
Toward Formal Verification of Role-Based
Access Control Policies

Somesh Jha, Ninghui Li, Senior Member, IEEE, Mahesh Tripunitara,

Qihua Wang, and William H. Winsborough, Member, IEEE Computer Society

Abstract—Specifying and managing access control policies is a challenging problem. We propose to develop formal verification

techniques for access control policies to improve the current state of the art of policy specification and management. In this paper, we

formalize classes of security analysis problems in the context of Role-Based Access Control. We show that in general, these problems

are PSPACE-complete. We also study the factors that contribute to the computational complexity by considering a lattice of various

subcases of the problem with different restrictions. We show that several subcases remain PSPACE-complete and several further

restricted subcases are NP-complete, and we identify two subcases that are solvable in polynomial time. We also discuss our

experiences and findings from experimentations that use existing formal method tools such as model checking and logic programming

for addressing these problems.

Index Terms—Access control, RBAC, formal methods, computational complexity.

Ç

1 INTRODUCTION

ACCESS control is one of the most fundamental and
pervasive security mechanisms in use today. The

specification and management of access control policies is
a challenging problem, and today’s administrators have
little tools to assist them. As a result, a large number of
security breaches are caused by policy misconfigurations.
Administrators are often reluctant to change policy settings,
as they do not have confidence in whether the resulting
policy configurations indeed enforce the policy objectives.
The current state of the art of access control policy
specification and management is still “what you specify is
what you get but not necessarily what you want.” This
can be compared to software-hardware development before
formal verification techniques [7], [27], [28] were
developed and successfully deployed. We believe that
formal verification techniques for access control policies
can be developed to improve the current state of the art.

In almost all access control systems, there is a need to
change the authorization state; for example, users and objects
are added and removed, users start sharing resources at one
moment and stop such sharing later, and users’ job
functionalities change. This dynamic aspect makes access
controlparticularly challenging.A fundamentalproblemthat
deals with the dynamic aspect of access control is safety

analysis,whichwas first formulated byHarrison et al. [17] for
the access matrix model. Safety analysis decides whether
undesirable right leakage could occur in future states.
Recently, the notion of security analysis, which generalizes
safety analysis, has been introduced [25], [26]. A Security
Analysis Problem (SAP) instance asks whether an access
control system preserves security policy invariants (which
encode desired security properties) across state changes.
Security analysis also allows the explicit specification of
trusted principals. This enables one to ask questions such as:
Suppose that a set of trusted principals will not initiate any
potentially dangerous actions, does a policy invariant hold in
all future states? A positive answer provides the assurance
that the security of the system depends only on the
cooperation of trusted principals.

In this paper (in Section 2), we study the SAP in Role-
Based Access Control (RBAC) with the URA97
administrative scheme [37], [38] (we call this problem
URA-SAP). We also describe our experiences in building
tools for URA-SAP by using model checking and logic
programming. Our choice of RBAC as the problem domain
is motivated by the fact that RBAC [3], [13], [39] is today’s
most influential access control model. The last decade has
seen an explosion of research in RBAC. Today, most major
information technology vendors are offering products that
incorporate some form of RBAC. For example, all major
DBMS products support RBAC. Microsoft has brought
RBAC to the Windows operating systems by introducing
the Authorization Manager in Windows Server 2003 [29].
RBAC has also been used in Enterprise Security Manage-
ment Systems such as the IBM Tivoli Policy Manager [20]
and SAM Jupiter [4], [21].

The goal of our work is to develop techniques to help
RBAC administrators precisely understand whom they are
trusting for maintaining the desirable security properties or,
in other words, who will be able to compromise the security
of their system.

242 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

. S. Jha is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI 53706-1685. E-mail: jha@cs.wisc.edu.

. N. Li and Q. Wang are with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907-2107.
E-mail: ninghui@cs.purdue.edu, wangq@purdue.edu.

. M. Tripunitara is with the Security and Privacy Technology Laboratory,
Motorola Labs, Schaumburg, IL 60196. E-mail: tripunit@motorola.com.

. W.H. Winsborough is with the Department of Computer Science,
University of Texas, San Antonio, TX 78205.
E-mail: wwinsborough@acm.org.

Manuscript received 2 June 2006; accepted 10 July 2007; published online
6 Aug. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0068-0606.
Digital Object Identifier no. 10.1109/TDSC.2007.70225.

1545-5971/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

The contributions of this paper are listed as follows:

. In Section 3, we show that in general, URA-SAP is
PSPACE-complete. We also study the factors that
contribute to the computational complexity by
considering a lattice of various subcases of the
problem with different restrictions. We show that
several subcases remain PSPACE-complete whereas
several further restricted subcases are NP-complete,
and we identify two subcases that are solvable in
polynomial time. We observe that the administrative
scheme implemented in Oracle’s RBAC system falls
into one of the two tractable subcases.

. In Section 4, we compare two approaches for using
existing tools to perform URA-SAP and report our
findings. One approach is to use model checking
(specifically the tool NuSMV [32]), and the other is to
use logic programming (specifically the language
XSB [15]).

We discuss related work in Section 5 and conclude in
Section 6.

2 PROBLEM DEFINITIONS

In this section, we give precise problem definitions for SAP.
We also describe the URA97 RBAC scheme and present the
special cases of SAP for the scheme.

2.1 Access Control Schemes

In existing work on security analysis in access control
systems [25], [26], an access control scheme is defined as a
state-transition system h�; Q;‘;�i, in which � is a set of
states, Q is a set of queries, � is a set of state-transition
rules, and ‘: ��Q! ftrue; falseg determines whether a
query in Q is true or not in a given state in �. Each 2 � is
viewed abstractly as a binary relation on �, i.e., � �� �. It
determines whether one state can immediately reach
another state. Such a definition abstracts a state transition
as a binary relation and does not make explicit which
principals initiate a particular action to effect a state
transition. As a result, to consider multiple SAP instances
with the same state but different sets of trusted users,
one has to change the state-transition rule, which is
unnatural. We now give a definition that makes the
initiators explicit, avoiding such problems.

Definition 1 (access control schemes). An access control
scheme is given by a six-tuple h�; Q;‘;A;�;�i, where � is a
set of states, Q is a set of queries, ‘: ��Q! ftrue; falseg
determines whether a query is true or not in a state, A is a set
of principals, � is a set of actions, and � is a set of state-
transition rules.

A state � 2 � contains all the information necessary to
make access control decisions at a given time. When a query
q 2 Q arises from an access request, � ‘ q means that the
access corresponding to the request q is granted in the state �,
and � 6‘ q means that the access corresponding to q is denied.
One may also ask a query that does not correspond to a specific
request; for example, one may ask whether every principal that
has access to a resource is an employee of an organization.
Such queries are useful for understanding the properties of a
complex access control system.

Each action � 2 � is a function mapping � to �. We write
�ð�Þ to denote the state that results from applying the action �
on the state �. Note that �ð�Þ could be �; for example, this
would happen if the application of the action � on the state �
fails. Each action � is associated with a set of principals,
denoted by initð�Þ, i.e., initð�Þ � A. Principals in initð�Þ are
called the initiators of the action: these are the principals that
actively carry out the action �. In most existing access control
schemes, each action is carried out by one initiator, in which
case initð�Þ is a singleton set. When initð�Þ includes
two principals u1 and u2, it means that the active participation
of u1 and u2 is needed to carry out �.

Each state-transition rule 2 � is given by a subset of �,
i.e., � �. The state transition from � to �1 is allowed by
(we write � ! �1) when there exists an action � in such
that �ð�Þ ¼ �1.

Givenanaccess control scheme h�; Q;‘;A;�;�i, an access

control system is specified by a pair ð�; Þ, where � 2 � is

the state of the system, and 2 � is the state-transition rule

that determines which state transitions are allowed.
We say that a set A of principals can take an access

control system ð�; Þ to a state �g if principals in A can

initiate actions that change the state of the access control

system from � to �g; i.e., there exists a sequence of actions

�1; �2; � � � ; �n such that the following conditions hold:

1. For each i such that 1 � i � n, we have �i 2 and
initð�iÞ � A.

2. �nð� � ��2ð�1ð�ÞÞ � � �Þ ¼ �g.

Definition 2 (SAP). Given an access control scheme

h�; Q;‘;A;�;�i, a SAP instance is given by a four-tuple

hAT ; �; ; qi, where AT � A is a finite set of trusted principals,

ð�; Þ defines an access control system, and q 2 Q is a query.

The answer to the instance is true if principals other than
those in AT can take the access control system ð�; Þ to a state
in which q evaluates to true. That is, this instance asks whether

there exists a state �g such that principals in the set A�AT

can take ð�; Þ to the state �g and �g ‘ q.

In an instance of SAP, q typically encodes an unsafe

situation that should never occur; that is, :q would be a

policy invariant that should always hold.

2.2 The URA97 RBAC Scheme

We now define the access control scheme that we study in

this paper, i.e., the URA97 RBAC scheme, which is based on

the ARBAC97 administrative scheme for RBAC [37], [38].

To our knowledge, ARBAC97 is the first comprehensive

and the most influential administrative model for RBAC.
URA97 is one of the three components of ARBAC97 [38].

