID)
16 estimate_MA(v) Ä heur_2{ MA(curr_nd_ID);
17 ∪ (x | x ∈ neigh(curr_nd_ID) [MO(x)]; ∑(x | x ∈ neigh(curr_nd_ID) [cost(x)] }

18 FOR EACH v ∈ neigh(curr_nd_ID)
19 IF (estimate_MA(v) > 0) DO
20 FOR y = 1 to estimate_MA(v)
21 MA(v) Ä MA(v) ∪ {ANY z ∈ MA(curr_nd_ID)}
22 MA(curr_nd_ID) Ä MA(curr_nd_ID) \ z
23 node(z) Ä v
24 IF MA(curr_nd_ID) ≠ {}
25 MO(curr_nd_ID) Ä MO(curr_nd_ID) \ MO(v)
26 ELSE
27 MO(v) Ä MO(v) ∪ MO(curr_nd_ID)
28 MO(curr_nd_ID) = {}
29 curr_nd_ID Ä v
30 Start Recursion
31 # The remaining monitored objects in MO(curr_nd_ID)
32 # are equally distributed among the remaining agents
33 # MA(curr_nd_ID).
34 FOR EACH ma_ID ∈ MAs
35 send ma_ID to node(ma_ID)
36 # Each agent autonomously starts executing its
37 # monitoring task upon arriving to its target node.

Listing 4-1: Centralised version of the agent location algorithm based on constrained mobility.

The network is modelled as a graph G=(V,E) consisting of a set of vertices (or nodes), V and

edges, E. Each edge, e∈ E has two end points, v1 and v2∈ V. Given two generic nodes vx and

vy∈ V, let us denote by d(vx) the degree of vx in G, by dist(vx,vy) the distance between vx and vy.

Let R(vx) = max{ v|v∈ V} {dist(vx,v)} be the radius of the network centred in vx; neigh(vx) = {v | v∈ V

& dist(vx,v) = 1} is the set of neighbours of vx in G; and Tr is the routing tree rooted at the

monitoring station.

 - 82 -

KEY TO SIMBOLS
‘ Ä’ assignement; ‘\’ difference between sets; ‘{.}’ set or list;
‘{}’ empty set or list; ‘ ∈ ’ is element of; ‘|’ conditional clause

KEY TO PROCEDURES
heur_1 heuristic function which computes the required

number of agents on the basis of the monitoring
task features and of some network topological
information

new_ma(.) procedure generating a new agent
dist(nd_ID; v) distance between node nd_ID and node v
routing_cost(
 nd_a, nd_b)

procedure which extracts from the local routing
table the estimated cost to reach node nd_b from
node nd_a.

heur_2 heuristic function estimating how many of the
agents residing in curr_nd_ID should be migrated
to node v. It works on the basis of the total
number of agents in curr_nd_ID, the total number
of nodes monitored from curr_nd_ID, and the total
costs associated to perform the monitor from
curr_nd_ID

KEY TO VARIABLES
p total number of agents
MAs set of the ID of all agents
node(ma_ID) the node ID of the agent identified by ma_ID
monitored(ma_ID) the set of nodes monitored by the agent identified

by ma_ID
curr_nd_ID the node of the algorithm current iteration
u node hosting the main monitoring station
MA(nd_ID) set of agents residing in the node identified by

nd_ID
MO(nd_ID) set of nodes reachable through nd_ID that will be

monitored by the agents residing in nd_ID
neigh(nd_ID) set of neighbour nodes of nd_ID
cost(v) total cost associated to monitor the object

reachable through v from curr_nd_ID
estimate_MA(v) number of agents that will be migrated from node

curr_nd_ID to node v

Table 4-1: Key symbols, procedures, and variables for the algorithm of Listing 4-1

The algorithm is divided into 4 main parts:

1. Initialisation (lines 1-9). A simple heuristic procedure determines the number of

required agents p on the basis of the total number of nodes N=|V|, the network

radius, and other relevant data – e.g. constraints on maximum allowed agent

deployment time. For example a simple heuristic to estimate the number of required

MAs, p is to create a number of agents equal to a certain portion of the total number

of monitored nodes. For instance, the simulations reported in Chapter 8 show that if

p is too small there is no significant difference in performance between distributed

and centralised monitoring. It is also shown that large values of p result in large

agent deployment overheads and that a good trade-off is to fix p at 10-20% of N.

Once the number of agents has been determined, the agents are created and

initialised. Their initial location is the monitoring station node; their set of

monitored nodes is empty. Their operations (not shown in the listing) are set up by

the manager.

 - 83 -

2. Iteration (lines 10-33). This part represents the core of the algorithm. It is an

iterative procedure that, by progressively matching the monitoring task parameters

with network topology and routing information, ends up computing the location of

each agent along with its set of monitored nodes.

3. Agent Deployment (lines 34-35). Once the agent locations and set of MOs have

been computed the agent deployment process is initiated.

4. Start Monitoring (lines 36-37). Each agent starts performing its monitoring task

over its set of MOs upon arriving to its target location.

The above algorithm can be further illustrated by referring again to the example network

schematised in Figure 4-2 and Figure 4-3. The main steps of the agent location algorithm are

captured in Table 4-2.

Algorithm
Execution

State

 Agent
MA1

Agent
MA2

Agent
MA3

Location 0 0 0 Initialisation
MOs {} {} {}

Location 1 2 2 First
Iteration MOs {1, 4-7} {2, 3, 8-14} {}

Location 2 8 Second
Iteration

MOs

Iteration
ends because
estimates is

0
{2, 3, 9,

10}
{8, 11-14}

Third
Iteration

 Iteration
ends

Iteration
ends

MA Deployment Migration to
node 1

Migration to
node 2

Migration to
node 8

Table 4-2: Main steps of the algorithm of the centralised algorithm for the example network of

Figure 4-2.

The initial estimate is that three agents are needed. Thus, three agents are created at the

monitoring station. Their ‘location’ field is set to the monitoring station node ID that is zero;

their list of monitored agents is set to an empty list. The first iteration results in estimating one

agent for node 1, two agents for node 2 and no agent for node 3. In fact, not enough nodes are

reached through node 3 (there is actually only node 3) so the deployment of an agent to node 3

would not be justified. The MOs are associated with the agents accordingly and the second

iteration is initiated. Agent MA1 is confirmed to have to be in node 1, whereas the remaining

agents are subject to another level of iteration. This iterative process eventually ends when all

agents are associated with nodes from which no better locations can be found. At this point the

agent migration process is actually initiated from the monitoring station node.

 - 84 -

4.2 Distributed Location Algorithm for Agents Capable of

Cloning

We describe here a distributed flavour of the agent location algorithm presented in Section 1.1

above. This algorithm assumes the existence of an agent system supporting weak mobility and

agent cloning. Like the centralised algorithm, the distributed one makes use of routing

information obtainable from network routers through standard network management interfaces.

So it is assumed that this information is available.

We also assume that MA hosts - i.e., locations in which MAs are able to run - are evenly

distributed within the network. This, in other terms, means that for each router there is at least

one MA host that is located relatively close to it and, for each LAN, the number of MA hosts is

proportional to the number of MOs that need to be monitored in that LAN. Under these

assumptions, the MA distribution tree —i.e., the set of routes used for MA deployment— does

not differ significantly from the routing tree rooted at the monitoring station. Without loss of

generality, we envisage a scenario in which routers can act as MA hosts during MA

deployment. In such a case, the MA distribution tree would actually coincide with the routing

tree.

Similarly to the approach followed in the previous section, the algorithm is initially illustrated

by showing its basic steps for the simple example network topology of Figure 4-2. After that, a

more formal specification is given.

4.2.1 Distributed Algorithm by Example

Unlike the centralised algorithm, the distributed one computes agent locations during agent

deployment. The network partitioning process is initiated at the monitoring station but is then

taken over by the agents, which perform it in a distributed fashion. This process is illustrated in

Figure 4-6. The manager initially delegates a given task to one agent and starts it at the

monitoring station (Figure 4-6a). This agent, as well as all the agents created subsequently,

employs a heuristic procedure for partitioning the network, which is analogous to the one used

in the centralised algorithm. Thus, based on heuristic information, the first agent (residing at

the monitoring station) partitions the network into two parts by processing the ‘next_hop’

addresses and routing costs between the current node and every other node to be monitored

(Figure 4-6b). We recall that in the centralised algorithm this information is stored as a data

structure in the monitoring station. Instead, with the distributed algorithm routing information is

directly extracted from the routing tables of the local router.

 - 85 -

1 2 3

4 5 6 7 8 9 10

0

a)

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

b)

d) e)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

0 Monitoring Station

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

c)

f)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

Mobile Agents during execution Mobile Agents during Deployment/cloning

Routing distribution tree Agents deployment path

Figure 4-6: Agent configuration steps for the distributed algorithm.

Since one agent per partition is required, the agent will clone and set up a second agent. This

procedure involves the monitoring task decomposition which includes the specification of the

sub-tasks for the two agents and the appropriate assignment of monitored nodes (see Section

4.3).

After that, each agent autonomously searches its best location and migrates to it (Figure 4-6c).

The agent in location 1 is now ready to start since it has estimated that its current location is the

one with minimum cost. Conversely, the agent in location 2 decides to share its task with

another agent and clones it (Figure 4-6d). The decomposition/migration process starts again

leading to one agent running in node 2 and the other migrating to node 8 (Figure 4-6e).

Eventually, the agent in location 8 has found its cheapest location and starts executing (Figure

4-6f).

It can be noted that the use of cloning results in minimal agent deployment traffic. In fact, only

two agents leave the monitoring station, although the resulting number of agents is three. The

cloning algorithm is executed in a distributed fashion (on nodes 1, 2, and 8). Finally, the

processing is performed in parallel among nodes at the same level (1 and 2).

4.2.2 Distributed Algorithm by Flow-chart Diagram

The distributed version of the proposed agent location algorithm is depicted in Figure 4-7 in the

form of a flow-chart diagram. Although the chart may appear very similar to that of Figure 4-5,

there are several differences. First, this algorithm is based on parallel threads of execution

 - 86 -

rather than on a sequential, recursive procedure. Starting from the root node, an agent may

spawn autonomous agents who visit disjoint portions of the network distribution tree in

parallel. Spawned agents may in turn spawn other agents, achieving a high level a parallelism.

A second important difference is that the algorithm is not computed on the network matrix

(which is in fact not provided as an input parameter); each agent makes decisions on whether or

not to partition its portion of the network on the bases of information extracted from the local

routing tables.

Another missing input parameter is the agent percentage. This is not required because, unlike

the centralised algorithm, the distributed algorithm determines the location of agents as well as

their number. For this reason, the distributed algorithm adopts a slightly more sophisticated

heuristic function. In this case the decision of whether or not to clone a new agent and spawn it

to the one of its neighbours (v) is based on the following parameters: 1) the cost associated to

the current agent to monitor all the nodes belonging to the sub-tree rooted at the agent node; 2)

the number of the monitored objects reached through v; 3) the monitoring cost associated to a

candidate agent sitting in v and in charge of monitoring the sub-tree rooted at v.

 - 87 -

Heuristic Function
Monitoring Station node, u

START END

INITIALISATION
set v = u
clone first agent at u

COMPUTE ROOT’s NEIGHBOURS
neigh(v) are labelled as “all-non-visited”

Have all
neigh(v) been

visited?

pick up next unvisited
neighbour from neigh(v)

COST COMPUTATION
calculate number of monitored objects reached
through v and total associated cost (summing the
costs extracted from the relevant routing table)

Heuristic function estimates whether or not a
new agents will need to be cloned for node v

CLONE?

START PARALLEL THREAD

Clone and initialise new MA
v is the new root node; N is the number of
nodes in the sub-tree rooted at v

pending
partition
empty?

KILL MA

Sub-tree
rooted at v
will be
appended to
the next new
partition (this
is a pending
partition)

Y

Y

N N

Y

N

Compute costs to monitor sub-tree from
current root node (information extracted
from root’s routing table)

START MA

Figure 4-7. Flow-chart of distributed version of the agent location algorithm.

 - 88 -

Costs are extracted from routing tables. For instance the cost to monitor a node x for an agent

located in node v is equal to the value stored in the cost field of the routing table stored at v

from the row whose destination field is equal to x. The total cost that an agent has to pay in

order to monitor all the sub-tree rooted at the node where the agent is sitting, is equal to the sum

of the individual routing costs of each of the involved monitored nodes.

The heuristic function appropriately weights the various input parameters in order to determine

whether or not to clone a new agent. An important parameter is the number of nodes in the sub-

tree of the neighbour under examination – e.g., v. The larger is this number, the higher is the

probability to spawn an agent to node v. This part of the heuristics works similarly to the

centralised algorithm. A good trade-off threshold has been found to be in the order of 10% (i.e.,

the cloning probability is increased when the number of nodes in the sub-tree is greater than

10). A second driving factor is the difference between the cost associated to the agent and the

one achieved when the sub-tree rooted at the candidate neighbour v is monitored by a newly

spawned agent sitting in v. The probability to spawn an agent to node v is increased

proportionally to this gradient.

4.2.3 Distributed Algorithm Formally

A more formal description of the proposed algorithm is described in Listing 4-2. It starts by

creating a first agent at the main monitoring station – i.e., the node where the monitoring

information eventually needs to be collected (Step 1-2). This agent is initially configured to

monitor all the other network nodes (Step 3) and initiates an iterative procedure which

determines whether it is appropriate to clone other agents by progressively matching the

monitoring task parameters with network routing information (Steps 4-19). Hence, the core of

the algorithm is the heuristic procedure (Step 11) which, for each node adjacent to the agent

node, creates estimates based on the following costs extracted from the local routing tables: 1)

total cost to monitor all the nodes by the current agent; 2) total cost that would be involved if

the subset of nodes reached through a candidate neighbour node were monitored by a new agent

located in this node; 3) the sum of the costs computed in 2) extended to all the neighbour nodes.

 - 89 -

1 ma_ID Ä clone_ma
2 ma_nd_ID Ä u
3 monitored(ma_ID) Ä {V \ u}
4 cost(ma_nd_ID) Ä ∑(y|y ∈ MO(ma_nd_ID)) [routing_cost(ma_nd_ID; y)]

5 neigh(ma_nd_ID) Ä {v | v ∈ V | dist(ma_nd_ID; v)= 1}
6 FOR EACH v ∈ neigh(ma_nd_ID)
7 MO(v) Ä {x | x ∈ monitored(ma_nd_ID) &
8 next_hop(ma_nd_ID; x) = v }
9 cost(v) Ä ∑(y | y ∈ MO(v)) [routing_cost(ma_nd_ID, y)]

10 FOR EACH v ∈ neigh(ma_nd_ID)
11 estimate_MA(v) Ä heur(cost(ma_nd_ID); cost(v); |MO(v)|;
12 ∑(x | x ∈ neigh(ma_nd_ID) [cost(x)])

13 FOR EACH v ∈ neigh(ma_nd_ID)
14 IF (estimate_MA(v) = 1)
15 new_ma_ID Ä clone_ma
16 new_ma_nd_ID Ä v
17 monitored(new_ma_ID) Ä MO(v)
18 monitored(ma_ID) Ä{monitored(ma_ID) \ monitored(new_ma_ID) }
19 migrate_ma(ma_ID=new_ma_ID; ma_nd_ID=v)
20 IF (monitored(ma_ID) ≠ {})
21 start_ma(ma_ID)
22 ELSE
23 kill_ma(ma_ID)

Listing 4-2: Distributed version of the agent location algorithm based on strong mobility.

Whenever a neighbour node is selected by the heuristic procedure, the agent creates a new

agent to whom it delegates the task of monitoring all the nodes reached through the neighbour

node (Steps 13-18). The new agent is then migrated to this neighbour node where, upon

arriving, the agent will re-initiate the iterative process (Step 4-19). The iterative process ends

when no new agents need to be cloned, according to what is estimated by the heuristic

procedure.

 - 90 -

KEY TO SIMBOLS
‘ Ä’ assignement; ‘\’ difference between sets; ‘{.}’ set or list;
‘{}’ empty set or list; ‘ ∈ ’ is element of; ‘|’ conditional clause

KEY TO PROCEDURES
‘clone_ma’ creates a new agent;
‘routing_cost(nd_A; nd_B)’ extracts from the local routing table the
estimated cost to reach node nd_B from node nd_A;
‘dist(nd_A; nd_B)’ returns distance between node nd_A and node nd_B;
‘next_hop(nd_A; nd_B)’ extracts from the local routing table the
distance between nodes nd_A and nd_B;
‘heur(.)’ applies heuristics based on previously computed costs to
estimate whether a new agent should be cloned for a neighbour node.
‘migrate_ma(.)’ performes all the necessary operations to migrate an
agent to a different node;
‘start_ma(ma_ID)’ agent ma_ID starts monitoring operation;
‘kill_ma(ma_ID)’ agent ma_ID is redundant and is then terminated.

KEY TO VARIABLES
‘monitored(ma_ID)’ set of nodes monitored by the agent ma_ID;
‘cost(nd_ID)’ total cost payed to monitor the nodes reached through
node nd_ID;
‘neigh(nd_ID)’ set of neighbour nodes of node nd_ID;
‘MO(nd_ID)’ set of nodes monitored trough node nd_ID;
‘estimate_MA(nd_ID)’ binary variable: value 1 indicates that a new
agent should be sent to node nd_ID; value 0 indicates the opposite.

Table 4-3: Key symbols, procedures, and variables for the algorithm of Listing 4-2.

As a final remark it is important to notice that the centralised agent location algorithm

described in Section 4.1 (page 76) leads to the same results – i.e., agent locations and network

partition – as the distributed algorithm. This derives from the fact that both algorithms use the

same heuristic procedures to partition the network and create associations between network

partitions and agents.

However, an important difference is that while in the distributed algorithm the agent location is

actually computed during agent deployment, in the centralised algorithm those two steps are

performed sequentially. Computational complexity and typical execution times of these

algorithms are assessed in Chapter 6.

4.3 Decomposition of Monitoring Tasks

The proposed agent location algorithm computes, for a given monitoring task, a suitable

number of area managers (or agents) and their location, and partitions the network in order to

create associations between portions of the network and area managers. The actual operations,

or sub-tasks, implemented by each agent are determined as part of the agent configuration

process by decomposing the given monitoring task into appropriate sub-tasks.

In a simple case, the monitoring task is specified by the manager who also specifies each

individual sub-task. This approach, though, requires that the agent configuration problem is

 - 91 -

solved in a centralised fashion, since task decomposition and agent location are interdependent

and will have to be computed at the management station.

On the other hand, if a distributed computation of the agent location is chosen, the monitoring

task must be specified in a way that allows for its automatic decomposition. In this case,

starting from a given task, sub-tasks are generated automatically during the agent

cloning/deployment process and depending on the state of the underlying network.

We have carried out a preliminary study of the specification of ‘automatically decomposable’

tasks as reported in [Liotta 98b]. However, a formal treatment of this particular aspect is

beyond the scope of the thesis. Therefore, the remaining part of this section is limited to the

description of task-decomposition by example, according to the procedure adopted in the course

of the thesis experimentation.

Let us assume that T(X) represents the given monitoring task operating on the set of nodes X

and {X1, X2, …, Xp} are p disjoint partitions of X with U
}..1{| pii

iXX
∈

≡ . We say that T(X) is an

automatically decomposable task if it is possible to find p generally different tasks (T1, T2, …,

Tp) and some function f(.) for which the following expression holds: T(X) = f(T1(X1), T2(X2), …,

Tp(Xp)).

A simple example of directly decomposable monitoring task specification can be observed in

Listing 4-3, which is a snippet of the OTCL code implemented for the simulations reported in

Chapter 8. In this case, the monitoring station simply polls the Monitored Objects (MOs) twice

a second to extract the value of attribute A and generates an immediate alarm if any of these

attributes is greater than a given threshold. In addition, the sum of these attributes is computed

and notified to the monitoring station every minute. Therefore, if we refer back to the

parameters of Figure 4-1b on page 75, L0 is specified in line 2, MO0 is specified in line 3, and

O0 is specified in lines 4-14.

#SNIPPET OF MONITORING TASK SPECIFICATION
1 set manager_node_id 0 #location of monitoring station
2 set agent_location 0 #specify initial agent location
3 set MOs {1-14} #list of monitored objects with ID 1 to 14
4 set list_of_attributes {A} #get value of A from each object
5 set poll_rate 2 #Polling_Rate >= 2 polls/sec
6
7 set task_duration 5 #duration of monitoring operation
8 #in seconds
9 set data_processing {sum all} #sum values of attribute A from
10 #all objects
11 set notify 60 #notify the sum to the manager
12 #every minute
13 set alarm {if any > 80} #send an alarm to the manager if
14 #any value > 80

Listing 4-3: Specification of a simple directly decomposable monitoring task.

 - 92 -

The task can be decomposed into virtually identical sub-tasks, which differ only in the value of

two parameters: the list of monitored objects and the location in which each task will be

executed (see Listing 4-4). In fact, each sub-task will monitor a disjoint subset of the original

list of objects. These parameters are computed by the agent location algorithm described in the

above Sections 4.1 and 4.2. The monitoring station will appropriately aggregate the information

received from the two agents implementing the sub-tasks.

SNIPPET OF FIRST SUB-TASK
1 set manager_node_id 0 #location of monitoring station
2 set agent_location 1 #agent location
3 set MOs {1,4-7} #list of monitored objects
4 set list_of_attributes {A} #get value of A from each object
5 set poll_rate 2 #Polling_Rate >= 2 polls/sec
6 set task_duration 5 #duration of monitoring operation
7 set data_processing {sum all} #sum values of attribute A from
8 #all objects
9 set notify 60 #notify the sum to the manager
10 s et al arm {if any > 80} #send an alarm to the manager if
11 #any value > 80

SNIPPET OF SECOND SUB-TASK
12 set manager_node_id 0 #location of monitoring station
13 set agent_location 2 #agent location
14 set MOs {2,3,8-14} #list of monitored objects
15 set list_of_attributes {A} #get value of A from each object
16 set poll_rate 2 #Polling_Rate >= 2 polls/sec
17 set task_duration 5 #duration of monitoring operation
18 set data_processing {sum all} #sum values of attribute A from
19 #all objects
20 set notify 60 #notify the sum to the manager
21 set alarm {if any > 80} #send an alarm to the manager if
22 #any value > 80

SNIPPET OF MONITORING STATION TASK
23 set task_duration 5 #duration of monitoring operation
24 set data_processing {sum all} #sum values notified by agents

Listing 4-4: Specification of the resulting sub-tasks implementing the task of Listing 4-3.

The task of Listing 4-3 is directly decomposable into sub-tasks because the actual operations

performed on data – specified in lines 4-14 – are invariant with respect to the number and

location of sub-tasks. In particular, the instructions of line 9 and 13 are invariant to task

decomposition.

An example monitoring task that requires a more complex task decomposition procedure is

reported in Listing 4-5. This task differs from the one of Listing 4-3 in the actual operations

performed on the data collected from the nodes. In particular, the operation specified in line 9 is

invariant to decomposition for the case of Listing 4-3, whereas it is non-invariant in the case of

Listing 4-5.

 - 93 -

#SNIPPET OF MONITORING TASK SPECIFICATION
1 set manager_node_id 0 #location of monitoring station
2 set agent_location 0 #specify initial agent location
3 set MOs {1-14} #list of monitored objects with ID 1 to 14
4 set list_of_attributes {A} #get value of A from each object
5 set poll_rate 2 #Polling_Rate >= 2 polls/sec
6
7 set task_duration 5 #duration of monitoring operation
8 #in seconds
9 set data_processing {avg all} #computes the average value among
10 #attribute A of all managed objects
11 set notify 60 #notify the avg to the manager
12 #every minute
13 set alarm {if any > 80} #send an alarm to the manager if
14 #any value > 80

Listing 4-5: Specification of a non-directly decomposable monitoring task.

This task can be decomposed into two sub-tasks to be implemented by separate agents as shown

in Listing 4-6. It is worth noticing that in order for the manager to be able to compute the

correct average, the two area agents will have to periodically notify not only their computed

average values but also the number of averaged elements. In fact, the final average value

computed at the monitoring station will be:

∑
∑

∈

∈=
listAgenti i

listAgenti ii

MOsnum

MOsnumavg
avg

_

_

_

_*

where avgi and num_MOsi are the average values and the number of monitored objects

respectively computed by the generic agent i and the sums are extended to all the agents

implementing the sub-tasks.

 - 94 -

SNIPPET OF FIRST SUB-TASK
1 set manager_node_id 0 #location of monitoring station
2 set agent_location 1 #agent location
3 set list_of_managed_objects {1,4-7} #monitored objects
4 set list_of_attributes {A} #get value of A from each object
5 set poll_rate 2 #Polling_Rate >= 2 polls/sec
6 set task_duration 5 #duration of monitoring operation
7 set data_processing {avg all} #computes the average value among
8 #attribute A of all managed objects
9 set num_Mos [llenght $MOs] #compute number of monitored objects
10 set data_to_be_notified {$data_processing $num_MOs} #list of data
 #to be notified to manager
11 set notify 60 #notification period
12 set alarm {if any > 80} #send an alarm to the manager if
13 #any value > 80

SNIPPET OF SECOND SUB-TASK
14 set manager_node_id 0 #location of monitoring station
15 set agent_location 2 #agent location
16 set list_of_managed_objects {2,3,8-14} #monitored objects
17 set list_of_attributes {A} #get value of A from each object
18 set poll_rate 2 #Polling_Rate >= 2 polls/sec
19 set task_duration 5 #duration of monitoring operation
20 set data_processing {avg all} #computes the average value among
21 #attribute A of all managed objects
22 set num_Mos [llenght $MOs] #compute number of monitored objects
23 set data_to_be_notified {$avg $num_MOs} #list of data
24 #to be notified to manager
25 set notify 60 #notification period
26 set alarm {if any > 80} #send an alarm to the manager if
27 #any value > 80

SNIPPET OF MONITORING STATION TASK
28 set task_duration 5 #duration of monitoring operation
29 #repeat for each agent
30 set tot_sum [exec $tot_sum + $avg * $num_MOs] #update sum of A
31 #values
32 set tot_Mos [exec $tot_Mos + $num_MOs] #update total number of MOs
33 #end of loop
34 set final_avg [exec $tot_sum / $tot_MOs] #compute averages
35 #notified by agents

Listing 4-6: Specification of the resulting sub-tasks implementing the task of Listing 4-5.

Therefore the task of Listing 4-5 is not invariant to task decomposition but the decomposition

process can still be automated provided that the manager who originally specifies the

monitoring task also specifies the task decomposition procedure. The bold lines are produced

by an appropriate task decomposition procedure that has to be specified along with the original

monitoring task, in order to be able to automate the task decomposition process.

In conclusion, tasks such as the ones of Listing 4-3 and Listing 4-5 can be automatically

decomposed provided that suitable decomposition algorithms are provided. The former case

can be formalised as T(X) = f(Ta(X1), Ta(X2)). The latter can be formalised as T(X) = f(Tb(X1),

Tc(X2)). More generally, tasks that are invariant to decomposition can be specified as T(X) =

f(Ta(X1), Ta(X2), …, Ta(Xp)), whereas the ones which are variant to decomposition will be

specified as T(X) = f(T1(X1), T2(X2), …, Tp(Xp)).

 - 95 -

Within the context of this thesis, automatically decomposable tasks are assumed. These are the

most common ones and the only ones that can be implemented with the proposed agent

approach.

Finally, it is worth mentioning that agents are not bound to monitor only objects. More

generally agents can monitor other agents, thus resulting in a hierarchical agent organisation.

For example, the task of Listing 4-3 can be decomposed into a set of sub-tasks executed by

agents organised in a hierarchy. In this case agents at a low level of hierarchy will monitor the

MOs, whilst agents at a higher level will sum the reports from sub-agents and report just the

sum to their superior – which implies aggregation and improved efficiency. Clearly, the agent

deployment algorithm would require some amendments to cater for hierarchical agents

organisations.

4.4 Main Features of Agent-based Distributed Monitoring

By deploying the agents according to either of the above agent location algorithms a dynamic,

distributed monitoring system is realised. The system is distributed because the actual

monitoring operation is performed by autonomous agents placed in different network locations.

The system is dynamic because the agent location is not predetermined at design time, yet it

depends on the network state. Agent locations reflects network state at deployment time;

variations in network state may trigger agent migration to maintain location optimality.

Intuitively, this solution is more efficient than centralised monitoring and more flexible than

static decentralised monitoring. Agents can be used to perform a wide variety of processing

operation on raw data – such as data gathering, filtering and aggregation – while residing as

close as possible to where the data is actually stored. In principle, MAs can be located

optimally in order to minimise the monitoring traffic and distribute the processing burden,

alleviating the central monitoring station. In turn, agent locality may result in the ability to

detect problems locally and react to them promptly.

Agents can implement monitoring operations which are much more sophisticated than the

simple probes offered by conventional management systems. In principle, agents can be

delegated extremely elaborated monitoring tasks by a central manager. However, in practice

this level of complexity may not be always necessary. Furthermore, complex agents tend to be

large in size and this results in inefficient migration. It appears, then, that one of the difficulties

in designing an effective agent solution for network monitoring is that of finding the balance

between the agent complexity and its size. Another crucial factor is the amount of resources

consumed by the agent from its hosting entity.

 - 96 -

The proposed solution is an example of a monitoring system based on relatively simple,

autonomous mobile agents. In fact, the agents’ location is decided by performing simple

processing of routing information and, once deployed, the agents can process data and report

back to a central monitoring system without involving inter-agent communication or

collaboration.

Therefore, our distributed agent-based monitoring system combines the simplicity of the

location algorithm with the flexibility deriving from the use of mobile agents. Similarly to other

approaches to distributed monitoring – such as static hierarchical monitoring – it is inherently

more scalable than centralised monitoring, as quantified by the simulations reported in Chapter

7. In addition, the agent approach allows for a dynamic delegation of monitoring intelligence

without requiring any modification of the monitoring system, the monitored entities and of the

monitoring protocol.

Finally, it is worth mentioning that the distributed agent location algorithm represents a

concrete example of a practical application of agent weak mobility. In fact the key properties

used to find a near-optimal solution to the p-median problem in linear time are agent migration

and agent cloning, as shown in Chapters 6 and 7 below.

4.5 Adaptability to Network Changes with Agent-based

Monitoring

Our agent approach can be regarded as an evolution of previous research on management

decentralisation [Goldszmidt 98] but it differs significantly from other techniques based on

static decentralisation of control [M3010 91, Stallings 96]. Agents support dynamic

decentralisation in two ways: first, at deployment time they can autonomously choose their

target location; and second, during the execution of the monitoring tasks they can adapt to

dynamic changes in the network status either by migration or cloning. In the latter case, an

active distributed monitoring system is realised.

Adaptability is perhaps one of the most interesting features of agents systems and can be

exploited in distributed monitoring in order to keep the monitoring agents in near-optimal

locations. Adaptability may assume a key role in the context of modern networked systems,

which are characterised by rapidly increasing size and which exhibit a very dynamic behaviour.

The conventional approach is to achieve adaptability by dynamically changing the routing tree

rooted at the monitoring station. This is indirectly achieved as a side effect of the operation of

the network routing algorithms, independently from the monitoring system. As a result of

 - 97 -

congestion or failures, monitoring packets get re-routed generally through longer paths and,

consequently, both traffic and response time tend to deteriorate.

In addition to that, a system based on mobile code can actively adapt to network changes by

dynamically moving the agents to more advantageous positions. We can employ three different

approaches to adaptability: 1) periodic agent re-deployment; 2) adaptation through agent

migration based on autonomous agent strategies; 3) adaptation through agent migration based

on co-operative agent strategies.

The first approach involves the periodic re-execution of the agent location algorithm by the

main monitoring station. It is the simplest one but periodically involves the full agent

deployment overheads, which can be prohibitive for very large systems and is inefficient in

cases involving only local network changes, since it is likely that many MAs will end up

precisely as before.

1 2 3

4 5 6 7 8 9 10

0

a)

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

b)

d) e)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

0 Monitoring Station

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

c)

f)

1 2 3

4 5 6 7 8 9 10

0

11 12 13 14

Mobile Agents during execution

Mobile Agents during Deployment/cloning

Routing distribution tree

Agents deployment path

Figure 4-8. Example agent full re-deployment, following a link failure.

This is illustrated with a simple example in Figure 4-8. In that case, following a link failure

between nodes 0 and 2, no agent migration is triggered because none of the nodes belonging to

the agent sitting in node 2 is affected by this fault. However, if for instance we were to follow a

policy of periodic re-deployment, the agents will simply follow a different deployment path but

will all end up in the same locations where they were sitting before the occurrence of the fault

(Figure 4-9).

 - 98 -

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station

Network links
Monitoring path

Other Nodes

Nodes with agents

Broken link

Figure 4-9. Monitoring path for the example of agent full re-deployment.

The second approach realises a simple adaptive system based on autonomous migrating agents.

Following the initial agent deployment, each agent is assigned a disjoint sub-set of the MOs.

Agents continue to monitor their initial set of objects and periodically estimate the cost of

alternative locations by adopting estimation procedures analogous to the ones of Section 4.2.

Migration is triggered when the cost reduction is significant. Therefore, the adaptation strategy

of this approach is based on local decisions only. Locality results in simplicity but has the

drawback of not considering global optimisation strategies.

A simple example illustrating agent self-regulation in response to a link failure is depicted in

Figure 4-10. In this case, following a loss of connectivity between node 8 and 13, a new

(longer) monitoring path is established between node 8 and node 13. As a result, the central

node for the system partition comprising nodes {8, 11, 12, 13, and 14} becomes node 14.

Hence, the agent originally located in node 8 will relocate to node 14, bringing the system back

to optimality.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

0

0 Monitoring Station

Network links
Monitoring path

Other Nodes

Nodes with agents

Broken link

Figure 4-10. Example adaptation through agent migration, following a link failure.

 - 99 -

Finally, adaptation based on co-operative agents presents the difficulty of designing a complex

system and involves additional inter-agent communication and processing overheads. This form

of adaptation is not considered hereafter.

4.6 Summary and Conclusions

This Chapter introduced the concept of active or dynamic distributed monitoring, a possible

way of addressing some of the limitations of ‘centralised’ and ‘static distributed’ monitoring.

An approach to dynamic monitoring based on mobile agents was proposed. Pre-conditional to

this approach is the solution of the agent location problem. Two different flavours of the same

algorithm are proposed, a centralised and a distributed one. These algorithms represent a core

part of the thesis work since they have been designed to find an approximate solution to the

more general problem of placing p servers – or service centres – optimally in a network of N

nodes. This problem is also known as the p-median problem which has been studied extensively

since the sixties and is known to be NP-complete.

The remaining part of the thesis is dedicated to the assessment of the algorithms presented here,

first theoretically (Chapter 6 and 7) and then by simulation (Chapter 8). In particular, the

computational complexity of these algorithms is assessed and an estimation of typical

computation times is given. Since the algorithms solve the location problem in an approximate

way, the distance from optimality is evaluated. Performance and scalability issues are addressed

as well. The method used to carry out the assessment is detailed in the following Chapter 5.

 - 100 -

Chapter 5

Evaluation Methodology

The hypothesis introduced in Chapter 1 is examined in the next chapters through the evaluation

of the proposed active, distributed monitoring system, presented in chapter 4. A hybrid

methodology was adopted, based partly on mathematical modelling and partly on simulation. A

third option, based on experimentation, was ruled out having been judged less suitable as

explained below.

The pure experimental approach would have required the implementation of the proposed agent

system either on a real network or on a test-bed. The actual implementation would have not

been the problem because open-source MA platforms have become widely available in the last

few years and a significant amount of code could have been reused to realise code mobility,

agent cloning and so on. What would have been a problem is the actual experimentation phase.

In order to carry out the required comparative performance analysis between static and active

monitoring a number of network parameters need to be varied, network state needs to be

replicated during different experiments (for fair comparisons), and congestion or failure

conditions need to be created. Clearly networks that are large enough to be interesting are also

expensive and difficult to control; thus, they are rarely available for experimental purposes. On

the other hand, small, controlled testbed networks would have been limiting for the assessment

of scalability, one of the major parameters and factors under study.

A hybrid methodology was chosen to facilitate the evaluation of the various aspects involved in

the agent system. Mathematical modelling was used to study the more theoretical aspects of the

work, including the following ones:

• the asymptotic complexity of the proposed agent deployment algorithm, i.e. its

scalability;

 - 101 -

• the typical order of magnitude of agent deployment overheads, i.e. deployment time and

traffic;

• the sufficient conditions on network topology for which the proposed agent location

algorithm places the agents near-optimally in the network;

• the study of the agent system under those near-optimal conditions and its comparison

with the static monitoring approach

Complementary to the mathematical approach, simulations were carried out to study the agent-

based monitoring system under general conditions, for the case of realistic internetworks,

including the following aspects:

• the quantitative comparative evaluation of performance and scalability between static

monitoring and active, distributed monitoring;

• the assessment of the goodness of the agent locations computed by the proposed

algorithm, i.e. its distance from optimality;

• the preliminary assessment of the ability of the agent system to adapt to network

changes.

Therefore, the research hypothesis was assessed following the path depicted in Figure 5-1. We

first studied the transient behaviour of the agent system under general conditions by

mathematical analysis (Chapter 6). In this context, the transient behaviour includes the

phenomena involved during agent deployment. Then, sufficient conditions for location near-

optimality were mathematically obtained (first part of Chapter 7). A study of the system under

those near-optimal conditions was conducted both at transient and steady-state time, comparing

its performance and scalability with the static monitoring approach (second part of Chapter 7).

Finally, a steady-state analysis was conducted by simulation to be able to draw conclusions on

the viability of the system and on its degree of optimality for practical network topologies

(Chapter 8).

 - 102 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time

Performance Scalability Adaptability

Transient analysis under
General Conditions

- CHAPTER 6 -

Steady-state analysis under
General Conditions

- CHAPTER 8 -

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Transient analysis under
near-optimal Conditions

- CHAPTER 7 -

Steady-state analysis under
near-optimal Conditions

- CHAPTER 7 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time
Performance Scalability

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Sufficient
Conditions for
near-optimality

Optimal
Centralised
Monitoring

• Shapes delimited by continuous lines are assessed theoretically
• Shapes delimited by dotted lines are assessed by simulation
• Arrows depict dependencies

Distance from
optimality

Figure 5-1: Schematic representation of the assessment methodology.

The system performance evaluation was carried out following the systematic approach

suggested in [Jain 91] (pp.22-28) which consists of 10 basic steps: 1) state goals and define the

system; 2) list services and outcomes; 3) select metrics; 4) list parameters; 5) select factors to

 - 103 -

study; 6) select evaluation technique; 7) select workload; 8) design experiments; 9) analyse and

interpret data; 10) present results.

Steps 1 and 2 have already been covered in the previous chapters, in particular in Chapter 4

where the agent system has been described along with its fundamental algorithm. Step 6 has

just been described above. The remaining steps are covered in greater detail below. After

specifying the metrics used in the work, this chapter discusses the remaining steps of the

systematic evaluation separately for the mathematical approach and for the simulation work,

respectively.

5.1 Metrics

Metrics represent the criteria used to compare performance. The performance of our monitoring

system is expressed in terms of two major indicators, the traffic incurred by the agents which

perform monitoring operations and the overall monitoring response time. These are modelled

using an approach similar to the one described in [Zegura 97] as discussed below.

Let us assume that the network is modelled by a connected graph, G = (V, E), were V is the set

of vertices (corresponding to nodes) and E is the set of edges (corresponding to communication

links).

Traffic is modelled as the sum of packet hops incurred by monitoring – i.e., the number of

edges traversed by monitoring packets – multiplied by their respective packet size (in bits), b

and packet rate, Pr. The traffic T(v1,v2) between any two points v1, v2 ∈ V subject to a bit rate Br

is T(v1, v2)= Br* d(v1, v2), where Br=b*Pr, b is the size of a poll request or response (assumed

comparable for simplicity), and d(v1,v2) is the minimum distance between v1 and v2.

