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Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa 

Corporation’s lattice Boltzmann PowerFLOW® solver was used to perform time-dependent simulations of 

the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a 

Mach number of 0.2 with the flap deflected at 39º (landing configuration). We focused on accurately 

predicting the prominent noise sources at the flap tips and main landing gear for the two baseline 

configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently 

transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated 

with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a 

broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive 

comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements 

showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap 

inboard and outboard tips and the main landing gear.  In particular, the computed fluctuating surface 

pressure field for the flap agreed well with the measurements in both amplitude and frequency content, 

indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap 

interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, 

altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both 

baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were 

shown to be in close agreement with measured values.  

Nomenclature 

AOA          = angle-of-attack  

CL  = lift coefficient 

Cp'rms  = unsteady RMS pressure coefficient 

Cp  = pressure coefficient  

c  = local chord 

DNS  =    Direct Numerical Simulation 

DES  =    Detached Eddy Simulation 

MDDES  = Modified Delayed Detached Eddy Simulation 

GAC  = Gulfstream Aerospace Corporation 

Hz  = Hertz, cycles per second 

LES  =    Large Eddy Simulation 

M  = Mach number 

PSD  = power spectral density in [psi
2
/Hz] or [dB/Hz] 

psi  = pounds per square inch 

Re  = Reynolds number 

RMS  = root mean square 
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RNG  =   Re-Normalization Group 

s  =   second 

URANS  =    unsteady Reynolds averaged Navier-Stokes 

VR  = variable resolution 

X, Y, Z  = right handed coordinate system 

 

I. Introduction 

Aircraft noise has been recognized as an environmental pollution problem since the advent of commercial air 

transportation. Today, it is a hazard that affects metropolitan areas adjacent to major airports. With the projected 

growth in air travel and the relentless pace of urban development, community exposure to substantially higher noise 

levels seems inevitable. NASA’s Environmentally Responsible Aviation (ERA) project is pursuing the development, 

evaluation, and maturation of novel noise reduction technologies that aim to confine aircraft noise footprints on the 

ground within airport boundaries. This is to be accomplished without detrimental effects to the aerodynamic 

efficiency of aircraft. To most people, aircraft noise is synonymous with jet engine noise. During approach to 

landing, however, noise generated by the airframe is comparable to, and in some instances even louder than, 

propulsion noise. Acoustic measurements from flight tests
1-6 

and model-scale experiments
7-8

 have identified the 

landing gear and lift enhancing devices, such as wing slats and flaps, as the prominent sources of airframe noise. 

Efficient design and development of viable noise reduction technologies demand the availability of high-fidelity 

simulation tools with accurate predictive capabilities. Ultimately, the goal of creating such tools is to promote a 

paradigm shift in the design procedure from the current time consuming and costly trial and error approach to a 

physics-based virtual design environment whereby the aeroacoustic evaluation of a noise reduction concept and its 

subsequent optimization can take place in an integrated fashion.  

As part of the NASA-Gulfstream partnership on airframe noise research, a series of flight tests and model scale 

experiments are being conducted with a Gulfstream aircraft as the baseline configuration. An 18% scale, semi-span 

replica of the chosen aircraft was designed and fabricated specifically to conduct airframe noise studies and evaluate 

noise reduction concepts for mitigating landing gear, flap, and gear–flap interaction noise. Aeroacoustic testing of 

the 18% scale semi-span model was performed as a series of carefully planned entries in the NASA Langley 

Research Center (LaRC) 14- by 22-Foot Subsonic Wind Tunnel (14x22). The initial entry, completed in November 

2010, focused on acquiring global forces (lift and drag) and measurements of steady and unsteady surface pressures. 