The other components of ARBAC97 are PRA97 and RRA97,

which are for administering permission-role assignment/

revocation and the role hierarchy, respectively. In this

paper, we study the effect of decentralizing user-role

assignment and revocation and assume that changes in

the permission-role assignment relation and the role

hierarchy are centralized, i.e., made only by trusted users.

In other words, whoever is allowed to make changes to the

permission-role assignment and the role hierarchy will use

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 243

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

security analysis and only make those changes that do not
violate desirable security properties.

We assume that there are three countable sets: U (the set
of all possible users), R (the set of all possible roles), and P
(the set of all possible permissions). While the set of all
users in any RBAC state is finite, the set of all users that
could be added is potentially unbounded. One can think of
U as the set of all possible user identifiers in a system.

States �. An RBAC state � is a six-tuple hUA;PA;RH;
CA;CR;COi.We callUA,PA, andRH parts of the basic state,
andCA,CR, andCOparts of the administrative state. The basic
state is described in the following, and the administrative
state is described when we discuss state transitions.

The user assignment relation UA � U �R associates
users with roles, the permission assignment relation
PA � R� P associates roles with permissions, and the role
hierarchy relation RH � R�R is an irreflexive acyclic
relation over R. We use �RH to denote the partial order
induced by RH, i.e., the transitive and reflexive closure of
RH. r1 �RH r2 means that every user who is authorized for
r1 is also authorized for r2 and every permission that is
associated with r2 is also associated with r1.

Given a state �, each user has a set of roles for which the
user is authorized. We formalize this by defining for every
state � a function authorizedRoles : U ! 2R:

authorizedRolesðuÞ ¼
�

r 2 R j 9r1 2 R

ðu; r1Þ 2 UA ^ ðr1 �RH rÞ½ �
�

:

When r 2 authorizedRolesðuÞ, we say that the user u is
authorized for the role r or, equivalently, u is a member of r.
We also define downðrÞ to be the set of all roles dominated
by r, and upðrÞ to be the set all roles that dominate r as
follows:

downðrÞ ¼ r0 2 R j r �RH r0f g;

upðrÞ ¼ r0 2 R j r0 �RH rf g:

State transition: A, �, and �. We now specify A, �,
and �, which determine how states may change in the
URA97 scheme. A is defined to be U, the set of all possible
users. � consists of two kinds of actions: assignment and
revocation actions. Whether these actions succeed or not
when applied in a state depends on the administrative
state of �, namely, CA, CR, and CO, which we describe as
follows:

. The relation CA � R� C � 2R determines who can
assign users to roles and the preconditions that these
users must satisfy. C is the set of conditions, which
are expressions formed by using roles, the binary
operators \ and [, the unary operator :, and
parentheses. A tuple hra; c; rseti in CA means that
members of role ra can assign any user whose role
memberships satisfy the condition c to any role
r 2 rset. For example, hr0; r1 \ r2 \ :r3; fr4gi 2 CA
means that a user that is a member of role r0 is
allowed to assign a user that is a member of both
r1 and r2 but is not a member of r3 to be a member
of r4.

. The relation CR � R� 2R determines who can
remove users from roles. hra; rseti 2 CR means

that the members of role ra can remove a user
from a role r 2 rset. Unlike relation CA, there is no
preconditions in relation CR defined in URA97 [38].
We assume that CA and CR satisfy the property
that the administrative roles are not affected by
CA and CR. The administrative roles are those
that appear in the first component of each tuple in
CA or CR. These roles should not appear in the last
component of any CA or CR tuple. This condition is
satisfied in URA97, which assumes the existence of a
set of administrative roles that is disjoint from the set
of normal roles.

. CO is a set ofmutually exclusive role constraints. Each
constraint in CO has the form smerhfr1; . . . ; rmg; ti,
where each ri is a role, and m and t are integers
such that 1 < t � m. This constraint forbids a user
frombeing amember of t ormore roles in fr1; . . . ; rmg.
We say that a set R of roles satisfies a constraint
smerhfr1; . . . ; rmg; ti if and only if jR \ fr1; . . . ; rmgj<t,
where j j gives the cardinality of a set.

For example, smerhfr1; r2g; 2i means that no user
is allowed to be a member of both r1 and r2. In an
RBAC state �, if r1 2 authorizedRolesðuÞ for a user u,
then an assignment action that assigns the user u to
any role in upðr2Þ would fail because of the
constraint.

� consists of a single state-transition rule , which is a set
of actions:

� ¼ assignðua; ut; rtÞ j ua; ut 2 U ^ rt 2 Rf g

[revokeðua; ut; rtÞ j ua; ut 2 U ^ rt 2 Rf g:

. An assignment action assignðua; ut; rtÞ means that
the user ua assigns the user ut to the role rt. When
this action is applied to an RBAC state �, it succeeds
if and only if the following conditions hold:

– ðut; rtÞ 62 UA, i.e., the user ut is not yet assigned
role rt.

– There exists a tuple hra; c; rseti 2 CA such
that ra2authorizedRolesðuaÞ, authorizedRolesðutÞ
satisfies c and rt 2 rset.

– authorizedRolesðutÞ [downðrtÞ satisfies every
constraint in CO, i.e., the new role memberships
of ut do not violate any constraint.

The assignment action assignðua; ut; rtÞ may
succeed, even when ut is already authorized for rt
indirectly through other roles. For example, even
when ðut; rsÞ 2 UA and rs �RH rt, assignðua; ut; rtÞ
can succeed. The rationale is that these memberships
often represent independent relationships. For
example, ðut; rsÞ 2 UA may represent a shorter term
role assignment for ut because of temporary staff
shortages, and ðut; rtÞ 2 UA may represent a longer
term role assignment. Then, we want to add ðut; rtÞ
to UA so that when ðut; rsÞ is removed from UA, ut is
still authorized for rt.

When the assignment action is successfully applied
to an RBAC state �, the resulting state �0 differs from �

only in the user-role relation. The result of a
successful application isUA0 ¼ UA [fðut; rtÞg. When

244 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

the application is not successful, the state does not
change.

. A revocation action is of the form revokeðua; ut; rtÞ,
whichmeans that user ua revokes user ut from role rt.
When this action is applied to an RBAC state �, it
succeeds if and only if the following conditions hold:

– ðut; rtÞ 2 UA, i.e., user ut is assigned to role rt.
– There exists a tuple hra; rseti 2 CR such that

ra 2 authorizedRolesðuaÞ and rt 2 rset.

When the revocation action is successfully applied

to an RBAC state �, the resulting state �0 differs from
� only in the user-role relation. The result of a

successful application isUA0 ¼ UA� fðut; rtÞg.When
the application is not successful, the state does

not change.

2.3 SAP in URA97

Definition 3 (URA-SAP). A URA-SAP instance is given by an

RBAC state � ¼ hUA;PA;RH;CA;CR;COi, a set AT � U
of trusted users, and a query.

We deliberately leave the syntax for queries unspeci-

fied in the above definition. Different kinds of queries

may be needed for different policy analyses. The simplest

kind is to ask whether a user u is a member of a role r.

More sophisticated queries may ask whether a user’s role

membership satisfies a condition (e.g., r1 [ðr2 \ :r3Þ) or

whether the set of members of one role is a subset of the

set of members of another role.
An important observation is that the simplest query that

askswhetherauser is amemberof a role canbeused tohandle

several other kinds of queries. For example, if one wants to
know whether the system can reach a state in which u’s role

membership includes a set fr1; r2g and excludes fr3g, one can
add a new user ua, two new roles ra and rt, a user assignment
ðua; raÞ, and a new tuple ðra; ðr1 \ r2 \ :r3Þ; frtgÞ to CA and

use u 2 rt as the query. Similarly, if one wants to know
whether the system can go to a state in which u possesses a

certain set of permissions, one can compute the role condition

that is necessary and sufficient to have the permissions and
then translate that into a query about a single role.

Definition 4 (URA-RC-SAP). A URA-RC-SAP instance is a
special case of URA-SAP, in which a query has the form u 2 r.

2.4 An Example

Fig. 1 shows a simplified role hierarchy in a bank. This
example is inspired by a case study of a commercial bank that

appears in the literature [40]. The bank has two functional

roles Loan Officer and Cashier apart from the basic
Employee role. The bank requires that an employee be a

member of exactly one functional role. We quote from [40]:
“Ideally, each employee is assigned to one role.” This is easily

achieved using the mutually exclusive role constraint

smerhfLoan Officer;Cashierg; 2i.
In our example, the bank allows employees to be

reassigned to a different functional role. However, such a
reassignment must involve at least two administrators. This

results in a separation of privilege in that no single

administrator can change a user’s functional role by
himself.

Consider the example query qbank of the form
“Bob 2 Cashier,” where ðBob;Loan OfficerÞ 2 UA� . With
this query, we seek to verify that the bank’s policy is
indeed satisfied for a user Bob that is a loan officer. If we
consider a URA-RC-SAP instance with the set of trusted
principals AT ¼ fAlice; Adamg, we observe that the
instance is false. The reason is that for Bob to be assigned
to Cashier, he must first be revoked from Loan Officer.
Otherwise, the entry in CObank would be violated. The
only administrator that can revoke Bob from Loan Officer

is Adam. However, as Adam is considered to be a trusted
principal in the analysis instance, he cannot initiate any
administrative actions.

