
Towards Formal Analysis of the Permission-based
Security Model for Android

Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka
KDDI R&D Laboratories, Saitama, Japan

Email: {wookshin, kiyomoto, ka-fukushima, toshi}@kddilabs.jp

Abstract—Since the source code of Android was released to
the public, people have concerned about the security of the
Android system. Whereas the insecurity of a system can be easily
exaggerated even with few minor vulnerabilities, the security is
not easily demonstrated. Formal methods have been favorably
applied for the purpose of ensuring security in different contexts
to attest whether the system meets the security goals or not
by relying on mathematical proofs. In order to commence
the security analysis of Android, we specify the permission
mechanism for the system. We represent the system in terms of
a state machine, elucidate the security needs, and show that the
specified system is secure over the specified states and transitions.
We expect that this work will provide the basis for assuring the
security of the Android system. The specification and verification
were carried out using the Coq proof assistant.

Keywords-Android; permission; security; formal model; Coq

I. INTRODUCTION

Android is an open mobile platform developed by the
Open Handset Alliance (OHA) led by Google, Inc. The
Android platform consists of several layers: the Linux kernel,
native libraries, the Dalvik virtual machine (VM), and an
application framework [1]. The Linux kernel provides basic
operating system services and hardware abstraction for the
upper software stacks. Native libraries support the miscel-
laneous functionalities of web browsing, multimedia data
processing, database access, and GPS reception optimized for
a resource-limited hardware environment. The register-based
Dalvik VM runs Java code with low memory demand. At
the top of the layers, Android provides a component-based
programming framework so that users can easily build their
own applications.

An Android application is written with new and reusable
application building blocks, such as activity, broadcast intent
receiver, service, and content provider. After an application is
written, it is deployed in a Zip-compatible archive, .apk file,
or the Android package file. An Android package file contains
codes, resources, and a special XML file called the Android
Manifest file. The manifest file contains basic information
about an application such as the package name, component
descriptions, and permission declarations.

The definitions of Android permissions are found in android.
Manifest.permissions class. Each permission is defined as a
string and conveys the rights to execute a particular operation.
In the manifest file, the permissions are sorted into two
categories: permissions required by the application in order

Code 1 An example of AndroidManifest.xml.
...
<manifest xmlns:android="http://schemas.android.
com/apk/res/android" package="jp.kddilabs.
AppMarketClient" android:versionCode="1" android:
versionName="1.0.0">
<uses-permission xmlns:android="http://
schemas.android.com/apk/res/android" android:
name="android.permission.INTERNET"/>

<uses-permission xmlns:android="http://
schemas.android.com/apk/res/android" android:
name="android.permission.READ_OWNER_DATA"/>

<permission xmlns:android= "http://schemas.
android.com/apk/res/android" android:label=
"@+id/textElement" android:name=
"jp.kddilabs.READ_APPMARKET_DATA"
android:permissionGroup="@string/app_name"
android:protectionLevel="normal"/>

<application android:icon="@drawable/
icon" android:label="@string/app_name">
<activity android:name=".AppMarketClientMain"

...

to execute and permissions required by others in order to
interact with the application components. The permissions that
the application uses are listed in the 〈uses-permission〉 tag
and the permissions that the application imposes are in the
〈permission〉 tag (see Code 1).

Android takes the sandbox approach to prevent an applica-
tion from exerting a malicious influence on other applications
or the system. An Android application basically runs in a
secure sandbox; thus, it cannot access other assets unless
explicitly authorized to do so. The sandbox mechanism is
supported by lower level mechanisms. An application is run
within its own Dalvik VM instance and also runs in a separate
Linux process with its own Linux user ID. The system assigns
a user ID when an application is installed. In order to interact
with other applications or the system over the isolation,
the application needs permission to do that. The permission
authorization occurs at the application installation time as
well. The application requests the permissions that it needs as
written in the manifest file, and then the Android system asks
the user for confirmation if allowing the application to have the
requested permissions. After authorization for the application,
the system will not ask for more permission again.

