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Abstract. Autonomic Computing (AC), self-management based on high level
guidance from humans, is increasingly gaining momentum as the way forward in
designing reliable systems to hide complexity and conquer IT management costs.
Effectively, AC may be viewed as Policy-Based Self-Management. In this paper
we look at the motivation for utilizing NASA requirements-based programming
technologies for mechanically transforming policies (expressed in restricted natu-
ral language, or appropriate graphical notations) into a provably equivalent formal
model that can be used as the basis for code generation and other transformations,
with the goal of self-generation of provable autonomic policies.

1 Introduction and Motivation

As a rapidly growing field1, Autonomic Systems (Autonomic Computing and Auto-
nomic Communications) is a promising new approach for developing large-scale com-
plex distributed computer-based systems. In introducing the concept of Autonomic
Computing, IBM’s Paul Horn likened the needs of large scale systems management
to that of the human Autonomic Nervous System (ANS). The ANS, through the self-
regulation, is able to effectively monitor, control and regulate the human body without
the need for conscious thought [12]. This self-regulation and separation of concerns
provides human beings with the ability to concentrate on high level objectives without
having to micro-manage the specific details involved.

1 Consider, e.g., the IEEE Task Force on Autonomous and Autonomic Systems (TFAAS) as of
June 2005. See http://www.computer.org/tab.
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The vision and metaphor of Autonomic Computing is to apply the same principles
of self-regulation and complexity-hiding to the design of computer-based systems, in
the hope that eventually computer systems can achieve the same level of self-regulation
as the human ANS [12][21]. In his talk, Horn highlighted that the Autonomic Com-
puting system must “find and generate rules for how best to interact with neighboring
systems” [12]. The majority of current efforts are on the ‘how’ of autonomic systems,
such as defining autonomic managers that together with the component that is to be
managed make up an autonomic element to exist in a collaborative autonomic environ-
ment to provide self-management of the system. Much less is being done on generating
the rules and policies that will drive autonomic systems.

The initial long term strategic vision highlighted an overarching self-managing vi-
sion where the system would have such a level of ‘self’ capability that a senior (human)
manager in an organization could specify business policies, such as profit margin on
a specific product range or system quality of service for a band of customers, and the
computing systems would do the rest. It has been argued that for this vision to become
a reality would require AI completeness, Software Engineering completeness and so on
[2]. What is clear in this vision is the importance of policies to empower the system at
all levels to self-manage.

2 Policy Based Management

Policies have been described as a set of considerations designed to guide decisions of
courses of action [17] and policy-based management may be viewed as an administra-
tive approach to systems management that establishes rules in advance to deal with sit-
uations that are likely to occur. From this perspective policy-based management works
by controlling access to and setting priorities for the use of information and commu-
nications technology (ICT) resources2, for instance, where a (human) manager may
simply specify the business objectives and the system will make it so in terms of the
needed ICT [16] for example [13]:

1. “The customer database must be backed up nightly between 1 a.m. and 4 a.m.”,
2. “Platinum customers are to receive no worse than 1-second average response time

on all purchase transactions”,
3. “Only management and the HR senior staff can access personnel records”, and
4. “The number of connections requested by the Web application server cannot exceed

the number of connections supported by the associated database.”

These examples highlight the wide range and multiple levels of policies available, the
first concerned with system protection through backup, the second with system opti-
mization to achieve and maintain a level of quality of service for key customers; while
the third and forth are concerned with system configuration and protection. With one
definition of Autonomic Computing being Self-Management based on high level guid-
ance from humans [15] and considering IBM’s high-level set of self-properties (self-
CHOP, configuration, healing, optimisation and protection) against the types of typical

2 See, e.g., Whatis.com, Online computer and internet dictionary and encyclopedia.
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policies mentioned previously (optimization, configuration and protection), the impor-
tance and relevance of polices for achieving autonomicity becomes clear.

Policy-based management (PBM) has been the subject of extensive research in its
own right. The Internet Engineering Task Force (IETF) has investigated policy-based
networking as a means for managing IP-based multi-service networks with quality of
service guarantees. More recently, PBM has become extremely popular within the tele-
com industry, for next generation networking, with many vendors announcing plans
and introducing products. This is driven by the fact that policy has been recognized as
a solution to manage complexity, and to guide the behaviour of a network or distributed
system through high-level user-oriented abstractions [18]. A policy-based management
tool may also reduce the complexity of product and system management by providing
uniform cross-product policy definition and management infrastructure [5].