It turns out in our example that the bank’s policy is
indeed satisfied for any user, even for one that is not (yet)
an employee of the bank. This can be verified by
running analysis instances with appropriately instantiated
parameters. As an example to demonstrate that a user can
indeed be reassigned to a different functional role, if user
Carl is a member of Cashier in UA� , then a URA-RC-SAP
instance with AT ¼ ; and query “Carl 2 Loan Officer” is
true, because Carl can first be revoked from Cashier by
Andy, then assigned to Employee by Alice, and finally
assigned to Loan Officer by Adam. In this case, the
cooperation of all three administrators is required.

3 COMPUTATIONAL COMPLEXITY

In this section, we study the computational complexity of
URA-SAP. In particular, we show that URA-RC-SAP is
PSPACE-complete. The main source of the complexity of
SAP is that the state space that needs to be explored is
potentially large. We would like to understand how
different features in URA97 affect this search space;

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 245

Fig. 1. A simplified view of a bank, in which there are two functional roles
Loan Officer and Cashier, both of which inherit from the Employee role.
The role hierarchy RHbank is shown in the figure. A different
administrative role is associated with each of the roles. AL is for
administering Loan Officer, AC for Cashier, and AE for Employee. This is
reflected in the assignment and revocation rules CAbank and CRbank,
respectively, for the bank. CObank is the set of mutually exclusive role
constraints. There is only one constraint, i.e., that no user can be both a
loan officer and a cashier. The UA� in the figure shows that a different
administrative user is assigned to each of the administrative roles.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

therefore, we consider special cases of URA-SAP that result

from restricting the URA scheme in various ways. Answers

to the following questions affect the computational com-

plexity of URA-SAP:

. What queries are considered? If queries are allowed to
contain conjunctions and disjunctions of roles, then
URA-SAP is likely to be intractable. For example, in
[26], one can pose a query that asks whether the set
of users who satisfy ððr1 [r2Þ \ r3Þ is always a subset
of the set of users that satisfy ððr1 [r2Þ \ ðr2 [r3ÞÞ.
The intractability results in [26] are consequences of
the fact that these sophisticated queries can encode
propositional formulas to show NP-hardness. In
other words, [26] deals with sophisticated queries
but very simple state-transition rules.

In this section, in contrast to the work in [26],

we focus on the simplest kind of queries, i.e.,

whether a user u is a member of a role r, to better

understand the complexity caused by state-transition

features within URA97. In other words, we consider

URA-RC-SAP.
. Do the preconditions involve only conjunctions? Each

tuple in CA has a precondition. It is conceivable
that if the precondition involves arbitrary conjunc-
tion, disjunction, and negation of roles, then this
could make the problem intractable; however, such
a result would be less insightful and of less practical
interest. In practical systems, one would not expect
the precondition to be a very complicated logical
formula. In this paper, we focus on the special case
in which each precondition is a conjunction of roles
or their negations. We show in the following that
for the general case, whether we allow disjunctions
in the preconditions or not does not affect the
computational complexity.

. Is negation allowed in preconditions in CA? When
preconditions in CA may contain negation, one
needs to consider the revocation of a user’s role
membership in order to satisfy the precondition and
be assigned to a new role.

. Are SMER constraints allowed; i.e., is CO ¼ f g? When
constraints are allowed, one may need to consider
revocations in order to assign a user to a new role.

. Are revocations allowed, i.e., whether CR ¼ f g? One
may want to consider the special case that role
memberships cannot be revoked.

We summarize the variations that we consider in this

paper in Fig. 2. The main results of this paper are stated in

the following theorem. These results are also summarized

in Fig. 3.

Theorem 1. The computational complexity for URA-RC-SAP

and its various subcases are as shown in Fig. 3.

Some subcases of the problem are not listed in Fig. 3,

because they are special cases of the two cases that are

known to be in P; thus, they are solvable in polynomial

246 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 2. Possible variations in the features that we consider for the
preconditions in CA, revocation, and constraints. A dotted line
connects a case with a subcase. For example, negation-free
preconditions ð½CA ðpositive conjunctiveÞ�Þ is a subcase of conjunc-
tive preconditions ð½CA ðconjunctiveÞ�Þ. Various combinations based
on the three columns are possible. For example, we can consider
the analysis problem with negation-free preconditions, with
revocation, but without constraints, which corresponds to
URA-RC-SAP½CA ðpositive conjunctiveÞ; CR;CO ¼ f g�.

Fig. 3. Summary of computational complexity results for various cases of URA-RC-SAP. A dotted line links a case to a subcase. For example,

URA-RC-SAP½CA ðpositive conjunctiveÞ; CR;CO� is a subcase of URA-RC-SAP½CA ðconjunctiveÞ; CR;CO�.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

time as well. We make several observations from Theorem 1
and Fig. 3.

. Whether we allow only conjunctive preconditions
or arbitrary preconditions does not change the
computational complexity of URA-RC-SAP in
general. The problem is PSPACE-complete with or
without the conjunctive restriction.

. There are three cases inwhich the problem’s complex-
ity changes from PSPACE-complete toNP-complete.
All three result frommakingCR empty. The reason is
that if CR is empty, then one needs to consider only
role assignments. Any role assignment sequence can
have a length that is at most polynomial in the size of
the problem instance. This makes the problem inNP.
On the other hand, there may be exponentially
many such possible assignment sequences; thus, the
problem remains NP-complete. However, when CR
is not empty, the sequence necessary for entering a
user into a role may be of exponential length.

. The effect of nonempty CO is identical to the effect
of negation in preconditions of CA from the
standpoint of computational complexities. The rea-
son is that the effect of a constraint in CO can be
“simulated” using negative preconditions in CA,
and vice versa. We use this fact, for example, in the
proofs of Lemmas 4 and 7.

The rest of this section proves the results in Theorem 1.
URA-RC-SAPand three subcasesarePSPACE-complete.

We first show that the general case of URA-RC-SAP is in
PSPACE. We then show that two subcases URA-RC-

SAP½CA ðpositive conjunctiveÞ; CR;CO� a n d URA-RC-

SAP½CA ðconjunctiveÞ; CR;CO¼f g� are PSPACE-hard.
These results together prove the four PSPACE-completeness
result in Theorem 1. In Appendix A, we present background
information related to Turing machines (TMs) that we use to
establish these results.

Lemma 2. URA-RC-SAP is in PSPACE.

Proof. Given aURA-RC-SAP instance, let � ¼ hUA;PA;RH;
CA;CR;COi, let UT be a set of trusted users, and let u 2 r
be the query. Notice that the only component of the state
that changes isUA. Furthermore,weonlyneed tomaintain
u’s rolememberships (thenumber of rolesdoesnot change
from the start state). It takes polynomial space to represent
u’s role memberships. Recall that in URA97, adminis-
trative roles (i.e., roles that appear in the first component of
a tuple in CA and CR) are not affected by CA and CR.
Therefore, we do not need to consider memberships of
users other than u, because these rolememberships do not
affect whether u can be assigned to a role or not. Observe
that in order todeterminewhetheru canbe added to a role,
the precondition is only about u’s role memberships.

Observe that if we relax the restriction that
administrative roles are not affected by CA and CR,
then we need to maintain the role memberships of all
users, which can still be done in polynomial space.
Therefore, URA-RC-SAP is in PSPACE, even without
this restriction.

We describe a nondeterministic TM (NDTM) NM to
solve this problem. Initially, NM sets the initial state �0

to be equal to �. Given that NM is in state �i, it continues
its computation as follows:

. If �i ‘ q, NM stops and outputs yes.

. Assume that �i 6‘ q. NM guesses the next state
�iþ1 that changes user u’s role memberships. NM
ensures that such a change conforms to CA and
CR and satisfies the constraints in CO. NM
ensures also that the only users that affect an
assign or revoke action are the ones that do not
belong to UT .

The construction given above proves that URA-RC-
SAP is in NSPACEðOðnÞÞ, where n is the space
needed to represent the input URA-RC-SAP instance.
Using Savitch’s theorem, we can conclude that URA-
RC-SAP is in DSPACEðOðn2ÞÞ. tu

Lemma 3. URA-RC-SAP ½CA ðpositive conjunctiveÞ; CR;CO�
is PSPACE-hard.

The proof is given in Appendix B. The proof is by a
reduction from the membership problem for linear
bounded automata (LBA), which is known to be PSPACE-
complete. An LBA is a restricted form of a TM. It differs
from a TM in that while the tape is initially considered
infinite, only a finite contiguous portion whose length is a
linear function of the length of the initial input can be
accessed by the read/write head.

Lemma 4. URA-RC-SAP ½CA ðconjunctiveÞ; CR;CO ¼ ;� is
PSPACE-hard.

The proof of the above lemma is similar to the proof of
Lemma 3. The proof of Lemma 3 uses 2-2 SMER constraints.
We simulate the use of such constraints in the proof of
Lemma 4 by using negative preconditions in CA. For
example, if a 2-2 SMER constraint smerhfr1; r2g; 2i is used in
the proof of Lemma 3, we can add :r1 to the precondition of
each rule that assigns to r2 and add :r2 to the precondition
of each rule that assigns to r1.