For simplicity, the distance in the network is measured using the hop-metric, in which each

edge has unit weight. Delay, D(v1,v2) between any two points, v1 and v2 is assumed to be

proportional to their distance d(v1,v2). The response time of a centralised monitoring system is

the one involved in a complete ‘request-response’ operation by the monitoring station,

involving all the monitored nodes. So it is the span of time elapsed for all the monitored entities

to receive a request packet and for the monitoring station to receive all the responses.

In a decentralised monitoring system, there are more than one monitoring entities which are

decentralised. Since each monitoring entity will be involved in monitoring a disjoint sub-

partition of the whole monitored system, individual ‘request-response’ operations (for each

monitoring entity) tend to be smaller than in the centralised case. However, in order to obtain

 - 104 -

the total response time, we need to add up the time for those monitoring entities to report to the

central station.

Scalability is defined in [Casavant 94] as the ability to increase the size of the problem domain

with a small or negligible increase in the solution’s time and space complexity. For the

purposes of our investigation, scalability is specifically defined as the ability to increase the

number of monitored entities N, the polling rate Pr, the network diameter, D(u) (i.e., the

maximum distance between any two nodes in the network), or the number of MAs, p with a

small or negligible decrease in performance. Hence, the scale of a given monitoring problem is

measured in terms of N, Pr, D(u), and p.

Adaptability is more difficult to quantify and hence to measure. In this thesis we have not

defined a precise metric for adaptability since only preliminary experiments were carried out.

We have expressed it in terms of the gradients observed in the two performance indicators

(traffic and response time). Those gradients were calculated by measuring performance at

steady state, then forcing a new state (e.g., by causing congestion or link failures), waiting for

the system to adapt to the new state and get to steady-state again, and finally recalculating

performance.

Larger performance degradation corresponded to smaller adaptability, whereas more adaptable

systems were associated with smaller performance degradation.

5.2 Analysis by Mathematical Modelling

The mathematical based work is organised in two parts. We first studied aspects related to the

complexity of the proposed agent location algorithm to prove its viability for the proposed

agent system (Chapter 6). We were not able to model the precise algorithm for general network

topologies, but we could analytically find upper bounds on the performance indicators. This

allowed the estimation of the time-scales of the agent deployment process and to draw

conclusions on its scalability with respect to network size and number of agents.

In the second part of our analysis we started looking into the goodness of the proposed

algorithm (Chapter 7). We look for particular conditions which lead to optimality or near-

optimality, hoping that these are realistic enough to justify the algorithm. We, then, carry out a

theoretical assessment of the agent system both at transient time and at steady state. In these

cases, we manage to model the system mathematically. We model two different flavours of a

centralised polling approach and carry out a comparative performance analysis between that

approach and the agent solution.

 - 105 -

The conclusions which we then draw about performance and scalability of our solution are

valid under the given restraining conditions on the network topology. We discuss these

conditions with respect to real network topologies.

A further step is to study the algorithm at steady state for general network topologies but this

was difficult to carry out using this approach. The work was then continued switching to a

simulation-based approach, as described later in this chapter (page 107).

5.2.1 Network Model

We have adopted the network model described in [Rescigno 97]. The network is modelled by a

connected graph G=(V,E) with the vertices, V corresponding to nodes (processors) and the

edges, E corresponding to communication links, which are modelled by the All Ports-Full

Duplex communication model. This network model has been widely used because it generally

reflects the hardware characteristics of networks (see references quoted in [Rescigno 97]).

Packet forwarding is modelled using an ‘on/off’ model for link transmission. Only one packet

can traverse a single link at any time. A link is modelled as an atomic resource that is switched

off during the transmission of a packet over that link and is switched on at the end of each

packet transmission. Links are characterised by a fixed latency.

Packets arriving at a node are immediately forwarded through an outgoing interface to the

relevant link only if that link is on. Packets are, otherwise, queued at the node. Infinite queues

are assumed and, consequently, no packet dropping mechanisms are taken in consideration.

5.2.2 Fixed Parameters

Fixed parameters are the ones that affect the system performance and do not vary during the

analysis [Jain 91]. The main parameters of the mathematical based analysis are reported in

Table 5-1.

 - 106 -

Fixed Parameter Symbol Value
Node degree (generic node) δ generic
Node degree of the monitoring station node d(u) generic
Size of polling request packet bb generic
Size of polling response packet br generic
Size of agent notification packet bnot generic
MA size MAsize generic
MA transmission time TRANSMtime generic
MA forwarding time FORWtime generic
MA serialisation time SERIALtime generic
MA de-serialisation time DESERIALtime generic
MA cloning time CLONtime generic

Table 5-1. Fixed parameters of mathematical modelling.

5.2.3 Factors

Those parameters that are varied during the evaluation are named factors and their values are

called levels [Jain 91]. In general, with both experimental and simulation-based techniques the

list of factors, and their possible levels, is larger than the available resources will allow. It is,

thus, necessary to limit the levels during the evaluation in order to study the system in its

normal range of operation. For example, it will be difficult, if not impossible, to measure the

impact of a particular agent migration policy on the overall monitoring traffic if we saturate the

network with background traffic.

The mathematical approach usually allows a larger degree of freedom in constraining the factor

levels because the system is modelled rather than physical. The main factors of the

mathematical-based analysis are reported in Table 5-2.

Factor Symbol Level
Number of monitored nodes N unconstrained
Number of Mobile Agents p 0 ≤ p < N
Levels at which MAs reside in the spanning tree L 0 ≤ L < R(u)
Polling rate Pr unconstrained
Notification rate Nr unconstrained
Network radius R(u) R(u) > 1

Table 5-2. Factors of mathematical modelling.

5.2.4 Workloads

The workload consists of a list of service requests to the system [Jain 91]. When possible

reference traffic models, or benchmarks, are used to compare the performance of a computer

system. This was not possible in our case because, to the best of the author’s knowledge, no

benchmarking procedures have been specified yet for management systems.

 - 107 -

In our case the workload is the traffic injected by the monitoring system to carry out monitoring

tasks. We adopted the basic polling management model and, hence, monitoring tasks inject

traffic which is proportional to the polling rate, Pr. For a given task and a given polling rate, the

overall traffic and response time will generally vary for different agent configurations. Thus,

our simple reference workload allows measuring the system performance under a range of input

values specified by the levels of the various factors of Table 5-2.

5.2.5 Data Analysis and Presentation

Data analysis is useful to compare different alternatives through experimentation or simulation.

In the case of mathematical modelling there is no need for that because the produced models

are analytical functions that can be directly interpreted.

Results are directly presented in graphical format. The algorithmic complexity is obtained by

studying the behaviour of the models when the various factors tend to infinity. Similarly, the

system behaviour under near-optimal conditions is carried out by direct interpretation of the

models.

Steady-state performance indicators are plotted against the number of MAs to assess the effects

of varying agent configurations. Contour plots are used to capture performance as a function of

two parameters instead of a single one.

5.3 Simulations Design

Mathematical modelling provided us with a first batch of information on the proposed agent

system. We have discussed the limitations of this approach which have led us to complement

that study with simulation work.

By simulations we were able to study the agent system under more realistic conditions, that is

for realistic network topologies and over realistic network and transport layers. The aim was to

assess the goodness of our algorithm, that is its ability to place MA near-optimally. We

describe below the approach followed in the simulation work.

5.3.1 Simulation Environment

In order to simulate IP network and protocol behaviour we have adopted the NS simulator

(version 2) from U.C. Berkeley/LBNL [NS, Fall 99] and extended it with Mobile Agent

 - 108 -

capabilities. Agent migration and cloning have been implemented along with the actual agent

location algorithm, which is incorporated in each agent. This algorithm has been optimised to

minimise the total incurred monitoring traffic, according to what has been presented in Chapter

4.

In NS arbitrary network topologies, composed of routers, links and shared media can be

defined. Several protocols, such as TCP and UDP, are available and various types of

applications can be simulated. Among them are FTP, Telnet, and HTTP, which use TCP as the

underlying transport protocol, and applications requiring a constant bit rate (CBR) traffic

pattern, which use the UDP transport protocol. The CBR traffic generator injects traffic

according to a deterministic rate, and a fixed packet size. Optionally, some randomising dither

can be enabled on the inter-packet departure intervals.

Other traffic generators provide an exponential on/off distribution and a Pareto on/off

distribution, respectively. The former sends packets at a fixed rate during ‘on’ periods and no

packets during ‘off’ periods. Both ‘on’ and ‘off’ periods are taken from an exponential

distributions. In the latter case, ‘on’ and ‘off’ periods are taken from a Pareto distribution and

can be used to generate aggregate traffic that exhibit long range dependency. In NS it is also

possible to inject traffic according to a trace file. This might have been created by monitoring

traffic traces in a real network.

Point-to-point bi-directional links are characterised by bandwidth, delay, and queue type.

Queues represent locations where packets may be held or dropped. Packet scheduling refers to

the decision process used to choose which packet should be serviced or dropped. Buffer

management refers to any particular discipline used to regulate the occupancy of a particular

queue. NS includes support for several algorithms such as drop-tail (FIFO) queuing, RED

buffer management, and different variants of fair queuing.

The routing model can be static or dynamic. The distance vector algorithm is used for unicast

routing. A prototype implementation of multicast routing is also available.

The simulator is event-driven and runs in non-real-time fashion. Packet losses are simulated by

buffer overflows in routers. Buffer overflows are in fact normally the main cause of packet loss

in the Internet. There is also support for error models other than losses through buffer overflow,

but these are not in our simulations.

In NS there are two ways of collecting output on a simulation. The first is to create traces which

can record each individual packet as it arrives, departs, or is dropped at a link or queue. To

prevent large trace files it is possible to specify what should be traced in terms of links, queues,

type of packets, etc. The second approach is based on monitors, which can count various

 - 109 -

interesting quantities such as packet arrivals, departures, etc. Flow monitors can count on a per-

flow bases rather than on a packet bases.

A network animator tool, called NAM, can be used for viewing network simulation traces,

providing a graphical means of studying the system [NAM]. More elaborate statistics can be

achieved through specialised scripts which directly process trace files.

The adopted network simulator is implemented in C++ and Object TCL and is easily extensible

with extra capabilities such as new protocols, routing algorithms, queuing disciplines etc. We

have realised a new layer which provides the basic MA capability and have implemented the

proposed agent-based monitoring system on top of this layer. A new MA class was introduced,

including methods to start/stop MA execution; migrate MA; clone MA; destroy MA. MAs

encapsulate the proposed agent location algorithm in both its flavours, i.e. with or without

cloning capabilities. This algorithm has been optimised to minimise the total incurred

monitoring traffic.

5.3.2 Description of Simulations

5.3.2.1 Comparative Performance Analysis

We compared performance and scalability of the agent system with static, centralised

monitoring. The monitoring model adopted for centralised monitoring is polling-based. The

agent system is partly polling-based (each agent collects monitoring information through

polling), partly notification based (agents can periodically send reports to the central

monitoring station), and partly event-driven (agents may send alarms to the monitoring station).

The adopted scalability indicators are: polling rate; number of monitored nodes; network

diameter; and number of MAs. Performance indicators are: total incurred traffic, traffic

incurred around monitoring station, and average and maximum response time.

Simulations involved the study of each of the performance indicators against all the scalability

indicators. This was achieved by keeping each time 3 of the 4 scalability indicators constant

and varying the other progressively. For instance, performance versus polling rate was studied

by keeping number of monitored nodes, network diameter, and number of MAs constant.

At least four different points were computed in the X axis (i.e. the scalability indicator axis).

Each point was initially computed by repeating the simulations 20 times under identical

conditions except for the network topology. The topology was generated with an appropriate

topology generator tool and procedure as detailed below. The 20 measurements were then

treated statistically as detailed below. This procedure required an enormous amount of

 - 110 -

computational time. Initial statistical treatment of the results showed that 10 repetitions were

sufficient for statistical significance; hence subsequent simulations were only repeated 10 times

instead of 20.

For each new network, the MA deployment process was re-initiated in order to compute the

initial agent location. The parameter responsible for the final number of agents was increased to

compute new configurations and study the scalability of the algorithm versus the number of

agents. 6 agent configurations were computed for each network and the process was repeated

10 times for statistical purposes.

Agents were actually deployed in the simulated network and monitoring tasks executed for a

span of time sufficient to reach steady state. It was observed that 5 real-time simulation seconds

were sufficient for that purpose. Simulation traces for the whole duration of the simulation

were stored in files. Scripts to automate post-processing of those trace files were created in

TCL. Scripts for producing simple statistics were also used. The statistical tool ORIGIN was

finally utilised to carry out the statistical analysis of the results as detailed below. Scripts to

import the simulation data into origin were also created to automate to a large extent this very

time-consuming process.

5.3.2.2 Distance from Optimality

A second important part of the simulations was aimed at studying the distance from optimality

of the agent locations computed by the proposed algorithm. This was done by comparing the

overall performance achieved by the agent system against the hypothetical case in which those

locations were computed optimally.

Provably near-optimal locations were computed using the software package SITATION

[Daskin 95] configured to run the lagrangian location algorithm. The computed locations were

then fed to the network simulator described above to deploy agents and run the same

monitoring tasks executed by the agent system in which locations were computed with the

proposed algorithm.

The proposed agent system was also compared against the case in which agent locations were

generated randomly to provide an estimate of the distance from randomness.

The comparison between the three systems was carried out by adopting topological rather than

physical performance indicators. The first indicator is the network total hop-distance, directly

related to the total steady-state traffic. The second indicator is the maximum weighted distance,

directly related to response time.

 - 111 -

For statistical significance, comparisons were carried out each time on 10 randomly generated

network topologies belonging to the same family (i.e. with comparable topological

characteristics).

5.3.2.3 Adaptability

An initial study of the adaptability, or self-reconfigurability, of our agent system was carried

out by simulating various conditions in which link failures led to increased traffic and response

time. We deployed the agent system before the failures and carried out a performance analysis

following the procedure already described above. Then, we generated link failures at random

locations but in the vicinity of the central monitoring station. We assessed the costs associated

with agent migration and, finally, measured traffic and response time after re-configuration.

A comprehensive study of adaptability would have required a large amount of simulations,

following a methodological approach similar to the one used above. Due to lack of time a

simpler approach was adopted aimed at providing mainly an initial feeling of the adaptability of

the system, rather than a complete study.

We have simulated a simple scenario in which 2 links located in the vicinity of the central

monitoring station fail. Traffic and response time were measured before the failure. After the

failure, the routing protocol readjusted the routing tables and full connectivity was achieved. In

addition, the agent system reconfigured itself by relocating some of the agents. Steady-state

traffic and response time were measured again. Simulations were subsequently repeated for 10

different randomly generated topologies characterised by comparable topological features. Each

time a couple of faults was generated randomly and results were averaged.

5.3.3 Software Parameters

The most significant parameters of the network simulator are reported in Table 5-3.

 - 112 -

Fixed Parameter Value
Network protocol IP
Transport protocol UDP
Routing protocol dynamic Distance Vector
Traffic generator CBR
Link bandwidth automatically assigned by

topology generator
Link delay automatically assigned by

topology generator
Link queue drop tail
Node degree (generic node) automatically assigned by

topology generator
Real-time simulation time 5 seconds
Type of topology Transit-stub

Table 5-3. Network simulator parameters.

It is worth mentioning that Transit-stub topologies have been selected because they are

considered to reflect the properties of real inter-networks [Zegura 96, Zegura 97]. This class of

topology can be viewed as a collection of interconnected routing domains, which are groups of

nodes that are under a common administration and share routing information. Each routing

domain can be classified as either a stub domain or a transit domain (Figure 5-2). In a stub

domain the path connecting any two nodes u and v goes through that domain only if either u or

v is in that domain. Transit domains do not have this restriction; their purpose is to interconnect

stub domains efficiently. Stub domains can be further classified as single- or multi-homed.

Multi-homed stub domains have connections to more than one transit domain. Single-homed

stubs connect to only one transit domain. Some stubs have also links to other stubs.

 transit domains
multi-homed stub

stub-stub edge
stub domains

Figure 5-2. Transit-stub topology (from [Zegura 97]).

The most significant parameters of the agent-based monitoring system are reported in Table

5-4.

 - 113 -

Fixed Parameter Value
Size of polling request packet 100 bytes
Size of polling response packet 250 bytes
Size of agent notification packet 50 bytes
MA size 1000 bytes
MA serialisation time 100 msec
MA de-serialisation time 200 msec
MA cloning time 100 msec

Table 5-4. Agent-based monitoring system fixed parameters.

5.3.4 Hardware Parameters

The most significant parameters of hardware and operating system used to run the simulations

are reported in Table 5-5.

Fixed Parameter Value
Processor Pentium 150 MHz
RAM Memory 48 Mbytes
Available disk space 1 Gbyte
Operating System Linux 2.0.34
Swap space 100 Mbytes

Table 5-5. Hardware and operating system parameters.

5.3.5 Factors

The most significant simulation factors are reported in Table 5-6. It should be noted that the

range of these values was obtained from all the simulations. Particular simulations are

characterised by smaller ranges in general. The actual ranges are indicated on a case-by-case

bases in Chapter 8.

Simulation Factor Level
Number of monitored nodes 16 – 64
Average network diameter 7 – 8.5
Percentage of Mobile Agents 0 – 0.7
Polling rate 0.2 – 6 polls per sec
Notification rate 0.1 – 3 packets per sec
Average number of link failures (adaptability only) 2
Average node degree 2.56 – 11.7
Hop-diameter 6.3 – 10
Average hop-depth 5.07 – 7.92
Length diameter 101 – 224
Average length-depth 78.29 – 188
Number of biconnected components 5 – 29.1

Table 5-6. Simulations factors.

 - 114 -

5.3.6 Simulation Complexity

The simulation of the agent location process involved relatively long computational times, as

can be illustrated by looking at the number of levels and combinations of the relevant

simulation factors (Figure 5-3). These are: 1) the number of monitored nodes, N; 2) the

percentage of agents, p/N; and 3) network diameter.

Randomise 10 times { // 10 *
 For each N { 16, 25, 32, 50, 64 } // 5 *
 For each p/N { 0.1, 0.25, 0.4, 0.55, 0.7 } // 5 *
 For each D(u) { 7, 8, 8.5 } // 3 *
 compute agent location // 2 (hours)
} // =1500 hours

Figure 5-3. Illustration of simulation complexity.

Thus, by considering that the computation of a single agent configuration required an

approximate, average time of 2 hours, we can see that the overall computational time for

producing the required 750 agent configurations is in the order of 1,500 hours.

Simulation time was actually larger than this figure would suggest, because of the required time

to run the actual monitoring tasks and produce simulation traces for increasing values of polling

rate (Pr = 0, 0.2, 0.6, 1, 2, 4, 6). Simulation traces including all events of 5 real time seconds

were very large and required a total of several days to process and analyse with specialised

TCL scripts. Negligible time was required to process the results and convert them in a format

that could be fed to the ORIGIN statistical tool. Significant effort was spent instead on the

production of diagrams, which required significant manual intervention.

The above estimates should have been doubled if we had replicated the whole simulations for

the two flavours of the agent location algorithm. This was not necessary because it was verified

that the two algorithms produced the same results in terms of agent configuration and network

partitioning (see Section 5.3.8.7).

5.3.7 Workloads

Similarly to what observed in Section 5.2.4 above, no standard or de facto benchmarks are

available for assessing management systems. We adopted the basic polling management model

and hence monitoring tasks inject traffic which is proportional to the polling rate, Pr. For a

given task and a given polling rate, the overall traffic and response time will generally vary for

different agent configurations.

Polling request packets (originated in MAs and directed to their monitored nodes) and

notification packets (originated in MAs and targeting the central monitoring station) were

 - 115 -

generated using the CBR traffic generator. Response packets were created directly by the nodes

which were equipped with a protocol similar to PING. Polling and notification rate ranges and

packet sized are indicated in Table 5-6.

5.3.8 Simulation validation

Validation refers to ensuring that the assumptions used in developing the model are reasonable

in that, if correctly implemented, the model would produce results close to those observed in

real systems [Jain 91]. Jain suggests that model validation consists of validating three key

aspects of the model:

1. Assumptions

2. Input parameter values and distributions

3. Output values and conclusions

Each of these three aspects may be validated in three possible ways:

1. Expert intuition

2. Real system measurements

3. Theoretical results

Although this leads to nine possible validation tests, in practice it may not be feasible to use

some of these possibilities. Jain argues that, in fact, in most real situations none of the nine

possibilities may be feasible. He justifies this statement with the argument that “simulation,

being a time-consuming effort, is resorted to only if no other reliable means of finding the same

information exists”.

This is the situation of this thesis work in which simulations have been carried out to

complement the theoretical work rather than to cross-validate the two approaches. In fact,

mathematical modelling and simulations cover orthogonal problems.

Validation through comparison with real systems is the most reliable and preferred way.

However, Jain argues again that “this is often unfeasible either because the real system may not

exist or because the measurements may be too expensive to carry out”. This was the case of the

thesis work.

Since direct comparison with theoretical models or real systems was unfeasible validation was

carried out following, again, Jain’s advice. He suggests to validate individual aspects or sub-

components of the simulator aiming at increasing the confidence in the simulation model and

 - 116 -

approach, rather than pursuing the “myth of fully validated model”. The next sub-sections

discuss such a validation approach.

5.3.8.1 Network and Transport Layers

Network and transport layers were not subject to any validation since the adopted network

simulator was not modified at those levels. The NS network simulator is well known and

widely used in the networking community and several works based on this simulator have

already been published. An example is [Hanle 98].

5.3.8.2 Network Topology Generation

A crucial point was to assess the proposed agent system for a set of realistic network

topologies, composed of routers, links, and hosts. These have been generated using the GT-ITM

topology generator [GT-ITM]. The methodology followed to generate the network topologies is

the one proposed by Calvert and Zegura, which is widely acknowledged in the research

community [Zegura 96, Calvert 97, Zegura 97]. The methodology is, therefore, not subject of

validation. However, it was necessary to verify that the produced topologies reflected the

requirements for the various individual experiments. For instance, families of topologies

characterised by relatively small or negligible variation in average node degree were necessary.

More generally, experiments assessing scalability required the gradual increase in network size.

This was done by keeping the number of nodes constant when increasing network diameter and

vice versa. Scripts to automate the verification of all topological conditions were written in

TCL. Those scripts were used to help validate the production of network topologies.

Network topologies were also visually inspected using the NAM network animator tool

[NAM]. Example 50-node topologies produced randomly but belonging to the same topological

family are reported in Figure 5-4. It can be noticed that the actual topologies are significantly

different despite other topological features such as average node degree and network diameter

being comparable.

 - 117 -

Figure 5-4. Example 50-node randomly generated network topologies.

5.3.8.3 Random Number Generators

Randomisation is widely used in the simulations and it was, therefore, important to produce

valid random numbers. Random generators were used, for instance, to generate different

topologies characterised by comparable topological features; to randomise the location of the

central monitoring station; to randomise the location of link failures, and so on.

The desired properties of a random generator function are as follows [Jain 91]:

• It should be efficiently computable, since simulations typically require several thousand

random numbers in each run.

• The period should be large, since a small period may cause the random-number

sequence to recycle.

• The successive values should be independent and uniformly distributed. The correlation

between successive numbers should be small, since correlation (if significant) indicates

dependence.

Apart from the choice of the random generator, the seed selection is crucial as well. The seeds

used in random-number generation should not affect the final conclusion. In order to guarantee

that the simulator produced similar results for different seed values, we have run the same

simulations with different seed values.

 - 118 -

The NS simulator provides special support to random numbers. It implements the generator

designed by Park and Miller [Park 88]. It also provides libraries to help selecting the seed. A

table of 64 known good seeds for that generator is also provided. Therefore, having made use of

the library provided with the simulator we could guarantee validity of the randomisation

processes.

5.3.8.4 Continuity, Degeneracy, and Consistency Tests

Continuity tests consist of running the simulation several times for slightly different values of

input parameters ([Jain 91] p.418). For any one parameter, a slight change in input should

generally produce only a slight change in output. Any sudden change in the output may be due

to modelling errors and should be investigated. For instance, the performance plots versus

scalability should exhibit monotonic or semi-monotonic behaviour.

Degeneracy tests consist of checking that the model works for extreme (lowest or highest

allowed) values of system, configuration, or workload parameters ([Jain 91] p.419). For

instance, the agent monitoring system with zero agents should lead to the same performance as

its centralised counterpart. Another example is the situation in which the number of agents is

equal to the number of nodes. In this case, agents should be deployed uniformly, with one agent

per node.

Consistency tests consist of checking that the model produces similar results for input

parameter values that have similar effects ([Jain 91] p.420). For instance, two different agent

configurations computed by the location algorithm should lead to comparable levels of traffic

and response time.

To increase the confidence in the validity of the simulations, continuity, degeneracy, and

consistency tests were carried out. Some of them were done by visual inspection; that is by

observing the behaviour of the system using the network animator. Others were carried out

through simple scripts written in TCL.

5.3.8.5 Agent Environment

The agent mechanisms constructed on top of the network simulator were tested and verified

performing extensive simulations and through routines to automate the analysis of trace files.

The aim was to make sure that agent creation, destruction, cloning, and migration were

functioning correctly. In addition to the analysis of agent traces, the NAM graphical network

animator was used to actually visualise agent behaviour in real time [NAM]. A simple snapshot

showing packets destined to different target nodes in different colour is reported in Figure 5-5.

 - 119 -

Figure 5-5. Snapshot of the NAM network animator.

5.3.8.6 Agent System Behaviour

Upon validating the basic MA mechanism, the actual agent location algorithm had to be

validated as well. This was done again with the help of the NAM network animator. Various

network topologies were adopted and for each of them the agent location algorithm was both

calculated by hand and simulated in order to verify correctness. It was not possible to find a

more general validation mechanism because of the complexity and distributed nature of the

agent location algorithm.

To increase the level of confidence, scripts for the analysis of MA traces were written. Various

tests were carried out. For instance it was verified that agents were actually monitoring a

disjoint subset of monitored nodes and that the node-to-agent allocation mechanism was

correct. It was also tested that all nodes were finally allocated to a single agent to verify that the

network partitioning algorithm was correct.

The goodness of the agent locations was also verified by comparing the performance of the

agent system with the case in which agent locations were randomly assigned and showing

significant statistical difference between the two.

 - 120 -

5.3.8.7 Congruency between the two Flavours of the Agent Location Algorithm

One of the claims expressed in Chapter 4 is that the two different flavours of the proposed

agent location algorithm (with and without cloning) lead to the same agent configuration. This

can be expected because both flavours implement the same basic algorithm. The actual

computational approach is different (centralised versus distributed) but the steps are the same.

Nevertheless, it was necessary to validate this claim with simulation work. This was done by

running the two algorithms separately for the same set of network topologies.

20 network topologies were generated with different topological characteristics and size (in

terms of nodes and diameter). In each case both algorithms were run to compute the agent

location for an increasing percentage of MAs (10%, 25%, 40%, 55%, and 70%). It was verified

that agent locations and network partitioning were identical in both cases.

The importance of these tests should be emphasised here. In fact, congruency of the two

algorithms allowed us to reduce significantly the overall simulation time for the experiments

described in Chapter 8. In fact, it was not necessary to repeat all those experiments twice, once

for each location algorithm, since the steady-state configuration and behaviour of the two

would have been identical.

5.3.8.8 Agent Migration overheads

Agent migration overheads were accounted for in the simulator in a parametric fashion. The

actual values for agent serialisation and de-serialisation time and typical agent size were

selected upon evaluating the respective values available in the literature and by performing

extra measurement in a real agent system.

The extra measurements were required because little data is available in the literature and,

when available, the values refer to general-purpose MA platforms. These are characterised by

overheads that are larger than what could be envisioned for network management oriented MA

platforms.

Experiments aimed at providing a realistic order of magnitude for the overall agent migration

time were carried out on the general-purpose Grasshopper MA platform and on CodeShell, an

MA platform optimised for constrained mobility. The results are shown in Figure 5-6.

 - 121 -

Grasshopper CodeShell
300

350

400
1400

1450

1500

1550

1600

C
od

e
M

ig
ra

tio
n

T
im

e
[m

se
c]

Figure 5-6. MA Migration time measurements on real MA platforms.

Results are reported in the form of statistical box charts (see section below for interpretation).

Boxes include mean values (small square) and median values (line).

MA size varies more critically depending on what is implemented in the agent. So it was more

difficult to come up with realistic features. Typical agent sizes were inferred from published

data [Knight 99].

5.3.9 Statistical Data Analysis and Presentation of Results

As already mentioned above, simulations have been randomised with respect to the various

factors and repeated a sufficient number of times to ensure statistical significance of the results.

Initially, simulations were repeated 20 times for each randomisation. It was noticed that

statistical significance was achieved with 10 repetitions.

Statistical significance was analysed with Microcal ORIGIN, an advanced statistical tool

chosen as an alternative to Microsoft Excell. The former was found to provide better support

for statistical analysis and data presentation, as well as increased flexibility.

All simulation data were fed to ORIGIN to generate statistical box charts similar to those of

Figure 5-6. Statistical box diagrams were used because they are well suited to reporting data

generated over different runs of the simulations. They summarise the spread of data in a simple

diagram that portrays mean, median, first and third quartiles, and range ([Lewis 99] pp.117-

118). Each Y column is represented as a separate box. The Y axes reports statistical indicators

rather than the actual measured values, which correspond to the configuration parameter

reported in the X axis. Boxes are determined by the 25th and 75th percentiles (first and third

quartiles respectively); whiskers are determined by the 5th and 95th percentiles; the little squares

 - 122 -

represent mean values; horizontal lines represent median values; circles depict lowest and

highest values; and stars denote the 1-99% range of the values.

Statistical box charts allow drawing conclusions on statistical significance of results. Partial

overlapping between different boxes denote that the indicators of central tendency (mean and

median) in the two boxes are statistically comparable. Conversely, non-overlapping boxes

denote significantly different results from a statistical point of view.

Two different indices of central tendency were adopted. Mean and median were used to

summarise traffic and response time factors, respectively. Data variability was summarised with

25th and 75th percentiles. Best-fit functions on the indices of central tendency were then

computed with ORIGIN for a direct presentation of the simulation results.

5.4 Conclusions

In this chapter we have described the method used to examine the hypothesis and assess the

proposed agent-based monitoring system presented in Chapter 4. We have contextually tried to

provide motivations for some of the choices adopted, discussing issues and difficulties

encountered during the experimental work.

The initial idea was to model the whole system, first mathematically and, then, by simulation.

This would have been an ideal approach since it would have allowed a full validation of the

simulations, with the advantage of being more realistic and, hence, credible than theoretical

studies.

On the way we found the hurdle of modelling a complex distributed system in a mathematical

fashion and sought alternative ways of examining the hypothesis. Jain’s seminal book on

system performance analysis inspired a new path. The evaluation was finally carried out using a

hybrid mathematical and simulation-based approach. The two examined orthogonal aspects of

the proposed agent system. Validation of the simulations was carried out by validating sub-

components and assumptions of the developed simulator.

The rest of the thesis is dedicated to the presentation and discussion of the experimental work

according to the methodology presented here.

 - 123 -

Chapter 6

Theoretical Evaluation of Agent Deployment

Under General Conditions

This chapter initiates the evaluation of the proposed approach to dynamic distributed

monitoring based on agents. The focus is on the theoretical evaluation of the two flavours of the

agent location algorithm presented in Chapter 4.

The evaluation is carried out for the case of general network topologies. A schematic

representation of the focus of this chapter is depicted in Figure 6-1. First, the asymptotic

complexity of those algorithms is studied in order to assess their scalability and typical

computational time. Then, agent deployment is studied and, again, conclusions on scalability

and typical times are drawn. Finally, a similar study covers the evaluation of the traffic incurred

by agent deployment.

The study of algorithmic complexity and agent deployment time and traffic reflects the

investigation of the transient behaviour of the proposed monitoring system. At transient time –

i.e., until all agents have been deployed – the monitoring system cannot yet operate. Thus, the

identification of scalability and typical traffic and times involved in agent location and

deployment is an essential part of the evaluation of the viability of the proposed agent solution.

In addition, the overall transient time and incurred traffic are overheads as far as the monitoring

system is concerned. In fact, in static monitoring systems the monitoring ‘logic’ is not deployed

dynamically, since it is hard-wired into the system.

 - 124 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time

Performance Scalability Adaptability

Transient analysis under
General Conditions

- CHAPTER 6 -

Steady-state analysis under
General Conditions

- CHAPTER 8 -

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Transient analysis under
near-optimal Conditions

- CHAPTER 7 -

Steady-state analysis under
near-optimal Conditions

- CHAPTER 7 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time
Performance Scalability

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Sufficient
Conditions for
near-optimality

Optimal
Centralised
Monitoring

• Shapes delimited by continuous lines are assessed theoretically
• Shapes delimited by dotted lines are assessed by simulation
• Arrows depict dependencies

Distance from
optimality

Figure 6-1: Schematic representation of the focus of Chapter 6.

Therefore, this chapter assesses the complexity and time-scales of the agent deployment process

(transient behaviour). It does not assess the goodness of the resulting agent locations from the

perspective of a distributed agent-based monitoring system (steady state behaviour). This is

done by simulation and is the subject of Chapter 8. Finally, the study of sufficient conditions

 - 125 -

for near-optimality is reported in Chapter 7, which also includes a theoretical treatment of both

transient and steady-state behaviour of distributed monitoring under the given near-optimal

conditions.

An initial study of the asymptotic complexity of agent location algorithm reported herein has

been published in [Liotta 98a].

6.1 Asymptotic Complexity of the Agent Location

Algorithms

The asymptotic complexity of the two flavours of the agent location algorithm described in

Chapter 4 is evaluated here by considering the upper bound on the time taken for the algorithms

to complete when the scale of the problem grows. The scale factors considered are the number

of nodes, N the network radius, R(u) and the number of agents, p.

6.1.1 Asymptotic Complexity of the Centralised Location Algorithm

The centralised algorithm described in Chapter 4 (Section 4.1 page 76) is reported in Listing

6-1 in which additional boxes highlighting the complexity of the various portion of the

algorithm have been introduced. The definitions of the various variables are reported in Table

4-1, page 82.

This is a iterative algorithm executed sequentially at the monitoring station. Lines 1-9 are

executed only at initialisation time. In particular, Lines 1-6 involve p iterations for the creations

and setting up of the required agents.

 - 126 -

1 p Ä heur_1(|V|; min_deploy_time; R(u);...)
2 FOR x = 1 to p
3 ma_ID Ä new_ma(x)
4 MAs Ä MAs ∪ ma_ID
5 node(ma_ID) Ä u
6 monitored(ma_ID) Ä {}
7 curr_nd_ID Ä u
8 MA(curr_nd_ID) Ä MAs
9 MO(curr_nd_ID) Ä V \ u
10 neigh(curr_nd_ID) Ä {v |v ∈ V & dist(curr_nd_ID; v)= 1}
11 FOR EACH v ∈ neigh(curr_nd_ID)
12 MO(v) Ä {x | x ∈ MO(curr_nd_ID) &
13 next_hop(curr_nd_ID; x) = v }
14 cost(v) Ä ∑(y|y ∈ MO(v)) [routing_cost(curr_nd_ID, y)]

15 FOR EACH v ∈ neigh(curr_nd_ID)
16 estimate_MA(v) Ä heur_2{ MA(curr_nd_ID);
17 ∪ (x|x ∈ neigh(curr_nd_ID) [MO(x)]; ∑(x|x ∈ neigh(curr_nd_ID) [cost(x)]}

18 FOR EACH v ∈ neigh(curr_nd_ID)
19 IF (estimate_MA(v) > 0) DO
20 FOR y = 1 to estimate_MA(v)
21 MA(v) Ä MA(v) ∪ {ANY z ∈ MA(curr_nd_ID)}
22 MA(curr_nd_ID) Ä MA(curr_nd_ID) \ z
23 node(z) Ä v
24 IF MA(curr_nd_ID) ≠ {}
25 MO(curr_nd_ID) Ä MO(curr_nd_ID) \ MO(v)
26 ELSE
27 MO(v) Ä MO(v) ∪ MO(curr_nd_ID)
28 MO(curr_nd_ID) = {}
29 curr_nd_ID Ä v
30 Start Iteration
31 # The remaining monitored objects in MO(curr_nd_ID)
32 # are equally distributed among the remaining agents
33 # MA(curr_nd_ID).
34 FOR EACH ma_ID ∈ MAs
35 send ma_ID to node(ma_ID)
36 # Each agent autonomously starts executing its
37 # monitoring task upon arriving to its target node.

p iterations

Simple
setting of
objects
attributes

At most N
lookups in
network
matrix

A
t

m
o

st
 δ m

a
x

ite
ra

tio
n

s

A
t

m
o

st
 δ m

a
x i

te
ra

tio
n

s

Always true in the worst case

At most δmax
iterations

At most N
iterations

Simple list
merging and
variables setting

A
t

m
o

st
 N

 it
e

ra
t.

 if
 a

ll
n

o
d

e
s

a
re

 v
is

ite
d

A
t

m
o

st
 p

ite

ra
tio

n
s

Agent setup and serialization. At most p iter.

Beyond the sequential part of the algorithm.

At most
N
iterations

Listing 6-1: Analysis of the centralised agent location algorithm presented in Chapter 4.

The iterative part of the algorithm is included in Lines 10-30 which are executed at most N

times, if all nodes are to be visited before the location algorithm converges. Line 10 involves a

number of iterations that depends on the way the network is internally represented in the

program. For instance if each node is implemented by an object which includes the list of

neighbour nodes as an attribute, then Line 10 is a simple retrieval operation. Alternatively, if

the network is more simply represented by a matrix, the function that computes the neighbour

nodes may require up to N iterations.

Lines 11-14 require at most N lookup operations into the network data structure. Lines 15-17

require at most δmax iterations, whereby δmax is the maximum node degree in the network. It is

worth mentioning that δmax does not usually increase significantly with N in typical networks

and is usually much smaller than N.

 - 127 -

Lines 18-29 are iterated at most δmax as well. The condition expressed in Line 19 adds extra

computation and thus in order to consider the worst case we assume it is always true. In this

case Lines 20-23 involve at most δmax iterations; alternatively Lines 24-25 involve at most N

iterations and Lines 26-28 require simple operations on lists. Finally, Line 29 is an operation on

a simple variable and Line 30 initiates the iteration process.

The remaining instructions are executed only once after the iteration process is finished. Lines

31-33 involve at most p iterations that will make sure that all nodes will be monitored by the

agents. Lines 34-35 will involve p iterations for the individual setting up and serialisation of the

agents. After that, the sequential part of the algorithm is terminated since each agent is migrated

to its destination where it will operate independently from the other ones.

Lines Computational
Contribution
(iterations)

1-9 p
10-30 N
10 N
11-14 N
15-17 δmax
18-29 δmax
20-23 δmax
24-25 N
27-29 constant
31-33 p
34-35 p
Total O(p+N2)

Table 6-1: Computational contribution for the algorithm of Listing 6-1.

Based upon the above analysis the main contributions to the algorithm computational

complexity are summarised in Table 6-1 from which we can conclude that an upper bound on

the asymptotic complexity of the algorithm is

O{p + N * [N+N+δmax+δmax*(δmax+ N)] +p+p } ∝ O(p+ N2).

6.1.2 Asymptotic Complexity of the Distributed Location Algorithm

The distributed version of the algorithm described in Chapter 4 (Section 4.2, page 84) is

reported in Listing 6-2 in which additional boxes highlighting the complexity of the various

portion of the algorithm have been introduced. The definitions of the various variables are

reported in Table 4-3, page 90.

For the calculation of the algorithm asymptotic complexity we consider the part of the

algorithm that is inherently sequential. The part of the algorithm that can be executed in parallel

is less crucial since execution time for this part can be reduced by addition of processors.