3 Formal Requirements Based Programming

The need for ultra-high dependability systems increases continually, along with a cor-
respondingly increasing need to ensure correctness in system development. By “cor-
rectness”, we mean that the implemented system is equivalent to the requirements, and
that this equivalence can be proved mathematically. Today there is no automated means
of producing a system or a procedure that is a provably correct implementation of the
customer’s requirements. Further, requirements engineering as a discipline has yet to
produce an automated, mathematics-based process for requirements validation.

Development of a system that will have a high level of reliability requires the devel-
oper to represent the system as a formal model that can be proven to be correct. Through
the use of currently-available tools, the model can then be automatically transformed
into code with minimal or no human intervention. This serves to reduce the risk of in-
advertent insertion of errors by developers. Automatically producing the formal model
from customer requirements would further reduce the chance of insertion of errors by
developers.

Requirements-Based Programming refers to the development of complex software
(and other) systems, where each stage of the development is fully traceable back to
the requirements given at the outset. Model-Based Development holds that emphasis
should be placed on building a model of the system with such high quality that auto-
matic code generation is viable. While this has worked well, and made automatic code
generation feasible, there is still the large analysis-specification gap that remains unad-
dressed. Requirements-Based Programming addresses that issue and ensures that there
is a direct mapping from requirements to design, and that this design (model) may then
be used as the basis for automatic code generation. In essence, Requirements-Based
Programming takes Model-Based Development and adds a front end [9][20].

There have been calls for the community to address Requirements-Based Program-
ming, as it offers perhaps the most promising approach to achieving correct systems
[16]3. Although the use of Requirements-Based Programming does not specifically pre-

3 D. Harel. Comments made during presentation at “Formal Approaches to Complex Software
Systems” panel session. ISoLA-04 First International Conference on Leveraging Applications
of Formal Methods, Paphos, Cyprus. 31 October 2004.
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suppose the existence of an underlying formalism, the realization that proof of correct-
ness is not possible without formalism [3] certainly implies that Requirements-Based
Programming should be formal. In fact, Formal Requirements-Based Programming,
coupled with a graphical representation for system requirements (e.g., UML use cases)
possesses the features and advantages of a visual formalism described by Harel [6].

The remainder of this paper describes a method for mechanically transforming sys-
tem requirements into a provably equivalent formal model that can be used as the basis
for code generation and other transformations. The method is applicable to development
of policy-based management systems, which, as stated above, is an important part of
autonomic systems. In addition, due to the complexity of many policies, development of
this part of an autonomic system is crucial to the correct operation of the system and can
be very labor intensive. Developing and verifying the policies in an autonomic system
in a cost effective manner will be critical for the correct operation of these systems.

4 R2D2C

Our experience at NASA Goddard Space Flight Center (GSFC) has been that while
engineers are happy to write descriptions as natural language scenarios, or even using
semi-formal notations such as UML use cases, they are loath to undertake formal spec-
ification. Absent a formal specification of the system under consideration, there is no
possibility of determining any level of confidence in the correctness of an implementa-
tion. More importantly, we must ensure that this formal specification fully, completely,
and consistently captures the requirements set forth at the outset. Clearly, we cannot
expect requirements to be perfect, complete, and consistent from the outset, which is
why it is even more important to have a formal specification, which can highlight errors,
omissions, and conflicts. The formal specification must also reflect changes and updates
from system maintenance as well as changes and compromises in requirements, so that
it remains an accurate representation of the system.

R2D2C, or Requirements-to-Design-to-Code [8][19], is a NASA patent-pending ap-
proach to Requirements- Based Programming that provides a mathematically tractable
round-trip engineering approach to system development. In R2D2C, engineers (or oth-
ers) may write specifications as scenarios in constrained (domain-specific) natural lan-
guage, or in a range of other notations (including UML use cases). These will be used to
derive a formal model (Figure 1) that is guaranteed to be equivalent to the requirements
stated at the outset, and which will subsequently be used as a basis for code genera-
tion. The formal model can be expressed using a variety of formal methods. Currently
we are using CSP, Hoare’s language of Communicating Sequential Processes [10][11],
which is suitable for various types of analysis and investigation, and as the basis for
fully formal implementations as well as for use in automated test case generation, etc.