URA-RC-SAP ½CA ðconjunctiveÞ; CR ¼ f g; CO� and

its two subcases are NP-complete. We first demonstrate
that disallowing revocations in URA-RC-SAP causes
the problem to be in NP. We then demonstrate that
two subcases are both NP-hard. The first subcase is
when we disallow negative preconditions in CA. The
second subcase is when we disallow constraints. These
results together prove the three NP-completeness results in
Theorem 1.

Lemma 5. URA-RC-SAP ½CA ðconjunctiveÞ; CR ¼ f g; CO� is
in NP.

Proof. We need to demonstrate that if an instance of
URA-RC-SAP ½CA ðconjunctiveÞ; CR ¼ f g; CO� is true,
then there exists an evidence of size polynomial in the
problem that can be efficiently verified. Let the query q
in the problem instance be about user u’s membership
in role r. As the evidence, we use the shortest state-
change sequence from the initial state �0 to a state �n
such that �n ‘ q. Each state change in this sequence is
the assignment of u to a role of which he is not yet a
member. There can be at most jRj such assignments,

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 247

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

where R is the set of roles in the system. (See the

proof of Lemma 2 about why we only need to consider

assignment of user u. Also, observe that even if we

consider the assignment of all users, the total number

of such assignments is still polynomial in the size of

the instance.) Therefore, the state-change sequence is of

length at most jRj, which is polynomial in the input

and can certainly be verified in polynomial time. tu

Lemma 6. URA-RC-SAP ½CA ðconjunctiveÞ; CR ¼ f g;
CO ¼ f g� is NP-hard.

The proof is in Appendix C. It uses a reduction from the

3SAT problem.

Lemma 7 . URA-RC-SAP ½CA ðpositive conjunctiveÞ;
CR ¼ f g; CO� is NP-hard.

The proof is in Appendix D. This result should not be

surprising, given Lemma 6. As discussed earlier, the effects

of SMER constraints and negation in preconditions in CA

are very similar.
Two subcases that are in P. As we have shown above,

either negation in preconditions or SMER constraints is

sufficient to make URA-RC-SAP intractable. However,

URA-RC-SAP ½CA ðpositive conjunctiveÞ; CR;CO ¼ f g�;
that is, when neither negations in preconditions nor SMER

constraints are allowed, the problem can be solved in linear

time. The reason is that to determine whether u can be a

member of a role r in some future state, there is no need to

consider revocation, as there is no negation in preconditions

in CA, and there are no SMER constraints. A straightfor-

ward quadratic algorithm is to try each tuple in CA and see

whether u can be assigned to more roles. As the number of

roles that can be assigned according to CA is bounded by

the size of CA, this algorithm takes at most quadratic time.

A linear time algorithm can be obtained by reducing this to

the Horn-SAT problem, which can be solved in linear time

[10]. Each rule in CA can be viewed as a Horn rule; for

example, if one such rule says that r1 \ r2 is the precondi-

tion for r3, then this can be translated into a Horn clause

“r3 �r1, r2.” Each initial role membership of the user can

be translated into a Horn clause. The query can be

translated into a Horn query clause.
Another tractable subcase is URA-RC-SAP ½CA

ðno preconditionsÞ; CR;CO�, which can be solved in quad-

ratic time. In this subcase, every precondition in CA is

“true,” but we allow revocations and SMER constraints.

The algorithm first checks whether user u is already a

member of the role r (where u and r comprise the query). If

not, we revoke u from as many roles as possible by using

entries from CR. We then check whether there exists an

entry in CA that we can exercise to cause u to become a

member of r while not violating any entry in CO. If yes, the

algorithm returns “true”; otherwise, it returns “false.” This

is linear in the sizes of CA, CR, and CO.
We observe that in some RBAC schemes in practical

systems such as the RBAC scheme in the Oracle database,

there is no precondition in role assignment. Security

analysis there thus falls under the above tractable case.

4 TOOLS FOR SECURITY ANALYSIS

The fact that URA-RC-SAP and several of its subcases
are intractable (PSPACE-complete or NP-complete) means
that there exist difficult problem instances. In this section,
we describe our experiences by using logic programming
and model checking tools for some realistic instances of
URA-RC-SAP. Our goals for performing these experiments
are twofold. First, we would like to see whether security
analysis instances of nontrivial sizes can be solved in
reasonable amounts of time. Our experimental results show
that the answer is positive. Second, we would like to
compare the effectiveness of model checking and logic
programming in security analysis. Our results demonstrate
that logic programming outperforms model checking in
smaller instances; however, model checking appears to
scale better than logic programming.

The logic programming approach. Logic programming
is a declarative relational style of programming based on
first-order logic. A logic program is composed of a set of
facts and a number of rules, which specify how new facts
can be derived from known ones. We use XSB [15], a
Prolog-variant logic programming system developed at
the State University of New York, Stony Brook. XSB uses
SLG resolution [6], which can correctly evaluate many
recursive logic programs that would cause SLD-resolution-
based Prolog systems to fail to terminate.

Our implementation is a natural reduction from
instances of URA-RC-SAP to logic programs. Recall that
an instance of URA-RC-SAP consists of an RBAC state
hUA;PA;RH;CA;CR;COi and a query of the form u 2 r,
where u 2 U is a user, and r 2 R is a role. Our logic
program defines a predicate over states that is true when
the state is reachable. Each tuple in CA and CR is
represented as a rule, while RH and CO are incorporated
in the rules representing CA entries. The initial role
memberships of user u is given as a fact, and the
evaluation’s goal is to find a state in which the answer to
the query u 2 r is true.

The model checking approach. Model checking is a
technique for determining whether a formal model M of a
system satisfies a temporal-logic property p. A modelM can
be represented as a four-tuple ðS;R; s0; LÞ, where S is a
finite set of states, R � ðS � SÞ is a transition relation, s0 2 S
is an initial state, and L : S ! 2AP is a labeling of states with
propositional formulas from AP (given a state s, LðsÞ
denotes the atomic propositions in AP that are true in s).
We express a safety property p in Computation Tree
Logic (CTL) with the form AGf (i.e., p ¼ AGf , where f is
a formula in propositional logic). (AGf means that always
globally, the atomic proposition f is true or, in other words,
f is true in every state reachable from the initial state s0.) If
the model M satisfies the property p, a model checker
reports true. If M does not satisfy p, a model checker
produces a counterexample that shows an execution that
leads to a violation of the property. A thorough treatment of
model checking is provided in [7].

The model checker that we used is NuSMV [32].
We implemented a program that reads an instance of
URA-RC-SAP and then generates an NuSMV program for
the instance. Encoding an instance of URA-RC-SAP as a

248 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

model in NuSMV is straightforward; e.g., states correspond

to user assignments to roles, and transitions correspond to

rules in CA and CR.
Preprocessing. We observe that given a URA-RC-SAP

instance, many rules in CA and CRmay be irrelevant to the

query. We use a preprocessing stage to remove these rules.

Our experimental data shows that preprocessing can be

very effective. Given a query u 2 r and an RBAC state, our

preprocessing does two kinds of pruning:

. Forward pruning. We remove rules that will never be
successfully executed. We first compute Rlo, the set
of roles in the initial state that cannot be revoked by
rules in CR. We then compute Rup, the set of roles
that may be assigned to the user u, and A, the set of
assignment rules that may be successfully applied.
To do this, we initialize Rup with I, the initial set of
roles that u is a member of, and A with ;. For each
assignment rule � in CA, if the target role of � (i.e.,
the last component of �) is not in Rlo, the positive
precondition of � is satisfied by Rup, and the
negative precondition of � does not contain any role
in Rlo, we add the target role of � to Rup and add � to
A. We repeat this process of iterating through CA

until Rup does not grow. Only assignment rules in A
and revocation rules that revoke roles in Rup are kept
after the pruning. Letting jCAj be the number of
rules in CA, the computation of Rup and A requires
OðjCAj2Þ rule consideration steps, because each pass
through CA adds at least one � 2 CA to A, and each
such � need not be considered thereafter.

. Backward pruning. Some roles may be irrelevant to
assigning the role r in the query. The backward
pruning removes assignment and revocation rules
about those roles. We compute two sets of roles: Rpo

is the set of roles on which r positively depends, and
Rne is the set of roles on which r negatively depends.
We remove assignment rules that assign roles
outside Rpo and revocation rules that revoke roles
outside Rne. Rpo is the smallest set that satisfies the
following conditions: 1) r 2 Rpo, 2) if rp 2 Rpo,

then any role that dominates rp is also in Rpo, and
3) if rp 2 Rpo, then any role that appears in the
positive precondition of a CA entry assigning to rp is
also in Rpo. Rne is the smallest set that satisfies the
following conditions: 1) if rp 2 Rpo, then any role that
appears (or dominates a role that appears) in the
negative precondition of a CA entry assigning to rp
is in Rne and 2) if rp 2 Rpo, then any role that is
(or dominates a role that is) mutually exclusive with
rp is in Rne.

The preprocessing takes time that is at most cubic in the size
of the URA-RC-SAP instance.

Experimental results. We performed experiments by
using two kinds of instances. Manually crafted instances are
designed to “hide” an unsafe state after a long sequence of
transitions. These instances forced the analysis tools to
search deep in the state space. Randomly generated
instances contain a relatively large number of roles and
transition rules.