Detailed accounts of that entry and the processed aerodynamic data are given in Khorrami et al.
9
 and Khorrami and 

Neuhart.
10

 The second 14x22 tunnel entry was executed in two segments. The first segment was dedicated to 

simultaneous acoustic and surface pressure measurements,
11,12

 while the second segment was devoted to off-surface 

flow measurements for the nominal aircraft landing configuration.
13

  

Concurrent with the experimental test campaigns, there is a comprehensive computational effort aimed at 

extending the state-of-the-art in airframe noise prediction capabilities from component-level to full aircraft system-

level configurations.  A unique aspect of the NASA-Gulfstream collaborative effort is the complementary, and 

sometimes leading, role that the computational simulations play in the process toward better design, evaluation, 

testing, and down-selection of noise reduction technologies. The computational effort is built upon the knowledge 

and experience gained from previous aeroacoustic simulations of an isolated nose landing gear for a Gulfstream 

aircraft and other relevant configurations.
14-19

 Following those earlier simulations, the current full-aircraft airframe 

noise prediction effort is being pursued via execution of two distinct computational methodologies. In this paper, 

results obtained with Exa Corporation’s PowerFLOW® solver are presented. The code, based on a subsonic 

compressible lattice Boltzmann Method (LBM) flow solver, was used to perform unsteady simulations of the 18% 

scale, semi-span Gulfstream aircraft model in landing configuration (with the main landing gear off and on). In a 

companion paper by Khorrami and Mineck,
20

 NASA’s FUN3D unstructured compressible Navier-Stokes solver was 

used to conduct Detached Eddy Simulations (DES) of the same model. 

II. Simulated Model Geometry 

The simulated model geometry corresponds to an 18% scale, semi-span high-fidelity reproduction of a 

Gulfstream aircraft (see Fig. 1). The model geometry consists of a fuselage, wing, flap, flow-through nacelle, pylon, 

and main landing gear. A full description of this model, including the surface distribution of steady pressure ports 

and unsteady transducers on various components, is provided in Refs. 9 and 10. The baseline case of 39º flap 

deflection without the main landing gear was used to perform an extensive computational study focused on mesh 

resolution and solution convergence. Figures 2 and 3, reproduced from Ref. 9, show the top view of the spanwise 
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location and numbering of the static pressure rows on the model wing, winglet, and flap. Note in Fig. 2a that the 

wing pressure rows extend to include the area that overlaps the stowed flap top surface, shown in purple. This darker 

region represents the wing spoiler, which was treated as part of the wing for instrumentation purposes. 

 

 

     

a) Installed in NASA LaRC 14x22 wind tunnel                  b)   CAD model 

Figure 1. 18% scale semi-span model of a Gulfstream aircraft. 

 

      

a) Wing                                                                         b)   Winglet 

Figure 2. Spanwise location and identification number for rows of static pressure orifices (from Ref. 9). 
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Figure 3. Flap orifice row distribution and numbering (from Ref. 9). 

Figures 4 through 8, taken from Ref. 10, display the locations and numbering of the unsteady pressure sensors on 

the model flap and main landing gear (including the gear cavity door) used extensively to validate the present 

computations. Altogether, the flap has 40 dynamic sensors. The sensors (herein after referred to as probes) are 

distributed in three distinct areas: along the mid-span section (not shown), and two narrow chordwise strips adjacent 

to the inboard and outboard edges where significant flow unsteadiness is expected.  

The probe locations for the inboard and outboard tips are shown in Figs. 4 and 5, respectively. Note that the flap 

side-edge has a cavity that nearly spans the entire chord length. In the actual aircraft, this cavity houses a bulb seal 

that prevents metal to metal contact during flap retraction. To document whether the cavity acoustic modes get 

excited at high flap deflections, two probes (P26 and P27) are installed inside the cavity. The simulated geometry 

also includes this cavity and the bulb seal within it.    

   

   

a) Top and side view                                           b)  Bottom and side view 

Figure 4. Locations and numbering of probes installed at the flap inboard edge (from Ref. 10). 