R2D2C is unique in that it allows for full formal development from the outset, and
maintains mathematical soundness through all phases of the development process, from
requirements through to automatic code generation. The approach may also be used for
reverse engineering, that is, in retrieving models and formal specifications from existing
code, as shown in Figure 1. The approach can also be used to “paraphrase” (in natural
language, etc.) formal descriptions of existing systems.
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Requirements
Documentation

Fig. 1. The R2D2C approach, generating a formal model from requirements and producing code
from the formal model, with automatic reverse engineering

Fig. 2. The entire process with D1 thru D5 illustrating the development approach

This approach is not limited to generating high-level code. It may also be used to
generate business processes and procedures, and we have been experimenting with us-
ing it to generate instructions for robotic devices that were to be used on the Hubble
Robotic Servicing Mission (HRSM), which,at the time of writing, has not received a
final go-ahead. We are also experimenting with using it as a basis for an expert system
Verification tool, and as a means of capturing domain knowledge for expert systems,
and most recently for generating policies from requirements.

4.1 R2D2C Technical Approach

The R2D2C approach involves a number of phases, which are reflected in the system
architecture described in Figure 2. The following describes each of these phases.

D1 Scenarios Capture: Engineers, end users, and others write scenarios describing
intended policies. The input scenarios may be represented in a constrained natural
language using a syntax-directed editor, or may be represented in other textual or
graphical forms. Scenarios effectively describe policies that must be adhered to.
They describe who various situations and events are to be handled. At the lower
(micro) level, these may describe policies of an individual autonomic element. At
the overall (macro) level, they may describe policies for a complete system. Policies
may be viewed as being analogous to requirements, but are likely to be expressed
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at differing levels, and to express a mixture of both functional and non-functional
requirements that must be implemented in order to satisfy the policies.

D2 Traces Generation: Traces and sequences of atomic events are derived from the
scenarios defined in phase D1.

D3 Model Inference: A formal model, or formal specification, expressed in CSP is
inferred by an automatic theorem prover, in this case, ACL2 [14], using the traces
derived in phase D2. A deep4 embedding of the laws of concurrency [7] in the
theorem prover gives it sufficient knowledge of concurrency and of CSP to perform
the inference. The embedding will be the topic of a future paper.

D4 Analysis: Based on the formal model, various analyses can be performed, using
currently available commercial or public domain tools, and specialized tools that
are planned for development. Because of the nature of CSP, the model may be an-
alyzed at different levels of abstraction using a variety of possible implementation
environments. This will be the subject of a future paper.

D5 Code Generation: The techniques of automatic code generation from a suitable
model are reasonably well understood. The present modeling approach is suitable
for the application of existing code generation techniques, whether using a tool
specifically developed for the purpose, or existing tools such as FDR [1], or con-
verting to other notations suitable for code generation (e.g., converting CSP to B
[4]) and then using the code generating capabilities of the B Toolkit.

4.2 A Simple Example

The Lights-Out Ground Operating System (LOGOS) is a proof-of-concept NASA sys-
tem for automatic control of ground stations when satellites pass overhead and under
their control. The system exhibits both autonomous and autonomic properties [23] [22],
and operates by having a community of distributed autonomous software modules work
cooperatively based on policies to perform the functions previously undertaken by hu-
man operators using traditional software tools, such as orbit generators and command
sequence planners. We will not consider the entire LOGOS/ANTS related system here.
Although a relatively small system, it is too extensive to illustrate in its entirety in this
paper. We will take an example agent, the Pager agent, and illustrate its mapping from
natural language descriptions through to the CSP model that can be used to generate
code.