Experiments were performed on a Windows workstation
with an Intel Pentium 4 3 GHz CPU and 512 Mbytes of
memory. We tested the performance of NuSMV and XSB
on several instances. Table 1 presents results for
seven instances, two of which were manually generated,
and five were randomly generated.

Experimental results show that the number of rules is a
crucial factor in determining the runtime. Therefore, the
preprocessing step plays an important role in improving the
efficiency of both logic programming and model checking
implementations. Many instances such as Rand2 that
cannot be solved within 30 minutes without preprocessing
are solved within a few seconds with preprocessing.

Both XSB and NuSMV are efficient in cases that have a
small number of transition rules. For the example in
Section 2.4, XSB uses 0.016 second, and NuSMV uses
0.125 second. When tested on a manually crafted instance
Man2 with 16 roles and 40 rules (29 were left after
preprocessing), which requires a sequence of at least
22 transitions before reaching an unsafe state, XSB uses
0.05 second, and NuSMV uses 0.13 second. When preproces-
sing is effective such as instance Rand2 with 100 roles and

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 249

TABLE 1
Experimental Data on URA-RC-SAP Instances Using XSB and NuSMV

Instances with names beginning with Man were manually crafted, while those beginning with Rand were randomly generated. Statistics on the total
states and the reachable states is for NuSMV only. Rows marked (AP) present results after preprocessing. NA indicates that, for the NuSMV cases,
the program did not finish running within 30 minutes or, for the XSB case, ran out of the memory.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

250 rules (20 rules left after preprocessing), XSB uses
0.55 second, and NuSMV executes in 0.94 second.

It appears that using XSB does not scale as well as using
NuSMV. For example, when it came to the randomly
generated instance Rand5 with 25 roles and 79 rules (57 left
after preprocessing), XSB ran out of memory after
17 minutes, while NuSMV returned with an answer within
73 seconds. An observation is that the runtime of XSB grows
linearly with the number of reachable states.1 However,
NuSMV uses binary decision diagrams (BDDs) to represent
its state space, so its runtime depends on the regularity of
the state space. A point worth mentioning is that XSB
consumes memory quickly. For the instance Rand4 with
30 roles and 88 rules (27 were left after preprocessing),
XSB uses more than 400 Mbytes of memory. The high
demand on memory impairs the scalability of our
XSB program. In contrast, the BDD-based NuSMV requires
less memory than XSB.

Both model checking and logic programming have been
used in network vulnerability analysis [18], [41]. Recently,
Ou et al. [33] have shown that in the context of network
vulnerability analysis, logic programming is much more
scalable than model checking. Our experimentation data
show that for URA-RC-SAP, the scalability of logic
programming is worse than model checking. This is
because in network vulnerability analysis, one can make
the monotonicity assumption; i.e., if an attacker gains a
privilege, it never loses it. However, in security analysis,
because of negative preconditions and mutual-exclusion
constraints, the monotonicity assumption does not hold,
and one has to explore the state space.

In real-word large-scale RBAC systems, even though the
number of roles in the whole system may be large, we
expect that the roles that are relevant for any given query
will be only a small portion of all roles. Therefore, we
conjecture that our approach of combining preprocessing
with existing tools such as NuSMV will be able to handle
many queries.

5 RELATED WORK

In their landmark paper [17], Harrison et al. formalized the
safety analysis problem in the access matrix model. The
problem determines whether a protection system can reach
a state in which a particular right is leaked. They show that
safety analysis is undecidable in their scheme [17]. Since
then, safety analysis has attracted considerable attention in
the research community. Safety analysis in monotonic
versions of the HRU scheme has been studied in [16].
Jones et al. introduced the Take-Grant scheme [19], in which
safety can be decided in linear time. Sandhu introduced the
Schematic Protection Model [35], the Extended Schematic
Protection Model [1], and the Typed Access Matrix
model [36]. Budd [5] and Motwani et al. [30] studied
grammatical protection systems. Soshi [43] studied safety
analysis in the Dynamic-Typed Access Matrix model. These
models all have subcases where safety is decidable.
Solworth and Sloan [42] introduced a discretionary access

control model in which safety is decidable. This thread of
research has produced many new access control schemes
but has had limited impact on access control systems used
in practice, probably because the proposed schemes are
either too simplistic to be useful or too arcane to be usable.
In this paper, we focus on policy analysis problems in
RBAC, which was invented not for the purpose of safety
analysis but for meeting the access control need of real-
world applications.

Influential works on RBAC include the pioneering
work of Ferraiolo et al. [11], [12] and the widely cited
RBAC96 family of formal RBAC models developed by
Sandhu et al. [39]. Recently, a standard for RBAC has been
proposed and adopted as an ANSI Standard [3], [13]. The
administration of RBAC is about controlling who can
update the various relations in an RBAC system. The most
well-known work on the administration of RBAC is
ARBAC97, developed by Sandhu et al. [37], [38]. Recently,
Crampton and Loizou [9] have introduced the notion of
administrative scope and an RBAC administration scheme
based on it.

An administrative scheme, in conjunction with the
representation for an RBAC state, naturally lends itself to
the safety question in RBAC. The work that is closest to this
paper is suchworks on safety and security analysis in RBAC.
Li and Tripunitara [26] studied security analysis for two
particular RBAC schemes derived from ARBAC97 [38]—
Assignment and Trusted Users (AATU) and Assign and
Revocation (AAR)—both of which are subschemes of the
URA97 scheme [38]. Themain results in [26] are that security
analysis in AATU and AAR are intractable (NP-hard) in
general but can be solved in polynomial time for semistatic
queries. The intractability results there are consequences of
the fact that a query may be able to encode an arbitrary
Boolean formula. The techniques used to establish tractable
results were to reduce the problem to security analysis in the
RT family of trust management languages [25]. We observe
that neitherAATUnorAARallowsnegative preconditions or
constraints. We have shown that URA-RC-SAP and these
restrictions are solvable in quadratic time, given direct
algorithm for solving them. We point out that even though
the role containment queries are special cases of semistatic
queries, our two tractable cases do not follow from results in
[26], becauseAATUdoesnot allowrevocation, andAARdoes
not allow trustedusers. In essence, the results in [26]dealwith
verysimple state-transition rulesbut sophisticatedqueries. In
this paper,we consider simple queries but sophisticated state
transitions. Since RT [24] is monotonic, it is unclear how the
techniques in [26] can be extended to deal with negative
preconditions or constraints. Li and Tripunitara [26] expli-
citly mentioned dealing with negative preconditions and
constraints as an open problem.

Koch et al. have proposed an RBAC scheme based on a
graph-based formalism [23] and have demonstrated that
safety is decidable in a subscheme [22]. However, the
decidable fragment of the graph-based formalism [22] does
not allow negative application conditions, which are used to
specify negative preconditions in assignment rules in the
graph-based formalism for RBAC [23]. Therefore, the
decidability result applies only to the subcase without

250 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

1. The statistics on the total states and the reachable states in Table 1 are
actually for NuSMV, but the statistics for XSB should be similar.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

negative preconditions or mutual-exclusion constraints.
Furthermore, in [22], it has only been shown that safety is
decidable in this case. No concrete computational complex-
ity result is given in [22]. The proof shows that the search
space is finite; however, searching the space likely takes
exponential time. We show that for the case that can be
modeled in the decidable fragment, namely, without
negative precondition or constraints, URA-RC-SAP is
decidable in quadratic time. For cases with negative
preconditions and/or constraints, we have given precise
computational complexities for them.

Some work related to safety in access control (e.g., [42])
refers to the work by Crampton [8] and Munawer and
Sandhu [31] to claim that safety is undecidable in the
ARBAC97 scheme. We point out that the undecidability
results in Crampton [8] and Munawer and Sandhu [31] are
not about the ARBAC97 scheme. The scheme considered by
Crampton [8] adds two new features to ARBAC97. One is to
allow changes in theCA andCR relations. (Sandhu et al. [38]
state specifically that it is assumed that in an ARBAC97
system, these relations are static andmay be changed only by
(a trusted) chief security officer.) The other is to allow a state-
change rule to include an arbitrary command specified using
a construct similar to that proposed by Harrison et al. [17].
Such constructs do not exist in ARBAC97. Munawer and
Sandhu [31] present a simulation of the Augmented Typed
Access Matrix (ATAM) scheme [2] in a particular RBAC
scheme that has similar features as those in [8].

Sasturkar et al. [44] also studied policy analysis problems
in ARBAC97-based systems. They established a connection
between the analysis problem and planning in artificial
intelligence. Our work has a number of differences. First,
they showed only that the analysis problem is PSPACE-
complete when revocation rules also have preconditions,
which are not in the ARBAC97 model. As the PSPACE-
hardness result is by a reduction from a planning problem
and the reduction requires revocation rules to have
preconditions, the results in [44] cannot entail that
URA97-RC-SAP is PSPACE-hard. Our proof uses a direct
reduction from the membership problem for LBA, and our
result that URA-RC-SAP is PSPACE-complete is stronger,
because it implies the PSPACE-completeness result in [44]
(proving that the in PSPACE part is straightforward).
Second, in addition to complexity results, we have also
developed tools for such an analysis using model checking
tools and logic programming and have experimentally
evaluated the two approaches. Third, the use of planning in
[44] enables the authors to obtain results on a wider class of
problems than those studied in this paper. For example,
they also consider special cases where the number of literals
in a precondition is limited to a small number.