 

 

a) Top and side view                                            b) Bottom and side view 

Figure 5. Locations and numbering of probes installed at the flap outboard edge (from Ref. 10).  
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a) Side view                                                                b) Rear view 

Figure 6. Side and rear views of the main landing gear highlighting major components (from Ref. 10). 

 

         

a) Interior (fuselage) view                                    b) Exterior (wing-tip) view 

Figure 7. Interior and exterior views of the wheels showing locations of installed probes (from Ref. 10). 

 

              

    a) Interior (fuselage) view        b) Exterior (wing-tip) view             c) Door interior 

Figure 8. Interior and exterior views of main gear post, shock strut, and door (from Ref. 10). 
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III. Computational Approach 

The numerical simulations documented in this paper were performed using Exa Corporation’s commercial solver 

PowerFLOW® versions 4.4b and 5.0, which are based on the three-dimensional 19 state (D3Q19) lattice Boltzmann 

model. The software has been successfully validated for flows over highly complex geometries such as those 

reported in Refs. 16 through 19. 

A. Flow Solver 

The lattice Boltzmann equations represent an alternative mesoscopic formulation to the classical macroscopic 

Navier-Stokes equations describing a compressible unsteady flow of a continuum. The details of the mathematical 

foundations are documented in references 18, 19 and 21. The simple, local formulation of the underlying D3Q19 

equations allows a highly efficient implementation for distributed computations on thousands of processors. The low 

dissipation and dispersion properties of the numerical scheme typically produce aerodynamic and aeroacoustic 

results that are comparable to those obtained with classical CFD solvers that use higher-order large eddy simulation 

(LES), as demonstrated in the comparative study of flow over tandem cylinders presented in Ref. 22.  

B. Turbulence Modeling  
The lattice Boltzmann flow simulation is equivalent to a Direct Numerical Simulation (DNS) of the flow. For 

high Reynolds number flows, such as those addressed in this work, turbulence modeling is incorporated into the 

lattice Boltzmann model by replacing the relaxation time, which is related to the thermodynamic chaotic motion of 

fluid particles, by a turbulent relaxation time that models the effect of turbulent chaotic motion on the statistics of 

fluid particle collisions. The turbulent kinetic energy and the turbulent dissipation are obtained by solving a variant 

of the RNG k-ε model.
23

 This model incorporates a swirl term that detects the occurrence of large-scale three-

dimensional turbulent structures and reduces the influence of the turbulence model on the simulated flow 

accordingly. In this respect, the turbulent lattice Boltzmann flow model  is analogous to a hybrid URANS-LES 

formulation, with the difference that, compared for instance to standard DES formulations, the blending between 

LES and URANS is based on the resolved turbulence structures and has therefore an adaptive character both in 

space and time.
24

 To reduce the resolution requirements near the wall for high Reynolds number flows, an extended 

wall function is used to model the boundary layer on solid surfaces. The wall function model is an extension of the 

standard formulation and includes the effects of favorable and adverse pressure gradients on the outer boundary-

layer variables. 

C.  Computational Grids 

The lattice Boltzmann formulation is solved on Cartesian meshes that are generated automatically within 

PowerFLOW® for any geometrically complex shape. This greatly simplifies the labor-intensive volume meshing 

step usually associated with other approaches. Thirteen variable refinement (VR) regions are defined to allow local 

mesh refinement by successive factors of 2. The axis system was aligned with the vehicle body axis system (X along 

the line from the nose to the tail, Y from the centerline to the right wing tip, and Z pointing away from the ground, a 

right handed axis system). Locations and distances are presented in non-dimensional grid units (one grid unit equals 

one inch). The nose of the fuselage was located at (-0.72, -3.50, 13.95), the end of the fuselage was located at 

(184.68, -3.50, 20.37), and the tip of the winglet was located at (146.11, 100.82, 23.86). A series of grids was 

generated to demonstrate grid convergence and to efficiently cluster the mesh around the wing surface for an 

accurate resolution of the flap side edge flow. Offset VR regions were used to achieve y
+ 

values below 150 around 

the wing and approximately 20 near the flap tips. Additional off-body VR regions were also included to resolve the 

wing tip vortex and both inboard and outboard flap tip vortex formation regions as depicted in Figs. 9 and 10. The 

Cartesian volume element (voxel) size on the inboard flap side edge surface was 0.1875 mm, whereas the outboard 

flap tip VR offset region had a voxel size of 0.0938 mm constituting the smallest voxel size of the volume mesh. 