Based on defined policies for the operation of the system, the Pager agent sends
pages to engineers and controllers when there is a spacecraft anomaly. For example, the
Pager agent receives requests from the user interface agent that no analyst is logged on,
so it gets paging information from the Database agent and pages an appropriate analyst,
and, when instructed by the user interface agent stops paging the analyst. These policies
can be stated as follows:

– When the Pager agent receives a request from the User Interface agent, the Pager
agent sends a request to the Database agent for an analyst’s pager information and
puts the message in a list of requests to the Database agent

4 “Deep” in the sense that the embedding is semantic rather than merely syntactic.
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– When the Pager agent receives a pager number from the Database agent, then the
Pager agent removes the message from the paging queue and sends a message to
the analyst’s pager and adds the analyst to the list of paged people

– When the Pager agent receives a message from the user interface agent to stop
paging a particular analyst, the Pager agent sends a stop-paging command to the
analyst’s pager and removes the analyst from the paged list

– When the Pager agent receives another kind of message, reply to the sender that the
message was not recognized

The above policies for handling anomalies would then be translated into CSP. The
following is a partial CSP description of the Pager agent:

PAGER BUSdb waiting,paged = pager.Iin?msg →
case

GET USER INFOdb waiting,paged,pagee,text

if msg = (START PAGING, specialist, text)

BEGIN PAGINGdb waiting,paged,in reply to id(msg),pager num

if msg = (RETURN DATA.pager num)

STOP CONTACTdb waiting,paged,pagee

if msg = (STOP PAGING, pagee)

pager.Iout!(head(msg), UNRECOGNIZED)
→ PAGER BUSdb waiting,paged

otherwise

This specification states that the process PAGER BUS receives a message on its
“Iin” channel and stores it in a variable called “msg”. Depending on the contents of
the message, one of four different processes is executed based on the policies. If the
message is of type START PAGING, then the GET USER INFO process is called with
parameters of the specialist to page (pagee) and the text to send. If the message is of
type RETURN DATA with a pagee’s pager number, then the database has returned a
pager number and the BEGIN PAGING process is executed with a parameter contain-
ing the original message id (used as a key to the db waiting set) and the passed pager
number. The third type of message that the Pager agent might receive is one of type
STOP PAGING. This message contains a request to stop paging a particular specialist
(stored in the pagee parameter). When this message is received, the STOP PAGING
process is executed with the parameter of the specialist type. If the Pager agent receives
any other message than the above three messages, an error message is returned to the
sender of the message (which is the first item of the list) stating that the message is
“UNRECOGNIZED”. After this, the PAGER BUS process is again executed.

The formal model derived (in CSP) now embodies the policy for anomaly resolution
that was specified in the scenarios.
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4.3 Advantages of the R2D2C Approach

We have not yet had an opportunity to apply R2D2C to policy generation, although that
is certainly our plan. In addition to applying it to the HRSM procedures [19], we have
applied R2D2C to LOGOS, a NASA prototype Lights-Out Ground Operating System,
that exhibits both autonomous and autonomic properties [22][23]. We illustrate the use
of a prototype tool to apply R2D2C to LOGOS in [20], and describe our success with
the approach.

Here, we summarize some benefits of using R2D2C, and hence of using Formal
Requirements-Based Programming in system development. It is our contention that
R2D2C, and other approaches that similarly provide mathematical soundness through-
out the development lifecycle, will:

– Dramatically increase assurance of system success by ensuring

• completeness and consistency of requirements
• that implementations are true to the requirements
• that automatically coded systems are bug-free; and that
• that implementation behavior is as expected

– Decrease costs and schedule impacts of ultra-high dependability systems through
automated development

– Decrease re-engineering costs and delays

5 Conclusions

Autonomic Computing, Self-Management based on high level guidance from humans,
has been gaining ground as a significant new paradigm to facilitate the creation of self-
managing systems to deal with the ever increasing complexity and costs inherent in
today’s (and tomorrow’s) systems. Policies and policy based management is a key en-
abling technology for achieving autonomicity. This paper described a method that can
produce fully (mathematically) tractable development of policies for autonomic sys-
tems from requirements through to code generation. The use of this method was illus-
trated through an example showing how user formulated policies can be translated into
a formal model which can then be converted to code. The requirements-based program-
ming method described will allow faster, higher quality development and maintenance
of autonomic systems based on user formulation of policies.
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