The security mechanisms of Android have apparently
worked well so far. Several security-related bugs have been re-
ported [2][3], but patched without serious security failures. The

2009 Fifth International Conference on Wireless and Mobile Communications

978-0-7695-3750-4/09 $26.00 © 2009 IEEE

DOI 10.1109/ICWMC.2009.21

87

sandbox mechanism effectively prevents malicious attempts
from compromising other parts of the system, as pointed out
in [4]. However, it might not be enough to earn customer
trust. Moreover, it seems Android faces something bigger than
practical threats which is the long-standing mistrust of open
source software with regard to security. Contrary to the tradi-
tional approach taken by mobile phone service providers and
manufactures, OHA released the Android source code to the
public and encouraged developers to participate in application
development. While the liberation has been applauded by open
source communities, end users and service providers have
doubted the security of the open mobile platform, although
open source does not imply easy-to-break and some people
even claims the open source approach is stronger in terms of
security [5].

Applying formal methods is a good way to assure users of
the security of a system. Formal methods enable us to clearly
state the elements and behaviors of the system, clarify desired
security properties, and provide the proof that the system
satisfies the security properties. Besides convincing users of
the security of the system, formal methods provide benefits for
developers; during the specification and verification processes,
developers can grasp inconsistencies and incompleteness in the
requirements and implementation and correct the system.

This paper mainly presents our specifications and the re-
sults of the verification of the permission mechanism of the
Android system. We represented the system as a state machine
aiming to ensure the security of the system in terms of the
Basic Security Theorem [6]. The specified state and transition
elements of the system and identified security conditions are
briefly introduced. We also exemplify some lemmas that are
used for security proofs. However, we cannot list all of them in
this paper because of space limitations. All specifications and
the verification used the Coq proof assistant. Assuming that
the reader is already familiar with the basic syntax of Coq and
natural deduction, we did not explain Coq syntax in this paper
because of space limitations. For further information on Coq,
please refer to the Coq Web page [7] and the book by Bertot
and Casteran [8].

The rest of the paper proceeds as follows. In Section II, we
describe security requirements and specify system elements
and operations in terms of state-transition system. Then in
Section III, the verification of the security properties are
introduced with some exemplified lemmas and proofs. We
discuss the limitation and expected contribution of our work
in Section IV, and conclude in Section V.

II. SPECIFICATIONS

Although the security of the Android system is enforced
through multiple system layers, we only specify the permission
mechanism, which is defined at the Android application frame-
work. In other words, we do not specify the sandbox enforce-
ment of the VM or the Linux kernel. The security of the Linux
kernel and the VM has been studied separately. Our formal
model would be too complicated if we specified the security
mechanisms of other layers altogether. Moreover, the notion

of permission is to release capabilities, whereas the sandbox
is to provide restrictions. Accordingly, we concentrated on the
releasing features, assuming that the sandbox mechanism is
working properly. We only include security-related features
in our specifications in order to keep the specifications to a
manageable size.

Modeling the permission mechanism of the Android system
goes through several steps, which are similar to the Goguen-
Meseguer program described by Cristia [9]:

• Step 1: List the security needs.
• Step 2: Take security-related parts of the system (e.g.,

data structures, algorithms, input, output, etc.) and de-
scribe the system: define states with chosen system el-
ements and define transitions based on the operations
that affect the state elements. The specification results
are introduced in Section II-A and Section II-C.

• Step 3: Describe security conditions formally in terms of
a state. The security conditions are based on the security
needs of Step 1.

• Step 4: Prove that security conditions are satisfied over
state transitions.

The security needs in the permission-based Android system
can be addressed as follows: applications request permissions
statically, not dynamically. In other words, permissions that
an application requests must be written in its manifest file.
The permissions are granted by the user when the application
is installed and is maintained for the duration of the life
of the application. The grant information is removed when
the application is uninstalled from the system. In addition,
running components of the application must have only the
permissions granted to the application. Thus, it would be
possible to carry out the basic idea of the Android security
architecture: “no application has permission to perform any
operation that would adversely impact other applications, the
operating system, or the user” [10]. The needs can be grouped
and detailed as follows:

• A user grants an application the permissions that the
application requested. The requested permissions ought
to be written in the manifest file of the application. No
more permissions are given to an application than the
application requested.