The inboard and outboard flap tip vortex rollup regions were resolved using 0.75 mm and 0.1875 mm resolutions, 

respectively. 

The aircraft surface was subdivided into different patches (PIDs) as depicted for the flap surface in Fig. 11 in 

order to distinguish between acoustic contributions from different regions during the subsequent farfield acoustic 

propagation computations. The generated grid had a total of 2.6 x 10
9
 voxels and 40 x 10

6
 surface elements (surfels). 

The simulation was executed for 4.5 x 10
6
 time steps to cover a physical time of 0.7 s. For the grid resolution study 

additional medium and coarse meshes, comprised of globally larger voxel sizes of factor 1.5 and 2.25, respectively, 

were used. 
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a) Spanwise cut near leading edge          b) Spanwise cut near mid-chord         c) Streamwise cut near tip 

Figure 9. Close-up view of model geometry near flap inboard tip and corresponding volume mesh (every 

second line is shown). 

 

 

     

 

 

 

 

 

 

 

 

a) Spanwise cut near leading edge          b) Spanwise cut near mid-chord         c) Streamwise cut near tip 

Figure 10. Close-up view of model geometry near flap outboard tip and corresponding volume mesh (every 

second line is shown). 

 

 

 
 

Figure 11. Flap surface composed of various surface patches for subsequent acoustic farfield propagation 

contributions. 

Once a satisfactory meshing strategy and the requisite mesh spacing were established, attention was focused on 

the baseline configuration with the main landing gear deployed. Due to the automatic meshing capabilities of 

PowerFLOW®, inclusion of the main landing gear in the simulations did not impact the existing mesh around other 

regions of the aircraft, thus allowing us to make consistent comparisons between baseline configurations with and 

without the gear. Only a local change of the mesh was required by adding variable resolution regions around the 

gear and its bay that are included in the computer-aided design (CAD) model of the aircraft. Figure 12 shows the 
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main landing gear deployed under the wing and the wheel bay. The relative position between the gear and the wing 

flap is such that a strong interaction is expected between the gear wake and the inboard flap edge. The manner in 

which this interaction is manifested may impact the effectiveness of any low-noise concept applied to the inboard 

tip. Figure 13 shows the mesh layout past the gear components. The finest volume resolution was obtained by an 

offset of about 1.85 mm of most of the parts and setting a voxel size of about 0.18 mm, thus corresponding to a 

mesh layer of about 10 voxels. The mesh was progressively coarsened away from the gear; and, to properly capture 

the gear wake and resolve its interaction with the flap, a mesh resolution of 3 mm was applied to a box that extends 

three wheel diameters downstream of the gear. This approach generally follows the same best practice developed 

previously for landing gear simulations as documented in Ref. 19. The generated fine grid had a total of 2.9 x 10
9
 

voxels and 57 x 10
6
 surfels. 

 

Figure 12. Views of the main landing gear and its bay highlighted in green. 

 

 

   

Figure 13. Close-up views of the computational mesh past the gear (every second line is shown) 

D. Boundary Conditions  
All aircraft surfaces and the viscous floor region were modeled with no slip boundary conditions via a 

generalized bounce back volumetric formulation
25,26

 near the wall for arbitrarily oriented surfels within the voxels. 