 - 128 -

1 ma_ID Ä clone_ma
2 ma_nd_ID Ä u
3 monitored(ma_ID) Ä {V \ u}
4 cost(ma_nd_ID) Ä ∑(y|y ∈ MO(ma_nd_ID)) [routing_cost(ma_nd_ID; y)]

5 neigh(ma_nd_ID) Ä {v | v ∈ V | dist(ma_nd_ID; v)= 1}
6 FOR EACH v ∈ neigh(ma_nd_ID)
7 MO(v) Ä {x | x ∈ monitored(ma_nd_ID) &
8 next_hop(ma_nd_ID; x) = v }
9 cost(v) Ä ∑(y|y ∈ MO(v)) [routing_cost(ma_nd_ID, y)]

10 FOR EACH v ∈ neigh(ma_nd_ID)
11 estimate_MA(v) Ä heur(cost(ma_nd_ID); cost(v);
12 ∑(x|x ∈ neigh(ma_nd_ID) [cost(x)])

13 FOR EACH v ∈ neigh(ma_nd_ID)
14 IF (estimate_MA(v) = 1)
15 new_ma_ID Ä clone_ma
16 new_ma_nd_ID Ä v
17 monitored(new_ma_ID) Ä MO(v)
18 monitored(ma_ID) Ä{monitored(ma_ID) \
 monitored(new_ma_ID) }
19 migrate_ma(ma_ID=new_ma_ID; ma_nd_ID=v)
20 IF (monitored(ma_ID) ≠ {})
21 start_ma(ma_ID)
22 ELSE
23 kill_ma(ma_ID)

A
t m

o
st

 R
(u

)
re

p
e

tit
io

n
s

Executed only once at
initialization time

A
t m

o
st

 δ m
ax

ite

r.

A
t m

o
st

 N
 lo

o
ku

p
s

to

lo
ca

l r
o

u
tin

g
 ta

b
le

A
t m

o
st

 δ m
ax

 it
e

ra
tio

n
s

Simple agent start
up operation

Listing 6-2: Analysis of the distributed agent location algorithm presented in Chapter 4.

Let the network be modelled as a graph G=(V,E) consisting of a set of vertices (or nodes), V

and edges, E. Each edge, e∈ E has two different end points, v1 and v2∈ V. Given two generic

nodes vx and vy∈ V, let us denote by d(vx) the degree of vx in G, by dist(vx,vy) the distance

between vx and vy. Let δmax = maxv|v∈ V{ d(v)}; R(vx)=maxv|v∈ V{ dist(vx,v)} be the radius of the

network centred in vx; neigh(vx)={v | v∈ V dist(vx,v)=1} be the set of neighbours of vx in G; and

Tr is the routing tree rooted at the monitoring station.

Steps 1-23 are initially performed at the root node, u∈ Tr⊆ V and, depending on the outcome of

the test performed in Step 14, may or may not be repeated at the subsequent levels of Tr. In the

worst case, Steps 1-23 are repeated R(u) times. In any case, agents running at the same level in

Tr are executed independently from each other and in separate physical locations within the

network. The computational complexity of the agent location algorithm considered as a whole

can be determined by considering the part of the algorithm that is inherently sequential.

Therefore, the complexity is R(u) times the complexity of Steps 4-23.

Upon arriving to a node an agent needs to be de-serialised and instantiated before executing

from Step 4. This operation takes a constant time, DESERILtime. Step 4-9 require a number of

iterations equal, at most, to the total number of monitored nodes. The dominant cost for each

iteration is given by the look-up operation to the routing table to extract the next_hop and the

cost values. Thus, at each level of Tr, the total contribution of Steps 4-9 is c*O(N), where c

 - 129 -

accounts for one look-up time. Steps 10-12 involve a number of iterations which, in the worst

case is equal to the maximum node degree, max that in typical networks is significantly smaller

than the number of nodes and, typically, does not significantly increase with N. The iteration on

v of Steps 13-19 is actually performed as part of Steps 10-12 and in the worst case involves the

process of cloning and configuring max new agents. Cloning will take a constant time,

CLONtime; the reassignment of the monitored nodes takes a constant time too because it reuses

information initially processed during Steps 4-9. Finally, each new agent will require a

serialisation time, SERIALtime before being sent to its destination. The latter will add a

forwarding delay, FORWtime and a transmission time, TRANSMtime (Step 19).

Therefore the agent deployment time, DEPLtime that actually coincides with the time to compute

the agent location algorithm, can be expressed as:

DEPLtime = {DESERILtime + c*O(N) + max* [CLONtime + SERIALtime] + TRANSMtime +

FORWtime}*O(R(u)) = c1 *O(N * R(u)) + c2 * O(R(u)) ∝ O(N*R(u)).

In practice, c1 is of the order of at most 10E-6 seconds since the current router technology

allows for a number of look-up operations of at least 10E6 per second. c2 is in the order of

seconds since with current mobile agent platforms [TRANSMtime + FORWtime] is typically in the

order of 10E-3 to 10E-1 seconds and [DESERILtime+ CLONtime+ SERIALtime] is in the order of

seconds or fraction of seconds [Knight 99, Bohoris 00c]. Therefore, if N << 10E6 then

[c*O(N)] << {DESERILtime + max*[CLONtime + SERIALtime] + TRANSMtime + FORWtime} and,

consequently, DEPLtime ≈ c2 * O(R(u)). In this case the deployment term will predominate over

the computational one and DEPLtime will be in the order of seconds times O(R(u)).

The results of the above analysis prove that the algorithm is O(N*R(u)) in general while it is, in

practice, O(R(u)) if N << 10E6 because, under this condition, c1 *O(N * R(u)) << c2 * O(R(u)).

Since R(u) is typically sublinear with N, the proposed algorithm is sublinear with N. The

algorithm complexity does not vary with the number of MAs, p since each agent computes its

location in parallel and independently from the others. This is conditional to the assumption

that the system where the agents are executed has sufficient memory and computational

resources to meet the agents requirements.

6.2 Upper bounds on Agent Deployment Time

Agent deployment involves the computation of the agent locations as well as the actual agents’

migration. If the centralised algorithm described in Chapter 4 is used, those two phases are

performed sequentially – i.e., agent locations are computed centrally prior to initiating agent

 - 130 -

migration to target destinations. Conversely, in the case of the distributed algorithm agent

locations are computed during the actual agent migration. Therefore, in order to compare these

two cases, the agent deployment time is assumed as the span of time elapsed from the initiation

of the agent location algorithm to the moment in which the last agent has reached its target

destination.

6.2.1 Upper Bounds on Deployment Time for the Centralised

Algorithm

The time to compute the centralised algorithm is related to its algorithmic complexity. Thus, an

upper bound the agent location computational time is O(p+ N2). An upper bound on the second

contribution to the total agent deployment time – i.e. the agent migration time – can be

accounted for as follows.

Let us assume that the network is modelled by a graph G=(V, E) as specified above. In addition,

we assume that at deployment time not more than one MA can simultaneously traverse the

same link. This means that if two or more agents concur for the same link, they will be

transmitted over the link sequentially. A similar assumption has already been adopted

elsewhere and has been shown to reflect the hardware characteristics of communication

networks. For instance, in [Rescigno 97] this model has been used to study various polling

algorithms for communication networks. Responses are accumulated at internal nodes, but only

one response can traverse a link during a communication step.

Another reason for modelling the agent distribution mechanism as above is that in this way it is

generally possible to limit the dramatic burst of traffic incurring in the vicinity of the

monitoring station by the injection of agents. Additionally, this is the approach used in the

simulations reported in Chapter 8 in order to avoid buffer overflows at intermediate nodes and

link saturation. It should be mentioned that, ideally, agent deployment should not monopolise

the network resources available to the monitoring system. This is a more general guideline

usually applied to management systems for which a rule of thumb is that the management

system should operate in a way to use less than 5% of the available network resources. The

remaining 95% should remain available for the normal operation of the managed system.

Let us now assume that the agent location algorithm has computed the locations for p agents,

whereby p<N. Depending on network topology, location of the monitoring station, and routing

distribution tree, there will be situations in which agents will concur for the same link or not.

There are two extreme cases, as depicted in Figure 6-2: a) agents have mutually exclusive

 - 131 -

distribution paths, thus they do not compete for links under any circumstance; b) agents share

exactly the same distribution path.

1 2 3

4 5 6 7 8 9 10

0

a) Best case

11 12 13 14

b) Worst case

0 Monitoring Station

level 0

Mobile Agents during Deployment
Routing Distribution Tree

15 16

2 3

5

0

8 9 10 11 6 7

1

4

level 1

level 2

level 3

R
(u

) =
 3

Agent deployment path

Figure 6-2: Examples of agent deployment. a) the agents traverse different portions of the

distribution tree; b) the agents have overlapping distribution paths.

In the first case agent distribution is realised with the maximum possible parallelism and, thus,

in minimal time. The upper bound on distribution time is given by the agent which has to travel

further. In the worse case is achieved if we assume that at least one agent has target destination

at distance R(u) from the monitoring station. In this case the distribution time can be expressed

as:

DISTtime,cent,a = (TRANSMtime + FORWtime) * R(u)

whereby TRANSMtime is the time taken by an agent to traverse a single link and FORWtime is the

forwarding delay incurred at intermediate nodes. The former is typically in the order of tens of

milliseconds. The latter depends mainly on the queuing delay at the node and ideally falls in the

same order of magnitude as the former.

If agents share the same distribution path (Figure 6-2b) the time to deploy p agents from level 0

– i.e., the monitoring station level – to level R(u) is given at most by the time to bring p agents

to level 1 plus the time required by 1 agent to traverse all the other levels. Thus, an upper bound

on the total agent distribution time can be expressed as:

DISTtime,cent,b = (TRANSMtime + FORWtime) * [p + (R(u) – 1)]

The following expression holds:

DISTtime,cent,a ≤ DISTt,cent,b

therefore DISTt,cent,b is used as upper bound on distribution time. Its asymptotic complexity will

be O(p + R(u)). Therefore, the upper bound on the total deployment time given by the sum of

the contribution accounting for the computation of agent locations (Section 6.1.1) and the

distribution time can be expressed as:

DEPLtime,cent ∝ c1 *[O(p+ N2)] + c2 *[O(p + R(u))]

 - 132 -

whereby c1 and c2 represent the order of magnitude associated with two terms, respectively. c2

accounts for transmission and queuing delay and is typically in the order of tens of

milliseconds. c1 may vary greatly depending on the computational resources available at the

monitoring station and will typically predominate over c2. It should be noticed, however, that by

adding sufficient processing power this conditions might not hold. Under the assumption of this

thesis the predominant term of the overall deployment process tends to be the one accounting

for agent location computation, leading to the following expression:

DEPLtime,cent ∝ c1 *[O(p+ N2)]

6.2.2 Upper Bounds on Deployment Time for the Distributed

Algorithm

Let us recall from Section 6.1.2 that in the case of the distributed agent location algorithm the

agent deployment time, DEPLtime actually coincides with the time to compute the agent location

algorithm, which can be expressed as:

DEPLtime,dist = {DESERILtime + c*O(N) + max* [CLONtime + SERIALtime] + TRANSMtime +

FORWtime}* R(u) ∝ O(N*R(u)).

Finally, in practice the agent migration contribution tends to predominate (as seen in 6.1.2)

leading to the following expression:

DEPLtime,dist ∝ O(R(u))

which is sub-linear with N because R(u) is sub-linear with N for typical network topologies.

6.3 Upper Bounds on Agent Deployment Traffic

The agent deployment traffic is the one incurred in the network by the agent deployment

process. The amount of incurred traffic may change significantly between the centralised and

the distributed algorithm. In the former case, all the agents are created at the monitoring station

where the deployment process starts. In the latter case, only one agent is initially created at the

monitoring station. This agent starts the deployment process by cloning one or more agents that

are, then, migrated to the second level of the distribution tree. Each of the new agents will then

repeat this process until agent deployment is finalised. This approach based on agent cloning is

responsible for the optimisation of the deployment process.

 - 133 -

Traffic is modelled using an approach similar to [Zegura 97]. It is the sum of packet hops – i.e.

the number of links traversed by the packets – multiplied by their respective packet size, b and

packet rate Pr. The traffic T(v1,v2) between any two points v1, v2 ∈ V subject to a bit rate Br is

T(v1, v2)= Br* d(v1, v2), where Br=b*Pr and d(v1,v2) is the distance between v1 and v2. The

distance in the network is measured using the ‘hop’ metric, in which each edge has unit weight.

6.3.1 Upper Bounds on Deployment Traffic for the Centralised

Algorithm

The upper bound on traffic is calculated by considering the worst case, that is the case in which

all of the p agents are to be deployed to nodes which are at distance R(u) from the monitoring

station. Let as assume that all agents have byte size MAsize,cent. If we assume that the whole

deployment process takes a single unit of time, the average traffic incurred by agent

deployment, expressed in bits per second, will be:

())(*
sec1

)(***8 ,
, uRpO

uRMAp
DEPL centsize

centtraff ∝=

6.3.2 Upper Bounds on Deployment Traffic for the Distributed

Algorithm

In the case of the distributed algorithm the calculation of an upper bound on agent deployment

traffic is not trivial since this may vary significantly depending on the agent cloning process.

This depends, in turn, on particular topological properties such as the average node degree.

Similarly to the approach followed in the previous section, the upper bound is calculated by

considering the case in which all the agents are assumed to be targeting level-R(u) nodes.

However, for the distributed algorithm two extreme upper bounds are computed, an ‘optimistic’

and a ‘pessimistic’ one.

The ‘optimistic’ upper bound on traffic is achieved when no cloning is involved before the last

level of distribution tree is reached (Figure 6-3a). This happens when the first agent, created at

the monitoring station, traverses levels 1 to (R(u)-1) without cloning any new agents and, then,

creates the required p agents upon arriving at level (R(u)-1). Conversely, the ‘pessimistic’ case

is the one in which all agents are cloned by the first agent at the monitoring node (Figure 6-3b).

 - 134 -

1 2 3

4 5 6 7 8 9 10

0

b) Pessimistic case

11 12 13 14

a) Optimistic case

0 Monitoring Station

level 0

Mobile Agents during
deployment process

15 16

2 3

5

0

8 9 10 11 6 7

1

4

level 1

level 2

level 3

R
(u

) =
 3

Mobile Agents upon completion
of deployment process

Routing Distribution Tree Agent deployment path

Figure 6-3: Example showing the optimistic and pessimistic upper bounds on deployment traffic in

the distributed algorithm.

Let as assume that all agents have byte size MAsize,dist, and that as usual the number of deployed

agents is p and the network radius is R(u). The optimistic upper bound on traffic is given by the

traffic incurred when the first agents traverses (R(u)-1) links plus the traffic incurred to transmit

(p-1) agents from level (R(u)-1) to level R(u). Hence the traffic expressed in bits per second will

be:

() ())(
sec1

1)(**8 ,
,, uRpO

puRMA
DEPL distsize

optdisttraff +∝
+−

=

The pessimistic upper bound on deployment traffic is analogous to the one of the centralised

algorithm and can be expressed as:

())(*
sec1

)(***8 ,
,, uRpO

uRMAp
DEPL distsize

pessdisttraff ∝=

It can be noted that the optimistic and the pessimistic upper bounds are characterised by

significantly different scalability. An intermediate behaviour should be expected in practical

systems whereby the cloning process is performed progressively at the various levels of the

distribution tree.

It should be mentioned that in the case of the distributed algorithm, agents tend to have a larger

size than the size of the agents generated by the centralised algorithm. This is because, in the

first case, agents need to contain the logic to solve the location problem and perform agent

cloning in addition to the logic implementing the actual monitoring task.

Therefore, whenever behaviour similar to the pessimistic case is achieved the centralised

algorithm tends to result in smaller traffic. Conversely, the distributed algorithm will result in

reduced traffic if the cloning/deployment process can be assimilated to the optimistic case.

 - 135 -

6.4 Discussion and Conclusions

This chapter presents the transient analysis of the proposed centralised and distributed

algorithms, which find an approximate solution to the agent location (p-median) problem. From

the point of view of an agent-based distributed monitoring system, this is also the problem of

placing p agents in the network in such a way to optimise monitoring traffic and response time.

The problem of finding an efficient solution to the p-median problem is crucial to the

realisation of agent-based distributed monitoring since this is, in general, an NP-complete

problem.

The main results of this analysis are summarised in Table 6-2. Both the centralised and the

distributed algorithm are proved of polynomial complexity. The former is proved O(p + N2),

whereas the latter is typically sub-linear with the number of monitored nodes and independent

from the number of agents.

This is an important result if compared with the algorithms proposed in the literature, which are

typically of higher polynomial degree. We have discussed in Chapters 2 and 3 how existing

algorithms are not only more complex than the proposed one but also unfeasible to solve the

agent location problem. A key feature of the distributed version of the proposed algorithm is its

ability to be computed on local routing tables rather than on a ‘centrally maintained’ network

distance matrix.

 Centralised Agent Location

Algorithm

Distributed Agent Location

Algorithm

Computational

Complexity

O(p + N2) O(N * R(u)) ≈ O(R(u))

Upper Bounds on

Agent Deployment

Time

c1 *[O(p + N2)] + c2 *[O(p + R(u))] ≈

c1 *[O(p+ N2)]

c1 *O(N * R(u)) + c2 * O(R(u))

Typical order of

Deployment Time

Depends critically on the amount of

computational resources available at

the monitoring station

c1 ≈ 10E-6 * c2. If N << 10E6 Å

DEPLtime ≈ seconds * O(R(u)) otherwise

DEPLtime ≈ 10E-6*seconds* O(N*R(u))

Upper Bounds on

Agent Deployment

Traffic

O(p * R(u)) O(p + R(u)) (optimistic)

O(p * R(u)) (pessimistic)

Table 6-2: Summary of results on the theoretical evaluation of transient behaviour under general

conditions.

 - 136 -

The other important aspects assessed herein are deployment time and traffic, which represent

overheads from the viewpoint of the monitoring system. Upper bounds on these variables have

been calculated analytically. In particular, the distributed algorithm based on agent cloning

typically results in times in the order R(u) seconds. Times of the order of the second are

involved in the agent cloning/forwarding process over a single hop. This process is

predominant with respect to the other phenomena and it is repeated at most a number of times

equal to the network radius, R(u). This behaviour is, hence, linear with the network radius and,

in turn, sub-linear with the number of monitored nodes, N (since N is typically sub-linear with

R(u)).

This result gives an important hint on the boundaries of applicability of agent-based

monitoring. Intuitively, monitoring tasks characterised by durations comparable with, or

smaller than, agent deployment times will tend not to benefit from this approach. Conversely,

relatively long monitoring tasks will benefit significantly from the proposed approach since the

performance advantages deriving from the agent system will pay-off the relatively small delays

associated with agent deployment. It should be observed that the aim of the agent system is to

minimise steady-state traffic and response time, as assessed in Chapter 8.

Another overhead is agent deployment traffic. With the centralised agent algorithm, traffic is

shown to increase as O(p*R(u)). The order of magnitude of deployment traffic depends on the

size of the agents. Simple tasks can be implemented with agent of the order of kilobytes

[Knight 99, Bohoris 00c]. In turn, traffic will be in the order of kilobytes, growing as (p*R(u)).

With the distributed agent algorithm, traffic exhibits a worse-case behaviour analogous to the

one achieved with the centralised agent algorithm. More optimistically, however, the upper

bound on deployment traffic will behave significantly better (O(p+R(u))). This significant

reduction in traffic can be directly associated to the use of agent cloning.

Clearly, conventional centralised monitoring will not incur any additional overhead but pays

this advantage in terms of steady-state performance. Static distributed approaches assume pre-

defined, hard-coded monitoring logic; consequently, no deployment overheads are incurred

either. In this case, the costs of the agent solution are paid-off with the increased flexibility

offered by dynamic agent location. The ability of deciding on the area manager location at run

time rather than through off-line computation is particularly important in the case of large-

scale, dynamic networked systems.

What is missing to the analysis presented in this chapter is the assessment of the goodness of

the agent locations computed by the proposed algorithms. This is the subject of Chapter 8. In

the next chapter, we continue our mathematical analysis of the proposed agent system, to find

sufficient conditions for agent location near-optimality. Constraining conditions on the network

 - 137 -

topology are found. However, the simulation work of Chapter 8 will reveal that location near-

optimality is achieved by the agent system also for general, Internet-like network topologies.

 - 138 -

Chapter 7

Theoretical Evaluation Under Near-Optimal

Conditions

The previous chapter has covered the transient analysis of the proposed agent-based monitoring

approach under general conditions. A mathematical-based analysis of the system at steady-state

posed numerous difficulties. Steady-state assessment was, hence, performed through

simulation, as reported in Chapter 8.

Herein we open a parenthesis to look more closely at the various aspects of agent-based

distributed monitoring under near-optimal conditions. Near-optimality is intended in the sense

of overall traffic minimisation.

A schematic representation of the focus of this chapter is depicted in Figure 7-1. We first give

conditions for which the agent location algorithm finds near-optimal locations for the agents

(Section 7.1). Such conditions are given on the network spanning tree routed at the monitoring

station. We prove that if the network admits a spanning tree having n-ary balanced sub-trees

and the number of agent is p=d(u)*nL-1, whereby L is an integer smaller than the network radius,

all agents will be placed at distance L from the monitoring station. Those agents will be located

near-optimally in the network.

In the second part of the chapter, we present a theoretical assessment of agent-based monitoring

at steady-state, under the given near-optimal conditions. Mathematical models of naïve

centralised polling (Section 7.2), optimal centralised polling (Section 7.3), and agent-based

distributed polling (Section 7.4) are presented. This is followed by a comparative analysis of

performance and scalability among the various approaches (Section 7.5).

 - 139 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time

Performance Scalability Adaptability

Transient analysis under
General Conditions

- CHAPTER 6 -

Steady-state analysis under
General Conditions

- CHAPTER 8 -

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Transient analysis under
near-optimal Conditions

- CHAPTER 7 -

Steady-state analysis under
near-optimal Conditions

- CHAPTER 7 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time
Performance Scalability

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Sufficient
Conditions for
near-optimality

Optimal
Centralised
Monitoring

• Shapes delimited by continuous lines are assessed theoretically
• Shapes delimited by dotted lines are assessed by simulation
• Arrows depict dependencies

Distance from
optimality

Figure 7-1: Schematic representation of the focus of Chapter 7.

In the final part, we present a theoretical assessment of agent-based monitoring at transient

time, under the given near-optimal conditions. We consider the two flavours of the agent

deployment algorithm of Chapter 4. Models accounting for agent deployment traffic and time

are presented in Section 7.6. In contrast with the transient analysis of Chapter 6, we manage to

 - 140 -

find mathematical models describing the transient behaviour of the agent system, rather than

just upper bounds on agent deployment overheads. Performance and scalability are finally

analysed in Section 7.7.

An initial development of the mathematical models reported herein has been published in

[Liotta 01a].

7.1 Sufficient Conditions for Location Optimality

This section elaborates on the optimality of the locations computed with the proposed

algorithms. Those algorithms represent, in general, an approximate solution to the p-median

problem. The evaluation of the distance from optimality for general network topologies is

carried out by simulation in the next chapter. Herein, sufficient conditions for agent location

optimality are given.

DEFINITIONS:

u is the monitoring station node – i.e., the root node for the spanning tree. d(u) is the node

degree of node u – i.e. the number of sub-trees of the spanning tree. The spanning tree includes

the routes which connect the root node, u with every other monitored node in the network. It is

built on the routing tables which are computed by the network routing algorithm. p is the

number of disjoint partitions of the network. Each partition is served by a different agent. Thus,

p is also the number of agents. ℵ is the set of positive integers excluding zero. R(u) is the radius

of the network centred in u – i.e., the maximum distance from u to any other node in the

network. If a hop-count metric is adopted for the distance, R(u) is also the maximum number of

levels of the spanning tree. Finally, an n-ary tree is a tree in which every non-leaf node has

exactly n descendent nodes, that is every non-leaf node has node degree equal to (n+1). In a

balanced tree every branch has the same depth, that is every leaf node is at distance R(u) from

the root node u (we are assuming a ‘hop-count’ distance metric). Figure 7-2 depicts the

assumed n-ary balanced spanning tree, whereby T1, T2, …, Td(u), are n-ary balanced sub-trees of

depth (R(u)-1).

 - 141 -

 u

T1 T2 Td(u)

R(u)

R(u) - 1

l=0

l=1

l= L

l=R(u)

Figure 7-2: An example spanning tree having n-ary balanced sub-trees.

THEOREM 1:

Sufficient conditions for the proposed agent location algorithms to find a near-optimal solution

to the p-median problem are:

1. the spanning tree rooted at u and built on the network routing tables has d(u) n-ary,

balanced sub-trees;

2. p = d(u) * n(L-1) with L ∈ ℵ and 1 < L ≤ R(u)

PROOF:

We need to prove that the p locations computed by the location algorithm are near-optimal, i.e.

they result in near-minimal incurred monitoring traffic. That, in turn, means that the sum of the

distances between each agent and the corresponding nodes belonging to the agent partition is

near-minimal. In the following, distances in the network are measured using the ‘hop-count’

metric in which each edge has unit weight. Other than the hop-count metric may be used,

though the analysis presented herein would need to be adapted to those case.

Links are modelled as in [Rescigno 97]: all links are assumed to be equal in capacity and

latency; links are modelled as half-duplex channels that can be traversed by one packet at the

time (packets have mutually exclusive access to links).

The theorem is proved in three parts. First, the agent locations computed by the algorithm under

the given conditions are obtained. Then, for each network partition the sum of the distances

between the agent location and the nodes in the partition is calculated. Finally, it is shown that

the total sum of distances is near-minimal.

PROOF – PART I: AGENT LOCATIONS

Both the centralised and the distributed algorithm described in Chapter 4 will lead to the same

locations. Let us describe what happens in the case of the distributed algorithm (pages 84-90)

by referring to the example of Figure 7-3.

 - 142 -

1

3

0

a)

7 8

b)

d) e)

0 Monitoring Station

c)

f)

Mobile Agents during
execution

Mobile Agents during
Deployment/cloning

Routing distribution tree

Agents deployment path

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

l=0

l=1

l=2

l=3

l=0

l=1

l=2

l=3

Figure 7-3: Example of agent location computation with the distributed algorithm, for a network

having a binary spanning tree.

Initially, only one agent is created at the monitoring station (level l=0). Hence, there is only one

network partition including all the monitored nodes (Figure 7-3a). This agent divides the

network into two partitions, clones a second agent, and assigns it to the second partition (Figure

7-3b). The agents migrate to level l=1 to gain a more central location within the partition

(Figure 7-3c). Each of them further partitions the network and clones another agent (Figure

7-3d). The four agents estimate that a more convenient location is at level l=2 and migrate

(Figure 7-3e). Finally, no need for further partitioning/cloning is found and each agent can start

monitoring the nodes in its partition. Therefore, all four agents will be placed at level l=2 of the

spanning tree; and it can be concluded that if p = d(u) * n(L-1) all agents will be located at level

L. This result is valid more generally under the assumptions of the above theorem. To prove

that let us look more closely at the partitioning process. Since the spanning tree is assumed n-

ary and balanced, a generic agent at a generic level l will always see its descendent nodes as a

balanced n-ary sub-tree. The agents will be in the root of this sub-tree which is also the centre.

Hence, whenever an agent is facing the problem of partitioning the sub-tree it will have two

options: 1) partition the sub-tree equally and clone (n-1) other agents, as exemplified in Figure

7-3; or 2) stop the partitioning/cloning process if no more agents can be cloned.

Agent may adopt different heuristics to drive the cloning process. A simple possibility is for an

agent to stop cloning other agents when the number of its monitored nodes becomes smaller

than a given threshold. Let us assume that this threshold is reached when p = d(u) * n(L-1). This

means that, for the case of n-ary balanced spanning tree, agents are located at level L, since the

maximum number of agents p = d(u) * n(L-1) has already been created when the agents reach

 - 143 -

level L. Therefore, the nodes belonging to level L of the spanning tree will be the ones

computed by the algorithm as the set of agent locations.

PROOF – PART II: SUM OF DISTANCES

Let us now prove that the set of those locations represents the p-median of the network. To do

that let us calculate the sum of the distances between an agent and all the nodes in its partition.

The computed locations are a p-median for the network if the sum of these distances, extended

to all the agents, is minimal.

R(u)

l=L

l=1

l=2

l=3

N1

N0

Nh

Np

MAp MA1 MAh

Figure 7-4: Example binary spanning sub-tree depicting the calculation of the total distances

between an agent and the nodes in its partition.

First, we need to define a naming scheme for nodes and partitions of the spanning tree. Then,

we will specify formally the nodes monitored by each of the agents. Finally, we will compute

the distances. Figure 7-4 depicts the generic n-ary sub-tree Tr of the spanning tree of Figure 7-2.

A generic node of Tr can be identified as nl,h whereby l∈ (1, 2, ..., R(u)) identifies particular tree

levels and h∈ (1, 2, ..., n(l-1)) identifies the various nodes at a given level. The set of nodes where

the agents are placed is {nl,h ∈ Tr | l=L & h∈ (1, 2, …, n(L-1))}. The sub-tree is partitioned in

(h+1) partitions {N0, N1, …, Nh}, whereby

N0 ≡ { nl,h ∈ Tr | l ∈ (1, 2, …, (L-1)) & h∈ (1, 2, …, n(l-1))} and

Nx ≡ { nl,h ∈ Tr | l ∈ (L, (L+1), …, R(u)) & h∈ [(x-1)*n(l-L) + 1, …, x*n(l-L))}, x∈ {1, 2, …, p}.

The partition associated with the generic agent MAx will be the union of Nx with some of the

nodes belonging to partition N0. In fact, the nodes of N0 will be evenly distributed among the

agents. Since the number of agents residing at level L will be larger than the total number of

nodes in N0, each agent will be in charge of monitoring at most 1 node from N0. Thus, for each

agent the sum of the distances between agent and nodes is given by two terms: the sum of the

 - 144 -

distances between MAx and the nodes of Nx plus the contribution due to those nodes of N0

which belong to the agent. The former can be expressed as:

() () () ()

()2

1)(2)()()(

1
,

1

1)()(
**

−
++−−−===

+−+−−

=

−

=
∑∑

n

nnLuRnLuR
njnjS

LuRLuRLuR

oj

j
LuR

j

j
Nd x

whereby it is assumed (here and in the following) that n≠1 for the geometric series to converge.

n cannot assume zero or negative values. Hence, it is assumed that n>1.

The contribution to the sum of distances due to the nodes of N0 can be calculated by

multiplying the portion of those nodes of N0 belonging to a single agent by the average distance

between MAx and the generic node of N0. The total number of nodes in N0 is:

1

112

0
0 −

−==
−−

=
∑ n

n
nN

LL

j

j

The total number of agents at level L is p=nL-1. The average number of nodes from N0 belonging

to a single agent is () 1

1

*1

1
1

1
0

−
<

−
−= −

−

nnn

n

p

N
L

L

. Assuming a hop-count metric, we find that the

average distance between an agent and the portion of nodes belonging to N0 is

()
() 21*2

*1

1

1

1 L

L

LL

L

j
L

j =
−

−=
−

∑
−

=

We should in fact consider that, for any given agent sitting at level L, there is only a single node

in N0 at each level {1, 2, …(L-1)} which is eligible for being monitored by that agent. That

node will be one of the direct ascendants of the agent node.

Therefore, the contribution to the total distance due to the nodes of N0 will be on average:

() ()1*22
*

*1

1

2
*

1

1
0

, 0 −
<

−
−== −

−

n

LL

nn

nL

p

N
S

L

L

Nd

Thus, the total sum of distances for a single agent will be
xNdNddx SSS ,, 0

+= .

PROOF – PART III: NEAR-OPTIMALITY

Having calculated the two different contributions of the total sum of distances for each agent,

we can see that if L<<R(u) the contribution due to the nodes belonging to N0 tends to be

negligible. If we can neglect
0,NdS we can say that MAx is located in the centre of Nx and, in

good approximation, in the centre of the whole agent partition including Nx and the nodes of N0

belonging to MAx.

 - 145 -

Since the root of a balanced tree is also the 1-median of the tree [Reid 91] and having

demonstrated that each agent is located in the root of a balanced tree, we can conclude that each

agent MAx is located in the median of Nx. This means that, if we could neglect
0,NdS , each

agent would be located optimally within its partition, i.e. the monitoring traffic incurred by

agents would be minimal. As already said,
0,NdS tends to be negligible but not null. Therefore,

agents are located near-optimally and will incur near-minimal monitoring traffic. In conclusion,

the set of nodes at level L will represent a near-optimal solution to the p-median problem for

the given network.

COROLLARY:

Let us assume that a distributed monitoring system based on the proposed location algorithm is

realised. Sufficient conditions for the system to incur near-minimal monitoring traffic are:

1. the spanning tree rooted at u and built on the network routing tables has d(u) n-ary,

balanced sub-trees;

2. p = d(u) * n(L-1) with L ∈ ℵ and L ≤ R(u)

PROOF:

We recall that, within the context of this thesis, the traffic T(nl1,h1, nl2,h2) between any two nodes

nl1,h1, nl2,h2 ∈ V is defined as T(nl1,h1, nl2,h2)= b*Pr* d(nl1,h1, nl2,h2), whereby b is the packet size, Pr

is the packet rate, and d(nl1,h1, nl2,h2) is the distance between the nodes.

The total traffic incurred by the p agents in a sub-tree of the spanning tree will be sum of the

traffic incurred by each individual agent. The traffic incurred by the generic agent MAx can be

expressed as:

()
00 ,,

0
)(

1

**
2

****** NdNdrr

LuR

j

j
rNNx SSPb

L

p

N
PbnjPbTTT

xx
+=+=+= ∑

−

=

whereby Pr is the polling rate expressed in polls per unit of time.

Therefore, by direct application of the above theorem it can be concluded that the traffic is

near-minimal, since the sum of distances is near-minimal.

 - 146 -

7.2 Steady-state Models of Naïve Centralised Polling under

Near-Optimal Conditions

A common approach to centralised monitoring is the centralised polling technique. In this case,

we have a centralised polling station that monitors a set of nodes (the monitored nodes)

according to a two-step process. It first issues requests or polls to the monitored nodes; then

each node sends a unique response back to the station. Polls are usually issued on a periodic

basis. Therefore, the station can rely on periodic responses from the monitored system.

Response packets are processed, for instance, to detect problems or build performance

statistics.

In a Local Area Network (LAN), centralised polling may be implemented by broadcasting the

request packets and collecting the responses at the station. When the monitored system crosses

the boundaries of a LAN the broadcast phase is substituted by two alternative mechanisms. One

possibility is to adopt a point-to-point communication model whereby the station sends

individual polls to each monitored node (multiple unicasting). This is usually referred to as

Naïve Centralised Polling. A more elaborate possibility is to follow the multicasting model to

issue the polls. This approach is termed Optimal Centralised Polling because, among all

possible centralised polling-based monitoring solutions, this is the one that results in minimal

incurred traffic.

In this section, polling traffic and polling response time incurred under the near-optimal

conditions given above are calculated. In this case, only traffic and response time at steady-state

need to be calculated, since no agent deployment is involved. Models for the case of optimal

centralised polling are in Section 7.3.

The naïve polling process is exemplified by the example in Figure 7-5. In the context of this

thesis, monitored nodes are assumed to be interconnected through an internetwork such as the

Internet. Nodes are interconnected by point-to-point links. For simplicity, and without loss of

generality, we assume that all networked nodes are being monitored by the polling station. In

this case, the ‘request’ phase consists of a point-to-point request mechanism analogous to the

one depicted in Figure 7-5a.

During the request phase, a number of packets equal to the total number of nodes need to be

transmitted from level 0 to level 1. Similarly, a number of packets equal to the number of nodes

belonging to levels 2 and 3 needs to travel from level 1 to level 2; and a number of packets

equal to the number of nodes belonging to level 3 needs to travel from level 2 to level 3. During

the response phase, the reverse process is performed (Figure 7-5b).

 - 147 -

a) Request

0 Monitoring Station Routing distribution tree

l=0

l=1

l=2

l=3

7 number of requests/responses

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

7

3

1

7

3 3 3

1 1 1 1 1 1 1

b) Responses

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

7

3

1

7

3 3 3

1 1 1 1 1 1 1

Figure 7-5: Example of centralised naïve polling under near-optimal conditions.

7.2.1 Steady Traffic in Naïve Centralised Polling

To calculate the incurred monitoring traffic let us consider first the request traffic. The number

of packets transmitted from level l to level (l+1) can be expressed as ∑ −

=

1)(
*)(

uR

li

inud . The bit

rate between those levels will be ∑ −

=

1)(
*)(**8*

uR

li

i
br nudbP , whereby Pr is the packet rate

and bb the size in bytes of a single request packet. Therefore, the total traffic incurred during the

requesting phase is ()∑ ∑−

=

−

=

1)(

0

1)(
*)(**8*

uR

l

uR

li

i
br nudbP . The traffic due to the response

packets can be calculated similarly and will be ()∑ ∑−

=

−

=

1)(

0

1)(
*)(**8*

uR

l

uR

li

i
rr nudbP

whereby br is the size in bytes of a single response packet. If for the sake of simplicity response

packets are assumed all of equal size the total monitoring traffic will be:

() ()∑ ∑∑ ∑ −

=

−

=

−

=

−

=
+= 1)(

0

1)(1)(

0

1)(

, *)(**8**)(**8*
uR

l

uR

li

i
rr

uR

l

uR

li

i
brncptraff nudbPnudbPMON

that is

()
()()

∑ ∑
−

=

−

=

+=
1)(

0

1)(

, **8*)(*
uR

l

uR

li

i
rbrncptraff nbbudPMON

If we develop the double series as indicated in Appendix we obtain the following expression:

() ()
()

−
+−−+=

2

)()(

,
1

11**)(
**8*)(*

n

nnnuR
bbudPMON

uRuR

rbrncptraff

To assess how traffic increases with scale we can study the above expression for

[Pr, R(u), N] Å ∞, achieving:

 - 148 -

())(
, *)(* uR

rncptraff nuRPOMON ∝

For the particular network topology assumed here, we have that nR(u)∝ N whereby N is the

number of monitored nodes. Hence:

()NuRPOMON rncptraff *)(*, ∝

7.2.2 Steady Response Time in Naïve Centralised Polling

The response time is the span of time elapsed between the issuing of the first request packet by

the monitoring station and the arrival of the last response packet at the station. The total ‘point-

to-point request’ time is the span of time elapsed between the issuing of the first request packet

by the monitoring station and the arrival of the last request packet at the nodes.

Request time may vary significantly depending on the order in which request packets are issued

by the station. The upper bound on request time is represented by the case in which request

packets are sent first to those nodes that are nearer to the station and then incrementally to the

further ones. We assume a network model in which not more than one packet can

simultaneously traverse a link and a packet takes a unit of time to traverse a link.

For the example of Figure 7-5a the upper bound on request time will be the time to transmit 7

packets from level 0 to level 1 (7 units of time), plus the time to transmit 3 packets between

levels 1-2 (3 units of time), plus the time to transmit 1 packet between levels 2-3 (1 unit of

time). The upper bound on request time would then be equal to 11 units of time.