• An installed application is distinguishable from others by
its identifier. An application has authorized permissions
only for the duration of its lifetime in the system. No
more permissions are allowed than have been authorized.
Only installed applications can have permissions in the
system.

• A component is distinguishable from others by its iden-
tifier. Every component is a child of an application, and
they both have each others information. A component is
allowed to have the permissions granted to the parent
application. At most, only one foreground component
exists in a certain state.

88

A. System state

In this section, we define the primitive elements of the
system: permissions, applications, components, authorizations,
and states.

An Android permission is the right to execute a specific
operation. Since permissions are designed to expand the func-
tionality of a sandboxed process out of the limitation, they
are generally related to access to particular data or functions
of other applications or the system. In our specifications, we
define permissions as a set. The elements of the permission set
are distinguishable from each other, and it is sufficient for us
to reason about the security of the system. We do not introduce
individual definitions of the android.Manifest.permission or
user-defined permissions.

The application, AppPackage, is a record type with the
following fields: an identifier, a set of application components,
and a permission request. A set of application components is
identified by app cmpnnts. The record type PermRequest is
defined to represent the permission request of an application.
Each predicate permreq ineed and permreq uneed maps the
listed permissions in the 〈uses-permission〉 and 〈permission〉
tags, respectively.

Record AppPackage: Type := mkAppPackage {
app id : AppID;
app cmpnnts : CmpnntID → Prop;
app permrqst : PermRequest }.

Record PermRequest : Type := mkPermRequest {
permreq ineed : Permission → Prop;
permreq uneed : Permission → Prop }.

Cmpnnt is also a record type for components. It has an
identifier cmpnnt id and a parent application cmpnnt papp.
The Cmpnnt does not have permission information itself, but
it will use the permissions of the parent application.

Record Cmpnnt : Type := mkCmpnnt {
cmpnnt id : CmpnntID;
cmpnnt papp : AppPackage }.

Before an application is installed, the package installer of
the system asks whether the user will grant the set of permis-
sions the application requests. Based on the user response, the
system allows the application to have the permission], or not.
The allowance is defined as Authorization as follows:

Record Authorization : Type := mkAuthorization {
auth by user : AppID → Permission → Prop }.

Now we can define a system state as a record type:

Record State : Type := mkState {
state fgcmpnnt : optionT Cmpnnt;
state package tbl : AppPackage → Prop;
state perm tbl : AppID → Permission → Prop }.

The state fgcmpnnt is the foreground component run-
ning on top of the handset screen. It is the optionT type
that is an inductive type with two constructors: ExT :
(T:Type) → optionT and NoneT : optionT. ExT is param-
eterized with a a type; therefore, the optionT can repre-

sent the optional existence of an object. For example, when
we have (s:State) and (cmp:Cmpnnt), state fgcmpnnt s =
ExT cmp means that there is a foreground component at
the state s. Conversely, state fgcmpnnt s = NoneT means
that there is no foreground component at s. The defini-
tion of optionT is borrowed from another user-contributed
Coq library, Icharate.Kernel.lambda coq. The package table,
state package tbl identifies a set of installed applications at
that state. The permission table, state permission tbl does sets
of authorized permissions for applications.

B. Security Property

From the security needs mentioned at the beginning of the
Section II, we obtain the security conditions and state those
using predicates with respect to the state. The predicates are
self-explanatory, but it would be better to clarify the meaning
of the naming terms here; an “installed” application app at
state s means that the s has information about the app in
its package table, that is, (state package tbl s app) is true.
If an application app “requested” permission p, then the app
asked for p using its permission request prqst. It can be stated
as (permreq ineed prqst p), when prqst = (app permrqst
app). If permission p is “granted” to an application app at
state s, then s has the information in its permission table.
Hence, (state perm tbl s appid p) holds, where the appid
is the identifier of the app. Permission p is “authorized” for
an application app, if and only if there was a decision that
allows the app to have p. Thus, a predicate (auth by user
auth appid p) holds for the authorization auth. Furthermore,
we say permission p is “properly” given to an application app
if p is “requested” by and “granted” to the “installed” app.