The remaining portion of the floor was modeled as a symmetry plane.  Velocity and turbulent kinetic energy were 

imposed at the inflow boundaries, whereas the static pressure was kept constant at the outflow. Other values were 

extrapolated from the simulation domain. The boundary conditions were used in an under-relaxed manner to avoid 

large local gradients especially during the startup process. In addition, sponge layer zones were included in the 

farfield to damp reflections of acoustic waves.  

E. Computational Procedure 

PowerFLOW® simulations were initialized with freestream conditions for a period corresponding to the time 

that it would take the flow to convect a distance of 40 mean aerodynamic chords. The time steps (∆t) used for the 

current set of simulations were 1.539 x 10
-7

 s, 2.309 x 10
-7

 s, and 3.079 x 10
-7

 s corresponding to the fine, medium, 

and coarse grids, respectively. The statistical convergence of the flow solution during this initial transient time was 

monitored using unsteady pressure signals acquired on the surface of the wing and the time-history of the global 

aerodynamic forces acting on the aircraft. 

After reaching statistical convergence, the simulation was executed over 0.3 s of physical time; then, the 

computed flow variables were stored in a number of different volume and surface measurement files for subsequent 
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flow analysis and post-processing. The flow variables were stored with various sampling rates, ranging from a 

sampling frequency of 200 kHz for the surface to 100 kHz in some areas of the volume. Post-processing spectral 

analyses were conducted using a bandwidth of 20 Hz and an overlapping coefficient of 0.5. Results were compared 

with experiment up to 40 kHz. 

An acoustic analogy approach based on the Ffowcs-Williams and Hawkings (FWH) formulation
27

 was used to 

extrapolate the computed near-field fluctuations to the farfield. The employed FWH formulation was based on the 

retarded-time formulation 1A by Farassat,
28

 extended to account for uniform mean flow convection effects to 

simulate the noise generated and measured in an ideal infinite wind tunnel.
29

 Integrations on different solid surfaces 

of the aircraft and on permeable surfaces surrounding different components of the aircraft were performed to 

evaluate the relative contribution to the overall noise by different wing and high-lift device (HLD) components, and 

to quantify the levels of noise generated by turbulent fluctuations within boundary and shear layers directly radiated 

into the farfield as quadrupole noise. 

IV. Results and Discussion 

During the 2010 14 x 22 wind tunnel entry, aerodynamic measurements of the 18% scale, semi-span model were 

obtained with the tunnel in both closed (hard) wall and open-wall (open-jet) configurations. As demonstrated in 

Khorrami et al.,
9
 the wall-corrected model aerodynamic forces (i.e., lift coefficient) representing free-air conditions 

were in good agreement with the open-jet data, with the latter configuration producing slightly less lift at all angles-

of-attack (AOA) (see Fig.14). For the baseline landing configurations (with or without the main gear), the 

fluctuating surface pressures on the model flap and main landing gear were virtually identical for both tunnel 

configurations. In addition, the acoustic and off-surface (particle image velocimetry) flow measurements required 

that the tunnel be in an open-wall (open-jet) 

configuration. Therefore, a decision was made to 

conduct the majority of the computations with the 

model in a free-air setting. All the initial simulations 

were performed for AOA of 3º, flap deflection angle of 

39º (landing configuration), and with the main landing 

gear removed.  This configuration provided an excellent 

intermediate geometry for benchmarking our 

computational approach before the more resource 

intensive configuration involving the main landing gear 

was attempted.  

The computations in PowerFLOW® are performed 

in a non-dimensional fashion in lattice units and 

transformed later to physical units or any other standard 

non-dimensional scaling. The scales used in the 

normalizations are the freestream speed of sound, 

density, kinematic viscosity, and a unit length of 

smallest voxel size. For the present case, inlet reference 

flow variables were set to match conditions at the 14x22 

wind tunnel test section entrance. All simulations were 

obtained for a freestream Mach number of 0.2. The corresponding unit Reynolds number is 1.33 x 10
6
 per foot (4.40 

x 10
6
 per meter), resulting in a Reynolds number of 3.40 x 10

6
 based on the 18% scale model mean aerodynamic 

chord of 30.8 in (0.782 m). Because both upper and lower surfaces of the wing were tripped in the experiment,
9
 the 

computations were conducted with specified laminar patches on the main wing leading edge upstream of the actual 

tripping locations. A similar procedure was followed in the vicinity of the fuselage nose. 