More generally the upper bound on request time, for 0 ≤ Pr < 1 (Pr being expressed in polls per

second), can be expressed as:

()

∑ ∑∑∑∑
=

−

=

−

=

−

=

−

=

=+++=
)(

1

)(

0

)()(

0

2)(

0

1)(

0
,, ...

uR

j

juR

i

i
uRuR

i

i
uR

i

i
uR

i

i
ubncptime nnnnREQ

by developing first the inner geometric series and assuming n ≠ 1 we obtain:

() () ()1

)(1
*

11

1

1*1

1)(

1
1

)()(

1

)(

1
1

)()(

1

1)(

,, −
−

−
=

−
−

−
=

−
−= ∑∑∑∑

=
−

==
−

=

+−

n

uR

nn

n

nnn

n

n

n
REQ

uR

j
j

uRuR

j

uR

j
j

uRuR

j

juR

ubncptime

The last geometric series can be solved by substituting j = (x+1), obtaining

() () ()
()

() ()1

)(

11

11
*

11

)(1
*

1

)()(1)(

0

)(

,, −
−

−
−

−
=

−
−

−
= ∑

−

= n

uR

n

n

n

n

n

uR

nn

n
REQ

uRuRuR

x
x

uR

ubncptime

 - 149 -

Finally, by further development and simplification we obtain the following expression for the

upper bound on request time:

()2

1)(

,,
1

)()(*

−
−+−=

+

n

nuRuRnn
REQ

uR

ubncptime

If Pr ≥ 1 the above term need to be multiplied by Pr, since in our model links can be

simultaneous traversed only by one packet, yielding to the following expression:

()

()

≥
−

−+−

<≤
−

−+−

= +

+

1
1

)()(*
*

10
1

)()(*

2

1)(

2

1)(

,,

r

uR

r

r

uR

ubncptime

P
n

nuRuRnn
P

P
n

nuRuRnn

REQ

A more optimistic upper bound on request time is represented by the case in which request

packets are sent first to those nodes that are further from the station and then incrementally to

the closer ones. For the example of Figure 7-5a the request time will be the time to transmit all

messages through the first link that would add up to 7 units of time.

The time taken to the response packets to travel back to the monitoring station is equal to the

previous upper bound on request time. This can be inferred by observing the example of Figure

7-5b. In this case the total time will be the time to transmit 1 packet between levels 3-2, plus the

time to transmit 3 packets between levels 2-1, plus the time to transmit 7 packets between levels

1-0. This will add up to 11 units of time.

The total monitoring time will be obtained by combining the ‘request’ term with the ‘response’

one. If we follow the network model suggested by Rescigno, no more than one packet can

simultaneously traverse a link [Rescigno 97]. In that case, the ‘request’ and the ‘response’

phases tend to have a very limited overlapping and, hence, an upper bound on monitoring time

is obtained by adding the two terms. This leads to the following two expressions:

=+≤ ubncptimeubncptimeubncptime RESPREQMONIT ,,,,,,

()

()

≥
−

−+−

<≤
−

−+−

= +

+

1
1

)()(*
**2

10
1

)()(*
*2

2

1)(

2

1)(

r

uR

r

r

uR

P
n

nuRuRnn
P

P
n

nuRuRnn

 - 150 -

=+≤ oubncptimeoubncptimeoubncptime RESPREQMONIT ,,,,,,

()

()

≥

−
−+−+

−
−+

<≤
−

−+−+
−

−+

= +

+

1
1

)()(*

1

)()(*
*

10
1

)()(*

1

)()(*

2

1)()(

2

1)()(

r

uRuR

r

r

uRuR

P
n

nuRuRnn

n

uRuRnn
P

P
n

nuRuRnn

n

uRuRnn

It should be observed that this model provides only a first approximation of the actual

monitoring process, according to the assumed half-duplex communication model. In this case,

links are used in mutual exclusion by packets (not more than one packet can simultaneously

traverse a link). In practice, ‘response’ packets travel in the opposite direction of ‘request’ ones.

The two processes can, then, take place with a larger extent of parallelism than the one captured

by the above model, which would result in smaller monitoring time. With this respect, the

models reflect the worse-case scenario, providing upper bounds on monitoring time. The choice

of the half-duplex rather than full-duplex link model has been taken in order to build models

that could be compared with those presented in [Rescigno 97] where the half-duplex model is

adopted.

To evaluate the asymptotic behaviour of response time we consider the above optimistic upper

bound, which operates at

 +−

n
uRnPO uR

r
)(* 1)(

For the particular network topology assumed here, we have that nR(u)∝ N whereby N is the

number of monitored nodes. Hence:

()())(*,, uRNPOMONIT roubncptime +∝

7.3 Steady-state Models of Optimal Centralised Polling

under Near-Optimal Conditions

The naïve approach to perform polling by first issuing request packets and then gathering the

responses sums up to a poor polling algorithm. Rescigno has proposed a more efficient

algorithm in which the polling station sends a request only to its neighbour nodes that, in turn,

duplicate the request and forward it to their respective neighbours [Rescigno 97]. This process

proceeds similarly to a multicasting model until all nodes have been reached by a request.

 - 151 -

A more formal description of this algorithm, denominated optimal centralised polling

algorithm, is abstracted below from the original work proposed by Rescigno. This

denomination derives from the fact that the author has proved that this algorithm minimises the

response time of a polling-based monitoring system for a particular class of network topologies.

After describing this algorithm, we prove that networks admitting n-ary balanced spanning trees

fall in this class. Finally, we derive models for polling traffic and response time.

7.3.1 Optimal Centralised Polling Algorithm

Let Tu(G) be any spanning tree of G rooted at u, whereby G=(V, E) is a graph and u the

monitoring station node. Assume that each node knows the graph topology and the identity of

polling station, u and that each node x constructs by itself the same spanning tree Tu(G) rooted

at u. This will be the case if the procedure which constructs Tu(G) is identical at the nodes. The

procedure performed by each node x in a polling execution, using Tu(G), is as follows.

Node x waits until receiving the query from its parent in Tu(G); then it sends its response to the

parent and delivers the query to its sons in Tu(G). When x receives responses from its sons, its

sends them, one at a time, to its parent. Therefore, the query travels from the polling station u to

the leaves in Tu(G), while each response propagates from any node to u along the edges of

Tu(G). The polling algorithm that uses Tu(G) is shown in Listing 7-1, which is copied from

[Rescigno 97]. We denote by Q the query that u sends to every node in G and by Rx the

response that node x∈ V\{ u} transmits back to u.

 FOR x ∈ V DO in parallel
 IF Q is received THEN
 in the next step, send Q to all the sons
 in Tu(G) and send Rx to the parent in
 Tu(G)

 WHILE there are responses of descendents DO
 send a response to the parent in Tu(G)
 END FOR

Listing 7-1: Rescigno’s Optimal centralised polling algorithm.

Rescigno has proved that the algorithm is optimal – i.e., minimises overall polling time – for

the class of networks admitting a particular spanning tree, called Polling Tree, PTu(G) defined

as follows.

 - 152 -

DEFINITION:

A Polling Tree of G rooted at u, PTu(G) is any rooted spanning tree of G with root u having

d(u) main subtrees, Tr=(V(Tr),E(Tr)) for r∈ N(u), whereby N(u) is the set of neighbour nodes of

u, N is the total number of nodes in the graph and each Tr has the following properties:

IF (2 * R(u)) > (N-1)/d(u) + 2 THEN

1.1) height(Tr) ≤ (R(u) – 1);

1.2) there are at most two nodes in Tr at depth l, for each l ≤ (height(Tr) - 1); there is

exactly one node at depth l = height(Tr);

OTHERWISE

1.3) |V(Tr)| ∈ { (N-1)/d(u) , (N-1)/d(u) };

1.4) there are at least two nodes at each depth l ≤ (height(Tr) - ar)

 −≠

 −=
=

.
)(

1
)(2

,
)(

1
)(1

ud

n
TVif

ud

n
TVif

a

r

r

r

We now use Rescigno’s findings to prove the following theorem.

THEOREM 2:

Any rooted spanning tree of G with root u, having d(u) main sub-trees, Tr=(V(Tr),E(Tr)) for

r∈ N(u), with every Tr being n-ary balanced trees, is also a polling tree, PTu(G).

PROOF:

If a graph admits a spanning tree with d(u) n-ary balanced trees Tr we have that the total number

of nodes is

1

1
)()(

)(1)(

0 −
−== ∑

−

= n

n
udnudN

uRuR

i

i . Thus,

)(*221
1

1
)(

)(

1
2

)(

1)(

uR
n

n
ud

udud

N uR

>+

−

−
−=+

 −

as can be shown by solving the above disequation. An analytical solution of the above

disequation presents some difficulties due to the presence of the ceiling function. A graphical

solution is shown in Figure 7-6, where

 - 153 -

)(*221
1

1
)(

)(

1)(

uR
n

n
ud

ud

uR

−+

−

−
−

is shown to be positive and monotonically increasing when n and R(u) grow.

2 3 4 5 6 7 8 9

2
4

6
8

10
12

14

100

101

102

103

104

105

106

107

108

109

 D
egree of T

r , n

ce
ili

ng
[(

N
-1

)/
d(

u)
]+

2-
2*

R
(u

)

Network Radius, R(u)

Figure 7-6: Graphical solution of the disequation which proves theorem 2.

Thus, conditions 1.3) and 1.4) need to be satisfied to prove the theorem.

The spanning tree of G is assumed n-ary and balanced, as depicted in Figure 7-2. Hence, the

number of nodes in each sub-tree, Tr will be |V(Tr)| =(N-1) / d(u), which satisfies condition 1.3).

As far as condition 1.4) is concerned, ar=1 since |V(Tr)| =(N-1) / d(u) = (N-1) / d(u) . The

number of nodes at level l ≤ (height(Tr)- ar) = (height(Tr)-1) is certainly at least equal two 2

since the each Tr is assumed n-ary with n>1. Therefore, condition 1.4) is satisfied as well and

we can conclude that the set of sub-trees Tr, r∈ {1, …, d(u)} is a polling tree for G and, in turn,

Rescigno’s polling algorithm is optimal for spanning trees having n-ary balanced sub-trees.

This algorithm can be further illustrated with the simple example depicted in Figure 7-7 in

which the packet transmission involved during the multicast and response process is shown for

the case of a spanning tree admitting binary sub-trees. The calculation of traffic and response

time for the general case in which Tr is n-ary are calculated below.

 - 154 -

a) Request

0 Monitoring Station Routing distribution tree

l=0

l=1

l=2

l=3

1 number of requests/responses

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

1

1

1

1 1 1

1 1 1 1 1 1 1

b) Responses

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

7

3

1

7

3 3 3

1 1 1 1 1 1 1

Figure 7-7: Example of centralised optimal polling under near-optimal conditions.

7.3.2 Steady Traffic in Optimal Centralised Polling

This algorithm allows us to reduce significantly the number of request packets. In fact, there

will be only one packet per link during a polling operation. Thus, for each sub-tree, Tr the

number of packets multiplied by the links traversed by those packets will be

() ()11)(1)(

0
−−=∑ −

=
nnn uRuR

i

i and the total multicast traffic will be:

1

1
8)(

)(

, −
−=

n

n
bPudMULT

uR

brocptraff

The response packets will incur the same traffic as for the naïve algorithm, that is

∑ ∑
−

=

−

=

=

1)(

0

1)(

, *)(**8*
uR

l

uR

li

i
rrocptraff nudbPRESP

Following the same procedure detailed in Section 7.2.1 (page 147) we obtain

()
()

−
+−−=

2

)()(

,
1

11**)(
8)(

n

nnnuR
bPudRESP

uRuR

rrocptraff

Therefore, the monitoring traffic incurred by the optimal centralised polling algorithm will be:

=+= ocptraffocptraffocptraff RESPMULTMON ,,,

()
() =

−
+−−+

−
−=

2

)()()(

1

11**)(
8)(

1

1
8)(

n

nnnuR
bPud

n

n
bPud

uRuR

rr

uR

br

() ()
()

−
+−−+

−
−+=

2

)()()(

1

11**)(

1

1
8)(

n

nnnuR

n

n
bbPud

uRuRuR

rbr

As far as scalability is concerned, the above expression operate at:

 - 155 -

())(
, *)(* uR

rocptraff nuRPOMON ∝

For the particular network topology assumed here, we have that nR(u)∝ N whereby N is the

number of monitored nodes. Hence:

()NuRPOMON rocptraff *)(*, ∝

Which shows that despite incurring less traffic than naïve polling, optimal polling does not

result in increased scalability. This is due to the fact that, although the multicasting approach to

sending request packets is more efficient than the mechanism used in naïve polling, response

mechanisms are essentially the same. In other words, the response process predominates over

the request process in the case of optimal polling. Therefore, the savings associated to optimal

polling are mostly related the request phase.

7.3.3 Steady Response Time in Optimal Centralised Polling

We have already proved with Theorem 2 that Rescigno’s polling algorithm is optimal for

graphs admitting spanning trees which contain d(u) n-ary balcanced sub-trees. We can, then,

reuse the expression of response time presented in [Rescigno 97], that is:

()
() ()

≥

+

 −
=

=
2)()(*2;2

)(

1
max

1)(2

, uRifuR
ud

N

uRif

MON ocptime

This expression assumes one polling operation per unit of time, that is Pr=1.

In general, this means that response time operates at O(Pr, N, R(u)). It should be noted that the

dependency on Pr is related to the way links are modelled i.e. links can be traversed by one

packet at the time (packets have mutually exclusive access to links). Thus, increasing values of

polling rate result in linearly increasing queuing delays.

In Theorem 2 we have also illustrated that

)(*221
1

1
)(

)(

1
2

)(

1)(

uR
n

n
ud

udud

N uR

>+

−

−
−=+

 −

Hence for Pr=1,

()
() ()

≥+

 −
=

=
2)(2

)(

1
1)(2

, uRif
ud

N
uRif

MON ocptime

 - 156 -

In our case, (N-1)/d(u) is the total number of nodes in Tr, since all Tr are assumed n-ary and

balances and, then, equal. Hence, (N-1)/d(u) = (N-1)/d(u) = (nR(u)-1)/(n-1). Finally, by simple

developments of the terms we obtain:

()
()

()
()

≥

≥
−

−+
=

<≤

≥
−

−+
=

=

1
2)(

1

3*2
1)(2

*

10
2)(

1

3*2
1)(2

)(

)(

,

r
uR

r

r
uR

ocptime

P
uRif

n

nn
uRif

P

P
uRif

n

nn
uRif

MON

The above function operates at

() ()NPOnPOMON r
uR

rocptime ** 1)(
, ∝∝ −

Capturing the behaviour as a function of R(u) is not easy under the particular assumptions. If

we look at the original formulation of MONtime,ocp given in page 155 above, the function max{.,

R(u)} suggests an operation which is at most O(R(u)). We can then conclude that monitoring

time operates at most as

())(,,, uRNPOMON rocptime ∝

which, if performance indicators are considered individually, is characterised by the same level

of scalability as its naïve polling counterpart. This is due to fact that, although the multicasting

approach to sending request packets is more efficient than the mechanism used in naïve polling,

response mechanisms are essentially the same. In other words, the response process

predominates over the request process in the case of optimal polling. Therefore, the savings

associated to optimal polling are mostly related to the request phase.

7.4 Steady-state Models of Agent-based Distributed Polling

under Near-Optimal Conditions

The remaining part of this chapter is dedicated to the analysis of the agent-based distributed

monitoring approach proposed in Chapter 4, under the near-optimal conditions given in Section

7.1. The following sub-sections present models for assessing performance and scalability at

steady-state, that is after agent deployment is completed. The transient analysis, including the

assessment of the performance overheads incurred during agent deployment is the subject of

Section 7.6.

 - 157 -

The agent-based monitoring algorithm has already been discussed extensively in the previous

chapters. The centralised and distributed versions of agent deployment do not differ as far as

the steady-state analysis is concerned since they both result in identical agent locations. Hence,

one steady-state model will be derived. Conversely, transient models will be derived separately.

Figure 7-8 illustrates the three steps of agent-based monitoring. First, each agent issues poll

requests to every node of its partition (Figure 7-8a). This is done according to a point-to-point

‘request issuing’ model. For brevity, we refer to this step as ‘request’ step. An alternative

possibility would be to multicast the polls. This may lead to reductions in traffic and,

presumably, time. However, it would be associated with the additional delay involved in the

construction of the multicast trees (one per network partition or per agent). This overhead may

not suit the requirements of the assumed dynamic networked system where agents may

frequently change their location to provide adaptation. If a multicasting approach were adopted

for issuing polls, agent migration overheads would be aggravated by the need to re-build

multicast trees. Therefore, multiple unicasting is used within each network partition to aim at

simplicity and reduced agent migration latency, assuming relatively fine-grained network

partitions – i.e. the number of monitored nodes per agent is kept relatively small for efficiency

reasons.

The second step of agent-based monitoring involves the issuing of response packets by the

‘polled’ nodes (Figure 7-8b). Each node sends a unique response to the requesting agent

following the unicast model. This is termed the ‘response’ step.

Finally, each agent pre-processes the collected information and informs the monitoring station

(Figure 7-8c). We term this last phase the ‘delivery’ step. It is here that data semantic

compression or aggregation takes place. Delivery can be performed according to three different

modalities: 1) the monitoring station can query agents using a polling-based approach; 2) agents

periodically notify results to the monitoring station (notification-based approach); or 3) agents

send notifications to the monitoring station only under specific circumstances, such as threshold

crossing (alarm-based approach).

 - 158 -

a) Request

0 Monitoring Station

Routing distribution tree

l=0

l=1

l=2

l=3

1 number of requests/responses

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

1

1

1 1 1 1 1 1 1

b) Responses

Mobile Agents during
execution

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

1

1

1 1 1 1 1 1 1

c) Information Delivery

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1 1 1 1

Figure 7-8: Example of distributed agent-based polling under near-optimal conditions.

No matter which modality is used to deliver information to the central station, the amount of

traffic exiting the agent can be assumed to be significantly smaller than the traffic incurred to

collect the raw information in the first place (through the first and second steps). Therefore, the

agent system brings two advantages in comparison to centralised polling: first, it reduces the

data collection traffic by offering decentralised polling stations; second, it operates local data

semantic compression at the agent location. The models presented in the next sections will help

quantifying these advantages.

7.4.1 Steady Traffic in Distributed Agent-based Polling

If we refer back to Figure 7-4 (page 143), the traffic incurred by a generic agent MAx is the

result of two contributions introduced by the nodes of Nx and N0 respectively. Hence, the total

request traffic can be expressed as:

()∑∑
==

+==
p

x
NdNdbr

p

x
xMAtraff SSbudPMAREQ

x
1

,,
1

, 0
**8*)(*

whereby Sd,Nx and Sd,N0 are defined in Section 7.1. Hence by simply substituting the above

expressions we abtain:

 - 159 -

() () () ()

() () =

−

+
−

++−−−=
+−+−

1*2

*

1

1)()(
**8*)(*

2

1)(2)(

, n

Lp

n

nnLuRnLuR
budPREQ

LuRLuR

brMAtraff

() () () ()

() ()

−

+
−

++−−−=
−+−+−

1*2

**)(

1

1)()(
**8*)(*

1

2

1)(2)(

n

Lnud

n

nnLuRnLuR
budP

LLuRLuR

br

Similarly, the total traffic incurred by the response packets travelling back to agents can be

expressed as:

() =+== ∑∑
==

p

x
NdNdrr

p

x
xMAtraff SSbudPMARESP

x
1

,,
1

, 0
**8*)(*

() () () ()

() ()

−

+
−

++−−−=
−+−+−

1*2

**)(

1

1)()(
**8*)(*

1

2

1)(2)(

n

Lnud

n

nnLuRnLuR
budP

LLuRLuR

rr

which differs from REQtraff,MA only in the size of the packets, br.

The delivery traffic between agents and monitoring station depends on the rate notification

packets are sent by agents which we term notification rate, Notr. Notr is a deterministic value if

agents are notification-based. Conversely, it will be a probabilistic value if agents are alarm-

based. In any case Notr ≤ Pr and, typically, Notr << Pr.

Assuming that the size of packets sent to the monitoring station is bnot the delivery traffic of a

single agent is given by the bit rate multiplied by the number of traversed links (8*bnot*Notr*L).

Hence the traffic incurred by p agents will be:

DELIVtraff,MA = p*8* bnot*Notr*L = 1***)(**8 −L
rnot nLNotudb

Finally, the overall monitoring traffic will be given by the sum of the above terms:

=++= MAtraffMAtraffMAtraffMAtraff DELIVRESPREQMONIT ,,,,

() () () () ()

() () +

−

+
−

++−−−+=
−+−+−

1*2

**)(

1

1)()(
**8*)(*

1

2

1)(2)(

n

Lnud

n

nnLuRnLuR
bbudP

LLuRLuR

rbr

 1***)(**8 −+ L
rnot nLNotudb

which operates at

(){ }()12)(****)(* −−− ++− L
r

LLuR
r nLNotnLnLuRPO

For the particular network topology assumed here, we have that: nR(u)∝ N, whereby N is the

number of monitored nodes; nL∝ p, whereby p is the number of MAs; and L∝ log(p). Hence:

() (){ }()ppPpppNpuRPOMONIT rrMAtraff log**log**log)(*, ++−−=

That is

 - 160 -

()ppNuRPOMONIT rMAtraff log,),(,, =

If we consider the performance indicators individually, the asymptotic behaviour of the agent

approach is analogous to that of the centralised approaches. However, the agent approach as a

whole incurs less traffic, as will result from the comparative analysis reported in Section 7.5.1.

7.4.2 Steady Response Time in Distributed Agent-based Polling

Similarly to monitoring traffic, response time results from three contributions: request issuing,

collection of responses by the agents, and delivery of information from agent to monitoring

station (Figure 7-8). Agents request, response, and delivery packets traverse mutually exclusive

paths under near-optimal conditions. Thus, all agents are characterised by the same response

time.

The time taken for an agent to issue poll requests (to all the nodes belonging to its network

partition) is the maximum between the contribution due to Nx and N0, respectively. That is, for

0≤ Pr <1:

REQtime,MA = max { REQtime,MA,Nx , REQtime,MA,No }

Similarly,

RESPtime,MA = max { RESPtime,MA,Nx , RESPtime,MA,No }

REQtime,MA,Nx can be calculated similarly to the way the request time of the naïve algorithm has

been calculated (Section 7.2.2). Agents have access to routing information and can, then, be

programmed to send poll requests first to the further nodes. Hence, the upper bound on request

time equivalent to the optimistic upper bound described in Section 7.2.2. This is the number of

time units to send ∑ −−

=

1)(

0

LuR

j

jn from level L to (L+1) plus further (R(u)-L-1) units of time to

transmit the packet in parallel through the remaining levels. It is assumed that a packet takes a

unit of time to traverse any link – i.e. links are all equal. Thus,

1)(
1

1
1)(

)(1)(

0
,, −−+

−
−=−−+=

−−−

=
∑ LuR

n

n
LuRnREQ

LuRLuR

j

j
NMAtime x

REQtime,MA,Nx is at most equal to the time to reach the farthest node in N0 which is (L-1) units of

time. This is also the upper bound on REQtime,MA,No. Thus, an upper bound on request time will

be:

 - 161 -

()

()

≥

−−−+
−

−

<≤

−−−+
−

−

= −

−

11;1)(
1

1
max*

101;1)(
1

1
max

)(

)(

,

r

LuR

r

r

LuR

MAtime

PLLuR
n

n
P

PLLuR
n

n

REQ

RESPtime,MA,Nx can be calculated similarly to the pessimistic upper bound of Section 7.2.2,

yielding to the following expressions:

() ()
()2

1)(2)(

0

1)(

0
,,

1

)()(*
...

−
−−+−−=++=

+−−−

=

−−

=
∑∑

n

nLuRLuRnn
nnRESP

LuRLuR

j

j
LuR

j

j
NMAtime x

() ()
()

()

() ()
()

()

≥

−
−

−−+−−

<≤

−
−

−−+−−

=
+−

+−

11;
1

)()(*
max*

101;
1

)()(*
max

2

1)(

2

1)(

,

r

LuR

r

r

LuR

MAtime

PL
n

nLuRLuRnn
P

PL
n

nLuRLuRnn

RESP

The time units required to deliver a notification between agent and monitoring station is the

time to deliver (p/d(u))=2L-1 messages from level L back to level 0. The bottleneck is

represented by the links connecting level 0 with level 1 since those are the ones carrying the

largest number of messages. Lower levels will carry portions of the total messages. Hence, the

delivery time is the time to transmit nL-1 packets through the bottleneck plus the time for the

first packet to reach level 1, which is equal to (L-1); yielding to the following expression:

()

≤<

≥−+
<≤−+

≅
==

−

−

)(0
11*

101
00

1

1

,, uRL
NotLnNot

NotLn
L

DELIVDELIV

r
L

r

r
L

MAtimeMAtime x

The monitoring response time will be expressed by the sum of the above three terms,

REQtime,MA, RESPtime,MA, and DELIVtime,MA. For the scalability analysis the following expression

hold:

(){ } (){ }()1;max*1;1)(max* 1)(1)(
, −∝−−−+∝ −−−− LnPLLuRnPOREQ LuR

r
LuR

rMAtime

(){ }()1;max* 1)(
, −∝ −− LnPORESP LuR

rMAtime

()1
, * −∝ L

rMAtime nNotODELIV

Hence,

(){ }())(0;*1;max* 11)(
, uRLnNotLnPOMON L

r
LuR

rMAtime ≤<+−∝ −−−

 - 162 -

For the particular network topology assumed here, we have that: nR(u)∝ N, whereby N is the

number of monitored nodes; nL∝ p, whereby p is the number of MAs; and L∝ log(p). Hence:

())(0;,),(,, uRLpNuRPOMON rMAtime ≤<∝

As for the traffic expression, if we consider the performance indicators individually, the

asymptotic behaviour of the agent approach is analogous to that of the centralised approaches.

However, the agent approach as a whole is characterised by reduced response time, as will

result from the comparative analysis reported in Section 7.5.2.

7.5 Comparative Steady-state Analysis

In this section, we use the mathematical models presented in the previous sections to compare

performance and scalability of centralised and distributed polling at steady-state. We do not

consider here the agent deployment overheads, which are analysed in the following Sections 7.6

and 7.7. Traffic models and response time models are treated separately.

7.5.1 Analysis of Traffic Models at Steady State

The traffic models for the cases of centralised and agent-based distributed polling derived in the

previous sections are depicted in Figure 7-9. Each graph represents a contour plot where ranges

of traffic values are denoted on an XY grid using a greyscale map. X and Y axes represent

increasing values of network radius and degree of the sub-trees of the spanning tree,

respectively. Traffic ranges are in bit per second and are reported on a logarithmic scale. Darker

tones of grey correspond to lower traffic ranges.

 - 163 -

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Traffic
Naive Centralised Polling

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Traffic [bit/sec]
logarithmic scale

Traffic [bit/sec]
logarithmic scale

Traffic [bit/sec]
logarithmic scale

P
r
 = 5

R(u) = 10
d(u) = 3
Not

r
 = 1

P
r
 = 5

R(u) = 10
d(u) = 3
Not

r
 = 1

Traffic
Optimal Centralised Polling

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E3
7.7E3
6E4
4.6E5
3.6E6
2.8E7
2.2E8
1.7E9
1.3E10
1E11

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Traffic
MA, with L = 2

Traffic
MA, with L = 4

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E3
7.7E3
6E4
4.6E5
3.6E6
2.8E7
2.2E8
1.7E9
1.3E10
1E11

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Traffic
MA with L = 6

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Traffic
MA with L = 8

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E3
7.7E3
6E4
4.6E5
3.6E6
2.8E7
2.2E8
1.7E9
1.3E10
1E11

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

Figure 7-9: Contour plots depicting steady-state traffic for the cases of centralised and agent-based

polling.

By comparing the top two graphs we can notice that ‘optimal’ centralised polling results in a

very limited reduction in traffic, if compared with the naïve algorithm. In fact, both approaches

lead to traffic values which fall in the same order of magnitude. This is due to the fact that the

optimal algorithm still follows a centralised model and optimises only the request process but

not the response one.

The remaining four graphs depict agent-based distributed polling for different configurations. L

is the level at which agents are placed within the network spanning tree. Increasing values of L

 - 164 -

reflect configurations with proportionally increasing number of agents. In fact, the number of

agents is expressed as p=d(u)*nL-1. From the shift in ranges between the centralised and the

agent-based solutions it can be noticed that the latter results in traffic values which are 1 to 3

orders of magnitude smaller, depending on the number of agents. This reduction in traffic is a

direct consequence of the distributed nature of the agent approach.

The traffic profiles of the various solutions are captured from a different perspective in Figure

7-10, which represents both centralised and agent-based polling in a single graph for a better

comparison. Traffic is plotted against increasing values of n (the degree of the spanning tree)

and R(u) (network radius). That is, traffic against network scale is reported. In particular, the

independent values are projected to the W-axis, which can be defined as:

=
=

XY

Z
W

0
: , whereby

the Z-axis depicts traffic values, the X-axis depicts n values, and the Y-axis depicts R(u) values.

In other words, Figure 7-10 represents the 45º-section through the Z-axis in the XY plane.

2 3 4 5 6 7 8 9 10 11
103

105

107

109

1011

1013

P
r
 = 4; d(u) = 3; Not

r
 = 1

S
te

ad
y-

st
at

e
T

ra
ffi

c
[b

it/
se

c]
lo

ga
rit

hm
ic

 s
ca

le

W : (n = R(u))

 Naive Centralised
 Polling

 Optimal Centralised
 Polling

 MA, with L=2
 MA, with L=4
 MA, with L=6
 MA, with L=8

Figure 7-10: 45º-section through the Z axis (Steady-state Traffic) in the n-R(u) plane.

Two observations can be made. First, all agent configurations perform and, all in all, scale

better than the two centralised algorithms. Second, agent performance and scalability improve

with L until a given point and start degrading for L larger than a threshold value. This particular

aspect is more evident from Figure 7-11, which plots steady-state traffic against L (keeping all

other parameters constant).

 - 165 -

0 1 2 3 4 5 6 7 8 9 10 11
106

107

108

109

1010

R(u) = 10; network radius
d(u) = 3; monitoring station node degree
n = 4; degree of sub-trees T

r
 of spanning tree

P
r
 = 4 packets/sec; polling rate

Not
r
 = 1 packet/sec; agent notification rate

b
b
; byte size of poll request packets

b
r
 = b

b
; byte size of poll response packets

b
not

 = b
b
; byte size of notification packets

S
te

ad
y-

st
at

e
T

ra
ffi

c
[b

its
 p

er
 u

ni
ts

 o
f t

im
e]

lo
ga

rit
hm

ic
 s

ca
le

Agent Level in Spanning Tree, L

 Naive Centralised
 Polling

 Optimal Centralised
 Polling

 Steady-state
 MA Traffic

Figure 7-11: Steady-state monitoring traffic of centralised and agent-based systems plotted against

L.

Clearly, L affects only the agent solutions, since there are no agents in the case of centralised

polling. That is why the traffic profiles are horizontal lines when centralised polling is adopted.

In the agent approach steady-state monitoring traffic decreases sharply in the first range of L-

values, reaches a local minimum (for the example configuration this is achieved for

L=0.6*R(u)) and then increases rapidly for larger values of L.

This result had not been anticipated before modelling the agent system but was, then, explained

by looking more closely at the various contributions of the incurred traffic. Two contrasting

factors contribute towards steady-state monitoring traffic. The first one is the traffic incurred by

poll requests sent by the agents and their related responses. The second one is the delivery

traffic that is incurred by the notification packets sent from the agents to the monitoring station.

The traffic models presented in the above sections show that the first factor operates at

(){ }()2)(**)(* −− +− LLuR
r NLnLuRPO

whereas the second one operates at ()1** −L
r nLNotO . For relatively small values of L, the

monotonically decreasing term (){ }()LuR
r nLuRP −−)(*)(* predominates. On the contrary for

relatively large values of L, the monotonically increasing term

()12 **** −− + L
r

L
r nLNotNLP will predominate.

 - 166 -

Figure 7-11 has been obtained by configuring the system in such a way as to obtain comparable

contributions from those two terms in order to underline this particular feature of the agent

system. In general, the ‘delivery’ term will be comparably smaller than the ‘collection’ one if

delivery traffic is kept small. This may be achieved, for instance, with agents capable of

performing significant data compression or when the agent notification rate (from agent to

monitoring station) is negligible in comparison with the value of polling rate adopted by the

agent for data collection.

From Figure 7-11 we can conclude that arbitrary agent configurations may lead to limited

reduction in traffic. For instance, in the example agent configuration if the number of agents is

relatively too small or too large (and we exclude the extreme conditions of L=0 or L=R(u)),

there is only one order of magnitude difference in traffic between centralised and agent-based

monitoring. To achieve reductions in traffic of up to three orders of magnitude the agent system

should be configured in a way which corresponds to the local minimum of Figure 7-11.

Conclusions on scalability can be drawn by looking directly at the traffic models presented in

the above sections, summarised in Table 7-1. Both centralised algorithms operate at

()NuRPO r *)(* . If we consider the scalability indicators individually, we notice that the

agent approach is characterised by the same level of scalability, despite as a whole, it scales and

performs better. Agents scale better than the former for any L>0. In this case the agent approach

results in an improvement in the order of nL for R(u)Å ∞. Finally, as expected, for L=0 there

will be no difference in scalability between the two approaches. This is the case in which all

agents would be located at the monitoring station, which is equivalent to the centralised model.

 Asymptotic behaviour

Naïve centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Optimal centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Agent-based distributed
polling

(){ }()2)(**)(* −− +− LLuR
r NLnLuRPO ()1** −+ L

r nLNotO

()ppNuRPO r log,),(,∝

Table 7-1: Summary of steady-state traffic results.

7.5.2 Analysis of Response Time Models at Steady State

The analysis of the response time models is carried out similarly to the one of the traffic models

and it will be shown that the results are qualitatively the same. Response time models for the

cases of centralised and agent-based distributed polling are depicted in the contour plots of

Figure 7-12. Ranges of response time values are denoted on a n*R(u) grid using a greyscale

 - 167 -

map. Those values are expressed in units of time and are reported in a logarithmic scale. Darker

tones of grey correspond to lower response times.

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Upper bound on Response Time
Naive Centralised Polling

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Units of Time
logarithmic scale

Units of Time
logarithmic scale

Units of Time
logarithmic scale

P
r
 = 5

R(u) = 10
d(u) = 3
Not

r
 = 1

P
r
 = 5

R(u) = 10
d(u) = 3
Not

r
 = 1

Optimistic Upper bound on Response Time
Naive Centralised Polling

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E2
6E2
3.6E3
2.2E4
1.3E5
7.7E5
4.6E6
2.8E7
1.7E8
1E9

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Response Time
Optimal Centralised Polling

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Response Time
MA, with L = 2

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E2
6E2
3.6E3
2.2E4
1.3E5
7.7E5
4.6E6
2.8E7
1.7E8
1E9

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Response Time
MA with L = 4

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Response Time
MA with L = 8

Network Radius, R(u)

D
eg

re
e

of
 T

r,
n

1E2
6E2
3.6E3
2.2E4
1.3E5
7.7E5
4.6E6
2.8E7
1.7E8
1E9

3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

Figure 7-12: Contour plots depicting steady-state response time for the cases of centralised and

agent-based polling.

The first two graphs represents two different upper bounds on the response time achieved with

the naïve model. They are not markedly different. The profiles of optimal centralised polling

are slightly better, whilst significant improvements are achieved with agents. Again, from the

shift in ranges between the centralised and the agent-based solutions it can be noticed that the

 - 168 -

latter results in response time values which are 1 to 3 orders or magnitude smaller, depending

on the number of agents.

Similar conclusions can be drawn from Figure 7-13, which combines all response time profiles

in a single graph for a better comparison. This represents the 45º-section through the Z-axis in

the XY plane, whereby the Z-axis depicts response times in a logarithmic scale, the X-axis

depicts n values, and the Y-axis depicts R(u) values.

2 3 4 5 6 7 8 9 10 11
100

102

104

106

108

1010

P
r
 = 4; d(u) = 3; Not

r
 = 1

S
te

ad
y-

st
at

e
R

es
po

ns
e

T
im

e
[u

ni
ts

 o
f t

im
e]

lo
ga

rit
hm

ic
 s

ca
le

W : (n = R(u))

 Naive Centralised
 Polling

 Optimistic Naive
 Centralised Polling

 Optimal
 Centralised Polling

 MA, with L=2
 MA, with L=4
 MA, with L=6
 MA, with L=8

Figure 7-13: 45º-section through the Z axis (Steady-state response time) in the n-R(u) plane.

This figure exhibits the same qualitative behaviour as Figure 7-10 and, thus, does not need

much further comment. The same applies to Figure 7-14 in which agent-based response time

exhibits a local minimum, similarly to the traffic function of Figure 7-11.

 - 169 -

0 1 2 3 4 5 6 7 8 9 10 11
103

104

105

106

107

R(u) = 10; network radius
d(u) = 3; monitoring station node degree
n = 4; degree of sub-trees T

r
 of spanning tree

P
r
 = 4 packets/sec; polling rate

Not
r
 = 1 packet/sec; agent notification rate

b
b
; byte size of poll request packets

b
r
 = b

b
; byte size of poll response packets

b
not

 = b
b
; byte size of notification packets

S
te

ad
y-

st
at

e
R

es
po

ns
e

T
im

e
[u

ni
ts

 o
f t

im
e]

lo
ga

rit
hm

ic
 s

ca
le

Agent Level in Spanning Tree, L

 Naive Centralised
 Polling

 Optimal Centralised
 Polling

 Steady-state
 MA Traffic

Figure 7-14: Steady-state monitoring response time of centralised and agent-based systems plotted

against L.

More quantitative conclusions can be drawn by looking directly at the response time models

presented in the previous sections, summarised in Table 7-2. From the scalability viewpoint, if

we consider the scalability indicators (Pr, R(u), N, and p) separately, the three approaches are

characterised by the same level of scalability, though as a whole, agents scale and perform

better than centralised polling. Finally, as expected, for L=0 there will be no difference in

scalability between the two approaches. This is the case in which all agents would be located at

the monitoring station, which is equivalent to the centralised model.

 Asymptotic behaviour

Naïve centralised
polling

()() ()()NuRPOnuRPO r
uR

r +∝+)(*)(*)(

Optimal centralised
polling

())(,, uRNPO r

Agent-based distributed
polling

(){ }()11)(*1;max* −−− +− L
r

LuR
r nNotLnPO

();,),(, pNuRPO r∝

Table 7-2: Summary of steady-state response time results.

 - 170 -

7.6 Transient Models of Distributed Agent-based Polling

The transient analysis concerns the study of agent deployment overheads, namely deployment

traffic and deployment time. These have been already extensively discussed in the previous

chapters for general network topologies. The models presented in the following sections allow

for a more in-depth analysis of those overheads under the near-optimal conditions specified in

Theorem 1.

Deployment overheads are calculated separately for the case of an agent capable of performing

cloning and the one of an agent incapable of cloning. Figure 7-15 illustrates these cases for a

simple case in which the graph admits spanning trees having balanced binary sub-trees Tr.

1

3

0

a) agents incapable of cloning

7 8

0 Monitoring Station
Mobile Agents during
execution

Mobile Agents during
Deployment/cloning

Routing distribution tree

Agents deployment path

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

l=0

l=1

l=2

l=3

l=0

l=1

l=2

l=3

b) agents capable of cloning

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

1

3

0

7 8

4

9 10

2

5

11 12

6

13 14

Figure 7-15: Illustration of agent deployment under near-optimal conditions.

7.6.1 Deployment Traffic in Agents Incapable of Cloning

We have already proved with theorem 1 that a number of agent equal to p=d(u)*nL-1 will be

generated at the monitoring station and subsequently sent at level L of the spanning tree (Figure

7-15a). Each agent will traverse L levels. Assuming that MAsize,NC is the agent size and that the

whole deployment process takes a unit of time, the total deployment traffic expressed in bit per

second will be:

1
,

,
,, *)(***8

sec1

***8 −== L
NCsize

NCsize
NCMAtraff nudLMA

LpMA
DEPL

which scales as

 - 171 -

() ()ppOnLODEPL L
NCMAtraff log* 1

,, ∝∝ −

7.6.2 Deployment Time in Agents Incapable of Cloning

The total agent deployment time can be calculated by considering the time to deploy

(p/d(u))=nL-1 agents in one sub-tree, Tr. In fact, agents targeting different sub-trees will not

concur over the same links and will be deployed in parallel.