6 CONCLUSION AND FUTURE WORK

We have formalized classes of security analysis in the
context of RBAC. We have shown that URA-SAP is
PSPACE-complete in the general case and that a number
of special cases of the problems are NP-complete. We have
also shown that model checking is a promising approach
for solving these problems. In the future, we plan to look at

more sophisticated queries and other administration
schemes.

APPENDIX A

TURING MACHINES

A TM is denoted asM ¼ ðQ;�;�; �; q0; B; F Þ, where Q is the
finite set of states, � is the finite set of allowable tape symbols,
B 2 � is the blank symbol, � � �� fBg is the set of input
symbols, � is the next move function and is a partial function
from Q� � to Q� �� fL;Rg, q0 2 Q is the start state, and
F � Q is the set of final states. An NDTM allows a finite
number of choices for its next move; i.e., � is a function from
Q� � to the power set of Q� �� fL;Rg. The first
definition describes a deterministic TM (DTM).

The language accepted by M (denoted by LðMÞ) is the set
of words in �? that cause M to enter a final state when
placed justified at the left on the tape of M, with M in
state q0, and the tape head of M at the leftmost cell. A
language L is accepted by a DTM if and only if it is accepted
by an NDTM. A language L is said to be in DSPACEðSðnÞÞ
if there exists a DTMM accepting L that takes at most SðnÞ
space, where n is the size of the input. Similarly, L is said
to be in NSPACEðSðnÞÞ if there exists an NDTM M

accepting L that takes at most SðnÞ space. A language L is
said to be in PSPACE if and only if it is in DSPACEðpðnÞÞ
for some polynomial p (L is accepted by a DTM that takes
polynomial space in the size of the input). We refer the
reader to [34] for more details on these and related concepts.

APPENDIX B

PROOF OF LEMMA 3

We show that URA-RC-SAP is PSPACE-hard by a reduc-
tion from the membership problem for LBA, which is
known to be PSPACE-complete. An LBA is a restricted
form of a TM. It differs from a TM in that while the tape is
initially considered infinite, only a finite contiguous portion
whose length is a linear function of the length of the initial
input can be accessed by the read/write head.

Let M ¼ ðQ;�;�; �; q0; B; F Þ be any LBA that uses at
most pðnÞ space, where n is the size of the input, and p is a
degree-1 polynomial. (We assume that the polynomial pðnÞ
is known. However, it suffices that there exists a
polynomial time algorithm for computing pðnÞ, given n.)
We construct an RBAC system whose start state is
� ¼ hUA;PA;RH;CA;CR;COi and a query u 2 r corre-
sponding to the DTM M so that there is an accepting
computation in M on an input x if and only if in the
RBAC system, there is a sequence of RBAC states from �

(which corresponds to input x) to �0, in which u 2 r is true.
In our construction, there are two users: u0 and u. There

is a special role ra (the reader can think of this as the
administrative role), and ðu0; raÞ 2 UA. All the assigning
and revoking of roles will be performed by u0. The special
user u0 can remove users from all roles; i.e., CR is equal to
fhra; Rig, where R consists of all the roles introduced in the
construction, except for ra.

Encoding TM configurations. For each state q 2 Q and
1 � i � pðnÞ, we introduce a role ri;a. For each state q 2 Q,

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 251

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

1 � i � pðnÞ, and symbol a in �, we introduce a role rq;i;a.

These roles are used to represent the configuration of the

TMM. Additional roles will be introduced later to simulate

transitions inM. If u is assigned to role ri;a, then the ith cell

contains a, and the tape head is not on cell i. For

1 � i � pðnÞ, u assigned to role rq;i;a indicates that the tape

head is on cell i, M is in state q, and the ith cell contains a.

We add the following mutual-exclusion constraints to CO

to maintain the integrity of the encoding. We only add a

polynomial number of constraints. We use ðr1; r2Þ as a

shorthand for the mutual-exclusion constraint that a user

cannot be a member of both r1 and r2 (this is equivalent to

smerhfr1; r2gi; 2i in our earlier notation):

. M can only be in one state at a time. We add mutual-
exclusion constraints of the form ðrq;i;a; rq0;i;aÞ for all
q 6¼ q0, i in the range ½1; � � � ; pðnÞ�, and a 2 �.

. The tape head can only point to one location. We add
mutual-exclusion constraints of the form ðrq;i;a; rq;j;a0Þ
for all i 6¼ j and for all q, a, and a0.

. One location cannot both have the head and not have the
head at the same time. We also add mutual-exclusion
constraints of the form ðri;a; rq;i;aÞ.

. Each tape cell can only contain one symbol. Therefore,
we add constraints of the form ðri;a; ri;a0Þ and
ðrq;i;a; rq;i;a0Þ for all i, a 6¼ a0, and q 2 Q.

Encoding the initial configuration. Assume that M

starts in the initial state q0, the first n cells of the tape contain

a1; � � � ; an (where ai 2 �), the rest of the tape cells consist of

blank symbols B, and the tape head points to the first cell.

The initial state of the RBAC system has user u in role

rq0;1;a1 , ri;ai for 2 � i � n, and rj;B for nþ 1 � j � pðnÞ.
Encoding the halting states. We use one role rtarget to be

used in the query and add the following tuples to CA:

. For each i in the range ½1; � � � ; pðnÞ�, a 2 �, and
accepting state q, add hra; rq;i;a; frtargetgi.

This ensures that the TM M enters an accepting state if

and only if u can be assigned to rtarget. The query in the

URA-RC-SAP instance that we are constructing is u 2 rtarget.
Encoding the next-move function. During each transi-

tion in M, two revocations and two assignments need to be

done to ensure that the next configuration is correctly

represented by the role memberships. We need to make

these changes transactional. Therefore, we need to intro-

duce some control roles. We will first present the construc-

tion and then explain how a state transition occurs.
We first introduce two roles: rb and rc. Initially, u is

assigned to rb but not to rc. The following tuple is added

to CA:

. hra; rc; frbgi.

Suppose that �ðq; aÞ is equal to ðq0; a0; LÞ (the case when

�ðq; aÞ ¼ ðq0; a; RÞ is similar). The transition �ðq; aÞ ¼

ðq0; a0; LÞ is modeled by doing the following:

. For each 2 � i � pðnÞ, add two roles: rlbi;q0 ;a0 and r
lc
i;q0;a0 .

Initially, u is not assigned to any of these roles. We

add the following mutual-exclusion constraints:

– For each 2 � i � pðnÞ, add constraints of the
form ðrb; r

lc
i;q0 ;a0Þ.

– For each 2 � i � pðnÞ, add constraints of the
form ðrlbi;q0;a0 ; rcÞ.

. For each 2 � i � pðnÞ and each a‘ 2 �, add a role
rldi;q0;a‘ . We add the following mutual-exclusion
constraints:

– For each a � i � pðnÞ � 1, add constraints of the
form ðrldi;q0;a0 ; rbÞ.

. We then add the following tuples to the relation CA
Step 1. For all 2 � i � pðnÞ, we add

hra; rq;i;a \ rb; fr
lb
q0;i;a0gi:

Step 2. For all 2 � i � pðnÞ, we add

hra; rlbq0 ;i;a0 ; fr
lc
q0;i;a0gi:

Step 3. For all 2 � i � pðnÞ, we add

hra; rlcq0;i;a0 ; fri;a0gi:

Step 4. For all 2 � i � pðnÞ, for each a‘ 2 �, we add

hra; rlcq0;i;a0 \ ri;a0 \ ri�1;a‘ ; fr
ld
q0;i;a‘
gi:

Step 5. For all 2 � i � pðnÞ, for each a‘ 2 �, we add

hra; rldq0;i;a‘ ; frq0;i�1;a‘gi:

Step 6. For all 2 � i � pðnÞ, for each a‘ 2 �, we add

hra; rldq0;i;a0 \ rq0;i�1;a‘ ; frcgi:

Transitions in the RBAC system. Suppose that at
one point of the computation of M, the tape head is at
position i, the ith cell contains a, and the current state is q.
Then, u is in the role rq;i;a. The only way to proceed in the
RBAC system is to use the CA tuples added in step 1 to
assign u to rlbq0;i;a0 . This can succeed only when u is in rb.
Initially, u is in rb, and we will show that u can be assigned
to rb after a transition in M has been simulated.

Once u is assigned to rb and then to rlbq0;i;a0 , the only way to
make progress in the RBAC system is to use the CA tuples
added in step 2 to assign u to rlcq0;i;a0 ; however, because of the
constraints, one has to revoke u from rb first.

Once u is assigned to rb and then to rlcq0;i;a0 , u can be

assigned (using the tuples added in step 3) to ri;a0 (after

revoking u from rq;i;a first due to the constraints added for

tape integrity). To update roles corresponding to the

ði� 1Þth cell, let a‘ be the symbol on the ði� 1Þth cell,

u can be assigned (using the tuples added in step 4) to rldq0;i;a‘ .

Using the tuples in step 5, u can be assigned to rq0;i�1;aell .

Finally, after the tape representation roles have been

updated, u can be assigned to rc. Before doing this, u has

to be revoked from all roles of the form rlbi;q0;a0 because of the

constraints.