The  initial computations were mostly used to a) observe solution convergence behavior for the model integrated 

forces such as lift and drag coefficients, b) identify under-resolved flow regions and further refine the grid, and c) 

achieve a modest level of grid independence for the computed solution (changes in lift and drag coefficients within 

1% for each successive refinement). A full account of these initial runs is beyond the scope of the present paper. We 

will limit ourselves to describing the major findings that guided our choices of grid setup and mesh resolution. 

A. Global View 

Before proceeding to quantitative comparisons between localized measurements and computations, a global 

picture of the flow field is presented. Most of the flow unsteadiness originates from the flap tip regions. Although 

 
Figure 14. Tunnel configuration effects on lift 

coefficient. 
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the simulated flap geometry is very complex, including several brackets and tracks, worm gears, and vortex 

generators, the major sources of flow unsteadiness reside mainly in the vicinity of the two flap side edges. Figure 15 

shows a representative plot of computed time-averaged surface pressure distribution over the semi-span model with 

the flap deployed. The surface pressures display the footprint of strong suction peaks at the flap edges, especially the 

inboard tip; these peaks are attributed to the presence of strong streamwise vortices. Also evident in Fig. 15 is an 

alteration of the leading edge suction peak due to the presence of the flap brackets. 

1. Flap Inboard Tip  

A close-up view of the inboard edge showing instantaneous vortex formation and the resulting fluctuating 

pressure field on the surface of the aircraft is displayed in Fig. 16. The existence of a strong pressure differential 

between the bottom and top surfaces of the flap results in the formation of a complex dual-vortex system.  Near the 

flap leading edge, the boundary layer on the bottom surface separates at the sharp corner. The separated shear layers 

at the flap tips are rapidly deformed by Kelvin-Helmholtz instabilities, resulting in the formation of numerous vortex 

filaments of differing sizes and shapes. Roll-up of the deformed shear layers produces two prominent streamwise 

vortices situated along the lower and upper edges of the flap tip. Both vortices gain strength and size along the flap 

chord due to the continuous roll-up of the detached shear layers at the two sharp edges.  Downstream of the flap 

mid-chord, the lower side vortex begins to interact and merge with the vortex on the top surface.  Eventually, a 

single dominant streamwise vortex is formed. The intricate vortex formation process is captured in the close-up view 

of the unsteady and time averaged flow field at the inboard edge presented in Fig. 17. 

 

 

Figure 15. Computed steady surface pressure distribution on 18% scale, semi-span model with flap deployed. 

 

 

Figure 16. Close-up view of the inboard flap edge showing instantaneous flow field based on isosurface of the 𝝀2 criterion (at -3000) and surface dilatation field. 
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Figure 17. Total pressure contours of unsteady (left) and time-averaged (right) flow at the inboard flap side 

edge at three streamwise locations along chord. 

2. Flap Outboard Tip  

In contrast to the inboard tip, the outboard tip does not possess a straight-edge side wall that is typical of the 

simple model-scale geometries studied previously. Since the outboard tip houses a cavity and a bulb seal, its flow 

field should be quite complex and different than that described in the previous section for the standard straight-edge 

tip. However, the geometry of the outboard tip should not be viewed as being unique. Many of the civil transports in 

service today have flap tips with cavities, cut outs, bracket rollers, and other depressions for flap deployment 

purposes.  

A close-up view of the flow field at the outboard tip is shown in Fig. 18. The break-up of the separated shear 

layer at the edge into three-dimensional vortex filaments and their subsequent roll-up into the tip vortex is evident in 

this figure. The vortex filament colors represent the strength of the local streamwise velocity; thus, the red filaments 

near the edge indicate an accelerating streamwise flow that significantly exceeds the freestream speed by nearly 

50%.  Spanwise slices of the instantaneous and time-averaged pressure fields at the outboard tip are shown in Fig. 