The total deployment time is given by the units of time required to transmit (nL-1) agents

between levels 0-1, plus the units of time to transmit (nL-1)/n agents between levels 1-2, and so

on. The number of agents transmitted between levels l-(l+1) will be (nL-1)/(nl). Hence the total

number of time units will be ∑ =
−L

i

iLn
1

 and total deployment time will be:

() ∑
=

−+=
L

i

iL
timetimeNCMAtime nFORWTRANSMDEPL

1
,, *

∑∑∑
−

=

−
−

=

−−

=

−

−
−=

==

1

0

1
1

0

1

1 1

11
*

L

j

Lj
L

L

j

jL
L

i

iL

n

n

n
nnn

Hence:

()
1

1
*,, −

−+=
n

n
FORWTRANSMDEPL

L

timetimeNCMAtime

which scales as

() ()pOnODEPL L
NCMAtime ∝∝ −1

,,

7.6.3 Deployment Traffic in Agents Capable of Cloning

Cloning will be performed at each step, as illustrated in Figure 7-15b. In each sub-tree Tr there

will be nl agents simultaneously traversing different links between levels l-(l+1), with l < L.

Thus, the total traffic will be

=

>
−
−== ∑

−

=
00

0
1

1
*)(**8*

sec1

)(**8
,

1

0

,

,,

L

L
n

n
udMAn

udMA
DEPL

L

Clsize

L

l

lClsize

ClMAtraff

whereby MAsize,Cl is the size in bytes of an agent capable of cloning.

 - 172 -

The above expression operates at:

() ()pOnODEPL L
ClMAtraff ∝∝ −1
,,

7.6.4 Deployment Time in Agents Capable of Cloning

In this case there will never be agents concurring for the same link, since agents are cloned to

follow mutually exclusive paths. Thus, the deployment time can be derived directly from the

upper bound found in Chapter 6 (Section 6.2.2, page 132), with the following substitutions:

δmax = n; R(u) = L;

Hence,

[]{ } LFORWTRANSMSERIALCLONnnOcDESERILDEPL timetimetimetimetimeClMAtime **)(*,, +++++=

In practice c*O(n) is negligible since c is several order of magnitude smaller that the other

terms. Therefore,

() ()pOLODEPL ClMAtime ∝∝,,

7.7 Comparative Transient Analysis

In this section we use the mathematical models presented in the previous sections to study two

main forms of overhead introduced by the agent solutions, namely agent deployment traffic and

agent deployment time. We study the impact that agent cloning may have on such overheads.

7.7.1 Analysis of Agent Deployment Traffic

The deployment traffic models presented above are depicted in Figure 7-16 in the form of

contour plots. Similarly to the contour plots discussed earlier, ranges of traffic values are

denoted on an XY grid using a greyscale map. Traffic ranges are expressed in bit per second

and are reported on a logarithmic scale. The Y-axis still reports increasing values of n, whereas

the X-axis reports increasing values of L.

 - 173 -

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Agent Deployment Traffic
Agent Incapable of Cloning

Agent Level in Spanning Tree, L

D
eg

re
e

of
 T

r,
n

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

R(u) = 10; network radius
d(u) = 3; monitoring station node degree
b

b
; byte size of poll request packets

MA
size,NC

 = 100*b
b
; size of agents capable of cloning

MA
size,Cl

 = 200*b
b
; size of agents incapable of cloning

Agent
Deployment

Traffic
[bits/sec]

logarithmic scale

Agent Deployment Traffic
Agent Capable of Cloning

Agent Level in Spanning Tree, L

D
eg

re
e

of
 T

r,
n

1E3
7.7E3
6E4
4.6E5
3.6E6
2.8E7
2.2E8
1.7E9
1.3E10
1E11

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

Figure 7-16: Contour plots depicting deployment traffic for the case of agent capable and incapable

of cloning, respectively.

The fact that no significant difference appears between the two agent solutions – i.e., agent

capable and incapable of cloning, respectively – should not be misinterpreted. This is due to the

fact the those graphs focus on relatively small values of L and n for which the difference in

traffic is not remarkable. This is true more generally for small-scale agent configurations, that is

when the involved number of agents to be deployed is relatively small. Under these

circumstances the advantage of minimising the number of agents by means of cloning

techniques tends to be outweighed by the fact that agents capable of cloning tend to be larger in

size, since they need to incorporate more information and additional logic to handle the cloning

process.

Agents capable of cloning tend to be more effective at larger scales, as can be observed from

the traffic models. Agents incapable of cloning operate at O(L*nL-1), whereas agents capable of

cloning operate only at O(nL-1).

Figure 7-17 combines in the same plot both steady-state monitoring traffic and agent

deployment traffic for a better comparison. Two different Y-axes are used for monitoring traffic

and agent deployment traffic, respectively. Results are reported on logarithmic scales, which

use different scale factors and ranges. Traffic values are plotted against L to show the impact of

the number of agents on overheads.

 - 174 -

0 1 2 3 4 5 6 7 8 9 10 11
106

107

108

109

1010

0 1 2 3 4 5 6 7 8 9 10 11
102

103

104

105

106

107

108

109

1010

R(u) = 10; network radius
d(u) = 3; monitoring station node degree
n = 4; degree of sub-trees T

r
 of spanning tree

P
r
 = 4 packets/sec; polling rate

Not
r
 = 1 packet/sec; agent notification rate

b
b
; byte size of poll request packets

b
r
 = b

b
; byte size of poll response packets

b
not

 = b
b
; byte size of notification packets

MA
size,NC

 = 100*b
b
; size of agents capable of cloning

MA
size,Cl

 = 200*b
b
; size of agents incapable of cloning

S
te

ad
y-

st
at

e
T

ra
ff

ic
[b

its
 p

er
 u

ni
ts

 o
f

tim
e]

lo
ga

rit
hm

ic
 s

ca
le

Agent Level in Spanning Tree, L

 Naive Centralised
 Polling

 Optimal Centralised
 Polling

 Steady-state
 MA Traffic

 Agent Deployment
 Traffic, No Cloning

 Agent Deployment
 Traffic, Cloning

A
ge

nt
 D

ep
lo

ym
en

t T
ra

ff
ic

[b
its

 p
er

 u
ni

ts
 o

f
tim

e]
lo

ga
rt

ith
m

ic
 s

ca
le

Figure 7-17: Comparison between steady-state monitoring traffic and agent deployment traffic.

L values obviously affect only the agent solutions. That is why the traffic profiles are horizontal

lines when centralised polling is adopted. The difference in slope between the two agent

deployment lines illustrates a corresponding difference in scalability.

Finally, though the agent deployment traffic is shown to be comparable or even significantly

larger than steady-state monitoring traffic it should be noted that in practice the former is a one-

off traffic, whereas the latter persists during the whole duration of a monitoring task. Hence,

traffic overheads are significant for short-lived monitoring tasks, whilst they become

increasingly negligible for long-term tasks.

A simple comparison between the results obtained under near-optimal conditions and the ones

achieved in Chapter 6 for the general case is now carried out (Table 7-3). It should be

mentioned that the results presented under the “general conditions” column refer to upper

bounds on deployment traffic that where calculated considering the worst-case scenario in

which agent were deployed at distance R(u) from the monitoring station. In this case, in the

“near-optimal conditions” column we have that L=R(u).

 - 175 -

Agent Deployment Traffic
General

Conditions
Near-Optimal

Conditions
Agent incapable of cloning (centralised
agent location algorithm)

O(p*R(u)) () ()ppOnLO L log* 1 ∝−

Agents capable of cloning (distributed
agent location algorithm)

O(p+R(u)) () ()pOnO L ∝−1

Table 7-3: Comparison of deployment traffic between general and near-optimal conditions.

Under near-optimal conditions we have that nL-1 ∝ p. Hence, as far as the centralised agent

location algorithm is concerned, the models of agent deployment traffic under general and near-

optimal conditions are consistent.

The same conclusion can be drawn for the case of the distributed agent location algorithm. In

fact, if nL-1 ∝ p and R(u) = L we have that O(p+R(u)) ∝ O(nL-1+L) ∝ O(nL-1).

7.7.2 Analysis of Agent Deployment Time

The agent deployment time models presented above are depicted in Figure 7-18 in the form of

contour plots. Similarly to the above contour plots, ranges of deployment time values are

denoted on a XY grid using a greyscale map. Times are expressed in units of time and are

reported on a logarithmic scale. The Y-axis still reports increasing values of n, whereas the X-

axis reports increasing values of L.

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Agent Deployment Time
Agent Incapable of Cloning

Agent Level in Spanning Tree, L

D
eg

re
e

of
 T

r,
n

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Agent
Deployment

Time
[units of time]

logarithmic scale

d(u) = 3
TRANSM

time
 = 1 unit of time

FORW
time

 = 1 unit of time
DESERIL

time
 = 100 unit of time

CLON
time

 + SERIAL
time

 = 100 unit of time

Agent Deployment Time
Agent Capable of Cloning

Agent Level in Spanning Tree, L

D
eg

re
e

of
 T

r,
n

1E2
2.8E2
7.7E2
2.2E3
6E3
1.7E4
4.6E4
1.3E5
3.6E5
1E6

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

Figure 7-18: Contour plots depicting deployment time for the case of agent capable and incapable

of cloning, respectively.

 - 176 -

The difference between the two agent solutions is more remarkable in the case of deployment

time than in the one of traffic. This is even more evident from Figure 7-19, which combines

both steady-state monitoring response time and agent deployment time. Two different Y-axis

are used for response times and deployment times respectively. Results are reported on

logarithmic scales, which use different scale factors and ranges.

0 1 2 3 4 5 6 7 8 9 10 11
103

104

105

106

107

100

101

102

103

104

105

106

S
te

ad
y-

st
at

e
R

es
po

ns
e

T
im

e
[u

ni
ts

 o
f

tim
e]

lo
ga

rit
hm

ic
 s

ca
le

Agent Level in Spanning Tree, L

 Naive Centralised
 Polling

 Optimal Centralised
 Polling

 Steady-state
 MA Traffic

 Agent Deployment
 Time, No Cloning

 Agent Deployment
 Time, Cloning

R(u) = 10; network radius
d(u) = 3; monitoring station node degree
n = 4; degree of sub-trees T

r
 of spanning tree

P
r
 = 4 packets/sec; polling rate

Not
r
 = 1 packet/sec; agent notification rate

b
b
; byte size of poll request packets

b
r
 = b

b
; byte size of poll response packets

b
not

 = b
b
; byte size of notification packets

MA
size,NC

 = 100*b
b
; size of agents capable of cloning

MA
size,Cl

 = 200*b
b
; size of agents incapable of cloning

A
ge

nt
 D

ep
lo

ym
en

t T
im

e
[u

ni
ts

 o
f

tim
e]

lo
ga

rt
ith

m
ic

 s
ca

le

Figure 7-19: Comparison between steady-state monitoring response time and agent deployment

time.

Figure 7-19 is qualitatively very similar to Figure 7-17, except for the larger difference in slope

between the two agent solutions. This means that agent deployment time is more sensitive to

the type of agent solution than agent deployment traffic. To understand this lets us refer back to

the models presented above. Agents capable of cloning are deployed less efficiently at low

scales because in this case cloning and serialisation time predominate over the other terms. On

the other hand this approach leads to significant reductions in deployment time at larger scales.

In fact, agent systems capable of cloning operate at O(log(p)), whereas when agent incapable of

cloning are adopted the system operates at O(p).

A simple comparison between the results obtained under near-optimal conditions and the ones

achieved in Chapter 6 for the general case can be carried out by looking at Table 7-4. The

results presented in the first row for the case of agents incapable of cloning seem inconsistent

with each other. This is due to the fact that in the case of agents incapable of cloning an upper

 - 177 -

bound was given in Chapter 6, whereas a precise evaluation is calculated for the near-optimal

case. Since

 nL-1 ∝ p the near-optimal case operates at O(p) whereas the general case operates at most at

O(p+N2).

Agent Deployment Time
General near-Opt.

Agent incapable of cloning
(centralised agent location
algorithm)

O(p+N2) O(nL-1)∝ O(p)

Agents capable of cloning
(distributed agent location
algorithm)

O(R(u)) O(L) ∝ O(log(p))

Table 7-4. Comparison of deployment time between general and near-optimal conditions.

In the case of agents capable of cloning the results presented in the second row are equivalent if

we notice that L=R(u).

7.8 Discussion and Conclusions

This chapter assesses agent-based distributed monitoring under near-optimal conditions. After

finding these conditions, models aimed at studying centralised and distributed monitoring at

steady state are presented. Agent-based distributed polling is compared and contrasted with two

different centralised approaches, the naïve approach and an optimised version of it proposed by

Rescigno [Rescigno 97].

Table 7-5 summarises the resulting steady-state models. The advantages of agent-based

distributed monitoring in terms of performance and scalability are quantitatively evident.

 - 178 -

 Steady-state Traffic
(under near-optimal conditions)

Naïve centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Optimal centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Agent-based distributed
polling

(){ }()2)(**)(* −− +− LLuR
r NLnLuRPO ()1** −+ L

r nLNotO

()ppNuRPO r log,),(,∝

 Steady-state Response Time
(under near-optimal conditions)

Naïve centralised
polling

()() ()()NuRPOnuRPO r
uR

r +∝+)(*)(*)(

Optimal centralised
polling

())(,, uRNPO r

Agent-based distributed
polling

(){ }()11)(*1;max* −−− +− L
r

LuR
r nNotLnPO

();,),(, pNuRPO r∝

Table 7-5: Summary of results on steady-state performance under near-optimal conditions.

An interesting conclusion that can be drawn from Figure 7-11 and Figure 7-14 is that both

traffic and response time can be minimised not only by acting on agent locations, but also by

adopting the ‘reasonable’ number of agents for a given monitoring task. We have found that

while a relatively small number of agents does not allow a full exploitation of decentralisation,

a relatively large number of agents tends to be associated with a increased information flow

between the agents and the monitoring station. Therefore, there is a trade-off decision to be

taken which can be based on heuristics, as discussed in the next Chapter for the case of realistic

network topologies.

We have discussed various possibilities for agents to deliver pre-processed monitoring

information to the monitoring station. Agents may be ‘polled’ semantically compressed

information by the station; alternatively periodic or event-driven notifications may be sent by

the agents. No matter which modality is used to deliver information to the central station, the

amount of traffic exiting the agent can be assumed to be significantly smaller than the traffic

incurred to collect the raw information in the first place. Therefore, the agent system brings two

advantages in comparison to centralised polling: first, it reduces the data collection traffic by

offering decentralised polling stations; second, it operates local data semantic compression at

the agent location and, by doing so, it reduces the amount of information which traverses the

network.

The main limitation of the agent solutions is represented by the agent deployment overheads,

namely agent deployment traffic and agent deployment time (Table 7-6). These are one-off

costs paid only initially, i.e. at transient time. Once the agents have been deployed the

distributed monitoring system is in operation. It has been found that under near-optimal

conditions those costs increase linearly. In fact, deployment traffic operates at O(nL-1) and, since

 - 179 -

nL-1 ∝ p, traffic increases linearly with the number of agents, p. For the same reason,

deployment time increases sub-linearly with p.

 Agent Deployment
Traffic

Agent Deployment Time

Agent incapable of cloning
(centralised agent location
algorithm)

O(L*nL-1)∝ O(p*log(p)) O(nL-1) ∝ O(p)

Agents capable of cloning
(distributed agent location
algorithm)

O(nL-1) ∝ O(p) O(L) ∝ O(log(p))

Table 7-6: Summary of results on agent deployment traffic and time under near-optimal conditions.

It is essential not to have an excessive number of agents for at least two reasons. First, more

agents result in larger deployment overheads. Second steady-state traffic and response time

benefit from an increasing number of agents only until a certain point, as shown in Figure 7-11

and Figure 7-14. The agent-to-monitoring station communication load tends to increase with the

number of agents, impacting negatively the overall traffic and delay. In fact, the larger the

number of agents, the smaller the agent-to-number or nodes ratio will become. In turn, agents

will be able to produce a lower level of data aggregation.

Cloning plays a key role in containing the overheads of agent-based monitoring. Hence, it is

important to consider its use whenever those overheads are critical, such as in tasks that have a

relatively short duration.

A final comment regards the near-optimal conditions that reflect an ideal network topology in

which the routing tree, rooted at the monitoring station, is balanced and symmetrical. These

conditions are not met in real networks but are representative in the case of hierarchical

networks. Hence, the conclusions achieved with this chapter do not have only a theoretical

scope. They can also be regarded as a practical reference for the case of hierarchical network

topologies.

The case of more general network topologies is discussed in the next Chapter 8, which

approaches the assessment of the proposed agent system through simulation.

The present chapter concludes the presentation of the theoretical work carried out in the context

of the thesis.

 - 180 -

Chapter 8

Simulation Results

While the previous two chapters evaluated the research hypothesis and the proposed agent

system in a theoretical fashion, here we carry out a simulation-based analysis of distributed

monitoring, at steady-state and under general conditions (Figure 8-1). The purpose is to

concentrate on the phenomena which follow the initial agent deployment process and achieve a

quantitative evaluation of the performance benefits of the agent solution in comparison to both

centralised and static distributed approaches.

This analysis has been carried out by simulation and is presented herein through the most

significant simulation results. The Chapter is divided in three parts. The first four sections (8.1

through 8.4) cover a comparative performance and scalability study between centralised and

agent-based distributed monitoring. The adopted scalability indicators are: polling rate; number

of monitored objects; network diameter; and number of MAs. Sensitivity to number of agents is

an important design parameter which is discussed in Section 8.4.

The second part (Section 8.5) aims at assessing the goodness of the agent location algorithm by

evaluating its distance from optimality. This is done by comparing the overall performance

achieved by the proposed agent location algorithm against the hypothetical case in which those

locations were computed optimally.

The final part (Section 8.6) presents an initial study on the ability of such an algorithm to

provide adaptation to variations in the network status. The idea is that it is possible to make use

of the same logic used during agent deployment for providing adaptation through agent

migration at execution time – i.e., during the lifespan of the monitoring activity.

 - 181 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time

Performance Scalability Adaptability

Transient analysis under
General Conditions

- CHAPTER 6 -

Steady-state analysis under
General Conditions

- CHAPTER 8 -

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Transient analysis under
near-optimal Conditions

- CHAPTER 7 -

Steady-state analysis under
near-optimal Conditions

- CHAPTER 7 -

Agent
Deployment
Algorithms

Agent-based
Distributed
Monitoring

Naïve
Centralised
Monitoring

Algorithm’s
Deployment

Time
Performance Scalability

Algorithm’s
Deployment

Traffic

Algorithm’s
Asymptotic
Complexity

Sufficient
Conditions for
near-optimality

Optimal
Centralised
Monitoring

• Shapes delimited by continuous lines are assessed theoretically
• Shapes delimited by dotted lines are assessed by simulation
• Arrows depict dependencies

Distance from
optimality

Figure 8-1. Schematic representation of the focus of Chapter 8.

Simulations have been repeated several times to guarantee statistical accuracy. Sections are

accompanied by two types of diagram. Statistical box diagrams are used to discuss the validity

of the various statistical indicators, such as mean, median, minimum, and maximum values, and

to report the main simulation parameters. Best-fit functions are then used to draw conclusions

 - 182 -

on simulation results. In the remaining part of this chapter, the focus is on the discussion of

those results. The actual simulation methodology, validation, and statistical data analysis are

described in more detail in Chapter 5 (Section 5.3).

The simulation work is complementary to the theoretical one (conducted in chapter 7) since the

network model and class of network topology adopted in the two approaches are different. The

models developed by these two approaches are thus not directly comparable. However, their

results are consistent, as discussed in the present chapter.

An initial development of the simulation results of this chapter has been published in [Liotta

99c, Liotta 01a, Liotta 01c] and submitted for publication to the IEEE Network Magazine

[Liotta 01b].

8.1 Performance against Polling Rate

This section intends to capture the differences between centralised and agent-based monitoring

when polling rate is adopted as scalability indicator. As for the remaining part of the chapter,

the performance indicators are: 1) the total traffic incurred by the monitoring system; 2) the

monitoring traffic incurred in the proximity of the monitoring station; 3) the average response

time associated with the monitoring system; and 4) the maximum response time of the

monitoring system. The motivations for choosing the above indicators have been already

discussed in Chapter 5.

Figure 8-2 depicts the impact of polling rate, Pr on performance for the case of centralised

polling. Statistical box diagrams have been used because they are well suited to reporting data

generated over different runs of the simulations. They summarise the spread of data in a simple

diagram that portrays mean, median, first and third quartiles, and data range ([Lewis 99]

pp.117-118). Each Y column is represented as a separate box. The Y axes report statistical

indicators rather than the actual measured values, which correspond to the configuration

parameter reported in the X axis (Pr is reported on a non-linear scale). Boxes are determined by

the 25th and 75th percentiles (first and third quartiles respectively); whiskers are determined by

the 5th and 95th percentiles; the little squares represent mean values; horizontal lines represent

median values; circles depict lowest and highest values; and stars denote the 1-99% range of

values.

An important difference between the traffic diagrams and the response ones can be observed. In

the former case, means and median values are statistically significantly different for increasing

values of polling rate. The 25-75% boxes are, in fact, not overlapping. This is not the case with

 - 183 -

the latter case. One may think that simulations where not repeated a sufficient number of times

to ensure statistical correctness. However, this is not our case; in fact, despite increasing those

repetitions, boxes still overlapped. The conclusion drawn was that average and maximum

response times were not statistically different in the chosen range of polling rate values. This

should not induce the conclusion that response time is not affected by the Pr indicator.

Response time is just relatively less sensitive to Pr than traffic.

Response time is expected to grow over a wider range of Pr. However, larger values of Pr could

not be chosen in order to prevent portions of the network from being saturated. Network

saturation resulted in buffer overflows, a condition under which the monitoring system should

not operate to avoid loss of monitoring information or network overloading. Hence, a further

study of the system for larger values of polling rate was not needed.

 - 184 -

A
0.2

B
0.6

C
1.0

D
2.0

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

0
1x105

2x105

3x105

4x105

5x105

6x105

7x105

8x105

T
ot

al
 T

ra
ffi

c
[b

it/
se

c]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

Tr
af

fic
 a

ro
un

d
M

on
ito

rin
g

S
ta

tio
n

[b
it/

se
c]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ALGORITHM:
Centralised Polling (no Agents)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 50
Average node degree, avgdeg = 3.28 - 4.04
Hop-diameter, diam-hh = 7 - 9
Average hop depth, avgdepth-hh = 6.1 - 7.32
Length-diameter, diam-hl = 163 - 196
Average length-depth, avgdepth-hl =
 = 120.3 - 152.36
Biconnected components, bicomp = 7 - 17

OTHER CONFIGURATION PARAMETERS:
MA to MO ration, p/N = 0.25

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Polling Rate (Centralised Polling)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[s
ec

]

Polling Rate [poll/sec]

Figure 8-2. Statistical box plots depicting the impact of polling rate on performance in the case of

centralised polling.

The significant difference in the spread of values between traffic and response time diagrams

(i.e., difference in height of the statistical boxes), observed in Figure 8-2 is consistently present

in all the diagrams presented in the remainder of the present Chapter. This is because response

time is affected by the asymmetric nature of the network topology generator largely than traffic.

Subsequent simulations are run on topologies which belong to the same family (e.g., they are

characterised by comparable values of average node degree, number of nodes, etc.) but exhibit

a certain degree of variability on the network diameter. Consequently, the difference between

 - 185 -

traffic and response time diagrams reflects the fact that the latter is more sensitive to the

network diameter than the former. The maximum response time is even more sensitive to

network diameter, as results from the statistical box diagrams presented above as well as

hereafter.

Similar conclusions can be drawn from Figure 8-3, which depicts the impact of polling rate on

performance for the case of agent-based polling. Again, changes in traffic were statistically

significant whereas response time was statistically constant.

A
0.2

B
0.4

C
1.0

D
2.0

E
4.0

F
6.0

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

E
4.0

F
6.0

0
1x105
2x105
3x105
4x105
5x105
6x105
7x105
8x105
9x105

To
ta

l T
ra

ff
ic

 [b
it/

se
c]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

E
4.0

F
6.0

0
1x103
2x103
3x103
4x103
5x103
6x103
7x103
8x103
9x103

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

Polling Rate [poll/sec]

A
0.2

B
0.6

C
1.0

D
2.0

E
4.0

F
6.0

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

ALGORITHM:
Agent Location Algorithm
 (both capable and incapable of cloning)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 50
Average node degree, avgdeg = 3.28 - 4.04
Hop-diameter, diam-hh = 7 - 9
Average hop depth, avgdepth-hh = 6.1 - 7.32
Length-diameter, diam-hl = 163 - 196
Average length-depth, avgdepth-hl =
 = 120.3 - 152.36
Biconnected components, bicomp = 7 - 17

OTHER CONFIGURATION PARAMETERS:
MA to MO ration, p/N = 0.25

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Polling Rate (with MAs)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Polling Rate [poll/sec]

Figure 8-3. Statistical box plots depicting the impact of polling rate on performance in the case of

agent-based polling.

 - 186 -

Figure 8-4 reports the same simulation data in a more abstract way, which allows for further

interpretation of the results. Only two indices of central tendency are reported, mean and

median, along with their related best-fit functions. In addition, for a better comparison, results

obtained for the two cases of centralised and agent-based polling are reported in the same plots.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.0

2.0x105

4.0x105

6.0x105

8.0x105

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = 1.700 ±1.17E-18
B = 1.14E-16 ±3.79E-17
R = 0.8240
P = 1

 Linear best fit (Centralised Polling)
A = 2.261 ±0.017
B = 0.061 ±0.014
R = 0.9465
P = 0.0534M

ax
im

um
 R

es
po

ns
e

T
im

e
[s

ec
]

Polling Rate [poll/sec]

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = 0.811 ±0.0081
B = -0.001 ±0.0026
R = -0.3435
P = 0.5043

 Linear best fit (Centralised Polling)
A = 1.146 ±0.0072
B = -0.029 ±0.0062
R = -0.9566
P = 0.0433

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Polling Rate [poll/sec]

T
ra

ffi
c

ar
ou

nd
M

on
ito

rin
g

S
ta

tio
n

[b
it/

se
c]

 Mean of measured values
Linear Regression Model:
Y = B * X

 Linear best fit (MA)
B = 1168.9 ±38.5
R = 0.9955
P < 0.0001

 Linear best fit (Centralised Polling)
B = 130506 ±5896
R = 0.9989
P = 7.95E-4

Polling Rate [poll/sec]

Performance against Polling Rate (both MA and Centralised Polling)

 Mean of measured values
Linear Regression Model:
Y = B * X

 Linear best fit (MA)
B = 131285.4423 ±1397.39396
R = 0.99944
P < 0.0001

 Linear best fit (Centralised Polling)
B = 351323 ±17029
R = 0.9966
P = 0.001T

ot
al

 T
ra

ff
ic

 [b
it/

se
c]

Polling Rate [poll/sec]

Figure 8-4. Linear best-fit performance functions based on the polling rate scalability indicator.

The reason for using two different indices of central tendency for traffic and response time is

that these parameters are characterised by different features. As explained in [Jain 91], the

mean is a representative index when total is of interest. Traffic is computed as weighted sum of

 - 187 -

packet rates, and it is therefore well represented by the mean index. In the case of response

time, total is still of interest but the distribution of the various measurements tends to be skewed

due to the presence of spurious outliers. That is why the median has been adopted, since this is

more resistant to several outlying values.

Linear best fit functions have been computed with the Microcal Origin statistical tool, using the

linear regression technique. In Figure 8-4, A is the regression constant i.e. the intercept value of

the linear regression line on the Y axis. B is the regression coefficient i.e. the slope value of the

regression line; R is the correlation coefficient; and P represents the probability that R is zero.

Values following the “±” symbol are standard error ranges.

It is worth recalling from statistics theory that the regression line represents a perfect fit with

the data if R2=1. Conversely, if the data points are not linearly correlated, R will tend to zero

([Lewis 99] Chapter 14 and 15). We can then conclude that all of the best-fit lines of Figure 8-4

are very accurate since R2≅ 1 and P≅ 0.

Negative values of the correlation coefficient indicate that one of the variables (either X or Y)

tends to decrease as the other one increases. However, for the case of the ‘average response

time’ plots, negative values of R should be considered as an anomaly introduced by slightly

negative slopes, B of the linear-fit functions. B values are, in fact, so close to zero that can be

approximated to zero.

As already mentioned, the linearity exhibited by the four performance parameters versus

polling rate was expected, since the monitoring system was assumed to operate seamlessly –

i.e., the traffic incurred by the system was negligible with respect to the overall traffic. Non-

linearity was observed for values of polling rate larger than the ones depicted in Figure 8-4.

However, the non-linear zone was correlated to buffer overflows, which caused packet loss and

were due to network bottlenecks. In other words, the monitoring system was not operating

properly in the non-linear zone, which has consequently been discarded from the analysis.

All the plots of Figure 8-4 show that a significant performance improvement can be achieved

with the agent approach. The improvement was, again, expectable since the agent solution

exploits distribution. The simulations, however, allow us to draw quantitative conclusions

based on typical configuration parameters – e.g., topology, number of nodes, number of agents,

polling rates, etc. In the simulated system, the agent solution injected approximately 37% of the

total traffic incurred with centralised polling. Even more significantly, the traffic incurred in the

proximity of the polling station was cut down to 0.8% of the traffic generated with centralised

polling. This is, again, in line with the natural ability of agent systems to drag load away from a

central processing point, which is usually the system bottleneck.

 - 188 -

The agent approach is also well suited to reducing response time by placing computational

entities near to monitored entities. For the example system configuration, both the average and

maximum response time achieved with agents were approximately 70-75% of their centralised

counterparts.

From the scalability viewpoint, the following observations can be made:

1. Both approaches scale as O(Pr), whereby Pr is the polling rate: this is in agreement

with the fact that the physical phenomenon beyond the two approaches is the same

and is linear under typical operation conditions. This is also in agreement with the

finding of Chapter 7.

2. Traffic injected by the agent solution grows at a smaller pace since the slope of the

best-fit line is smaller. In the example agent configuration referred to herein, the

slope of centralised polling is nearly 5 times larger than the one of the agent system.

The relation between the slope of the agent system and its configuration parameters

is further discussed in Section 8.4.

3. Sensitivity of response time to Pr is very small in comparison to the one of traffic.

4. The agent approach can sustain larger values of Pr. In the example agent

configuration, agents sustained values of Pr that were three times larger than those

of the centralised approach. This is directly related to the fact that agents incur a

smaller amount of traffic and, thus, the non-linear region is reached for larger values

of Pr.

5. From the asymptotic behaviour point of view, the results of this chapter are

consistent with those of Chapter 7 (both traffic and response time operate at O(Pr)

under near-optimal network conditions as well as general ones).

Both traffic and response time are significantly affected by the various agent configuration

parameters. Therefore, the above conclusions can be generalised only upon showing that they

are valid also when other scalability indicators are adopted. This is done in the following

sections.

8.2 Performance against Number of Monitored Objects

This section evaluates the differences between centralised and agent-based monitoring whereby

the number of monitored objects, N is adopted as scalability indicator. Plots and conventions

are the same as the ones introduced in the previous section.

 - 189 -

Figure 8-5 depicts the impact that the number of monitored objects has on the various

performance parameters in the case of centralised polling. It can be observed that the central

index indicators exhibit statistically different values in the case of traffic since the boxes are

not overlapping. A similar conclusion can be drawn in the case of response time, though small

overlaps are present in the following ranges: N=25-32; N=32-50. These are caused by the fact

that these ranges are relatively small. However, all in all, an increase in response time is

observed when N is increased; it is, then, possible to apply regression techniques to create best-

fit functions.

A
16

B
25

C
32

D
50

E
64

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

1x105

2x105

3x105

4x105

5x105

6x105

T
ot

al
 T

ra
ff

ic
 [b

it/
se

c]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

1.8x105

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

ALGORITHM:
Centralised Polling (no Agents)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 16 - 64
Average node degree, avgdeg = 2.85 - 3.63
Hop-diameter, diam-hh = 6.3 - 10
Average hop depth, avgdepth-hh = 5.07 - 7.92
Length-diameter, diam-hl = 101 - 214.3
Average length-depth, avgdepth-hl =
 = 78.29 - 160.83
Biconnected components, bicomp = 5.9 - 29.1

OTHER CONFIGURATION PARAMETERS:
Polling Rate, P

r
 = 1

MAs to MOs ration, p/N = 0

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Number of Monitored Nodes - (Centralised Polling)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[s
ec

]

Number of Monitored Nodes, N

Figure 8-5. Statistical box plots depicting the impact of number of monitored objects on

performance in the case of centralised polling.

 - 190 -

Figure 8-6 depicts the results obtained with the agent-based solution. Again, the overlaps are

caused by the inability to distinguish between values that are relatively very close. In particular

the traffic measured in the vicinity of the polling station was affected very marginally by N. In

fact, the agent collection traffic – i.e., incurred by the polling request-response process – does

not affect this area; that is why the traffic measured around the station is virtually constant with

N.

A
16

B
25

C
32

D
50

E
64

1.0

1.5

2.0

2.5

3.0

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

2.0x104
4.0x104
6.0x104
8.0x104
1.0x105
1.2x105
1.4x105
1.6x105
1.8x105
2.0x105

T
ot

al
 T

ra
ff

ic
 [b

it/
se

c]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

Number of Monitored Nodes, N

A
16

B
25

C
32

D
50

E
64

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

ALGORITHM:
Mobile Agents
(both with cloning and no cloning)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 16 - 64
Average node degree, avgdeg = 2.85 - 3.63
Hop-diameter, diam-hh = 6.3 - 10
Average hop depth, avgdepth-hh = 5.07 - 7.92
Length-diameter, diam-hl = 101 - 214.3
Average length-depth, avgdepth-hl =
 = 78.29 - 160.83
Biconnected components, bicomp = 5.9 - 29.1

OTHER CONFIGURATION PARAMETERS:
Polling Rate, P

r
 = 1

MAs to MOs ration, p/N = 0.25

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Number of Monitored Nodes - (MA solution)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Number of Monitored Nodes, N

Figure 8-6. Statistical box plots depicting the impact of number of monitored objects on

performance in the case of agent-based polling.

 - 191 -

Linear best-fit functions relative to the above two diagrams are reported in Figure 8-7. The only

difference with the diagrams of Figure 8-4 is that here the index of central tendency adopted for

traffic around the monitoring station is the median instead of the mean. This has been done to

filter out the dramatic effects introduced by large outliers. It can be noted that traffic diagrams

are analogous to those of Figure 8-4. The total traffic incurred by the agent solution is in the

order of 30% of its centralised counterpart; and the traffic measured around the monitoring

station is in the order of 0.5% of its centralised counterpart. Similarly, with agents response

time is reduced to values that are in the order of 50% of their centralised counterpart.

It can be concluded that these results are consistent with the ones of Figure 8-4. We can still

observe the linear behaviour; and performance improvements are in the same order of

magnitude. A small non-linear region is expected for NÅ0 because both traffic and response

time should tend to zero for NÅ0. However, the study of such condition is uninteresting from

the scalability point of view.

Similarly to what observed in Section 8.1, the agent system is expected to be able to operate

correctly – i.e., without causing saturation of bottleneck links – at larger values of N than its

centralised counterpart since the former is characterised by smaller slopes than those of the

latter (Figure 8-7).

It may be worth mentioning that the reasons behind the linear behaviour of traffic and response

time functions are different. In the case of traffic, the phenomenon is linear as expected because

monitoring traffic is directly proportional to the number of objects, since we are keeping the

network diameter constant. Response time is linear for a different reason. This is originated by

the bottleneck around the monitoring station. Monitoring packets are queued around the station

and those queues grow linearly with the number of request packets, which in turn grow linearly

with the number of monitored objects.

 - 192 -

10 20 30 40 50 60 70
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

10 20 30 40 50 60 70
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

10 20 30 40 50 60 70
0.0

2.0x104
4.0x104
6.0x104
8.0x104
1.0x105
1.2x105
1.4x105
1.6x105

10 20 30 40 50 60 70
0

1x105

2x105

3x105

4x105

5x105

6x105

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (Centralised Polling)
A = 0.799 ±0.177
B = 0.035 ±0.004
R = 0.9786
P = 0.003

 Linear best fit (MA)
A = 0.905 ±0.19
B = 0.019 ±0.004
R = 0.9193
P = 0.027

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Number of Monitored Nodes, N

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (Centralised Polling)
A = 0.573 ±0.046
B = 0.011 ±0.011
R = 0.9868
P = 0.001

 Linear best fit (MA)
A = 0.497 ±0.048
B = 0.007 ±0.001
R = 0.9606
P = 0.0093

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Number of Monitored Nodes, N

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (Centralised Polling)
A = -420.2 ±2382.02
B = 2546.4 ±57.76
R = 0.9992
P < 0.0001

 Linear best fit (MA)
A = 116.83 ±182.6
B = 14.41 ±4.42
R = 0.8828
P = 0.047

Number of Monitored Nodes, N

Performance against Number of Monitored Nodes (both MA and Centralised Polling)

 Mean of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (Centralised Polling)
A = -63109.30 ±14725.18
B = 8874.49 ± 357.11
R = 0.9975
P = 1.43E-4

 Linear best fit (MA)
A = -5760.15 ±4154.90
B = 2767.74 ±100.76
R = 0.9980
P = 1.059E-4

T
ot

al
 T

ra
ffi

c
[b

it/
se

c]

Number of Monitored Nodes, N

Figure 8-7. Linear best-fit performance functions based on the number of objects scalability

indicator.

Finally, if we compare these results with the theoretical ones of Chapter 7, we notice a strong

similarity in the behaviour as well as consistency in the asymptotic behaviour. The results

summarised in Table 8-1 indicate that if the N indicator is individually considered, all

performance indicators operate at O(N) both under the general conditions considered herein and

under the near-optimal conditions of Chapter 7.

 - 193 -

 Steady-state Traffic
(under near-optimal conditions)

Naïve centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Optimal centralised
polling

() ()NuRPOnuRPO r
uR

r *)(**)(*)(∝

Agent-based distributed
polling

(){ }()2)(**)(* −− +− LLuR
r NLnLuRPO ()1** −+ L

r nLNotO

()ppNuRPO r log,),(,∝

 Steady-state Response Time
(under near-optimal conditions)

Naïve centralised
polling

()() ()()NuRPOnuRPO r
uR

r +∝+)(*)(*)(

Optimal centralised
polling

())(,, uRNPO r

Agent-based distributed
polling

(){ }()11)(*1;max* −−− +− L
r

LuR
r nNotLnPO

();,),(, pNuRPO r∝

Table 8-1: Summary of results on steady-state performance under near-optimal conditions (from

Chapter 7).

8.3 Performance against Network Diameter

This section evaluates the differences between centralised and agent-based monitoring whereby

network diameter, D(u) is adopted as scalability indicator. Plots and conventions are the same

as the ones introduced in the previous sections.

Figure 8-8 depicts the impact that network diameter has on the various performance parameter,

in the case of centralised polling. Similarly to the diagrams of the previous sections, this

diagram presents a remarkable difference between traffic and response time diagrams. The

latter shows wider spread of values which causes partial overlapping in the statistical boxes.

The reason is that response time values are much smaller than traffic values, which means that

wider ranges of X values should be adopted in this case to detect differences among different

simulation runs.