To make the next state transition, u must be assigned to

rb, which requires u to be revoked from all roles of the form

rlci;q0;a0 and rldi;q0;q‘ , clearing all the intermediate roles used in

the simulation.

252 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

Summary. An instantaneous description (ID) of a TM M is
given by the contents of the tape, the position of the head,
and the state ofM. Given two IDs ID1 and ID2, we say that
ID1 !M ID2 if ID2 follows from ID1 by one move of the
M. Given an input x, let ID0; � � � ; IDn be a sequence of IDs
such that ID0 corresponds to the input x, IDi !M IDiþ1,
and IDn has an accepting state (the sequence is an accepting
computation to the string). Let �0 be the RBAC state that
corresponds to ID0. Each move of the TM can be emulated
by the RBAC scheme in a number of steps. Let this constant
be c. Therefore, there exists a sequence of RBAC states
�0; � � � ; �cn such that �ci encodes IDi, �i ! �iþ1, and in �cn; u
is in a role rq;i;a such that q 2 F . Then, u can be assigned to
rtarget. Hence, an accepting computation in M has a
corresponding sequence in the RBAC system.

Our discussion of state transitions in the RBAC system
above shows that state changes in the RBAC systems
correspond to computations. If a user u is assigned role rq;i;a
in some state in the RBAC system, there is a corresponding
computation in the TM M that reaches state q and has
the head on the ith position with the symbol a in the
ith position.

Therefore, there is an accepting computation in TM on
an input x if and only if there is a sequence of RBAC states
from � (which corresponds to input x) to �m, where u is in
role rtarget. This proves the result. tu

APPENDIX C

PROOF OF LEMMA 6

Proof. We reduce 3SAT to the URA-RC-SAP, which proves
that URA-RC-SAP is NP-hard. Let f ¼ c1 ^ � � � ^ cm be an
instance of 3SAT and let p1; . . . ; pn be the propositional
variables in f . We associate a role rf with the formula f .
We now construct an instance of URA-RC-SAP
½CA ðconjunctiveÞ; CR ¼ f g; CO ¼ f g� so that a user
becomes a member of rf if and only if f is satisfiable.

In addition to f , R contains roles c1; . . . ; cm corre-
sponding to the clauses and roles p1; . . . ; pn correspond-
ing to the propositional variables, plus a role t that
will be used for signaling, as will be explained shortly.
We construct CA so as to allow u to be assigned to any
combination of the pi’s. Once this is done, CA will
permit u to be assigned to role t, signaling that a
second phase has begun, in which u can be added to
role cj just in case u’s assignment to the pi’s represents
a truth assignment that makes clause cj true. More
precisely,

CA ¼fha;:t; fp1; . . . ; pngi; ha; true; ftgi; ha; c1\� � �\ cm; fig

[fha; t \ pi; fcjj1�j�m ^ pi appears positively in cjgi

j1 � i � ng [fha; t \ :pi; fcjj1 � j � m ^ pi

appears negatively in cjgij1 � i � ng;

and CR ¼ ;.
We now consider an instance of URA-RC-SAP, in

which AT ; UA; PA, and RH are empty, and show that it
is true if and only if f is satisfiable. If the formula f is
satisfiable, it is easy to see that a can add u to role f by
first adding u to the role pi if the propositional variable pi
is true in the solution to f , then adding u to t, and then
adding u to each cj and, finally, to f .

Conversely, if the problem instance is true, then at
some point, u must be added to role t. Since u cannot be
removed from t, u’s assignment to the pi roles at that
time enables u to be added to each role cj. By defining the
propositional variables pi to be true if and only if the role
pi contains u at that time, we get an assignment that
makes at least one literal true in each clause cj. tu

APPENDIX D

PROOF OF LEMMA 7

Proof. We reduce monotone 3SAT to the problem.
Monotone 3SAT is a special case of 3SAT, where all
literals in a clause are either all positive or all negative.
Monotone 3SAT is known to be NP-complete [14].

Let e ¼ c1 ^ . . . ^ cl ^ clþ1 ^ . . . ^ cn be an instance of
monotone 3SAT, where c1; . . . ; cl are the clauses with
only positive literals, and clþ1; . . . ; cn are the clauses with
only negative literals. Let p1; . . . ; pk be all the proposi-
tional variables that appear in e, each ci ¼ pi1 _ pi2 _ pi3 ,
and each cj ¼ :pj1 _ :pj2 _ :pj3 . We produce a corre-
sponding URA-RC-SAP instance for RBACassign;nonegation
as follows:

Corresponding to each propositional variable pi, we
have role ri. We also have role rci , corresponding to each
positive clause ci in e. In addition, we have roles r and a.
We assign user u0 to a, that is, hu0; ai 2 UA. Role a

is an administrative role and appears as the first
component of every entry in CA. We first add the tuple
ha; rc1 ^ . . . ^ rcl ; ri to CA. Corresponding to each positive
clause ci ¼ pi1 _ pi2 _ pi2 , we add the three entries
ha; ri1 ; rcii; ha; ri2 ; rcii; ha; ri3 ; rcii to CA. If ci has fewer
than three literals, then we only add such entries to CA
that correspond to the literals in ci. Clearly, the CA so
constructed has no negation in the preconditions of its
entries, and each precondition is a conjunction of roles.
We capture the negative clauses in e by using entries
in CO. For each negative clause cj ¼ :pj1 _ :pj2 _ :pj3 ,
we add the constraint smerh r; rj1 ; rj2 ; rj3

� �

; 4i. If cj ¼
:pj1 _ :pj2 (that is, has only two literals), then we add
the constraint smerh r; rj1 ; rj2

� �

; 3i to CO, and if
cj ¼ :pj1 (has only one literal), then we add the
constraint smerh r; rj1

� �

; 2i to CO.
We ensure that user u that is specified in the query q is

not a member of r or any rci in the start state �. We now
assert that there exists a reachable state in which u is a
member of r if and only if e is satisfiable. The reason is
that the only way that u can become a member of r is by
u0 successfully exercising the only entry in CA that has r
as the target role (the last component of the tuple in CA).
This is possible if and only if u already satisfies the role
memberships, as specified in the precondition, and
assigning u to r does not violate any of the entries in
CO. More formally, for the “if” part, assume that e is
satisfiable. Then, there is some truth assignment that
makes e true. We use the truth assignment as the user-
role assignment in � for u. That is, if the propositional
variable pi is true in the truth assignment that makes e
true, then hu; rii 2 UA. Now, u0 will be able to assign u to
a role rci if and only if hu; ri1i 2 UA, hu; ri2i 2 UA, or
hu; ri3i 2 UA, where ci ¼ pi1 _ pi2 _ pi3 , and none of the

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 253

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

entries in CO is violated. An entry in CO is violated if
and only if u is a member of all roles other than r in the
set of the roles in a constraint. This is the case if and only
if the corresponding negative clause is false, which is
impossible, given the assumption that e is satisfiable.

For the “only if” part, assume that there exists a
reachable state in which u is a member of r. We use the
role memberships of u in the roles r1; . . . ; rk in the start
state � as our truth assignment for e. That is, if
hu; rii 2 UA, then we set the corresponding propositional
variable pi to be true. Given that u can eventually be
assigned to r, we know that u can be assigned to every rci
in �. Therefore, each positive clause is true. Furthermore,
given that in the final action, we can assign u to r, we
know that no entry in CO is violated. Consider the
constraint smerhfr; rii ; ri2 ; ri3g; 4i. This constraint would
disallow u0 from assigning u to r if and only if u is
already a member of all of ri1 ; ri2 , and ri3 . As this is not
the case, we know that every negative clause evaluates
to true. tu

REFERENCES

[1] P. Ammann and R.S. Sandhu, “Safety Analysis for the Extended
Schematic Protection Model,” Proc. IEEE Symp. Security and
Privacy (S&P ’91), pp. 87-97, May 1991.

[2] P. Ammann and R.S. Sandhu, “Implementing Transaction
Control Expressions by Checking for Absence of Access
Rights,” Proc. Eighth Ann. Computer Security Applications Conf.
(ACSAC ’92), Dec. 1992.

[3] American National Standard for Information Technology - Role Based
Access Control, ANSI INCITS 359-2004, Am. Nat’l Standards Inst.,
Feb. 2004.

[4] R. Awischus, “Role-Based Access Control with the Security
Administration Manager (SAM),” Proc. Second ACM Workshop
Role-Based Access Control Table of Contents (RBAC ’97), pp. 61-68,
1997.

[5] T. Budd, “Safety in Grammatical Protection Systems,” Int’l J.
Computer and Information Sciences, vol. 12, no. 6, pp. 413-430, 1983.

[6] W. Chen and D.S. Warren, “Tabled Evaluation with Delaying
for General Logic Programs,” J. ACM, vol. 43, no. 1, pp. 20-74,
Jan. 1996.

[7] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking.
MIT Press, 2000.

[8] J. Crampton, “Authorizations and Antichains,” PhD dissertation,
Univ. of London, U.K., 2002.

[9] J. Crampton and G. Loizou, “Administrative Scope: A Foundation
for Role-Based Administrative Models,” ACM Trans. Information
and System Security, vol. 6, no. 2, pp. 201-231, May 2003.