1) SecureAuth is a predicate that holds, if and only if, any
permission given to any application at a state entails
that the application requested the permission based on
its manifest information.

2) SecureCmpnnt is a combination of three predicates, and
all of the predicates specify security conditions for
the foreground component of a given state; a predi-
cate fgCmpnntIsAGoodChild holds when the foreground
component has its parent application and both of them,
the component and the parent have each other’s informa-
tion. fgCmpnntIsInstalled is valid when the parent ap-
plication is an installed application. cmpnntAppIsProper
is satisfied when the parent application requested a set
of permissions, and the permissions were granted.

3) SecureApp is valid when all installed applications in a
given state request and are granted the permissions they
need.

Combining those conditions, we define the security prop-
erty. The notion of security is defined by that property. In other
words, if the security property holds at a state, we consider
the state to be secure. In the verification process, the following
property will be tested at every transition between states, in
order to confirm whether system operations do not violate the
security conditions.

89

Definition SecureState (s:State): Prop :=
SecureAuth s ∧ SecureCmpnnt s ∧ SecureApp s.

As an example, let us unfold the cmpnntAppIsProper which
is a part of the SecureCmpnnt. It tests whether the parent ap-
plication of the foreground component has proper permissions:

Definition cmpnntAppIsProper (s:State) : Prop :=
∀ (app:AppPackage) (cmp:Cmpnnt), state fgcmpnnt s = ExT cmp
→ app = cmpnnt papp cmp → appIsProper s app.

The appIsProper tests whether the given application is
proper using pIsRequested and pIsGranted. The two functions
are defined using the previously described primitive predicates,
as their names delineate. The following shows the definition
of the pIsGranted:

Definition pIsGranted (s:State) (appid:AppID) (p:Permission) : Prop
:= state perm tbl s appid p.

C. Transition

The execution of an operation results in state changes in
the system. The operations of our concern are as follows:
install application, start a component execution, terminate a
component execution, and remove an application. Those oper-
ations affect the security of the system by changing the state
information: the foreground component, the package table, and
the permission table. We specify the four operations in terms
of the precondition and the postcondition. A precondition
describes the conditions that have to be satisfied at state s, and
a postcondition explains changes between s and another state
s’. Let us call those states pre-state and post-state, respectively.

The below example specification below is of the terminate
operation, which has simpler descriptions than others.

Definition Pre terminate (s:State) (cmpid:CmpnntID) : Prop := ∃
cmp:Cmpnnt, state fgcmpnnt s = ExT cmp ∧ (cmpid = cmpnnt id
cmp).

Definition Post terminate (s s’:State) (cmpid:CmpnntID): Prop :=
state package tbl s = state package tbl s’ ∧
state perm tbl s = state perm tbl s’ ∧
state fgcmpnnt s’ = NoneT.

Since terminate finishes the given foreground component,
the operation is executed only when the given component is
running in the foreground. The operation terminate does not
change installed applications and given permissions, but the
foreground component will be removed.

The specification of the operation install is a little longer:

Definition Pre install (s:State)
(newapp:AppPackage) (auth:Authorization) : Prop :=

(∀ (app:AppPackage), (∀ p:Permission, state perm tbl s (app id
app) p → permreq ineed (app permrqst app) p)) ∧
(∀ cmp:Cmpnnt, state fgcmpnnt s = ExT cmp → cmpnnt papp cmp
�= newapp) ∧
(∀ p:Permission, auth by user auth (app id newapp) p
→ permreq ineed (app permrqst newapp) p →

˜(state perm tbl s (app id newapp) p)) ∧
(∀ app:AppPackage, state package tbl s app → (app id app �=

app id newapp))

Definition Post install user success (s s’:State)