 - 194 -

A
7

B
8

C
8.5

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

A
7

B
8

C
8.5

4.0x105
4.2x105
4.4x105
4.6x105
4.8x105
5.0x105
5.2x105
5.4x105
5.6x105
5.8x105
6.0x105
6.2x105
6.4x105

T
ot

al
 T

ra
ff

ic
 [b

it/
se

c]

Average Network Diameter [hops]

A
7

B
8

C
8.5

1.4x105

1.5x105

1.6x105

1.7x105

1.8x105

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

Average Network Diameter [hops]

A
7

B
8

C
8.5

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

ALGORITHMS:
Centralised Naive Polling (no agents)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 64
Average node degree, avgdeg = 6.27 - 11.7
Hop-diameter, diam-hh = 7 - 8.5
Average hop depth, avgdepth-hh = 6.5 - 7.2
Length-diameter, diam-hl = 137 - 224
Average length-depth, avgdepth-hl =
 = 103 - 188
Biconnected components, bicomp = 5

OTHER CONFIGURATION PARAMETERS:
MA to MO ration, p/N = 0
Polling rate, P

r
 = 1

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Network Diameter (Centralised Polling)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

Figure 8-8. Statistical box plots depicting the impact of network diameter on performance in the

case of centralised polling.

The wide spread of values is even more evident in Figure 8-9. To achieve differences which are

statistically more significant, three approaches have been studied. First, increase the range of

D(u); second, increase the number of simulation runs; and finally, keep topological parameters

as constant as possible when increasing D(u).

 - 195 -

A
7

B
8

C
8.5

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

A
7

B
8

C
8.5

1.35x105

1.40x105

1.45x105

1.50x105

1.55x105

1.60x105

1.65x105

1.70x105

1.75x105

T
ot

al
 T

ra
ff

ic
 [b

it/
se

c]

Average Network Diameter [hops]

A
7

B
8

C
8.5

0.0
5.0x102

1.0x103
1.5x103

2.0x103

2.5x103
3.0x103

3.5x103

4.0x103

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

Average Network Diameter [hops]

A
7

B
8

C
8.5

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

ALGORITHMS:
Agent Location Algorithms (p>0)
(both capable and incapable of cloning)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 64
Average node degree, avgdeg = 6.27 - 11.7
Hop-diameter, diam-hh = 7 - 8.5
Average hop depth, avgdepth-hh = 6.5 - 7.2
Length-diameter, diam-hl = 137 - 224
Average length-depth, avgdepth-hl =
 = 103 - 188
Biconnected components, bicomp = 5

OTHER CONFIGURATION PARAMETERS:
MA to MO ration, p/N = 0
Polling rate, P

r
 = 1

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Network Diameter (with MAs)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

Figure 8-9. Statistical box plots depicting the impact of network diameter on performance in the

case of agent-based polling.

The viability of the first and second approach was limited by intrinsic limitations of the

simulator and by simulation times. In fact, the number of nodes increases dramatically with the

diameter.

The obstacle to the third approach was the difficulty in minimising the variation in parameters

such as the average node degree while increasing network diameter. Wide variations in average

 - 196 -

node degree (6.27-11.7) were observed in face of small variations in network diameter (7-8.5 or

137-224). It was then concluded that further increases in the range of D(u) would have caused

more problems than actual benefits.

6.5 7.0 7.5 8.0 8.5 9.0

1.8

2.1

2.4

2.7

3.0

3.3

3.6

3.9

6.5 7.0 7.5 8.0 8.5 9.0

0.9

1.0

1.1

1.6

1.7

1.8

6.5 7.0 7.5 8.0 8.5 9.0
1.0x103
1.2x103
1.4x103
1.6x103
1.8x103

1x105

1x105

2x105

2x105

6.5 7.0 7.5 8.0 8.5 9.0
1.54x105
1.56x105
1.58x105
1.60x105
1.62x105
1.64x1054.50x105

5.00x105

5.50x105

6.00x105

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = -0.91 ±1.27
B = 0.39 ±0.16
R = 0.9257
P = 0.2468

 Linear best fit (Centralised Polling)
A = 0.95 ±0.39
B = 0.33 ±0.05
R = 0.9891
P = 0.0941

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

 Median of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = -0.13 ±0.32
B = 0.15 ±0.04
R = 0.9647
P = 0.1697

 Linear best fit (Centralised Polling)
A = 1.37 ±0.21
B = 0.05 ±0.03
R = 0.8841
P = 0.3095

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

Average Network Diameter [hops]

Tr
af

fic
 a

ro
un

d
M

on
ito

rin
g

S
ta

tio
n

[b
it/

se
c]

 Mean of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = -1012 ±4746
B = 313 ±604
R = 0.4607
P = 0.6951

 Linear best fit (Centralised Polling)
A = 51566 ±11632
B = 12629 ±1480
R = 0.9932
P = 0.07

Average Network Diameter [hops]

Performance against Network Diameter (both MA and Centralised Polling)

 Mean of measured values
Linear Regression Model:
Y = A + B * X

 Linear best fit (MA)
A = 141294 ±32096
B = 2243 ±4084
R = 0.4814
P = 0.6803

 Linear best fit (Centralised Polling)
A = 56605 ±132546
B = 59970 ±16867
R = 0.9626
P = 0.1745

To
ta

l T
ra

ffi
c

[b
it/

se
c]

Average Network Diameter [hops]

Figure 8-10. Linear best-fit performance functions based on the network diameter scalability

indicator.

Despite the above limitation, linear regression was applied to estimate scalability as a function

of network diameter (Figure 8-10). The problems identified above are also reflected by the

 - 197 -

relatively low values of R and high values of P. Despite that, the results are consistent with the

ones of Figure 8-4 and Figure 8-7 and the behaviour is linear with D(u).

Finally, if we compare these results with the theoretical ones of Chapter 7, we notice a strong

similarity in the behaviour as well as consistency in the asymptotic behaviour. We recall that

R(u) is the network radius whereas D(u) is its diameter, two indicators which are directly

proportional to each other. The results summarised in Table 8-1 indicate that if the R(u)

indicator is individually considered, all performance indicators operate at O(R(u)) both under

the general conditions considered herein and under the near-optimal conditions of Chapter 7.

8.4 Performance against Percentage of Agents

The simulations related to the above sections have been carried out by keeping the percentage

of agents constant with respect to the total number of monitored nodes. This has been done to

study the sensitivity of the agent system to topological parameters (such as N and D(u)) and to

monitoring parameters (such as Pr).

This section takes a step forward by studying the sensitivity to the actual number of agents,

when topological and monitoring parameters are kept constant. Deciding on how many agents

should be used for a given task and network is not a simple task. This decision tends to be

crucial when it comes to minimising overhead to performance ratios.

Figure 8-11 depicts the impact that the percentage of agents has on the various performance

parameters, in the form of the usual statistical box diagrams. In this case, the X axis reports (on

a non-linear scale) the ratio between number of agents and number of monitored nodes, p/N.

The first noticeable difference between the centralised approach (p/N=0) and the various agent

solutions (0<p/N≤1) is that the former tends to exhibit a larger variance. Typically, the

centralised approach is more sensitive to the topological variations among the different

simulation runs. For instance, even relatively small variations in node degree in the vicinity of

the polling station may introduce new bottlenecks which, in turn, may cause dramatic increase

in traffic and/or response time. On the contrary, the agent solution by exploiting distribution is

less prone to that problem.

 - 198 -

A
0

B
0.1

C
0.25

D
0.4

E
0.55

F
0.7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ax

im
um

 R
es

po
ns

e
T

im
e

[s
ec

]

MAs to MOs ratio [p/N]

A
0

B
0.1

C
0.25

D
0.4

E
0.55

F
0.7

0.0
5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105

T
ot

al
 T

ra
ff

ic
 [b

it/
se

c]

MAs to MOs ratio [p/N]

A
0

B
0.1

C
0.25

D
0.4

-1x104

0
1x104

2x104

3x104
4x104

1.2x105

1.4x105

T
ra

ff
ic

 a
ro

un
d

M
on

ito
rin

g
S

ta
tio

n
[b

it/
se

c]

MAs to MOs ratio [p/N]

A
0

B
0.1

C
0.25

D
0.4

E
0.55

F
0.7

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ALGORITHMS:
1. Centralised Naive Polling (p=0)
2. Agent Location Algorithm (p>0)
 (both capable and incapable of cloning)

TOPOLOGICAL FEATURES:
Transit-stub Topology
Total number of nodes, N = 50
Average node degree, avgdeg = 3.28 - 4.04
Hop-diameter, diam-hh = 7 - 9
Average hop depth, avgdepth-hh = 6.1 - 7.32
Length-diameter, diam-hl = 163 - 196
Average length-depth, avgdepth-hl =
 = 120.3 - 152.36
Biconnected components, bicomp = 7 - 17

OTHER CONFIGURATION PARAMETERS:
Polling rate, P

r
 = 1

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Performance against Percentage of Agents

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

MAs to MOs ratio [p/N]

Figure 8-11. Statistical box plots depicting the impact of the percentage of agents.

Another reason for difference between centralised polling (p=0) and the agent solution (p>0)

originates in the way simulations are carried out. In the former case, we aimed at placing the

central monitoring station in a central node for a fair comparison with the agent approach (we

wanted to compare the best configuration of centralised polling with our agent-base system).

However, in order to randomise the simulation process it was necessary to repeat the

simulations for subsequent randomly generated network topologies. The topology generator

does generate topologies belonging to the same family (e.g., characterised by comparable

values of average topological parameters), but it does not generate symmetrical networks.

 - 199 -

Hence, the algorithm which aims at placing the monitoring station in a central location does not

always manage to find such node. That is why the statistical box diagrams presented in this

section often exhibit a larger variability for p=0.

On the contrary, the fact that the agent approach tends to exhibit a smaller variability (for p>0)

indicates that the proposed agent location algorithm succeeds in placing the agents near-

optimally regardless of the randomisation of the topology generation adopted in subsequent

simulations.

Figure 8-12 presents the best-fit functions relative to the above results. This time the curves

exhibited non-linear behaviour. Very accurate exponential functions where found to fit traffic

values, whereas response time values were best fitted by 3rd-order polynomial functions. Both

traffic and response time decreased significantly in the range 0<p/N<0.15. However, for larger

values of p/N the improvement became negligible. Interestingly, response time may even

increase in the upper band. In fact, despite the agent-to-monitored object communication load

tends to decrease when the number of agents increases, the reverse tends to happen to the agent-

to-station load. It was concluded that a larger portion of agents is neither convenient nor useful.

In fact, the larger is the number of agents, the larger agent deployment overheads will be. From

the above simulations it can be concluded that agent system can introduce significant

performance benefits even when the number of agents is relatively small, typically for

0<p/N<0.15.

 - 200 -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.0 0.1 0.2 0.3 0.4

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

 Median of measured values
 Polynomial best fit

Polynomial Regression:
Y = A + B1*X + B2*X^2 + B3*X^3

R^2 = 0.89353
A 2.43713 ±0.23301
B1 -1.03229 ±3.457
B2 -6.93935 ±12.24657
B3 9.38246 ±11.42482

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

[s
ec

]

MAs to MOs ration [p/N]

 Median of measured values
 Polynomial best fit

Polynomial Regression:
Y = A + B1*X + B2*X^2 + B3*X^3

R^2 = 0.99946

A 1.09006 ±0.00446
B1 -2.02623 ±0.06623
B2 3.80478 ±0.23462
B3 -2.08653 ±0.21888

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

[s
ec

]

MAs to MOs ration [p/N]

Tr
af

fic
 a

ro
un

d
M

on
ito

rin
g

S
ta

tio
n

[b
it/

se
c]

 Mean of measured values
 Exponential best fit

Model:
y = y0 + A*exp(R0*x)

R^2 = 0.99997

y0 423.97773 ±391.79488
A 125450.44782 ±654.8159
R0 -21.67719 ±0.45204

MAs to MOs ration [p/N]

Performance against Percentage of Agents
 Mean of measured values
 Exponential best fit

Model:
y = y0 + A*exp(R0*x)

R^2 = 0.99772

y0 65004.92265 ±5959.45943
A 270910.50865 ±7762.91357
R0 -5.63926 ±0.45166

To
ta

l T
ra

ff
ic

 [b
it/

se
c]

MAs to MOs ration [p/N]

Figure 8-12. Best-fit performance functions based on percentage of agents.

We should add a comment at this stage on the apparent qualitative difference between traffic

and response time functions of Figure 8-12. The former were fitted by monotonically

decreasing exponential functions, whereas the latter were fitted with polynomial functions. The

apparent difference should not induce to the conclusion that traffic does not exhibit the typical

‘U-shaped’ behaviour of response time found also in Chapter 7. The reason for this apparent

discrepancy lies in the different order of magnitude of those two functions. In other terms, the

simulations were not able to detect the expected increase in traffic in the upper band of p/N

 - 201 -

because, in the example agent system configuration, the increment in agent-to-station load

related to agent increase was negligible in comparison to the agent-to-monitored node. In

Chapter 7, it was easier to show this particular aspect of the agent system by appropriately

changing the configuration parameters. It should be noticed that the scale of traffic functions is

in the order of 3E5 whereas typical response time values are in the order of 1 second.

Therefore, we are inclined to conclude that the results obtained herein are consistent with those

of Chapter 7. The models of Chapter 7 suggest that both traffic and response time have a

qualitatively analogous behaviour, which is not in definite contrast with the findings obtained

through simulation.

8.5 Distance from Optimality

In the previous sections we have evaluated performance and scalability of the proposed agent

solution in comparison with centralised polling. Here we want to assess the goodness of the

proposed agent algorithm by evaluating its distance from optimality. We recall that in Chapter 7

we have found constraining conditions on the network topology which resulted in near-

optimality. In this chapter we have relaxed those conditions by considering more general

network topologies. Hence, our interest in evaluating distance from optimality through

simulation aims at complementing the results of Chapter 7.

This is done by comparing the overall performance achieved when the agents are placed by the

proposed algorithm with the hypothetical case in which those agents could be placed near-

optimally. This comparison is interesting because it allows a quantitative assessment of the

goodness of the algorithm with respect to the best possible case. The reference near-optimal

agent location is computed using the software package SITATION, configured to run the

lagrangian location algorithm, which guarantees at least near-optimality [Daskin 95]. It should

be recalled that the lagrangian algorithm does not represent a viable alternative to the proposed

algorithm mainly because it is computed centrally, on the basis of a network distance matrix, as

discussed in Section 3.5, page 67.

The proposed approach is also compared with the case in which locations are computed

randomly. This has been done to prove that the proposed solution is significant, by measuring

its distance from randomness. The ideas was to discard the possibility that the proposed agent

system would result in performance comparable with the those achievable using random

location approaches.

 - 202 -

In the following subsections, the results of the simulations are presented first individually, for

each of the above three cases (Sections 8.5.1, 8.5.2, and 8.5.3). Those results are finally merged

and discussed comparatively (Section 8.5.4). The approach followed for the analysis is

analogous to the one adopted in the previous sections. However, in this case the analysis is

carried out in a more general fashion by adopting topological rather than physical performance

indicators. The first indicator is the network total hop-distance. This is directly related to the

total steady-state traffic, since the latter is proportional to the incurred bit-rate multiplied by the

number of links traversed by packets. Average and maximum hop-distance are also measured.

The second performance indicator is the maximum weighted distance. This is directly related to

response time, since the latter is proportional to the costs associated to link traversal. For

simplicity, we assumed a constant, unitary weight for all the links. Thus, we have simulated an

homogeneous network in which the topology was generated with the GT-ITM tool, whereas all

links where identical. Average and total weighted distance are also measured and an

exponential best-fit model is adopted to interpolate the results for an easier comparison.

It should be mentioned, however, that due to the complexity and long simulation times, best-fit

functions are build on just four points. Thus, it is not possible to draw definite conclusions on

whether those points operated at polynomial or exponential level.

On the other hand, our aim was to adopt models which allowed a comparison among the

various simulation results, rather than studying the physical phenomena behind them. A

suitable model to interpolate simulation data was found to be the following:

() ()xPPxPPy 4321 expexp +=

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

P
er

fo
rm

an
ce

 In
di

ca
to

r With Initial Peak
 Monotonically Decreasing

MAs to MOs ration [p/N]

Figure 8-13. Features of the model used to interpolate results.

 - 203 -

Depending on the values of the parameters (P1 to P4), the above function may exhibit one of the

two qualitative behaviours depicted in Figure 8-13. The first one (solid line) shows a

monotonically decreasing function; whereas the second one (dotted line) exhibits an initial

peak, followed by a predominant monotonically decreasing behaviour. In the remaining part of

this chapter, we shall encounter both cases.

It should be stressed that the best-fit functions computed hereafter have the purpose of giving

an indication of the possible behaviour of the data points found by simulation. However, since

these functions are computed on the bases of only four data points it is not possible to draw any

definite conclusions on the precise behaviour of the underlying mechanisms.

After considering various polynomial and non-polynomial best-fit models, the exponential

model has been adopted because it has been found to approximate fairly well the data points

generated by the simulations (i.e., the correlation coefficient R2 tends to be fairly close to 1).

Clearly, we cannot conclude that the underlying mechanisms found by simulations are of

exponential nature. A larger number of data points would increase significantly the significance

of the best-fit functions. That would in turn require a significant amount of simulations which

have not been conducted due to time constraints.

8.5.1 Near-Optimal Agent Location

All the statistical box diagrams presented in this section are characterised by distinctly non-

overlapping 25-75% boxes, a clear indication of statistical significance of the measured values.

The remaining diagrams depict the exponential best-fit functions, all characterised by relatively

high values of R2, which proves the accuracy of those functions.

 - 204 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

2

4

6

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

20

30

40

50

60

70

80

90

T
ot

al
 H

op
 D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

0.5

1.0

1.5

2.0

2.5

3.0

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Near-optimal Location

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Hop-diameter, diam-hh = 8 - 10
Average hop-depth, avgdepth-hh = 6.12 - 7.97
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

Figure 8-14. Statistical box plots depicting hop-distances achieved with the near-optimal,

lagrangian location algorithm.

 - 205 -

0.0 0.1 0.2 0.3 0.4

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4

20

30

40

50

60

70

80

90

Agent Location Algorithm: Near-optimal Location

 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

R^2 = 0.99515

y0 0.33306 ±--
A1 1.09935 ±--
t1 0.18507 ±--
A2 1.09935 ±--
t2 0.18507 ±--

A
ve

ra
ge

 H
op

 D
is

ta
nc

e

MAs to MOs ration [p/N]

 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

R^2 = 0.99069

y0 -3.88475 ±--
A1 4.4844 ±--
t1 0.64289 ±3.7108E-143
A2 4.4844 ±--
t2 0.64289 ±3.7108E-143

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ration [p/N]

 T
ot

al
 H

op
 D

is
ta

nc
e

 Mean of measured values
 Exponential best fit

Model:
y = y0 + A*exp(R0*x)

R^2 = 0.99526

y0 10.57267 ±7.93607
A 70.46093 ±7.77332
R0 -5.37532 ±1.46714

MAs to MOs ration [p/N]

Figure 8-15. Best-fit hop-distance functions achieved with the near-optimal, lagrangian location

algorithm.

 - 206 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

10

20

30

40

50

60

70

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

200

400

600

800

1000

1200

1400

To
ta

l W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

5

10

15

20

25

30

35

40

45

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Near-optimal Location

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Length-diameter, diam-hl = 134 - 144
Average Length-depth, avgdepth-hl = 103.22 - 105.22
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

Figure 8-16. Statistical box plots depicting weighted-distances achieved with the near-optimal,

lagrangian location algorithm.

 - 207 -

0.0 0.1 0.2 0.3 0.4

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4
10

20

30

40

50

60

70

0.0 0.1 0.2 0.3 0.4

200

400

600

800

1000

1200

1400

Agent Location Algorithm: Near-optimal Location
 Median of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

R^2 = 0.96203
y0 -11.18475 ±--
A1 24.77911 ±--
t1 0.37995 ±--
A2 24.77911 ±--
t2 0.37995 ±--A

ve
ra

ge
 W

ei
gh

te
d

D
is

ta
nc

e

MAs to MOs ration [p/N]

 Median of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

R^2 = 0.97306
y0 -33.60897 ±--
A1 48.62468 ±3.2158E-140
t1 0.58661 ±5.0114E-145
A2 48.62468 ±3.2158E-140
t2 0.58661 ±--

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ration [p/N]

 T
ot

al
 W

ei
gh

te
d

D
is

ta
nc

e

 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

R^2 = 0.962
y0 -357.44237 ±--
A1 792.75176 ±--
t1 0.37975 ±5.1885E-144
A2 792.75174 ±--
t2 0.37975 ±5.1885E-144MAs to MOs ration [p/N]

Figure 8-17. Best-fit weighted-distance functions achieved with the near-optimal, lagrangian

location algorithm.

8.5.2 Random Agent Location

In the case of the random agent location algorithm a peculiarity can be observed. All indexes of

central tendency are characterised by an initial peak that, for the example agent configuration,

corresponds to p/N=0.10. This was initially been attributed to anomalies in the simulation

software. After a closer analysis it was realised that this was not case. Those peaks are caused

by the fact that a relatively small number of agents, if badly placed, could represent a worse

situation than that of a centralised approach, whereby the polling station was placed in a central

location. Obviously, this anomaly disappears when the number of agents becomes sufficiently

large since, in this case, the improvements deriving from a higher level of distribution prevail.

 - 208 -

Very accurate best-fit functions were achieved by interpolating on a linear combination of two

exponential functions, as proved by the relatively high values of R2.

 - 209 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

2

4

6

8

10

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

20

40

60

80

100

120

T
ot

al
 H

op
 D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

1

2

3

4

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Random Location

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Hop-diameter, diam-hh = 8 - 10
Average hop-depth, avgdepth-hh = 6.12 - 7.97
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

Figure 8-18. Statistical box plots depicting hop-distances achieved with the random location

algorithm.

 - 210 -

0.0 0.1 0.2 0.3 0.4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.1 0.2 0.3 0.4
3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4
20

40

60

80

100

120

Agent Location Algorithm: Random Location
 Mean of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.98972
P1 3.72673 ±--
P2 -3.36337 ±--
P3 -1.18673 ±--
P4 -406.95689 ±--A

ve
ra

ge
 H

op
 D

is
ta

nc
e

MAs to MOs ration [p/N]

 Mean of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.9861
P1 7.12006 ±--
P2 -1.93991 ±--
P3 -1.78673 ±--
P4 -406.95689 ±--

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ration [p/N]

 T
ot

al
 H

op
 D

is
ta

nc
e

 Mean of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.98974
P1 119.32172 ±--
P2 -3.36202 ±--
P3 -37.98839 ±--
P4 -406.95689 ±--

MAs to MOs ration [p/N]

Figure 8-19. Best-fit hop-distance functions achieved with the random location algorithm.

 - 211 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

30
40
50
60
70
80
90

100
110

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

200
400
600
800

1000
1200
1400
1600
1800
2000

To
ta

l W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

10

20

30

40

50

60

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Random Location

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Length-diameter, diam-hl = 134 - 144
Average Length-depth, avgdepth-hl = 103.22 - 105.22
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

Figure 8-20. Statistical box plots depicting weighted-distances achieved with the random location

algorithm.

 - 212 -

0.0 0.1 0.2 0.3 0.4
10
15
20
25
30
35
40
45
50
55

0.0 0.1 0.2 0.3 0.4
50

60

70

80

90

100

0.0 0.1 0.2 0.3 0.4

400

600

800

1000

1200

1400

1600

1800

Agent Location Algorithm: Random Location

 Median of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.98977
P1 56.60823 ±--
P2 -3.93198 ±--
P3 -19.40823 ±--
P4 -4000 ±--A

ve
ra

ge
 W

ei
gh

te
d

D
is

ta
nc

e

MAs to MOs ration [p/N]

 Median of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.99863
P1 97.00753 ±--
P2 -1.53088 ±--
P3 -35.00753 ±--
P4 -4000 ±--M

ax
im

um
 W

ei
gh

te
d

D
is

ta
nc

e

MAs to MOs ration [p/N]

 T
ot

al
 W

ei
gh

te
d

D
is

ta
nc

e

 Median of measured values
 Exponential best fit

Model:
y = P1*exp(P2*x) + P3*exp(P4*x)

R^2 = 0.98979
P1 1811.58257 ±--
P2 -3.93215 ±--
P3 -621.08257 ±--
P4 -4000 ±--

MAs to MOs ration [p/N]

Figure 8-21. Best-fit weighted-distance functions achieved with the random location algorithm.

8.5.3 Proposed Agent Location

The diagrams obtained in the case of the proposed agent location algorithms are substantially

analogous to those relative to the above near-optimal, lagrangian algorithm; therefore there is

no need to add further comments.

 - 213 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

2

3

4

5

6

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

20

30

40

50

60

70

80

90

T
ot

al
 H

op
 D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

0.5

1.0

1.5

2.0

2.5

3.0

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Proposed Algorithm

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Hop-diameter, diam-hh = 8 - 10
Average hop-depth, avgdepth-hh = 6.12 - 7.97
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 H
op

 D
is

ta
nc

e

MAs to MOs ratio [p/N]

Figure 8-22. Statistical box plots depicting hop-distances achieved with the proposed location

algorithms.

 - 214 -

0.0 0.1 0.2 0.3 0.4

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4

2

3

4

5

0.0 0.1 0.2 0.3 0.4

20

30

40

50

60

70

80

Agent Location Algorithm: Proposed Algorithm
 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.99542
y0 0.39685 ±--
A1 1.06705 ±--
t1 0.18795 ±--
A2 1.06705 ±--
t2 0.18795 ±--A

ve
ra

ge
 H

op
 D

is
ta

nc
e

MAs to MOs ration [p/N]

 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.94882
y0 1.16049 ±--
A1 1.97377 ±--
t1 0.21982 ±--
A2 1.97377 ±--
t2 0.21982 ±--

M
ax

im
um

 H
op

 D
is

ta
nc

e

MAs to MOs ration [p/N]

 T
ot

al
 H

op
 D

is
ta

nc
e

 Mean of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.99812
y0 12.49409 ±--
A1 34.11501 ±--
t1 0.19505 ±--
A2 34.22353 ±--
t2 0.19505 ±--

MAs to MOs ration [p/N]

Figure 8-23. Best-fit hop-distance functions achieved with the proposed location algorithms.

 - 215 -

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

10

20

30

40

50

60

70

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

200

400

600

800

1000

1200

1400

To
ta

l W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

A
p/N=0

B
p/N=0.10

C
p/N=0.25

D
p/N=0.40

5

10

15

20

25

30

35

40

45

LEGEND OF STATISTICAL BOX CHART:
Boxes delimit 25-75% boundaries
Squares represent mean values
Lines represent median values
Wiskers delimit 5-95% boundaries
Circles and Stars represent outliers

Agent Location Algorithm: Proposed Algorithm

TOPOLOGICAL FEATURES:
Total number of nodes, N = 32
Average node degree, avgdeg = 2.56 - 2.75
Length-diameter, diam-hl = 134 - 144
Average Length-depth, avgdepth-hl = 103.22 - 105.22
Biconnected components, bicomp = 10 - 19

A
ve

ra
ge

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ratio [p/N]

Figure 8-24. Statistical box plots depicting weighted-distances achieved with the proposed location

algorithms.

 - 216 -

0.0 0.1 0.2 0.3 0.4
5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4
15
20
25
30
35
40
45
50
55
60
65

0.0 0.1 0.2 0.3 0.4
200

400

600

800

1000

1200

Agent Location Algorithm: Proposed Algorithm
 Median of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.97823
y0 -0.91724 ±--
A1 19.41295 ±--
t1 0.26259 ±--
A2 19.41295 ±--
t2 0.26259 ±--A

ve
ra

ge
 W

ei
gh

te
d

D
is

ta
nc

e

MAs to MOs ration [p/N]

 Median of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.90939
y0 -44.93051 ±--
A1 54.9713 ±--
t1 0.77444 ±--
A2 54.97111 ±--
t2 0.77343 ±--M

ax
im

um
 W

ei
gh

te
d

D
is

ta
nc

e

MAs to MOs ration [p/N]

 T
ot

al
 W

ei
gh

te
d

D
is

ta
nc

e

 Median of measured values
 Exponential best fit

Model:
y = A1*exp(-x/t1) + A2*exp(-x/t2) + y0
R^2 = 0.9853
y0 0 ±0
A1 615.2443 ±7.3411E-143
t1 0.25094 ±--
A2 599.97418 ±7.3411E-143
t2 0.25094 ±--

MAs to MOs ration [p/N]

Figure 8-25. Best-fit weighted-distance functions achieved with the proposed location algorithms.

8.5.4 Comparison

The above simulation results are merged in Figure 8-26 and Figure 8-27 for a better

comparison. It can be observed that the proposed approach leads to traffic values that are

always smaller than those that would be achieved with the lagrangian algorithm, which is

provably near-optimal. Hence the agent solution is near-optimal too. In particular, in the

example agent system configuration, a percentage improvement in the range of 0-3% was

measured. It should be stressed once again that the lagrangian algorithm cannot be used to solve

the agent location problem for the reasons already mentioned in Chapters 2 and 3.

 - 217 -

0.0 0.1 0.2 0.3 0.4
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9

0.0 0.1 0.2 0.3 0.4

1

2

3

4

5

6

7

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

100
110
120

Comparison based on Hop-distance

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

R
el

at
iv

e
A

ve
ra

ge
 H

op
 D

is
ta

nc
e

[%
]

MAs to MOs ration [p/N]

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

R
el

at
iv

e
M

ax
im

um
 H

op
 D

is
ta

nc
e

[%
]

MAs to MOs ration [p/N]

R
el

at
iv

e
To

ta
l H

op
 D

is
ta

nc
e

[%
]

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

MAs to MOs ration [p/N]

Figure 8-26. Comparison based on hop distance.

Furthermore, it should be noted that simulations characterised by up to a large number of agents

(p/N=0.4) were performed for the sake of completeness. However, for a more efficient resource

utilisation, typical agents-to-nodes ratios are envisioned to be much smaller (p/N<0.1).

The fact that the total hop-distance achieved by placing the agents in a random fashion is very

far from the proposed solution (38-48% difference for p/N<1) provides another good

justification for the adoption of the agent based approach. The percentage reduction in traffic

with respect to centralised polling (p/N=0) is also significant. For instance, for p/N=0.1 the

reduction in traffic was greater than 30% with monotonical increases with p/N. Finally, the fact

that those three curves tend to converge for large values of p/N is not unexpected since when

p/N=1 the number of agents equals the number of nodes. Hence each of the three algorithms

equally succeed in placing the agents evenly.

 - 218 -

0.0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4

200
400
600
800

1000
1200
1400
1600
1800

Comparison based on Weighted distance

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

R
el

at
iv

e
A

ve
ra

ge
 W

ei
gh

te
d

D
is

ta
nc

e
[%

]

MAs to MOs ration [p/N]

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

R
el

at
iv

e
M

ax
im

um
 W

ei
gh

te
d

D
is

ta
nc

e
[%

]

MAs to MOs ration [p/N]

R
el

at
iv

e
T

ot
al

 W
ei

gh
te

d
D

is
ta

nc
e

[%
]

Agent Location Algorithms:
 Random Agent Location
 Near-Optimal Location
 Proposed Agent Location

MAs to MOs ration [p/N]

Figure 8-27. Comparison based on weighted distance.

Figure 8-27 allows a similar comparison based on maximum weighted distance, which is

related to response time. However, in this case the agent location curve, though very close to

the near-optimal one, does not exhibit any inferior value. In particular, the distance from near-

optimality is 0-5% for p/N<1. This result was expected since the simulated agent system was

optimised to minimise traffic, not response time. Further simulations, not reported here for

brevity, indicated that near-optimality with respect to response time can be achieved with trivial

modifications to the agent algorithm.

 - 219 -

8.6 Adaptability

The ability of a monitoring system to adapt to network changes is a very attractive property,

especially in view of the dynamic behaviour of current and future networks. Causes of that are,

for instance, network congestion, device failure, terminal mobility, and mobile computing.

The conventional approach is to achieve adaptability by dynamically changing the routing tree

rooted at the monitoring station. This is performed by the routing protocols. Consequently,

because of congestion or failure, monitoring packets are re-routed through generally longer

paths and both traffic and response times tend to deteriorate.

The proposed approach is an example of active monitoring; agents keep sensing the network

during their operation and can periodically estimate the cost of alternative locations. Agent

migration is triggered when the cost reduction justifies the migration overheads. Agents adopt

the same logic used during deployment time to sense the network and estimate costs associated

to candidate neighbour nodes. This adaptation strategy is based solely on local decision.

Locality has the advantage of simplicity but has the drawback of not considering more global

optimisation strategies.

A part of a preliminary study of this approach, a simple scenario, in which 2 links located in the

vicinity of the central monitoring station fail, has been simulated. Traffic and response time

were measured before the failure. After the failure the routing protocol readjusted the routing

tables and full connectivity was achieved. In addition, the agent system reconfigured itself by

relocating some of the agents. Steady-state traffic and response time were measured again.

Figure 8-28 shows the snapshot of those performance indicators taken before and after the link

failure, respectively. With the centralised polling solution (p=0), both request and response

packets get re-routed through longer paths. Consequently, both traffic and response time

increase significantly – they almost doubled in our scenario. On the contrary, with the agent

system the performance degradation at steady state was in the order of 5-10%.

 - 220 -

0

100000

200000

300000

400000

500000

600000

700000

0 0,2 0,4 0,6 0,8 1
MAs to MOs ratio

a)

S
te

a
d

y
T

ra
ff

ic
 [

b
it

/s
e

c
]

No Faults 2 Link Failures

p = 0

p = 5

p = 15 p = 34

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1
MAs to MOs ratio

b)

S
te

a
d

y
 R

e
sp

o
n

se
 T

im
e

[
se

c
]

No Faults 2 Link Failures

p = 0

p = 5

p = 15 p = 34

Figure 8-28. Adaptability. a) Traffic at steady state; b) Response time at steady state.

An important design choice concerns the number of agents initially deployed. This has an

impact both at deployment time and run time. At deployment, the more agent we deploy, the

higher the deployment overheads will be. A large number of agents also means a larger

consumption of computational and memory resources at the hosting nodes. The benefit of a

relatively large number of agents are felt at run time, since a larger number of agents means a

higher level of distribution, which in turn will generally result in better steady-state

performance.

Our simulations have identified another advantage related to increasing the number of agents.

As this increases, the percentage of agents that need to migrate in face of changing network

conditions tends to decrease more than linearly, as demonstrated by Figure 8-29.

27%

29%

31%

33%

35%

37%

39%

41%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MA to MO ratio [p/N]

P
er

ce
nt

ag
e

of
 M

A
s

w
hi

ch
 m

ig
ra

te
s

Figure 8-29. Impact of total number of agents on percentage of agent migration occurrences.

It should be mentioned that the above simulations on adaptation were intended as a preliminary

study of “adaptation through agent migration” rather than pretending to be comprehensive. The

idea was to see whether the same principles used to solve the location problem where still valid

at run time – i.e., during the execution of the distributed monitoring task.

 - 221 -

The initial study suggests that this is indeed a promising direction, though more extensive

simulations should be carried out before generalised conclusions can be drawn. In particular,

agent migration, if not properly triggered, may lead to instability that can be disastrous.

Furthermore, migration policies including more sophisticated heuristics need to be studied.

All these ideas are extremely interesting from a research point of view but it was decided not to

pursue them further in the context of this PhD research since this topic deserves a more

comprehensive and methodical experimentation. For instance, it would be interesting to

evaluate the sensitivity of our agent system to variables such as number of faults, location of

faults, fluctuating network congestion, etc. The effect of migration on robustness and system

stability is another interesting topic.

8.7 Discussion and Conclusions

This chapter assesses the advantages that agents bring to distributed monitoring in terms of

reduced traffic and shorter response times. A scalability study based on monitoring parameters

(polling rate – Section 8.1) and topological parameters (number of monitored nodes – Section

8.2 – and network diameter – Section 8.3) has been presented. This allowed a quantification of

the improvements achievable with respect to the more conventional centralised polling

approach.

In essence, the simulation results of Sections 8.1 to 8.3 are consistent with the results achieved

by mathematical analysis in Chapter 7. Performance indicators (traffic and response time)

operate linearly with individual scalability indicators (Pr, N, D(u)) despite the fact that

simulations have addressed the case of general network topologies, whereas the mathematical

analysis of Chapter 7 assumed constraining conditions on network topology.

The simulations have also demonstrated that significant performance improvements are

achieved at steady-state by the agent system in comparison with centralised monitoring. The

amount of improvement can be quantified by setting up the various monitoring parameters and

running the simulator. Crucial factors have been found to be the number of MAs, as well as the

level of aggregation performed locally by the MAs.

The impact of the number of MAs on performance was studied in particular in Section 8.4.

Again, results were consistent with those of Chapter 7 despite the different assumptions on

network topology. An upper bound beyond which it was not worth increasing the number of

agents was found. In essence, this behaviour depends on the fact that by increasing the number

of agents, the agent-to-monitoring station communication load tends to increase as well. This

 - 222 -

effect became negligible when we increased the level of aggregation performed by the agents,

an important factor which has a direct impact on the traffic generated by the agents. As a rule of

thumb the agent-to-monitored nodes ratio should be large enough to impact significantly

performance but should be smaller than 0.10. Various simulations showed in fact that if MAs

are more than 10% of the number of monitored nodes, overheads related to agent deployment

and agent-to-monitoring station communication tend to have a measurable negative impact. It

should be said, however, that particular monitoring tasks may lead to slightly different

conclusions on the best number of MAs to be adopted.

In the second part of the chapter (Section 8.5), the study of distance from optimality

demonstrated that the proposed agent approach is near-optimal and significantly better than the

performance achievable by random placement of agents. This result was unexpected when the

agent location algorithm was designed and probably represents one of the most important

outcomes of the thesis work. The initial aim was to solve the agent location algorithm

efficiently and viably. Near-optimality was not one of the targets.

Figure 8-30 depicts the main results of Section 8.5. The total hop-distance is directly related to

the total steady-state monitoring traffic. It can be observed that the proposed location algorithm

leads to traffic values that are always smaller than those that would be achieved with the

lagrangian algorithm, which is provably near-optimal. Hence, our agent-based algorithm is

near-optimal too. In particular, a percentage improvement in the range of 0-3% was measured.

It should be stressed once again that the lagrangian algorithm could not be used to solve the

agent location algorithm for the reasons already mentioned in Chapter 2 and 3.

 - 223 -

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4
10
20
30
40
50
60
70
80
90

100
110
120

M
ax

im
um

 W
ei

gh
te

d
D

is
ta

nc
e

MAs to MOs ration [p/N]

T
ot

al
 H

op
 D

is
ta

nc
e

Agent Location Algorithms:
 Random Agent Location Near-Optimal Location
 Proposed Agent Location

MAs to MOs ration [p/N]

Figure 8-30. Agent system near-optimality.

It should be noted that, for the sake of completeness, we simulated situations characterised by

up to a large number of agents (p/N=0.4). However for a more efficient resource utilization,

typical “agents to nodes” ratios are envisioned to be much smaller (p/N<0.1). The fact that the

total hop-distance achieved by placing the agents in a random fashion is very far from our near-

optimal solution (38-48% difference for p/N<0.1) provides another good justification for the

adoption of the agent-based approach. The percentage reduction in traffic with respect to

centralised polling (p/N=0) is also significant. For instance, for p/N=0.1 the reduction in traffic

will be greater than 30% and will increase monotonically with p/N.

Finally, the fact that the three curves tend to converge for large values of p/N is not unexpected

since when p/N=1 the number of agents equals the number of nodes. Hence, under those

conditions each of the three location algorithm will equally succeed in placing the agent evenly.

 - 224 -

The plot which reports the maximum weighted distance (directly related to response time) for

the three location algorithms is qualitatively analogous to the previous one. However, in this

case the agent location curve, though very close to the near-optimal one, does not exhibit any

inferior value. In particular, the distance from near-optimality is 0-5% for p/N<0.1. This result

was expected since the simulated agent location algorithm was optimised to minimise traffic,

not response time. Near-optimality with respect to response time can be achieved with proper

modifications to the agent algorithm.

In the final part of this chapter (Section 8.6) we have presented an initial study of the

adaptability of the agent system to network dynamics. Only a limited amount of simulations

were carried out with the aim of having a ‘feel’ of the system capability to cope with link

failures. Results were very promising and encourage furthering the study of agent adaptation

through migration.