[10] W.F. Dowling and J.H. Gallier, “Linear-Time Algorithms for
Testing the Satisfiability of Propositional Horn Formulae,” J. Logic
Programming, vol. 1, no. 3, pp. 267-284, 1984.

[11] D.F. Ferraiolo, J.A. Cuigini, and D.R. Kuhn, “Role-Based Access
Control (RBAC): Features and Motivations,” Proc. 11th Ann.
Computer Security Applications Conf. (ACSAC ’95), Dec. 1995.

[12] D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Control,” Proc.
15th Nat’l Information Systems Security Conf., 1992.

[13] D.F. Ferraiolo, R.S. Sandhu, S. Gavrila, D.R. Kuhn, and
R. Chandramouli, “Proposed NIST Standard for Role-Based
Access Control,” ACM Trans. Information and Systems Security,
vol. 4, no. 3, pp. 224-274, Aug. 2001.

[14] M.R. Garey and D.J. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[15] T.X.R. Group, The XSB Programming System, http://
xsb.sourceforge.net/, 2008.

[16] M.A. Harrison and W.L. Ruzzo, “Monotonic Protection Systems,”
Foundations of Secure Computation, R.A. DeMillo, D.P. Dobkin,
A.K. Jones, and R.J. Lipton, eds., Academic Press, pp. 461-471,
1978.

[17] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, “Protection
in Operating Systems,” Comm. ACM, vol. 19, no. 8, pp. 461-471,
Aug. 1976.

[18] S. Jha, O. Sheyner, and J.M. Wing, “Two Formal Analysis of
Attack Graphs,” Proc. 15th IEEE Computer Security Foundations
Workshop (CSFW ’02), June 2002.

[19] A.K. Jones, R.J. Lipton, and L. Snyder, “A Linear Time Algorithm
for Deciding Security,” Proc. 17th Ann. IEEE Symp. Foundations of
Computer Science (FOCS ’76), pp. 33-41, Oct. 1976.

[20] G. Karjoth, “The Authorization Model of Tivoli Policy Director,”
Proc. 17th Ann. Computer Security Applications Conf. (ACSAC ’01),
pp. 319-328, Dec. 2001.

[21] A. Kern, “Advanced Features for Enterprise-Wide Role-Based
Access Control,” Proc. 18th Ann. Computer Security Applications
Conf. (ACSAC ’02), pp. 333-343, Dec. 2002.

[22] M. Koch, L.V. Mancini, and F. Parisi-Presicce, “Decidability of
Safety in Graph-Based Models for Access Control,” Proc. Seventh
European Symp. Research in Computer Security (ESORICS ’02),
pp. 229-243, Oct. 2002.

[23] M. Koch, L.V. Mancini, and F. Parisi-Presicce, “A Graph-Based
Formalism for RBAC,” ACM Trans. Information and System Security,
vol. 5, no. 3, pp. 332-365, Aug. 2002.

[24] N. Li, J.C. Mitchell, and W.H. Winsborough, “Design of a Role-
Based Trust Management Framework,” Proc. IEEE Symp. Security
and Privacy (S&P ’02), pp. 114-130, May 2002.

[25] N. Li, J.C. Mitchell, and W.H. Winsborough, “Beyond Proof-of-
Compliance: Security Analysis in Trust Management,” J. ACM,
vol. 52, no. 3, pp. 474-514, A preliminary version appeared in Proc.
2003 IEEE Symp. Security and Privacy (S&P), May 2005.

[26] N. Li and M.V. Tripunitara, “Security Analysis in Role-Based
Access Control,” Proc. Ninth ACM Symp. Access Control Models and
Technologies (SACMAT ’04), pp. 126-135, June 2004.

[27] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems. Springer, 1992.

[28] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems:
Safety. Springer, 1995.

[29] D. McPherson, Role-Based Access Control for Multi-Tier Applica-
tions Using Authorization Manager, http://www.microsoft.
com/technet/prodtechnol/windowsserver2003/technologies/
management/athmanwp.mspx, 2008.

[30] R. Motwani, R. Panigrahy, V.A. Saraswat, and S.
Ventkatasubramanian, “On the Decidability of Accessibility
Problems,” Proc. 32nd Ann. ACM Symp. Theory of Comput-
ing (STOC ’00), extended abstract, pp. 306-315, May 2000.

[31] Q. Munawer and R.S. Sandhu, “Simulation of the Augmented
Typed Access Matrix Model (ATAM) Using Roles,” Proc. ACM
Int’l Conf. Information and Security (INFOSECU), 1999.

[32] NuSMV: ANew SymbolicModel Checker, http://afrodite.itc.it:1024/
nusmv/, 2008.

[33] X. Ou, S. Govindavajhala, and A.W. Appel, “MulVAL: A Logic-
Based Network Security Analyzer,” Proc. 14th Usenix Security
Symp., Aug. 2005.

[34] C.H. Papadimitriou, Computational Complexity. Addison-Wesley-
Longman, 1994.

[35] R.S. Sandhu, “The Schematic Protection Model: Its Definition and
Analysis for Acyclic Attenuating Systems,” J. ACM, vol. 35, no. 2,
pp. 404-432, 1988.

[36] R.S. Sandhu, “The Typed Access Matrix Model,” Proc. IEEE Symp.
Security and Privacy (S&P), pp. 122-136, May 1992.

[37] R.S. Sandhu and V. Bhamidipati, “Role-Based Administration of
User-Role Assignment: The URA97 Model and Its Oracle
Implementation,” J. Computer Security, vol. 7, 1999.

[38] R.S. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
Model for Role-Based Administration of Roles,” ACM
Trans. Information and Systems Security, vol. 2, no. 1, pp. 105-135,
Feb. 1999.

[39] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-
Based Access Control Models,” Computer, vol. 29, no. 2, pp. 38-47,
Feb. 1996.

[40] A. Schaad, J. Moffett, and J. Jacob, “The Role-Based Access
Control System of a European Bank: A Case Study and
Discussion,” Proc. Sixth ACM Symp. Access Control Models and
Technologies (SACMAT ’01), pp. 3-9, 2001.

[41] O. Sheyner, J.W. Haines, S. Jha, R. Lippmann, and J.M. Wing,
“Automated Generation and Analysis of Attack Graphs,” Proc.
IEEE Symp. Security and Privacy (S&P), 2002.

254 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

[42] J.A. Solworth and R.H. Sloan, “A Layered Design of Discretionary
Access Controls with Decidable Safety Properties,” Proc. IEEE
Symp. Security and Privacy (S&P), May 2004.

[43] M. Soshi, “Safety Analysis of the Dynamic-Typed Access Matrix
Model,” Proc. Sixth European Symp. Research in Computer Security
(ESORICS ’00), pp. 106-121, Oct. 2000.

[44] A. Sasturkar, P. Yang, S. Stoller, and C. Ramakrishnan, “Policy
Analysis for Administrative Role-Based Access Control,” Proc.
19th Computer Security Foundations Workshop (CSFW ’06), July 2006.

Somesh Jha received the BTech degree in
electrical engineering from the Indian Institute
of Technology, New Delhi, and the PhD degree
in computer science from Carnegie Mellon
University in 1996. He is currently an associate
professor in the Department of Computer
Sciences, University of Wisconsin, Madison.
His research interests include the analysis
of security protocols, survivability analysis,
intrusion detection, formal methods for security,

combating malicious code, and, recently, privacy-preserving protocols.

Ninghui Li received the BEng degree in
computer science from the University of Science
and Technology of China in 1993, and the
MSc and PhD degrees in computer science
from New York University, in 1998 and 2000,
respectively. In 2003, he joined Purdue
University, where he is currently an assistant
professor in the Department of Computer
Science. He was a research associate in the
Department of Computer Science, Stanford

University. His research interests include security and privacy in
information systems, in particular access control. He has worked on
projects on trust management, automated trust negotiation, role-based
access control, online privacy protection, privacy-preserving data
publishing, and operating system access control. He has published
more than 60 technical papers in refereed journals and conference
proceedings and has served on the program committees of more than
three dozen international conferences and workshops. He is a senior
member of the IEEE, the IEEE Computer Society, and a member of the
ACM and the Usenix.

Mahesh Tripunitara received the PhD degree
in computer science from Purdue University,
where he specialized in information security. He
is currently a principal technical staff in the
Security and Privacy Technology Laboratory,
Motorola Labs.

Qihua Wang received the BS degree in
computer science from the University of Science
and Technology of China (USTC) in 2004 and
the MS degree from Purdue University in 2007.
He is currently working toward the PhD degree
in the Department of Computer Science,
Purdue University. His research interests in-
clude access control policy management, priv-
acy-driven access control in database, and role
management in enterprises.

William H. Winsborough received the BA, MS,
and PhD degrees from the University of
Wisconsin, Madison. He has held several
research positions in the academe and the
industry. He is currently an associate professor
in the Department of Computer Science,
University of Texas at San Antonio. His research
interests include computer security and privacy,
in particular policy-language systems with
provable security properties. He is a member

of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JHA ET AL.: TOWARD FORMAL VERIFICATION OF ROLE-BASED ACCESS CONTROL POLICIES 255

Authorized licensed use limited to: University of Waterloo. Downloaded on October 9, 2009 at 13:04 from IEEE Xplore. Restrictions apply.