19. Similar to the inboard tip, the pressure field depicts the formation of a dual vortex system with the vortex at the 

top edge much weaker and not lasting long along the chord before it is engulfed by and pulled into the larger and 

stronger side-edge vortex. However, emergence of the vortical structures is not as well defined as for the inboard 

edge, in particular near the leading edge. Clearly, the bulb seal and interaction of the side edge vortex with the tip 

cavity alter the flow field dynamics, shear layer roll-up, and how the two vortices merge.  
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Figure 18. Close-up view of the outboard flap edge showing instantaneous flow field based on isosurface of 

the 𝝀2 criterion (at -3000) and surface dilatation field. 

 

 

  
 

  
 

  

Figure 19. Total pressure contours of unsteady (left) and time averaged (right) flow at the outboard flap 

side edge at three streamwise locations along chord. 
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3. Main Landing Gear   

The main landing gear impacts the overall aerodynamic performance of the aircraft by increasing the drag and by 

affecting global circulation. The latter effect is expected to be of secondary importance, as will be discussed in the 

following sections. Because of the main landing gear location under the wing, its wake is convected past the inboard 

portion of the flap, where a more significant localized effect is expected.  An instantaneous snapshot of the vorticity 

field in the region containing the gear and inboard flap tip is presented in Fig. 20. The figure shows the presence of 

turbulent flow structures in the form of vortex filaments of various shapes, sizes, and strengths being shed from 

different gear subcomponents. These structures are the source of the broadband surface pressure fluctuations that 

produce the farfield noise associated with the gear.  

 

 

     
 

Figure 20. Close-up view of the gear-flap interaction zone showing instantaneous flow field based on 

isosurface of 𝝀2 criterion (at -3000) for gear on (left) and gear off (right) configurations. 

The corresponding contour plots of the instantaneous and time-averaged flow field at the inboard edge are shown 

in Fig. 21. Observe from the figure that although the gear wake interacts with, and subsequently alters, the flow field 

at the inboard tip, a dual vortex system is maintained at the side edge. Compared to the gear off configuration (Fig. 

17), the gear turbulent wake and its interaction with the emerging vortices are clearly seen in the unsteady flow field 

(left column). Also notice that with the gear on, merging of the two vortices at the inboard tip is accelerated so that a 

single dominant vortex is apparent at the flap trailing edge.   
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Figure 21. Total pressure contours of unsteady (left) and time averaged (right) flow at the inboard flap side 

edge for baseline configuration with main landing gear. 

4. Acoustic Field 

Considerable flow unsteadiness (noise sources) is produced during the shear layer roll-up, vortex formation, and 

vortex merging process, as well as by the interaction of the vortices with the sharp corners at the flap edge. A small 

portion of the energy associated with the pressure fluctuations (lift oscillations) is converted into sound waves that 

radiate outwardly away from the tips with a significant portion of the waves directed toward the ground. In addition, 

the presence of the cavity and the bulb seal at the outboard tip is expected to give rise to flow-cavity interaction and 

a possible cavity resonance within certain frequency bands. In general, because of the relative size of flow structures 

at the flap tips, the lower frequency portion of the radiating spectrum should be dominated by the noise sources 

residing at the inboard tip and the higher frequency range should be driven by the sources situated at the outboard 

tip. This conjecture was confirmed by the simulations and will be shown later when we consider the contribution of 

each tip to the total farfield noise spectrum. 