The feasibility and the advantages of shifting to the ‘active decentralised’ monitoring paradigm

can be seen from the above simulation-based analysis of an example system based on

autonomous mobile agents. In this system, the decision as to where best to locate the agents

makes use of ‘local’ information in a ‘distributed’ fashion. Each agent identifies a better

location and decides whether to ‘clone’ further agents or not - the decision is based solely upon

local routing information. Each agent acts autonomously to solve a portion of the global

configuration problem, which is solved in a distributed fashion.

Our study has shown that a system based on mobile agents will out-perform a conventional

system in many typical situations. It has also helped in identifying conditions in which agents

are not recommended. Mobile agents were particularly effective in reducing the communication

and processing bottleneck located at the monitoring station. Despite the simplicity of the agent

configuration algorithm, agents end-up evenly distributed for network topologies resembling

inter-networks and hierarchical networks, respectively. Consequently, the achieved improved

scalability and performance are not entirely surprising. However, our analysis provides a

quantitative comparison of performance and scalability between centralised monitoring and

agent-based distributed monitoring.

The main factor limiting the use of agents is their migration overhead - clearly, migration traffic

and migration time are not incurred in the centralised approach. The former depends on agent

size which, in turn, depends on the complexity of agent functionality. Simple autonomous

agents able to perform local aggregation of monitored data, generate statistics, and trigger

alarms can be implemented in the Java language in modules of size in the order of 10 Kbytes

[Knight 99].

 - 225 -

Agent migration time is dominated by the agent serialisation/de-serialisation process, required

to prepare an agent for transmission and execution, respectively. Depending on various

implementation aspects, this process requires times in the order of hundreds of milliseconds,

well above the tens of milliseconds required to transport the code over the wire. For this reason,

the time to complete the deployment of all the agents will be of the order of seconds or tens of

seconds, depending on the number of agents, and on the network size and average node degree.

Traffic bursts incurred during the initial deployment or long deployment times may not be

acceptable in some situations. For instance, monitoring tasks whose total duration is of the

order of agent deployment time cannot be implemented using this approach.

Our analysis highlights a key advantage of using ‘full’ code mobility instead of degenerate

cases or stationary agents i.e. adaptability. We have presented an example showing how agent

migration can be used to implement a monitoring system adaptable to network changes, a

particularly attractive property for dynamic networks.

Again, the agent migration overheads identified in our analysis give a clue as to the time-scales

over which adaptation might be effective. Since agent migration time is in the order of a

second, agents are suitable to compensate to changes within time-scales larger than a second.

In conclusion, the proposed agent-based solution is feasible for distributed monitoring and

generally results in increased scalability and steady-state performance. However, there are

conditions in which agents cannot compete with the simplicity and efficiency of the

conventional centralised approach – e.g. in very short or very simple monitoring operations.

Therefore, the ideal solution is to integrate code mobility into existing systems and benefit from

the relevant advantages rather than rely completely on mobile software agent approaches. A

seamless integration between existing and mobile agent based approaches should be the topic

of future research.

 - 226 -

Chapter 9

Conclusions

This final chapter summarises and discusses the thesis contributions, draws the main

conclusions, and elaborates on possible avenues of research for further development of the

thesis work.

9.1 Thesis Summary

This thesis is focussed on the investigation of code mobility and its application to distributed

monitoring. A novel approach termed active, distributed monitoring is proposed and evaluated.

Both ‘activeness’ and ‘distribution’ are offered by the MA design paradigm.

The proposed agent-based monitoring system can efficiently populate a generic networked

system with small, lightweight MAs that act as ‘area monitors’. The agent system is capable of

partitioning the monitored system into sub-systems and assigns MAs to sub-systems. However,

the process is not realised in a centralised fashion. Agents progressively inspect the network,

create initial partitions and clone agents for the new partitions. The agent deployment process is

then ‘distributed’, a key factor for scalability.

It is also ‘active’ as opposed to ‘static’ because the ‘area monitors’ location is computed on-the-

fly, depending on the network conditions detected by the agents themselves, rather than being

computed off-line. In addition, because they can sense their network environment, agents can

also dynamically re-locate themselves at run time, providing adaptation towards changing

network conditions.

The proposed agent system was designed with ‘scalability’ and ‘adaptability’ in mind, and was

meant to be able to cope with frequently changing conditions of large-scale, dynamic

 - 227 -

networked systems. The agent system was used as a testbed for the examination of the

following research hypothesis:

The application of the ‘weak agent mobility’ paradigm to distributed monitoring

represents an effective complement to more conventional ‘centralised’ and ‘static

distributed’ monitoring approaches. In particular, the agent approach:

1. can lead to significant improvements in performance and scalability;

2. can be used to realise near-optimal distributed monitoring systems;

3. can be used to realise distributed monitoring systems which can adapt

effectively to changes in the network state;

A hybrid methodology was adopted to evaluate the research hypothesis. Mathematical

modelling was used to study the more theoretical aspects of the work, including the asymptotic

complexity of the proposed agent deployment algorithm and its behaviour at transient time; the

sufficient conditions for which the algorithm is near-optimal; and a complete (transient time

and steady-state) study of the agent system under those near-optimal conditions.

Complementary to the mathematical approach, simulations were carried out to study the agent-

based monitoring system under general conditions and for realistic network topologies. The

system was quantitatively compared with the more conventional static monitoring approach. Its

ability to compute good agent locations for a range of topologies and conditions was also

studied. Furthermore, the study of system adaptability was preliminary assessed. The aim was

to get a ‘feel’ of adaptability to justify further work, rather than carrying out a comprehensive,

methodical adaptability assessment.

9.2 Discussion of Thesis Contributions

The main contribution of this thesis is the examination of the research hypothesis described

above. However, this has involved and required investigation and implementation work that can

be seen, per se, as an additional contribution to the thesis. Individual contributions resulting

from the thesis work are discussed in this section. These contributions may be seen in relation

to the research gaps highlighted in Chapter 3.

 - 228 -

9.2.1 Active, Distributed Monitoring

Monitoring, information gathering, and information filtering are often regarded as some of the

most potential and promising applications of MAs. Moreover, ‘strongly distributed’

management paradigms are seen as the ones that should be referred to when designing future

management applications. In particular, future monitoring systems need to be able to cope with

scale and dynamics. However, the literature survey reported in Chapter 3 highlights a

pathological tendency for ‘centralised’ or ‘weakly distributed’ paradigms.

The active, distributed monitoring approach proposed in this thesis follows the ‘strongly

distributed’ paradigm. As such, it can regarded as an initial step towards a better understanding

of the benefits of that paradigm, through the investigation of its related issues and the

realisation of prototype applications.

9.2.2 Employment of Agent Mobility in Management

The literature survey of Chapter 3 has also highlighted that very few examples of MA-based

management (exploiting what we called the ‘real essence’ of agent mobility) have been

reported so far. This thesis contributes towards that gap by proposing a system which goes

beyond the simpler MbD concept and is developed around agent weak mobility, cloning,

autonomy, and reactivity. Pro-activity – i.e. the ability of the agent system to anticipate

problems thus reacting prior to their detection – is not directly assessed, although its important

role for improving performance is discussed. Agent pro-activity could be readily studied with

the provided MA simulation infrastructure.

It should be mentioned, though, that the evaluation methodology of this thesis does not cover

the whole range of functionality required for a management system. The thesis experimental

work is, in fact, focused on monitoring that is only one of the functions of management

systems. It should be reminded, however, that monitoring is a fundamental part of management.

As such, by improving the effectiveness of the monitoring system, the whole management

system will be positively affected.

9.2.3 Quantitative Comparative Performance Evaluation of MA-

based Monitoring

Another literature gap concerns methodological and quantitative studies of agent-based

management systems. The assessment of management systems is, per se, a difficult task. In

 - 229 -

fact, contrary to more traditional areas such as ‘computer architecture’, the area of management

does not have established methodologies and benchmarking applications. The same problem

applies to the agent community. Therefore, the thesis, by bringing together the field of

management with that of agents, faces the challenge of proposing and following a new

assessment method (Chapter 5).

An important contribution is the comparative performance evaluation between ‘static

centralised’ monitoring and ‘active distributed’ monitoring. The thesis quantifies performance

and scalability improvements for a range of input variables and network conditions.

It may be argued that the significant improvements achieved with the proposed agent system, in

comparison with centralised monitoring, were to be expected because of the distributed nature

of the proposed system. Moreover, it may be added that alternative ‘static distributed

monitoring’ solutions may be adopted, leading to comparable results to the ones of the agent

system. However, we should bear in mind that an important requirement of the proposed

monitoring system is that it should be able to cope with highly dynamic as well as large-scale

networked systems. This, in turn, means that we need a distributed monitoring system in which

the location of ‘area monitors’ can be computed in real-time rather than statically. Static

distributed monitoring solutions are based on a different assumption: that the location of ‘area

managers’ is computed only initially, based on off-line computation of the network topology.

Clearly, network dynamics timescales involved in this case are significantly larger than those

applicable to MAs. The location of area managers realised with MAs is computed by the agents

themselves during the agent deployment process. It has been shown that this process can be

concluded in at most O(R(u)) seconds, where R(u) is the network radius (Chapter 6). It was also

proved that agent locations are at least near-optimal. Consequently, the agent system succeeds

in placing area monitors near-optimally provided that the network status and topology vary

more slowly than O(R(u)) seconds. At run time, agents can cope with even more rapid network

fluctuations because only individual agent migration is involved in the adaptation process.

Conversely, in the case of ‘static distributed monitoring’ the whole network topology needs to

be discovered before the agent location is computed, a process which is impractical for large-

scale systems and becomes not viable as network dynamics increases. In practice, the location

of static area managers is computed on the bases of an ‘estimated’ rather than ‘measured’

network topology and it is not attempted to keep optimality as the networked system evolves.

This approach was meant for situations in which systems rely on relatively static, fixed

networks.

 - 230 -

9.2.4 Preliminary Study of Adaptable, Self-reconfigurable MA-based

Monitoring

Our preliminary study of adaptation and self-reconfiguration is another important contribution.

The great interest sparked by topic pressed in the direction of attempting to perform a number

of simulations to get at least an indication of the possibilities offered by the agent system.

Adaptability is a unique feature offered by MAs. In static management, adaptation tends to be a

sub product of network- and transport- layer protocols. For instance, dynamic routing offers

indirect compensation mechanisms in face of link failure or congestion. This is a very limited

form of adaptation from the management point of view. Statically distributed area managers are

fixed entities, both in location and functionality. Conversely, active monitoring offers the

capability of dynamically changing the location of those managers (the monitoring entities in

our case). Our initial study suggests that this is a promising approach to deal with continuously

changing conditions of dynamic networked systems.

9.2.5 Novel Near-optimal Solution to P-median Problem

The requirements of active distributed monitoring led us into the investigation of the p-median

problem. This is a classic NP-complete problem when striving for optimality. Upon surveying

existing approximate solutions to that problem it was found that none of them suited our

requirements. Most solutions were meant for a centralised system; others suffered from high

computational complexity; and other did not guarantee near-optimality. We, then, embarked on

the study of an efficient solution that could be easily computed in a distributed fashion, would

be characterised by low polynomial complexity, and would guarantee near-optimality. One of

the products of this thesis is such an algorithm along with its assessment with regard to

computational complexity and distance from optimality. We have demonstrated the viability of

this algorithm for the solution of the agent location problem.

9.2.6 Extensions to NS simulator for Code Mobility

A practical contribution of this thesis is the extension of NS (a widely used network simulator)

with support for code mobility. We have also followed a methodological simulation work

which sets an example on possible ways of using the simulation environment for evaluating

distributed algorithms, with particular orientation towards systems based on code mobility.

 - 231 -

Therefore, the methodology followed for the evaluation and the number of tools and scripts

produced to support it may serve as a starting point for other simulation-based work in this area.

9.3 Conclusions

Conclusions that can be drawn from the thesis work about the above research hypothesis are

discussed in this section. Detailed conclusions are also included at the end of Chapters 6, 7, and

8.

9.3.1 Performance and Scalability

9.3.1.1 Steady-state System

Performance improvement at steady state represents the key feature of distributed monitoring.

This is also the less surprising result which was already expected at the beginning of the work

and provided motivations for it. What was not available was a quantification of those benefits.

By studying this aspect both theoretically and by simulation we can conclude that the proposed

active, distributed monitoring system is a near-optimal solution to the problem of minimising

traffic and response time.

Having designed such a system we have proved the first item of our hypothesis: significant

improvements are achievable with respect to static monitoring. This is an immediate result for

the case of ‘static centralised’ monitoring, as can be observed from the plots of Chapter 8. The

actual improvements depend on the particular monitoring task and agent configuration. The

parameterisation of the simulation environment allows one to easily change the task and the

agent configuration, run the simulator, and achieve comparative figures between centralised and

distributed monitoring. This could be used as a tool for the designer who wants to quantify the

potential benefits for a particular monitoring system configuration.

Static distributed monitoring will also benefit significantly from this approach because of the

increased ability of the agent system to cope with dynamic, large-scale networked systems.

Performance improvements can be directly correlated to the use of agent weak mobility and

cloning. We have demonstrated how these are important ingredients for the efficient, dynamic

solution of the agent location problem. Clearly, alternative solutions may exist but, to the best

of the author’s knowledge, no such alternatives are readily available in the literature.

 - 232 -

9.3.1.2 Transient-time System

While the steady-state system will generally outperform the centralised approach and the

statically distributed one, there is a price that needs to be paid. This is the cost involved during

transient time – i.e. during the agent deployment process. At transient time the system is not

stable and cannot yet operate. We have demonstrated that agent deployment time is generally

completed in O(R(u)) seconds. That span of time gives the boundary of applicability of the

agent system. Clearly, deployment traffic and delay are not incurred in the centralised

approach.

Deployment traffic gives us a second boundary of applicability. It depends on agent size that, in

turn, depends on the complexity of the agent functionality. Simple, autonomous agents able to

perform local aggregation of monitored data, generate statistics, and trigger alarms, can be

implemented in the Java language in modules of size in the order of 10 Kbytes [Knight 99].

In general, monitoring tasks whose overall duration is shorter than the agent deployment time

will be more conveniently realised with conventional approaches based on static objects. This

is valid if we consider real-time-oriented types of constraints. If the priority is on traffic

minimisation then the agent approach may be still be convenient, particularly in the case of

data-intensive tasks. Tasks characterised by very high polling rate tend to inject significant

traffic, which can be dramatically reduced with distributed area managers.

Another observation about agent deployment overheads should be added. If we compare the

agent approach with a distributed approach based on static objects we may say that the latter

will involve a lower deployment overhead. In fact, objects tend to be more lightweight than

agents. However, the scope of applicability of the agent solution is wider since agent locations

are computed at run time; whereas object location needs to be predetermined, which means that

is based on ‘estimated’ topologies rather than the real one. This, in turn, translates in locations,

which are closer to optimality in the case of agents, with subsequent steady-state traffic and

response time reduction.

We can conclude that agent deployment is the major drawback of the agent approach which

determines the boundaries of applicability of this approach. However, the deployment

overheads become increasingly negligible if compared with the steady-state advantages, as the

duration of the monitoring task or the polling rate tend to grow. Deployment overheads are

cost-effective also in the case of data-intensive monitoring tasks. In that case, the agent’s

particular versatility towards data processing and filtering may lead to significant reduction in

both traffic and response time.

 - 233 -

9.3.1.3 Overheads

Deployment traffic and time are only two of the overheads of the agent approach. These are

also the overheads that could be studied more closely through the adopted evaluation

methodology. Other overheads are related to computing resources – i.e., memory and

processing overheads. We have not focussed on the precise assessment of such overheads for a

number of reasons. This thesis is focused on the evaluation of the benefits achievable from the

network point of view. Network resources are assumed to be the critical ones if compared to

computational resources. Another reason is that to assess computational overheads we should

have integrated a third method, that is the experimental one. We should have realised the agent

system on a real MA platform, over a wide area network and we should have measured the

resource consumption. This would have shifted the focus towards the assessment of the

overheads of MA platforms which is not central to this work. This kind of analysis is typically

carried out by those research teams which develop new MA platforms who need to evaluate

their platform in comparison with other existing ones.

Therefore, while we can draw quantitative conclusions on agent deployment traffic and delay,

we have mainly referred to data available in the literature as far as the other overheads are

concerned. Agents will require an MA infrastructure which will, per se, consume memory and

processing resources. MAs, as well, will add load which will depend critically on the

characteristics of the MA environment.

An important conclusion regards the identification of the major limiting factor of the proposed

agent system. From our preliminary measurements carried out on existing MA platforms, from

data available in the literature, from the theoretical studies of Chapter 6 and 7, and from the

simulations presented in Chapter 8, we can conclude that the MA migration overheads are

found to be the limiting factor. When agent mobility is utilised, agents end up spending most of

their time for serialisation and de-serialisation. The actual agent transmission over the wire

tends to be significantly faster than those processes required for preparing the agent for

transmission and for execution, respectively. Depending on various implementation aspects,

agent serialisation/de-serialisation involves times in the order of hundreds of milliseconds, well

above the tens of milliseconds required to transport the code over the wire [Knight 99, Bohoris

00c].

9.3.2 Near-optimality

Near-optimality in correlation to weak mobility is the second point of the hypothesis under

examination. The study and assessment of the agent-based monitoring system has served to

 - 234 -

prove this point. We have seen how near-optimality in terms of traffic or response time depends

on agent location near-optimality. By surveying the literature we have identified a gap in

efficient, suitable, and viable solutions to the agent location problem. We have then provided a

novel near-optimal solution which exploits the fundamental property of weak agent mobility.

We have also seen the benefits in terms of efficiency of exploiting agent cloning as well.

We should add that the proposed solution is proved near-optimal with respect to traffic

minimisation. The proposed work could be readily modified to prove near-optimality with

respect to response time. Solutions that minimise both traffic and response time promise to be

significantly more complex and, thus, inefficient.

The simulations of Chapter 8, however, show a significant improvement in response time in the

case where the algorithm tries to minimise overall traffic. This is reasonable because response

time tends to increase as a result of network congestion. However, this result may not be true in

general since traffic and response time minimisation generally require different agent locations.

From the simulations of Chapter 8 we can conclude, though, that for the class of networks

considered herein – that is for networks resembling the Internet topology – traffic minimisation

resulted in significant response time minimisation.

9.3.3 Adaptability

The third point of the research hypothesis regards adaptability and its relation to agent weak

mobility. Despite having examined this point only preliminarily rather than through a

comprehensive set of simulations, it is already possible to draw some conclusions.

Our initial study indicates that, in addition to location near-optimality achieved at deployment

time, it is possible to maintain near-optimality through simple agent migration strategies. Weak

mobility adds a new dimension to static distributed monitoring by allowing adaptation to

continuously changing network conditions. The degree of freedom introduced by agent mobility

is hardly conceivable in well-standardised management architectures and methodologies refined

over the years.

The initial results demonstrate the potential of agent mobility in terms of performance and

scalability as well as flexibility. The simple ‘link failure’ scenario suggests that the real essence

of MAs may have a significant impact on adaptability. Weak mobility, autonomy, reactiveness,

pro-activeness, and cloning can be employed to design self-regulating monitoring systems

targeted to large-scale, dynamic networked systems.

The relatively high costs associated to agent migration supported by general-purpose MA

platforms give also an indication of the timescales over which adaptation might be effective.

 - 235 -

When agent migration times are in the order of a second, the agent system is able to compensate

to changes within timescales larger than a second. On the other hand, steady-state performance

and scalability will be comparable to those typical of systems based on static object

technologies provided that effective methods are adopted to place those objects.

9.4 Applicability

The thesis work has considered ‘active distributed monitoring’ in a general fashion, not binding

it to any particular application. It will be applicable to network monitoring, system monitoring,

or more generally for monitoring large-scale, dynamic networked systems of any nature. The

key feature of scalability makes this approach suitable also for real-time monitoring. By

populating the system with a suitable number of agents, it is in fact possible to provide an upper

bound on the maximum response time. Since agents are distributed evenly in the networked

system, the more agents that are deployed, the closer they will be to their portion of monitored

resources, resulting in reduced response time.

Active distributed monitoring can be seen as a fundamental part of more complex management

or control systems. It can be used for efficient information gathering, for collecting and

processing raw information, or to create different views of data-intensive processes. More

generally, all of the four fundamental monitoring activities suggested by Sloman can benefit

from the proposed system [Sloman 94]. These have been discussed in Chapter 2 and are: 1)

generation; 2) processing; 3) dissemination; and 4) presentation.

The agent location algorithm can be used beyond monitoring problems. We have seen the

importance and applications of location problems in Chapters 2 and 3. Our solution falls in the

category of heuristic, provably near-optimal solutions with the additional advantage of being

characterised by low computational complexity. It can be applied in problems involving the

optimal location of p servers in a network of N nodes with information exchanges required

between them and p<<N.

We also discussed another important advantage, which is the possibility of computing the

algorithm in real-time and in a distributed fashion. Applications of this algorithm are then

numerous, from classic location theoretic problems to typical server or service location

problems. More generally, this algorithm can be modified or extended to suit particular

requirement of MA systems.

At a more conceptual level, several of the ideas developed in the context of this thesis are

already being conveyed to other research project in which the author is involved as a

 - 236 -

coordinator. Agents for dynamic Quality of Service (QoS) monitoring are being studied in the

context of the IST Virtual Home Environment for Service PErsonalization and Roaming Users

project [VESPER]. Finally, adaptability through agent migration is being investigated in the

context of the Virtual Centre of Excellence in Mobile & Personal Communications [MVCE].

9.5 Future Directions

Active distributed monitoring opens several new avenues of research. In this section, we

discuss some of them. We focus on additional work that would enhance and complement the

thesis. The next subsections are not necessarily presented in order of importance.

9.5.1 Experimentation with Active Distributed Monitoring

One necessary step towards the realisation of active distributed monitoring is its

implementation and experimentation on prototype networks or on a real networked system.

Real measurements will enlighten the actual behaviour of the proposed approach with regard to

overheads, stability, and complexity.

Measurements on the actual agent deployment time as a function of various scale factors will

strengthen even further the motivation for integrating agents in monitoring systems. A better

understanding of processing and memory overheads will provide essential information to the

designer of such systems. Our preliminary comparative measurements among Grasshopper (a

general purpose MA platform), CORBA (as a distributed static object infrastructure), and

CodeShell (an simple prototype of an MA platform optimised for constrained mobility) indicate

that general purpose MA platforms do add significant overheads. The CodeShell measurements,

however, suggest that there is a large margin of improvement.

9.5.2 Simulation Work and Experimentation on Adaptation

An initial study of adaptation has been presented in the thesis. Preliminary results suggest that

agent migration is an important mechanism towards adaptable monitoring systems. It would be

very interesting to pursue that study in a methodical fashion along the lines of the method

described in Chapter 5. Extensive simulations on adaptation will need to be carried out to

evaluate the ability of the system to self-reconfigure itself in face of a variety of network

conditions, for a range of network topologies, and for different input parameters.

 - 237 -

It is expected that agent migration will be the major limiting factor. However, various

intelligent migration techniques may be able to reduce this problem. For instance, the latency

involved in agent migration may be reduced by adopting appropriate cloning strategies. An

agent will in that case clone itself, send the clone and continue its operation until the clone is up

and running at the destination. At which time the new clone will take over and kill its

originator.

A number of new stimulating research problems are related to this one. One is the instability

problem. For instance, migration if triggered improperly may lead to an oscillating agent system

where agents keep migrating among a cluster of nodes. Pro-activity may even aggravate the

problem. Instability problems are well known in other disciplines such as mechanics and

various measures can be taken to reduce them. Hence, the application of theories developed in

mechanical engineering to our agent system may uncover interesting findings.

Agent control mechanisms need further study as well. By adding inertia to the system we might

achieve stability at the expense of delay. We also need to realise mechanisms to control agent

population.

The author of this thesis finds the above research topics very promising as well as stimulating

and is currently writing a project proposal to further this work under the sponsorship of the

Engineering & Physical Science Research Council (EPSRC).

9.5.3 Exploration of MA-based Management

The initial aim of the thesis was to investigate MA-based management, though the scope of the

evaluation was then constrained to the area of distributed monitoring. The natural evolution of

the thesis work would, thus, be the evaluation of other management functional areas, which

have the potential of benefiting from agent weak mobility.

9.5.4 Exploration of Location Algorithm for other Classes of Network

The agent location algorithm was simulated for the class of network topology resembling an

Internet network. The assumption was that networked systems increasingly rely on the Internet.

The investigation of the properties of the algorithm for other classes of network would

strengthen its applicability. The author of this thesis initially planned to repeat all the

simulation work for arbitrary network topologies. The relatively long simulation time suggested

to avoid pursuing this road, which was not of central importance, given the assumptions made

on networked systems.

 - 238 -

9.5.5 Modification of the Location Algorithm aiming at Response

Time Minimisation

The agent location algorithm has been optimised in order to minimise the overall incurred

steady-state monitoring traffic. The simulations of Chapter 8 demonstrate that near-minimal

traffic is achieved as well as significant improvement in response time. This is valid for

Internet-like topologies whereas it might not be true for a different class of topology. It would

be interesting, then, to extend the simulations by considering arbitrary topologies in order to

generalise this study.

Another step could involve the modification of the algorithm aiming at minimising response

time rather than traffic. One should, then, verify the near-optimality of the new algorithm and

study its effects on the overall incurred monitoring traffic.

A more challenging work would be the development of an algorithm that minimises both traffic

and response time. This would have more ‘theoretical’ than ‘practical’ implications if we can

demonstrate that, for typical networks, the minimisation of one factor leads to significant

improvements in the other.

9.5.6 Integration and Interoperability

Having demonstrated the feasibility and advantages of MAs for distributed monitoring as well

as their limitations, we have highlighted that there are conditions in which agents cannot

compete with the simplicity and efficiency of conventional centralised approaches – e.g. in very

short, or very simple monitoring operations. Therefore, the ideal solution seems to be the

integration of code mobility into existing systems (in order to bring its benefits) rather than

relying completely on MA approaches. A seamless integration between existing and MA-based

approaches is a topic which deserves further investigation.

Another important investigation may look at agent standardisation and interoperability with

existing management framework, such as OSI and SNMP management.

9.5.7 Viability Study in Perspective

The proposed active distributed monitoring system addresses two important requirements of

next generation networks, namely scalability and high-dynamics. However, several issues need

to be addressed before the deployment of our system to real networks can be considered. The

future generation of fixed and mobile integrated networks is following the path of openness,

 - 239 -

aimed at facilitating the separation between network operator, service provider, and value-

added service provider. The level of openness of future networks, though, is not clear at the

moment.

Openness cannot be realised without a sufficient level of security and, unfortunately, MAs are

still perceived as a constant threat to it. The investigation of secure and safe agent environments

is, then, of crucial importance [Vigna 98]. Without security mechanisms, the proposed agent

system will only be applicable to systems relying on corporate worldwide intranets. Networked

systems spanning different organisations will tend to prevent the execution of foreign MAs

within their boundaries, which is a major impediment for our approach. In fact, we assume that

MAs are free to roam the network and access routing information, which is not a safe

assumption in the current state but is a reasonable possibility for the future.

Safety is another important element that needs further study. Even when the security concerns

will be defeated we shall still need to be able to control the agent system in order to prevent it

from abusing of crucial network and computing resources. A safe MA environment will make

sure that MAs are executed only ‘where’ and ‘if’ a sufficient amount of resources is available.

The ability to limit the resources consumed by MAs is fundamental for the scenario in which

network or service providers will be willing to sustain the load of foreign MAs.

 - 240 -

References

[Abdu 99] H. Abdu, H. Lutfiyya, M. Bauer, A Model for Adaptive Monitoring
Configurations. In Proc. of IEEE IM’99, (1999).

[Anastasi 00] G. Anastasi, A. La Corte, A. Puliafito, and O. Tomarchio, An agent-
based approach for QoS provisioning to mobile users in the Internet.
Proc. of the 4th World Multiconference on Systemics, Cybernetics and
Informatics (SCI2000), Orlando Florida, USA, (July 2000).

[Appleby 94] S. Appleby, S. Steward, Mobile Software agents for control in
telecommunications networks. BT Technology Journal, pp104-13, (April
1994).

[Aridor 98] Yariv Aridor and Danny B. Lange, Agent Design Patterns: Elements of
Agent Applications Design. Second International Conference on
Autonomous Agents (Agents '98), (May 1998).

[Baldi 97] M. Baldi, S. Gai, G. P. Picco, Exploiting Code Mobility in Decentralized
and Flexible Network Management, Proceedings of the First
International Workshop on Mobile Agents, Berlin, Germany, (April
1997).

[Baldi 98] M. Baldi, G. P. Picco, Evaluating the Tradeoffs of Mobile Code
Paradigms in Network Management Applications, ACM Transactions
on Software Engineering and Methodology, 20th International
Conference on Software Engineering (ICSE '98), Kyoto, Japan, (April
1998).

[Barr 93] W.J. Barr, T. Boyd, Y. Inoue, The TINA Initiative. IEEE
Communications Magazine, Vol 31(3), pp.70-76, (1993).

[Baumann 99] J. Baumann, Control Algorithms for Mobile Agents. PhD Thesis,
University of Stuttgart, (1999).

[Bieszczad 98c] A. Bieszczad, B. Pagurek, T. White, Mobile Agents for Network
Management, IEEE Communications Surveys, Fourth Quarter 1998, vol.
1, no. 1, p. 2-9, (1998).

[Birrell 84] A. Birrell, B. J. Nelson, Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, Vol.2, pp.39-59, (February 1984).

 - 241 -

[Bivens 99] A. Bivens, L. Gao, M.F. Hulber, B.K. Szymanski, Agent-based Network
Monitoring. In Proc. of Agent Based High Performance Computing and
Autonomous Agents, Seattle, Washington, USA, (May 1999).

[Bohoris 00a] C. Bohoris, G. Pavlou, H. Cruickshank, Using Mobile Agents for
Network Performance Management, Proc. of the IEEE/IFIP Network
Operations and Management Symposium (NOMS ’00), Hawaii, USA, J.
Hong, R. Weihmayer, eds., pp. 637-652, IEEE, (April 2000).

[Bohoris 00b] C. Bohoris, A. Liotta , G. Pavlou, Software Agent Constrained Mobility
for Network Performance Monitoring, Proc. of the 6th IFIP Conference
on Intelligence in Networks (SmartNet 2000), Vienna, Austria, ed. H.R.
van As, pp. 367-387, Kluwer, (September 2000).

[Bohoris 00c] C. Bohoris, A. Liotta , G. Pavlou, Evaluation of Constrained Mobility
for Programmability in Network Management, To appear in the
proceedings of the 11th IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management (DSOM 2000), Austin,
Texas, USA, (December 2000).

[Buckley 90] F. Buckley , F. Harary, Distance in Graphs. Addison-Wesley, (1990).

[Busuioc 94a] M. Busuioc, D. Griffiths, Cooperating intelligent agents for service
management in communications networks. CKBS-SIG Proceedings
1993. 1993 Proceedings of the Special Interest Group on Cooperating
Knowledge Based Systems. Selected Papers from the Workshop, pp213-
26, (1994).

[Busuioc 94b] M. Busuioc, Distributed cooperative agents for service management in
communications networks. EE Eleventh UK Teletraffic Symposium.
Performance Engineering in Telecommunication Networks , pp24/1-7,
(1994).

[Calvert 97] K.L. Calvert, M.B. Doar, E.W. Zegura, Modeling Internet Topology,
IEEE Communications Magazine, (June 1997).

[Cardelli 95] L. Cardelli, A Language with Distributed Scope. Computing Systems,
Vol.8(1), pp. 27-59, (1995)

[Carzaniga 97] A. Carzaniga, G. P. Picco, G. Vigna, Designing Distributed Applications
with Mobile Code Paradigms. Proceedings of the 19th International
Conference on Software Engineering (ICSE’97). p. 22-32, (May 1997).

[Casavant 94] Casavant, T.L., Singhal, M., Readings in Distributed Computing
Systems. IEEE Computer Society Press, (1994).

[Cejtin 95] H. Cejtin, S. Jagannathan, R. Kelsey, Higher-order Distributed Objects.
ACM Transactions on Programming Languages and Systems, Vol.17(5),
(September 1995)

[Cheikhrouhou 98] M.M. Cheikhrouhou, P. Conti, J. Labetoulle, Intelligent Agents in
Network Management: A State of the Art. Networking and Information
Systems Journal, (June 1998).

 - 242 -

[Chess 97] D. Chess, C. Harrison, A. Kershenbaum, Mobile Agents: Are they a
Good Idea? Proc. of Mobile Object Systems, Towards the
Programmable Internet. J. Vitek, C. Tschudin, editors, Springer, pp.25-
47, (1997).

[Chiariglione 98] L. Chiariglione, Foundations for Intelligent Physical Agents. FIPA 98
Draft Specification, part 11,
http://drogo.cselt.it/fipa/spec/fipa98/fipa98.html, (August 17, 1998).

[Cornuejols 77] G. Cornuejols, M.L. Fisher, G.L. Nemhauser, Location of Bank
Accounts to Optimize Float: An Analytical Study of Exact and
Approximate Algorithms. Management Science, Vol.23, 789-810,
(1977).

[Cugola 96] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna, A Characterization of
Mobility and State Distribution in Mobile Code Languages. In
Proceedings of the Second Workshop on Mobile Object Systems, Linz,
Austria, (July 1996)

[Cugola 97] G. Cugola, C. Ghezzi, G.P. Vigna, Analysing Mobile Code Languages.
in Mobile Object Systems: Towards the Programmable Internet,
Springer-Verlag, LNCS, (April 1997).

[Cypser 91] R. J. Cypser, Communications for Co-operating Systems. Addison
Wesley, pp.244-245, (1991).

[Daskin 95] M. S. Daskin, Network and Discrete Location. Wiley, (1995).

[deMeer 00] H. de Meer, A. La Corte, A. Puliafito, O. Tomarchio, Programmable
Agents for Flexible QoS Management in IP Networks. IEEE Journal on
Selected Areas in Communication, Vol.18, N.2, (February 2000).

[deMeer 98a] H. de Meer, A. Puliafito, O. Tomarchio, Management of QoS with
Software Agents. Cybernetics and Systems: an International Journal,
Vol.27, N.5, (1998).

[deMeer 98b] H. de Meer, A. Puliafito, J.P. Richter, O. Tomarchio, Tunnel Agents for
Enhanced Internet QoS. IEEE Concurrency, Vol.6, N.2, pp.30-39,
(April-June 1998).

[Di Caro 98] G. Di Caro, M. Dorigo, AntNet: Distributed Stigmergetic Control for
Communications Networks. Journal of Artificial Intelligence Research
(JAIR), Vol.9, pp.317-365, (1998).

[Di Marzo 95] G. Di Marzo, M. Muhugusa, C. Tschudin, J. Harms, The Messenger
Paradigm and its Implications on Distributed Systems. In Proc. of the
ICC’95 Workshop on Intelligent Computer Communications, (1995).

[Dikaiakos 00] M.D. Dikaiakos, G. Samaras, Quantitative Performance Analysis of
Mobile Agent Systems: a Hierarchical Approach. Technical Report TR-
00-2, Department of Computer Science, University of Cyprus, (June
2000).

 - 243 -

[Dini 97] P. Dini, G. Bochmann, T. Koch, B. Kramer, Agent based Management
of Distributed Systems with Variable Polling Frequency Policies.
INM’97, (1997).

[El-Darieby 98] M. El-Darieby, Intelligent Mobile Agents for Network Fault
Management, Technical Report SCE-98-13, System and Computer
Engineering, Carleton University, (1998).

[El-Shaieb 73] A.M., El-Shaieb, A New Algorithm for Locating Sources Among
Destinations. Management Science, Vol.20, pp.221-231, (1973).

[Evans 86] D. Evans, Supervisory Management: Principles and Practice. 2nd
edition, Cassell Educational Ltd, London, UK, (1986).

[Evans 92] J.R. Evans, E. Minieka, Optimization Algorithms for Networks and
Graphs. Marcel Dekker, Inc., (1992).

[Fall 99] K. Fall, K. Varadhan, NS Notes and Documents. UC Berkeley, October
1999 (http:// www.isi.edu/ ~salehi/ ns_doc/).

[FIPA 98] FIPA 97 Specification, Version 2.0, Part 2, Agent Communication
Language, (October 1998).

[FIPA] Foundation for Intelligent Physical Agents, web page:
http://www.fipa.org/

[Fisher 75] M.L. Fisher, W.D. Northup, J.F. Shapiro, Using Duality to Solve
Discrete Optimization Problems: Theory and Computational
Experience. Mathematical Programming Study, Vol.3, pp.56-94, (1975).

[Franklin 96] S. Franklin, A. Graesser, Is it an Agent or just a Program? A Taxonomy
for Autonomous Agents, In J.P. Muller, M.J. Wooldridge, N.R. Jennings
(Eds), Intelligent Agents III, Proc. ECAI’96 Workshop (ATAL),
Budapest, Hungary, August 1996. LNAI 1193, pp.21-35, Springer-
Verlag, Berlin, Germany, (1997).

[Fuggetta 97] A. Fuggetta, G. P. Picco, G. Vigna, Understanding Code Mobility, IEEE
Transactions on Software Engineering, vol. 24, no. 5, pp. 342-361,
(1998).

[Gagnon 93] F. Gagnon, J-CH Gregoire, Implementation of Delegation in Distributed
Network Administration. CCECE 93, (1993)

[Garey 79] M. R. Garey, D. S. Johnson, Computers and Intractability: a Guide to
the Theory of NP-Completeness. W. H. Freeman and Co., New York,
(1979).

[Garfinkel 74] R.S. Garfinkel, A.W. Neebe, M.R. Rao, An Algorithm for the m-median
Plant Location Problem. Transportation Science, Vol.8, pp.217-236,
(1974).

 - 244 -

[Gavalas 00a] D. Gavalas, D. Greenwood, M. Ghanbari, M. O’Mahony, Advanced
Network Monitoring Applications Based on Mobile/Intelligent Agent
Technology, Computer Communications Journal, special issue on
Mobile Agents for Telecommunication Applications, Vol. 23, No.8, pp.
720-730, (April 2000).

[Gavalas 00b] D. Gavalas, D. Greenwood, M. Ghanbari, M. O’Mahony, Deploying a
Hierarchical Management Framework using Mobile Agent Technology.
Proc. of 7th International Conference on Intelligence in Services and
Networks (IS&N’00), LNCS, Vol.1774, pp.333-348, Springer-Verlag,
Athens, Greece, (23-25 February 2000).

[Gavalas 00c] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, Enabling
Mobile Agent Technology for Intelligent Bulk Management Data
Filtering. Proc. of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’00), pp. 623-636, Honolulu, USA, (10-14 April
2000).

[Gavalas 00d] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, Implementing
a Highly Scalable and Adaptive Agent-based Management Framework.
Proc. of the IEEE Global Communications Conference
(GLOBECOM’00), Vol.3, pp.1458-1462, San Francisco, USA, (27 Nov
– 1 December 2000).

[Gavalas 01a] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, Mobile
Software Agents for Decentralised Network & System Management. In
Elevier Microprocessors and Microsystems, special issue on “Mobile
Agent Technology: from first proposals to current evolutions”. In press.

[Gavalas 01b] D. Gavalas, Mobile Software Agents for Network Monitoring and
Performance Management. PhD Thesis, University of Essex, UK,
(2001).

[Gavalas 99a] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony,
Complimentary Polling Modes for Network Performance Management
Employing Mobile Agents, Proceedings of the IEEE Global
Communications Conference (Globecom'99), pp. 401-405, Rio de
Janeiro, Brazil, (5-9 December 1999).