(newapp:AppPackage) (auth:Authorization) : Prop :=
ud = ok ∧ state fgcmpnnt s = state fgcmpnnt s’ ∧
(∀ app:AppPackage, app id app �= app id newapp)
→(state package tbl s app = state package tbl s’ app) ∧
(state perm tbl s (app id app) = state perm tbl s’ (app id app)))
∧
(∀ (someapp:AppPackage) (p:Permission), (app id newapp = app id

someapp) → state perm tbl s’ (app id someapp) p) ∧
(∀ (p:Permission), state perm tbl s’ (app id newapp) p →

auth by user auth (app id newapp) p) ∧
(∀ (someapp:AppPackage) (p:Permission), (app id newapp = app id

someapp) → pIsRequested someapp p) ∧
(∀ (p:Permission), state perm tbl s’ (app id newapp) p →

auth by user auth (app id newapp) p → permreq ineed
(app permrqst newapp) p)∧
(∀ cmp:Cmpnnt, state fgcmpnnt s’ = ExT cmp → (app id

(cmpnnt papp cmp)) �= (app id newapp)).

The precondition of intall states the following conditions:
granted permissions to all existing applications are requested
beforehand according to the manifest information. If some
permissions are authorized for a new application, then the
permissions are requested by the application, and there is also
no relevant authorization in the current state. The existing ap-
plications cannot be the new application. The new application
does not exist in the package table of the current state and
cannot be the parent of the currently running component.

The postcondition of the install are distinctly defined by
whether the installation was successful or not. Whereas an
unsuccessful install execution does not change any infor-
mation, a successful execution changes the permission table
and the package table at post-state s’. A new application
is installed at s’ with a set of authorized permissions, and
the permissions must have been requested by the application.
Other applications stay residing the same as the pre-state and
so do their granted permissions. The new application cannot
be the parent of the foreground component at s’, of course.

Now, we define state transition by composing the specified
operations. In a state with a given operation, the transition
occurs if the precondition is satisfied and results in yielding
a new state as the postcondition describes. If the precondition
does not hold, the system stays at the state. In the following
definition of the transition, Operation is an inductive type
composed of the specified operations, so op will be pattern-
matched.

Inductive TransFunc (s:State) (op:Operation) (s’:State): Prop :=
| transMove : PreCondition s op → PostCondition s s’ op →

TransFunc s op s’
| transStay : ¬PreCondition s op → s = s’ → TransFunc s op s’.

III. VERIFICATION

The objective of the verification is to confirm whether all
transitions satisfy the security property occurring over states.
In order to do that, we have to prove the security conditions
hold at poststate s’ for every operation with the following
assumptions:

• The security conditions hold at the prestate s

90

• The precondition and the postcondition are satisfied as
well.

Lightened by the stepwise verification strategy in [9], we
start with the proofs of basic mathematical theories, and then
divide the security theorem into small lemmas. Some small
lemmas specify properties that are invariant between s to s’,
and the other type of lemmas describe security conditions that
hold at the state s’. Having those lemmas proved, we finally
verify the security theorem.

We show two small lemmas below. The first one is Lemma
(1), which states that the cmpnntAppIsProper holds at s’ after
the operation terminate. The terminate-related lemmas are
proved simply and shortly, although short precondition and
postcondition do not always promise short proofs.

Lemma cmpnntAppIsProper termsec :
cmpnntAppIsProper s’. (1)

Proof: cmpnntAppIsProper s’ says that if the foreground
component exists, its parent application should properly ex-
ists at s’, formally (a): state fgcmpnnt s’ = ExT Hcmp →
Happ = cmpnnt papp Hcmp → appIsProper s’ Happ (In
(a), we used Hcmp and Happ, instead of ∀cmp:Cmpnnt
and ∀app:AppPackage, by the Universal Introduction rule).
A properly installed application entails that the application
was granted permissions as requested, as the appIsProper
characterizes. On the other hand, as the postcondition specifies,
the terminate results in finishing the foreground component
at s’, formally (b): state fgcmpnnt s’ = NoneT. We replace
state fgcmpnnt s’ in (a) using (b), and get NoneT = ExT Hcmp.
By applying Lemma (2) (shown below), the equality yields the
Falsity in the hypothesis of (a), so we can get appIsProper s’
Happ by the Falsity elimination rule. �

Lemma state fgcmpnnt inverse :
∀ (cmp:Cmpnnt), ExT cmp �= NoneT. (2)

The second small lemma is Lemma (3), which states that,
after the operation install, the parent application of the fore-
ground component should be an installed one.

Lemma fgCompnntIsInstalled installsec inv small:
∀ (app:AppPackage) (cmp:Cmpnnt), state fgcmpnnt s = ExT cmp
→ app = cmpnnt papp cmp → state package tbl s app =
state package tbl s’ app. (3)

Proof: First, we introduce Hcmp for ∀cmp:Cmpnnt by the
Universal Introduction, and then take state fgcmpnnt s = ExT
Hcmp as a local assumption by the Implication Introduction.
Let us call the local assumption HcmpEx. Then, we have to
consider two distinct cases where the install operation finishes
successfully (Case 1) or not (Case 2). Let us consider Case 1
first. We do case analysis again on the application identifiers.
Since the equality of the type AppID is decidable for all
applications, we can have two distinct cases; Case 1-1:(app id
app �= app id newapp) and Case 1-2:(app id app = app id
newapp), for all app and newapp which is the application to
be installed. The Case 1-1 is easily solved. Other than the

newapp, all the existing applications at s remain installed
the same at s’. This condition is reflected in the postcon-
dition Post install user success. By doing the conjunction
elimination and the temporal assumption on the postcondition,
we obtain state package tbl s app = state package tbl s’
app. Consequently, the goal is proved. In the Case 1-2, we
already know that (a): app id app �= app id newapp) →
(state package tbl s app = state package tbl s’ app). We
also know that the install operation does not change the
foreground component information, formally: (state fgcmpnnt
s’ = state fgcmpnnt s). Using this equality, the HcmpEx can
be rewritten to state fgcmpnnt s’ = ExT Hcmp. On the other
hand, the postcondition of the install states that ∀ cmp:Cmpnnt,
state fgcmpnnt s’ = ExT cmp → (app id (cmpnnt papp cmp))
�= (app id newapp). Applying the HcmpEx, we obtain the
consequent. And then, we get the package table invariability
from (a) by the Modus Ponens. Now, let us tackle Case
2. The postcondition Post install user fail describes no in-
formation changes. By trivial, state package tbl s app =
state package tbl s’. �

Based on a number of lemmas we prove, the following
theorem SecureMigration can be obtained. The theorem states
that every operation we specified results in a transition from
a secure state to another state, and then the next state is also
secure. We omit the proof of the theorem here. It is simply a
process of applying all proved lemmas.

Theorem SecureMigration:
SecureState s → TransFunc s op s’ → SecureState s’.

Finally, like as the BST, we can claim that the specified
permission-based Android system of this paper is secure in
inductively generated states from an initial state, where the
initial state s0 is secure and every action TransFunc satisfies
the security property. We proved that the TransFunc operations
preserve the security property, which is the SecureMigration.

IV. DISCUSSION

The Coq system has been applied in diverse contexts for
formal analysis of security. Among the prior studies, our
work is rather inspired by Cristiá’s work on a secure UNIX
file system formalization [9] and Béguelin’s J2ME MIDP
Modeling [11] 1. We took idea of the BST-based state-machine
modeling, transition representation, and analysis strategy from
Cristiá [9], and chose a set of operations being guided by
Béguelin et al [11]. Based on those approaches, we contributed
to specify the permission mechanism of the Android system
having the abstracted component structure included, specified
security-related properties and operations, and verified the
security theorem in the context of our specification. This result
can be used to evaluate the logical basis of Android security.

Note that our specifications do not cover every feature of

1Specification and verification codes of Cristiá’s work can be found
at http://coq.inria.fr/contribs-eng.html. Béguelin’s work is
supposed to be found at the link in the paper, but it seems the link is not
available for the present (lastly checked on 03.20.2009).