[Gavalas 99b] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, A Hybrid
Centralised - Distributed Network Management Architecture,
Proceedings of the 4th IEEE Symposium on Computers and
Communications (ISCC'99), pp. 434-441, (July 1999).

[Gavalas 99c] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, An
Infrastructure for Distributed and Dynamic Network Management
based on Mobile Agent Technology", Proceedings of the IEEE
International Conference on Communications (ICC'99), pp. 1362-1366,
(June 1999).

[Gavalas 99d] D. Gavalas, D. Greenwood, M. Ghanbari, M. O'Mahony, Using Mobile
Agents for Distributed Network Performance Management. Proc. of the
3rd International Workshop on Intelligent Agents for Telecommunication
Applications (IATA’99), LNCS Vol.1699, pp.96-112, Springer-Verlag,
Stockholm, Sweden, (9-11 August 1999).

 - 245 -

[Geoffrion 74] A.M. Geoffrion, Lagrangian Relaxation for Integer Programming.
Mathematical Programming Study, Vol.2, pp.82-114, (1974).

[Ghezzi 97] C. Ghezzi and G. Vigna, Mobile Code Paradigms and Technologies: A
Case Study. In Proceeding of the First International Workshop on
Mobile Agents ’97, Berlin, Germany, (April 1997).

[Goldman 71] A.J. Goldman, Optimal Center Location in Simple Networks, in
Transportation Science, Vol.5 (1971), pp. 212-221, (1971).

[Goldszmidt 93] G. Goldszmidt, Distributed System Management via Elastic Servers. In
Proceedings of the IEEE First International Workshop on System
Management, Los Angeles, California, (April 1993).

[Goldszmidt 95a] G. Goldszmidt, Y. Yemini, Distributed Management by Delegation.
Proceedings of the 15th International Conference on Distributed
Computing Systems, (June 1995).

[Goldszmidt 95b] G. Goldszmidt, Y. Yemini, Evaluating Management Decisions via
Delegation. Integrated Network Management IV. New York: Chapman
& Hall, (1995).

[Goldszmidt 96a] G. Goldszmidt, Computing MIB Views via Delegated Agents. In Proc. of
the 6th CAS conf., Toronto, Canada, (November 1996).

[Goldszmidt 96b] G. Goldszmidt, Distributed Management by Delegation. PhD Thesis,
Columbia University, New York, (1996).

[Goldszmidt 96c] G. Goldszmidt, Y. Yemini, Delegated Agents for Distributed System
Management. IFIP/IEEE DSOM 1996 Workshop. L’Aquila, Italy,
(October 28-30th 1996).

[Goldszmidt 98] G. Goldszmidt, Y. Yemini, Delegated Agents for Network Management.
IEEE Communications Magazine, Vol.36 No.3, (March 1998).

[Gray 97] R.S. Gray, Agent Tcl: A Flexible and Secure Mobile-agent System. PhD
Thesis, Dartmouth College, Hanover, New Hampshire, (June 1997).

[Gregoire 93a] J-CH Gregoire, Delegation: Uniformity in Heterogeneous Distributed
Administration. USENIX, San Diego, CA, (January 25-29, 1993).

[Gregoire 93b] J-CH Gregoire, Management Using Delegation. Advanced Information
Processing Techniques for LAN and MAN Management. Amsterdam:
North Holland, (1993).

[Gregoire 95] J-CH Gregoire, Models and Support Mechanisms for Distributed
Management. Integrated Network Management IV. New York:
Chapman & Hall, (1995).

[Grimes 96] G. Grimes, Intelligent Agents for Network Fault and Performance
Management. Thesis, University of Limerick, (1996).

[GT-ITM] Source code of GT-ITM, available as http:// www.cc.gatech.edu/
projects/ gtitm/.

 - 246 -

[Guedes 98] L.A. Guedes, P.C. Oliveira, L.F. Faina, E. Cardozo, An Agent-based
Approach for Supporting Quality of Service in distributed Multimedia
Systems. Elsevier Computer Communications, Vol.21, pp.1269-1278,
(1998).

[Guiagoussou 01] M. Guiagoussou, R. Boutaba, M. Kadoch, Java Implementations of
Systems under Test for Advanced Fault Management. In Proc. of IEEE
IM’01, Seattle, USA, (May 2001).

[Hakimi 64] S. L. Hakimi, Optimum Locations of Switching Centers and the Absolute
Centers and Medians of a Graph. Operations Research Vol. 12, pp. 450-
459, (1964).

[Hakimi 65] S. L. Hakimi, Optimum Distribution of Switching Centers in a
Communications Network and Some Related Graph Theoretic
Problems. Operations Research Vol. 13, pp. 462-475, (1965).

[Halls 97] D. A. Halls, Applying Mobile Code to Distributed Systems. PhD thesis,
University of Cambridge, (1997).

[Handler 79] G.Y. Handler, P.B. Mirchandani, Location on Networks Theory and
Algorithms, MIT Press, (1979).

[Hanle 98] C.Hanle, M.Hofmann, Performance Comparison of Reliable Multicast
Protocols using the Network Simulator ns-2. In Proc. of the Annual
Conference on Local Computer Networks (LCN), Boston, MA, USA,
(October 11-14, 1998).

[Harrison 95] C.G Harrison., D.M. Chess, A. Kershenbaum, Mobile Agents: Are they a
good idea? Technical Report, IBM Research Division. Watson Research
Center, (March 1995).

[Hegering 98] H.G. Hegering, S. Abeck, B. Neumair, Integrated Network Management
of Networked Systems. Morgan Kaufmann Publishers, (1998).

[Held 74] M. Held, P. Wolfe, H.P. Crowder, Validation of Subgradient
Optimisation. Mathematical Programming, Vol.6, pp.62-88, (1974).

[Hohol 97] F. Hohol, P. Klar, J. Baumann, Efficient Code Migration for Modular
Mobile Agents. In 3rd ECOOP Workshop on Mobile Object Systems:
Operating System Support for Mobile Object Systems (MOS’97),
(1997).

[IBM 99] IBM Tokyo Research Laboratory, Aglets Workbench: Programming
Mobile Agents in Java. URL: http://www.trl.ibm.co.jp/aglets (1999).

[Ismail 99] L. Ismail, D. Hagimont, A Performance Evaluation of the Mobile Agent
Paradigm. In Proc. of OOPSLA'99, Int. Conf. on Object-Oriented
Programming, Systems and Applications, Denver, (1-5 November
1999).

[ISO-10164 98] ISO, Information Technology – Open Systems Interconnection –
Systems Management – Command Sequencer. International Standard
ISO 10164-21, ISO (1998).

 - 247 -

[ISO-WG4 95] ISO WG4 N1851, Open Distributed Management Architecture.
Working Draft 3, ISO, (July 1995).

[Jain 91] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons Inc., (1991).

[Jarvinen 72] P. Jarvinen, I. Rajala, H. Sinervo, A Branch and Bound Algorithm for
Seeking the p-median. Operations Research, Vol.20, pp.173-178,
(1972).

[Java 95] Sun Microsystems, The Java Language Specification,
http://hava.sun.com/docs/books/jls/index.html (October 1995).

[JDK-OS] Sun Microsystems, Java Object Serilisation,
http://java.sun.com/products/jdk/1.1/docs/guide/serialization/

[JDK-RMI] Sun Microsystems, Java Remote Method Invocation,
http://java.sun.com/products/jdk/rmi/

[JDMK 98] Sun Microsystem, Java Dynamic Management Kit, February (1998).

[JMAPI 96] Sunsoft, Java Management API Architecture. Revision A, (September
1996).

[Johansen 95a] D. Johansen, R. van Renesse, F. B. Schneider, An Introduction to the
TACOMA Distributed System – Version 1.0, Technical Report 95-23,
University of Tromso and Cornell University, (June 1995).

[Johansen 95b] D. Johansen, R. van Renesse, F. B. Schneider, Operating System
Support for Mobile Agents. Proc. of the 5th IEEE Workshop on Hot
Topics in Operating Systems, pp. 42-45, (1995).

[Joyce 87] Joyce, J., Lomow, G., Slind, K., Unger, B., Monitoring Distributed
Systems. ACM Trans. Comput. Syst., 5(2), 121-50, (1987).

[Kahani 97] M. Kahani, H.W.P. Beadle, Decentralised Approaches for Network
Management. Computer Communications Review, ACM SIGCOMM,
Vol. 27 N.3, (July 1997).

[Kariv 79] O. Kariv, S.L. Hakimi, An Algorithmic Approach to Network Location
Problems - Part 2: The P-medians, SIAM J. Appl. Math., Vol.37, pp.
539-560, (1979).

[Keller 96] A. Keller, Service-based Systems Management: Using CORBA as a
Middleware for Intelligent Agents. In Proc. of the IFIP/IEEE
International Workshop on Distributed Systems: Operations &
Management, (October 1996).

[Khumawala 72] B.M Khumawala, An Efficient Branch and Bound Algorithm for the
Warehouse Location Algorithm. Management Science, Vol.18,
pp.B718-B731, (1972).

[Knight 99] G. Knight, R. Hazemi, Mobile Agent based management in the INSERT
project, Journal of Network and System Management (Mobile Agent-
based Network and Service Management), Vol. 7 (3), (September 1999).

 - 248 -

[Kooijman 95] R. Kooijman, Divide and Conquer in Network Management using
Event-driven Network Area Agents. Technical University of Delft, The
Netherlands. (May 1995).

[Kramer 99] K.H. Kramer, N. Minar, P. Maes, Mobile Software Agents for Dynamic
Routing. Mobile Computing and Communication Review, Vol.3, N.2,
(March 1999).

[Lange 98] D. B. Lange, Mobile Objects and Mobile Agents: The Future of
Distributed Computing? , Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’98), (1998).

[Lange 99] D. B. Lange, M. Oshima, Seven Good Reasons for Mobile Agents.
Communications of the ACM, Vol.42(3), pp.88-89, (March 1999).

[Lea 93] R. Lea, C. Jacquemont, E. Pillevesse, Cool: System Support for
Distributed Object-oriented Programming. Communications of the
ACM, Vol.36(9), pp.37-46, (November 93).

[Leckie 97] C. Leckie, R. Senjen, B. Ward, M. Zhao, Communication and
Coordination for Intelligent Fault Diagnosis Agents. In Proc. of the
IFIP/IEEE International Workshop on Distributed Systems Operations
& Management (DSOM’97), Sydney, Australia, (October 21-23, 1997).

[Lee 98] L.C. Lee, H.S. Nwana, D.T. Ndumu, P. de Wilde, The Stability,
Scalability and Performance of Multi-Agent Systems. BT Technology
Journal, Vol. 16, N.3, pp.69-78, (July 1998).

[Leinwand 96] A. Leinwand, K. F. Conroy, Network Management, a Practical
Perspective. Addison-Wesley, (1996).

[Levi 96] D.B. Levi, J. Schonwalder, Script MIB. Definition of Managed Objects
for the Delegation of Management Scripts. IETF Internet Draft, 1st
version, (November 1996).

[Levi 99] D. Levi, J. Schonwalder, RFC2592 – Definitions of Managed Objects
for the Delegation of Management Scripts. The Internet Society, (May
1999).

[Lewis 97] L. Lewis, U. Datta, Intelligent Agents for Distributed Configuration
Management. In Proc. of the IFIP/IEEE International Workshop on
Distributed Systems Operations & Management (DSOM'97), Sydney,
Australia, (October 21-23, 1997).

[Lewis 99] J.P. Lewis, A. Trail, Statistics Explained. Addison-Wesley, (1999).

[Liotta 01a] A. Liotta , G. Pavlou, G. Knight, Active Distributed Monitoring for
Dynamic Large-scale Networks, Proceedings of the IEEE International
Conference on Communications (ICC'01), Helsinki, Finland, IEEE,
(June 2001).

[Liotta 01b] A. Liotta , G. Pavlou, G. Knight, Reducing the Cost of Large-Scale
Network Monitoring with Mobile Code, submitted to IEEE Network.

 - 249 -

[Liotta 01c] A. Liotta , G. Pavlou, G. Knight, A Self-adaptable Agent System for
Efficient Information Gathering, Proceedings of the 3rd International
Workshop on Mobile Agents for Telecommunication Applications
(MATA’01), Montreal, Canada, Springer-Verlag (August 2001).

[Liotta 98a] A. Liotta , G. Knight, G. Pavlou, Modelling Network and System
Monitoring Over the Internet Using Mobile Agents, Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS
'98), New Orleans, USA, Vol. 2, pp. 300-312, (February 1998).

[Liotta 98b] A. Liotta , G. Knight, Decomposition Patterns for Mobile Code-based
Management. In proc. of HP-OVUA, The Hewlett-Packard Openview
University Association Plenary Workshop 1998, ENST de Bretagne,
Rennes, France, (April 19-21, 1998).

[Liotta 99a] A. Liotta , G. Knight, G. Pavlou, On the Efficiency of Decentralised
Monitoring using Mobile Agents. In proc. of HP-OVUA, The Hewlett-
Packard Openview University Association Plenary Workshop 1999,
Bologna, Italy, (June 13-15, 1999).

[Liotta 99b] A. Liotta , G. Knight, G. Pavlou, On the Performance and Scalability of
Decentralised Monitoring Using Mobile Agents, Proceedings of the 10th
IFIP/IEEE International Workshop on Distributed Systems: Operations
Management (DSOM'99), (October 1999).

[Liotta 99c] A. Liotta , G. Knight, G. Pavlou, A Simulation-based Assessment of
Information Gathering Systems based on Mobile Agents. In proc. of
Simulation’99, London, UK, (October 29, 1999).

[Lipperts 00] S. Lipperts, How to Efficiently Deploy Mobile Agents for an Integrated
Management. In Proc. of 3rd IFIP International Conference on Trends
Towards a Universal Service Market, Munich, Germany. In Lecture
Notes in Computer Science, Springer-Verlag, (September 2000).

[Lopes 00] R. P. Lopes, J. L. Oliveira, On the Use of Mobility in Distributed
Network Management. Proc. of the 33rd Hawaii International Conference
on System Sciences (HICSS-33), (January 2000).

[M3010 91] CCITT Rec. M3010 1991, Principles for a Telecommunications
Management Network (TMN), (1991).

[Magedanz 95] T. Magedanz, On the impacts of Intelligent Agent Concepts on Future
Telecommunication Environments. In Proceedings of the 3rd
International Conference on Intelligence in Broadband Services and
Networks IS&N 1995, Heraklion, Crete, Greece, (October 16-20, 1995).

[Magedanz 96b] T. Magedanz et al, Intelligent Agents: An Emerging Technology for
Next Generation Telecommunications? In Proc. of IEEE INFOCOM,
San Francisco, California, USA. (March 24-28, 1996).

[Martin-Flatin 00] Jean-Philippe Martin-Flatin, S. Znaty, Two Taxonomies of Distributed
Network and System Management Paradigms. In Emerging Trends and
Challenges in Network Management, S. Erfani and P. Ray (Eds.),
Plenum Publishers, (2000).

 - 250 -

[Martin-Flatin 97a] Jean-Philippe Martin-Flatin, A Survey of Distributed Enterprise Network
and Systems Management Paradigms. Submitted to JNSM, Special
Issue on Enterprise Network and Systems Management, (November 30,
1997).

[Martin-Flatin 97b] Jean-Philippe Martin-Flatin, S. Znaty, Annotated Typology of
Distributed Network Management Paradigms. Proceedings of
DSOM’97, Sydney, Australia, (21-23 October 1997).

[MASIF 97] Object Management Group, Mobile Agent System Interoperability
Facilities Specification, orbos/97-10-05, 1997,
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf (1997).

[Matthes 95] F. Matthes, G. Schroder, J.W. Schmidt, Tycoon: a Scalable and
Interoperable Persistent System Environment. In M. P. Atkinson, editor,
Fully Integrated Data Environments. Springer-Verlag, p.25, (1995).

[Matula 76] D.W. Matula, R. Kolde, Efficient Multi-Median Location in Acyclic
Networks, ORSA/TIMS Bulletin, No.2, (1976).

[MCB] Mobile Code Bibliography. http:// www. cnri. reston. va.us/
home/koe/bib/

[McCloghrie 91] K. McCloghrie, M. Rose, RFC1213 – Management Information Base for
Network Management of TCP/IP-based internets: MIB-II, The Internet
Society, (March 1991).

[McCloghrie 94] K. McCloghrie, F. Kastenholz, RFC1573 – Evolution of the Interfaces
Group of MIB-II, The Internet Society, (January 1994).

[Meyer 95] K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G. Goldszmidt, Y.
Yemini, Decentralising Control and Intelligence in Network
Management. Proceedings of the 4th International Symposium on
Integrated Network Management, Santa Barbara, CA, (May 1995).

[Milojicic 99] D. Milojicic, Mobile Agent Applications. IEEE Concurrency, pp.80-90,
(September 99).

[Mountzia 96] M.A. Mountzia, G. Dreo-Rodosek, Delegation of Functionality: Aspects
and Requirements on Management Architectures. Proceedings of the
IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management (DSOM’06), (October 1996).

[Mountzia 97a] M.A. Mountzia, G. Dreo-Rodosek, Using the Concept of Intelligent
Agents in Fault Management of Distributed Services. Journal of
Network and Systems Management, (1997).

[Mountzia 97b] M.A. Mountzia, D. Benech, Communication Requirements and
Technologies for Multi-Agent Management Systems. In Proc. of the
IFIP/IEEE International Workshop on Distributed Systems Operations
& Management (DSOM'97), Sydney, Australia, (October 21-23, 1997).

[Mountzia 98] M.A. Mountzia, A Distributed Management Approach Based on
Flexible Agents. Interoperable Communication Networks, Baltzer
Science Publishers, Volume I/I, (January 1998).

 - 251 -

[Mullins 89] L.J. Mullins, Management and Organisational Behaviour. 2nd edition,
Pitman, London, UK, (1989).

[MVCE] Virtual Centre of Excellence in Mobile & Personal Communications,
(http://www.mobilevce.co.uk/index2.htm)

[NAM] J. Mehringer, The NAM network animator
http://www.isi.edu/nsnam/nam/index.html

[Narula 77] S.C. Narula, U.I. Ogbu, H.M. Samuelsson, An Algorithm for the p-
Median Problem. Operations Research, Vol.25, pp.709-712, (1977).

[NS] UCB/LBNL/VINT, NS Network Simulator version 2. (http://www-
mash.cs.berkeley.edu/ns).

[Oliveira 99] J.L. Oliveira, R. P. Lopes, Distributed Management Based on Mobile
Agents. Proc. of MATA 99, (1999).

[Oppliger 99] R. Oppliger, Security Issues Related to Mobile Code and Agent-based
Systems. Computer Communications, Vol.22, pp.1165-1170, Elsevier,
(1999).

[Pagurek 98a] B. Pagurek, Y. Li, A. Bieszczad, G. Susilo, Network Configuration
Management In Heterogeneous ATM Environments. In Proc. of the
International Workshop on Agents in Telecommunications Applications
IATA’98, AgentWorld’98, Paris, France, (4-7 July 1998).

[Pagurek 98b] B. Pagurek, Y. Li, A. Bieszczad, G. Susilo, PVC Provisioning In
Heterogeneous ATM Environments. In Proc. of the 2nd Canadian
Conference on Broadband Research (CCBR ’98), Ottawa, Canada, (June
21-24, 1998)

[Papaioannou 00a] T. Papaioannou, On the Structuring of Distributed Systems. PhD Thesis,
Loughborough University, (February 2000).

[Papaioannou 00b] T. Papaioannou, Mobile Information Agents for Cyberspace – State of
the Art and Visions. Proc. of Co-operating Information Agents, (2000).

[Park 88] S.K. Park, R.W. Miller, Random Number Generation: Good Ones are
Hard to Find. Communications of the ACM, Vol.31, N.10, pp.1192-
1201, (October 1988).

[Pavlou 95] G. Pavlou, K. McCarthy, S. Bhatti, G. Knight, The OSIMIS Platform:
Making OSI Management Simple. Integrated Network Management IV -
New York: Chapman & Hall (1995).

[Pavlou 96] G. Pavlou, G. Mykoniatis, J. Sanchez, Distributed Intelligent
Monitoring and Reporting Facilities, IEE Distributed Systems
Engineering Journal (DSEJ), Special Issue on Management, Vol. 3, No.
2, pp. 124-135, IOP Publishing, (1996).

[Payer 97] Udo Payer, Management by Delegation in ISDN-based Remote Access
Environments. In Proc. of the 8th Joint European Networking
Conference. Edinburgh, (May 12-15, 1997).

 - 252 -

[Peine 97] H. Peine, T. Stolpmann, The Architecture of the Ara Platform for
Mobile Agents. In K. Rothernmel and R. Popescu-Zeletin editors, Proc.
of the 1st International Workshop on Mobile Agents, N.1219 in Lecture
Notes in Computer Science, Springer-Verlag, p.26 (April 1997).

[Pham 98] V. A. Pham, A. Karmouch, Mobile Software Agents: and Overview.
IEEE Communications Magazine, pp.26-37, (July 1998).

[Puliafito 99] A. Puliafito, S. Riccobene, M. Scarpa, An Analytical Comparison of the
Clien-Server, Remote Evaluation and Mobile Agents Paradigms. In
Proc. of Joint Symposium: 1st International Symposium on Agent
Systems and Applications; 3rd International Symposium on Mobile
Agents, (September 99)

[Quittek 01] J. Quittek, M. Brunner, Applying Active Technologies to Distributed
Management. Proc. of IM’01, Seattle, USA, (May 2001).

[Ranganathan 96] M. Ranganathan, A. Acharya, J. Saltz, Distributed Resource Monitors
for Mobile Objects. Proc. of the 5th International Workshop on Object
Orientation in Operating Systems, (1996).

[Ranganathan 97] M. Ranganathan, A. Acharya, S.D. Sharma, J. Saltz, Network-aware
Mobile Programs. Proc. of the 1997 USENIX Technical Conference,
pp. 91-104, (1997).

[Raza 98] K. S. Raza, Implementation of Plug-and-Play Printer with Mobile
Agents, Technical Report SCE-98-04, System and Computer
Engineering, Carleton University, (1998).

[Reid 91] K.B. Reid, Centroids to Centers in Trees. Networks, Vol.21, p.11-17,
John Wiley & Sons, (1991).

[Rescigno 97] A. Rescigno, Optimal Polling in Communication Networks. IEEE
Transactions on Parallel and Distributed Systems, Vol.8, N.5, (May
1997).

[Rothermel 97] K. Rothermel, F. Hohl, N. Radouniklis, Mobile Agents: What is
Missing? Proc. of Distributed Applications and Interoperable Systems,
DAIS’97, Chapman & Hall, pp.74-85, (1997).

[Rubinstein 00a] M.G. Rubinstein, O.C.M.B Duarte, G. Pujolle, Improving Management
Performance by Using Multiple Mobile Agents. Forth International
Conference on Autonomous Agents, ACM Agents 2000, pp. 165-166,
Barcelone, Spain, (June 2000).

[Rubinstein 00b] M.G. Rubinstein, O.C.M.B Duarte, G. Pujolle, Using Mobile Agent
Strategies for Reducing the Response Time in Network Management.
16th IFIP World Computer Congress, ICCT2000, pp. 278-281, Beijing,
China, (August 2000).

 - 253 -

[Rubinstein 00c] M.G. Rubinstein, O.C.M.B Duarte, G. Pujolle, Reducing the Response
Time in Network Management by Using Multiple Mobile Agents.
IEEE/IFIP Third International Conference on Management of
Multimedia Networks and Services (MMNS’2000). In Managing QoS in
Multimedia Networks and Services, Chapter 18, José Neuman de Souza
and Raouf Boutaba (Ed.), pp. 253-265, Kluwer Academic Publishers,
(September 2000).

[Rubinstein 00d] M.G. Rubinstein, O.C.M.B Duarte, G. Pujolle, Evaluating the Network
Peformance Management based on Mobile Agents, Second International
Workshop on Mobile Agents for Telecommunication Applications
(MATA '00), Paris, France. In Lectures Notes in Computer Science
1931, Eric Horlait (Ed.), pp. 95-102, Springer-Verlag, (September
2000).

[Rubinstein 01] M.G. Rubinstein, Mobile Agents in Network Management. PhD thesis ,
Grupo de Teleinformática e Automação, Universidade Federal do Rio de
Janeiro, (March 2001).

[Rubinstein 98] M.G. Rubinstein, O.C.M.B Duarte, Service Location for Mobile Agent
Systems, IEEE/SBT International Telecommunications Symposium
ITS'98, pp. 623-626, São Paulo, SP, Brazil, (August 1998).

[Rubinstein 99a] M.G. Rubinstein, O.C.M.B Duarte, Evaluating Tradeoffs of Mobile
Agents in Network Management, Networking and Information Systems
Journal, Hermes Science Publications, vol. 2, no. 2, pp. 237-252, (1999).

[Rubinstein 99b] M.G. Rubinstein, O.C.M.B Duarte, Evaluating the Performance of
Mobile Agents in Network Management, IEEE Global
Telecommunications Conference - Globecom'99, pp. 386-390, Rio de
Janeiro, RJ, Brazil, (December 1999).

[Rubinstein 99c] M.G. Rubinstein, O.C.M.B Duarte, Analyzing Mobile Agent Scalability
in Network Management, IEEE Latin American Network Operations and
Management Symposium - LANOMS'99, pp. 64-74, Rio de Janeiro, RJ,
Brazil, (December 1999).

[Sahai 97a] Akhil Sahai, Christine Morin, Stéphane Billiart, Intelligent agents for a
Mobile Network Manager (MNM). In Proceedings of the IFIP/IEEE
International Conference on Intelligent Networks and Intelligence in
Networks (2IN'97), Paris, France, (September 1997).

[Sahai 97b] Akhil Sahai, Stéphane Billiart, Christine Morin, Astrolog: A Distributed
and Dynamic Environment for Network and System Management. In
Proceedings of the 1st European Information Infrastructure User
Conference, Stuttgart, Germany, (February 1997).

[Sahai 97c] Akhil Sahai, Stéphane Billiart, Christine Morin, A Portable and Mobile
manager for Distributed System Management. In Proceedings of the
Third Joint Conference on Information Sciences, Raleigh, North
Carolina, USA, (March 1997).

 - 254 -

[Sahai 98a] Akhil Sahai, Christine Morin, Mobile Agents Enhanced Thin Client
Approach to Network Management. In Proceedings of IEEE Singapore
International Conference on Networks (SICON’ 98), Singapore,
(June30-July 3 1998).

[Sahai 98b] Akhil Sahai, Christine Morin, Mobile Agents for Enabling Mobile User
Aware Applications. In Proceedings of the Second International
Conference ACM Autonomous Agents (Agents 98),
Minneapolis/St.Paul, USA., (May 1998).

[Sahai 98c] Akhil Sahai, Christine Morin. Towards Distributed and Dynamic
Network Management. In Proceedings of the IEEE/IFIP Network
Operation and Management Symposium (NOMS), New Orleans,
Lousiana, USA, (February 1998).

[Schonwalder 00] J. Schonwalder, J. Quittek, C. Kappler, Building Distributed
Management Applications with the IETF Script-MIB, IEEE Journal on
Selected Areas in Communications, Vol. 18, No. 5, p.702-714, (May
2000).

[Schonwalder 96] J. Schonwalder, Using Multicast-SNMP to Coordinate Distributed
Management Agents. In Proc. 2nd Int’l. IEEE Workshop of Systems
Management, Toronto, Ontario, pp. 136-41, (June 1996).

[Schonwalder 97] J. Schonwalder, Network Management by Delegation – From Research
Prototypes Towards Standards. Proc. of the 8th Joint European
Networking Conference (JENC8), Edinburgh (May 1997).

[Schonwalder 99] J. Schonwalder, J. Quittek, RFC2593 – Script MIB Extensibility
Protocol Version 1.0, The Internet Society, (May 1999).

[Schoonderwoerd
96]

R. Schoonderwoerd, J. Bruten, L. Ronthkrantz., Ant-based load
balancing in telecommunications networks. Adaptive Behaviour, Vol.5,
N.2, pp.169-207, (1996).

[Schrage 75] L. Schrage, Implicit Representation of Variable Upper Bounds in Linear
Programming. Mathematical Programming Study, Vol. 4, pp.118-132,
(1975).

[Schuringa 00] J. Schuringa, G. Remsak, Packet Routing with Genetically Programmed
Mobile Agents. In R. Harmen (Editor), Telecommunication Network
Intelligence. Proc. of the Sixth International Conference on Intelligence
in Networks (SmartNet 2000), Kluwer Academic Publishers, pp.389-
404, (September 2000).

[Shehory 98] O. Shehory, K. Sycara, P. Chalasani, S. Jha, Agent Cloning: an
Approach to Agent Mobility and Resource Allocation. IEEE
Communications Magazine, pp.58-67, (July 1998).

[Siegel 96] J. Siegel, CORBA Fundamentals and Programming. John Wiley &
Sons, (1996).

[Siegl 95] M.R. Siegl, G. Trausmuth, Hierarchical Network Management: a
Concept and its prototype in SNMPv2. Technical University of Wien,
Austria. (May 1995).

 - 255 -

[Silva 00] L. Silva, G. Soares, P. Martins, V. Batista, L. Santos, Comparing the
Performance of Mobile Agent Systems: A Study of Benchmarking,
Journal of Computer Communications, Special Issue on Mobile Agents
for Telecommunication Applications, (January 2000).

[Sloman 94] M. Sloman, Network and Distributed Systems Management. Addison-
Wesley Publishing Company, (1994).

[Soares 99] G. Soares, L.M. Silva, Optimizing the Migration of Mobile Agents. In
Proc. of the 1st International Workshop oin Mobile Agents for
Telecommunications Applications (MATA’99), pp.161-178, (October
1999).

[Somers 96] F. Somers, HYBRID: Unifying Centralised and Distributed Network
Management using Intelligent Agents. Proc. IEEE Network Operations
and Management Symposium (NOMS’96), Kyoto, Japan, April 1996.
IEEE Press, New York, USA, (1996).

[Stallings 93] Stallings, W., SNMP, SNMPv2 and CMIP The Practical Guide to
Network Management Standards. Addison-Wesley Publishing
Company, (1993).

[Stallings 96] W.Stallings, SNMP, SNMPv2, and RMON Practical Network
Management, Addison-Wesley, (1996).

[Stamos 90a] J.W. Stamos, D.K. Gifford, Implementing Remote Evaluation. IEEE
Transactions on Software Engineering, Vol. 16, No.7, (July 1990).

[Stamos 90b] J. W. Stamos, D. K. Gifford, Remote Evaluation, ACM Transactions on
Programming Languages and Systems, 12(4):537-565, (October 1990).

[Steenekamp 96] P. Steenekamp, J. Roos, Implementation of Distributed Systems
Management Policies: A Framework for the Application of Intelligent
Agent Technology. In Proc. of the 2nd Int'l. IEEE Workshop of Systems
Management, Toronto, Ontario, pp. 127-35 (June 1996).

[Steward 94] S. Steward, S. Appleby, Mobile software agents for control of
distributed systems based on principles of social insect behaviour.
Singapore ICCS '94. Conference Proceedings. (Cat. No.94TH0691-6),
pp549-53 vol.2, (1994).

>6WUD HU���@ M. SWUD HU�� 0�� 6FKZHKP�� A Performance Model for Mobile Agent
Systesms. Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications PDPTA'97,
Volume II, Editor H. R. Arabnia, Las Vegas, pp.1132-1140, (1997).

[Straβer 96] M. Straβer, J. Baumann, B. Hohl, Mole – A Java Based Mobile Agent
System, Special Issues in Object-Oriented Programming: Workshop
Reader of the 10th European Conference on Object-Oriented
Programming ECOOP’96, M. Muhlauser, Ed., pp.327-334, (July 1996).

[Suzuki 96] M. Suzuki, Y. Kiriha, S. Nakai, Dynamic Script Binding for Delegation
Agent. DSOM '96, L'Aquila, Italy, (1996).

 - 256 -

[Tansel 83a] B. C. Tansel, R. L. Francis, T. J. Lowe, Location on Networks: a Survey.
Part I: The p-center and p-median problems. Management Science,
Vol.29(4), pp.482-497, (April 1983).

[Tansel 83b] B. C. Tansel, R. L. Francis, T. J. Lowe, Location on Networks: a Survey.
Part II: Exploiting Tree Network Structure. Management Science,
Vol.29(4), pp.498-511, (April 1983).

[Theilmann 99] W. Theilmann, K. Rothermel, Disseminating Mobile Agents for
Distributed Information Filtering. Joint Symposium ASA/MA’99, 1st
Symposium on Agent Systems and Applications and 3rd International
Symposium on Mobile Agents, pp.152-161, IEEE press, (1999).

[Thiel 91] G. Thiel, Locus Operating System, a Transparent System. Computer
Communications, Vol.14(6), pp.336-346, (1991).

[Thompson 98] J.P. Thompson, Web-based Enterprise Management Architecture. IEEE
Communications Magazine, 36(3), pp.80-86, (1998).

[Vassila 95] A. Vassila, G. Knight, Introducing Active Managed Objects for
Effective and Autonomous Distributed Management. In Proceedings of
the 3rd International Conference on Intelligence in Broadband Services
and Networks IS&N 95, Heraklion, Crete, Greece, (October 16-20,
1995).

[Vassila 97] A. Vassila, G. Pavlou, G. Knight, Active Objects in TMN. In
Proceedings of ISINM '97, (1997).

[VESPER] Virtual Home Environment for Service PErsonalization and Roaming
Users. IST-1999-10825 (http://vesper.intranet.gr/).

[Vigna 98] G. Vigna, (editor), Mobile Agents and Security. Lecture Notes in
Computer Science, LNCS 1419, Springer-Verlag, (1998).

[Waldbusser 91] S. Waldbusser, Remote Network Monitoring Management Information
Base. RFC1271, IAB, (November 1991).

[Waldbusser 95] S. Waldbusser, Remote Network Monitoring Management Information
Base. RFC 1757, (February 1995).

[Waldo 99] J. Waldo, The Jini Architecture for Network-centric Computing,
Communications of the ACM Volume 42, No. 7, pp 76-82, (July 1999).

[Weir 97] C. Weir, Architectural Styles for Distribution, Using macro-patterns for
system design. Second European Conference on Pattern Languages of
Programming, EuroPLoP'97, (June 1997).

[White 94] J. E. White, Telescript Technology: The Foundation for the Electronic
Marketplace. White paper, General Magic, Inc., (1994).

[White 95a] J. E. White, Telescript Technology: An Introduction to the Language.
White paper, General Magic, Inc., (1995).

[White 95b] J. E. White, Telescript Technology: Scenes from the Electronic
Marketplace. White paper, General Magic, Inc., (1995).

 - 257 -

[Wies 97] R. Wies, M.A. Mountzia, P. Steenekamp, A Practical Approach
Towards a Distributed and Flexible Realization of Policies Using
Intelligent Agents. In Proc. of the IFIP/IEEE International Workshop on
Distributed Systems Operations & Management (DSOM’97), Sydney,
Australia, (October 21-23, 1997).

[Wijata 00] Y.I. Wijata, D. Niehaus, V.S. Frost, A Scalable Agent-based Network
Measurement Infrastructure. IEEE Communications Magazine,
(September 2000).

[Wooldridge 94] M. Wooldridge, N. Jennings. Agent Theories, Architectures, and
Languages: A Survey. In Proc. of ECAI94 Workshop on Agent
Theories, Architectures & Languages (eds M.J. Wooldridge & N.R.
Jennings) Amsterdam The Netherlands, pp 1-32, (1994).

[Wooldridge 95] M. Wooldridge, N. Jennings. Intelligent Agents: Theory and Practice.
The Knowledge Engineering Review, Vol.10(2), pp.115-152, (1995).

[Wooldridge 96] M. Wooldridge. INTELLIGENT AGENTS II: Agent Theories,
Architectures, and Languages. Springer-Verlag Lecture Notes in AI -
Volume 1037, (1996).

[Wooldridge 98] M. Wooldridge, Agent-based computing. Interoperable Communication
Networks, Baltzer Science Publishers, Volume I/I, (January 1998).

[X738 93] ITU-T Rec. X.738, Information Technology - Open Systems
Interconnection - Systems Management: Summarization Function,
(November 1993).

[X739 93] ITU-T Rec. X.739, Information Technology - Open Systems
Interconnection - Systems Management: Metric Objects and Attributes,
(November 1993).

[X753 97] ITU-T Rec. X.753, Information Technology - Open Systems
Interconnection - Systems Management: Command Sequencer for
System Management. ITU, Geneva, Switzerland, (October 1997).

[Yemini 91] Y. Yemini, G. G. Goldszmidt, S. Yemini, Network Management by
Delegation. Integrated Network Management II, Amsterdam (1991).

[Yemini 93] Y. Yemini, The OSI Network Management Model. IEEE
Communication Magazine, Pagg.20-29, (May 1993).

[Yucel 99] S. Yucel, T. Saydam, A. Mayorga, A QoS-Driven Management
Architecture using Mobile Agents. Journal of Selected Areas in
Communications, (1999).

[Zegura 96] E.W.Zegura, K.L.Calvert, S.Bhattacharjee, How to Model an
Internetwork. IEEE INFOCOM 96, San Francisco, CA, (1996).

[Zegura 97] E.W. Zegura, K.L. Calvert, M.J. Donahoo, A Quantitative Comparison
of Graph-based Models for Internet Topology. IEEE/ACM Transactions
on Networking, (1997).

 - 258 -

[Zhang 96] T. Zhang, S. Covaci, R. Popescu-Zeletin, Intelligent Agents in Network
and Service Management. In Proc. IEEE Global Telecommunications
Conference (GLOBECOM’96), London, UK, Novermber 1996. IEEE
Press, New York, NY, USA, (1996).

[Zhang 97] Tianning Zhang, Java-based Mobile Intelligent Agents as Network
Management Solutions. In Proc. of the 8th Joint European Networking
Conference. Edinburgh, (May 12-15 1997).

[Znaty 94] S. Znaty, J. Sclavos, Annotated Bibliography on Network Management.
Computer Communication Review, ACM-SIGCOMM, Vol. 24 N. 1,
(January 1994).

 - 259 -

Appendix: Mathematical Developments

The following mathematical series is used several times in Chapter 7. Its mathematical

developments are, hence, showed in this appendix:

()() () ()()

∑ ∑∑∑ ∑
−

=

−

=

−

=

−

=

−

=

−=

1)(

0

1

0

1)(

0

1)(

0

1)(

**
uR

l

l

i

i
uR

i

i
uR

l

uR

li

i nnn

If we develop the two inner geometric series (assuming n>1) we obtain

() ()

∑∑
−

=

−

=

−

+
−

−
−

−=

−
−−

−
−=

1)(

0

)(1)(

0

)(

1

1

11

1

1

1

1

1 uR

l

luRuR

l

luR

nn

n

n

n

n

n

n

n

A fundamental properties of series allows to express the series of sums as the sum of series;

hence

() () ()

∑∑∑
−

=

−

=

−

=

−
+

−

−

−

−=
1)(

0

1)(

0

1)(

0

)(

1

1

11

1 uR

l

uR

l

luR

l

uR

nn

n

n

n

In the first and third series the terms inside the series are independent from the summation

variable l and can, thus, be carried out of the series (they need to be multiplied by R(u)). These

terms have the same denominator and can then be directed added, leading to the following

expression:

()

∑
−

=

−

−
−

+−=
1)(

0

)(

11

11
*)(

uR

l

luR

n

n

n

n
uR

If we now develop the remaining geometric series we obtain

()
()2

)()()()(

1

11**)(

1

1
*

1

1

1
*)(

−
+−−=

−
−

−
−

−
=

n

nnnuR

n

n

nn

n
uR

uRuRuRuR

 - 260 -

If we consider the asymptotic behaviour of this expression for R(u) Å∞ we achieve the

following expression

()()
())(

1)(

0

1)(

)(uR
uR

l

uR

li

i nuROn ∝∑ ∑
−

=

−

=