91

the Android system. As an example, we do not reflect the
application signing concept. Before granting permissions, the
Android system checks the certificate of an application as well
as the user response. Signature-based permissions enable an
application to expose its code and data to the applications with
specific certificates. Moreover, if two or more applications are
owned by the same person and signed with the same certificate,
they share the user ID. We do not have detailed specifications
about the scheme yet. We simply specified the Authorization
and represented what is allowed to whom, instead of covering
why it is allowed. Due to the gap between the abstracted rep-
resentation and the concrete implementation, when a security
failure is found in our formal model, the model cannot say
which exact implemented mechanism causes the failure. That
is, it is not always easy to figure out why the security failure
happens. However, it is still clear that the formal model reveals
logical errors and shows fundamental vulnerabilities that must
be handled in the concrete implementation.

The current specification can be utilized in various ways.
The permission mechanism can be compared with other secu-
rity system formalizations, like the J2ME MIDP formalization
[11] that has own notion of sandbox, permission, and pro-
tection domain. As a result, similarities between the Android
framework and the MIDP could be formally investigated.

The security of external codes can also be tested when the
codes accompany annotated pre-/postconditions, similar to the
JML tools [12]. Furthermore, if we provide verified APIs and
specifications as templates, executables and their specifications
could be generated at once, like Bhargavan’s approach [13].

V. CONCLUSION AND FUTURE WORK

For the purpose of establishing a logical foundation for
security analysis, we specified the permission mechanism of
the Android system. Using the state machine-based approach,
we specified the system elements, characterized security con-
ditions in terms of authorization, components and applications,
and described a set of operations and exemplified the terminate
and the install. We also verified the specified system operates
preserving the security property. We expect the security the-
orem of this paper can be used to assure the security of the
Android system. In our following work, the coverage of the
specification would be improved, by describing other features
of the Android and by deepening the specification.

REFERENCES

[1] Google, Inc., “What is Android?” [Online]. Available: http://code.
google.com/android/what-is-android.html 03.20.2009.

[2] “xda-developers.” [Online]. Available: http://forum.xda-developers.com/
showthread.php?t=442480 03.20.2009.

[3] C. Miller, “Pulling a John Connor: Defeating Android.” [Online].
Available: http://www.shmoocon.org/presentations-all.html#johnconnor
03.20.2009.

[4] A. Greenberg, “More security angst for Android,” Forbes,
Feb 2009. [Online]. Available: http://www.forbes.com/2009/02/
05/google-android-security-technology-security 0205 android.html
03.20.2009.

[5] D. Danchev, “Open source software security improving,” ZDNet,
May 2008. [Online]. Available: http://blogs.zdnet.com/security/?p=1182
03.20.2009.

[6] D. E. Bell and L. J. LaPadula, “Secure computer systems: mathematical
foundations,” MITRE Technical Report 2547, Volume 1, Mar 1973.

[7] TypiCal Project, “The Coq proof assistant.” [Online]. Available:
http://coq.inria.fr/ 03.20.2009.

[8] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

[9] M. Cristiá, “Formal verification of an extension of a secure, compat-
ible UNIX file system,” in Master’s thesis, Instituto de Computacin,
Universidad de la República, 2002.

[10] Google, Inc., “Security and permissions.” [Online]. Available: http:
//code.google.com/android/devel/security.html 03.20.2009.

[11] S. Z. Béguelin, G. Betarte, and C. Luna, “A formal specification of
the MIDP 2.0 security model,” in The fourth International Workshop of
Formal Aspects in Security and Trust, 2006, pp. 220–234.

[12] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML tools
and applications,” Int. J. Softw. Tools Technol. Transf., vol. 7, no. 3, pp.
212–232, 2005.

[13] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verified reference
implementations of WS-Security protocols,” in Web Services and Formal
Methods, ser. LNCS, vol. 4184. Springer, 2006, pp. 88–106.

92