A global view of the radiated sound field produced at the flap tips for the baseline configuration without the 

main gear is given in Fig. 22. The two-dimensional planar cut positioned at the flap mid-chord clearly shows the 

origin of the sound waves, which radiate spherically from both tips.  The corresponding cut for the configuration 

with the main gear installed is presented in Fig. 23.  Note from the figure that gear deployment does not diminish or 

significantly alter the sound levels nor the patterns associated with the inboard tip. However, as shown by the 

measurements presented in Ref. 11, deflection of the flap reduces the noise levels produced by the main landing 

gear. 
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Figure 22. Radiated sound field (dilatation field) associated with noise sources at inboard and outboard flap 

tips (planar cut at flap mid-chord).  

 

Figure 23. Radiated sound field (dilatation field) associated with baseline configuration with main landing 

gear deployed (planar cut at flap mid-chord).   

B. Surface Pressure Coefficient (Cp) 
The computed time-averaged Cp distributions for the model aircraft wing were found to be in good agreement 

with the measured values at all the pressure port rows. Sample Cp plots comparing computed and measured pressure 

fields at select rows on the wing and winglet are presented in Fig. 24 for the configuration without main landing 

gear. Results from both medium and fine resolution grids are displayed. Notice that nearly identical Cp values are 

produced by the two grids, indicating that a reasonable degree of grid independence has been attained for the 

magnitude of the steady lift produced by the wing. The computed Cp values display slightly higher suction peaks 

near the wing leading edge. Although not as pronounced, the over-prediction is maintained throughout to the wing 

trailing edge. In general, better agreement between computed and measured Cp is obtained for the pressure rows 

closer to the wing root than for the rows situated in the wing mid-span and outboard sections. Similar over-suction 

trends were also present in the companion computations of Khorrami and Mineck
20

 obtained using NASA’s 

unstructured Navier-Stokes solver FUN3D in combination with a Modified Delayed Detached Eddy Simulation 

(MDDES) approach to simulate the flow field around the same model. The present PowerFLOW® wing Cp values 

are very similar to those reported in Ref. 20. This suggests that the underlying causes for the observed differences 

are not related to the flow solver nor to grid resolution issues, and reside elsewhere. There are three important 
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sources that could produce such trends
20

. They relate to a) differences between open-jet tunnel and current free-field 

settings, b) model deformation (aeroelastic) effects, and c) wind tunnel floor boundary layer effects. For a discussion 

on these effects and their implications, see Ref. 20.    

 

         

a) Wing row 1                                                                      b) Wing row 3 

                      

c) Wing row 5                                                                         d) Wing row 7 

         

e) Wing row 9                                                                     f) Winglet row 11 

Figure 24. Surface pressures on wing and winglet. 
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Time-averaged Cp values at select rows across the flap span for the baseline configuration without the main gear 

are displayed in Fig. 25. Except for a few localized minor improvements in accuracy achieved with increased mesh 

resolution, the computed pressures from the two grids are very similar. In general, good agreement between 

predicted and measured Cp values is observed at all sectional stations where pressure data are available (including 

those not shown here).  

 
a)  Flap row 1                                                                        b) Flap row 2 

 
c) Flap row 3                                                                           d) Flap row 6 

 

 
e) Flap row 9                                                                       f) Flap row 11 

Figure 25. Surface pressures on flap. 
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Accurate simulation of the steady load at both inboard and outboard flap tips is of paramount importance to 

proper edge vortex formation, development, and migration, and therefore is critical to obtaining the corresponding 

fluctuating pressure field (noise sources). The averaged pressure distributions at the two closest rows to the flap 

inboard edge are plotted in Figs. 25a and 25b. The Cp values obtained from the medium and fine grid resolutions are 

in good agreement with the measured pressures. In the case of the pressure row closest to the inboard edge (row 1), 

increased resolution improved the accuracy of the predicted pressure field, enabling proper capture of the vortex-

induced suction peak near the flap 0.6c – 0.7c region. However, both medium and fine resolution results show 

higher pressures on the flap bottom surface at the inboard tip. This is surprising since the bottom surface mostly 

experiences a skewed boundary layer flow rushing towards the edge, which is far less complex than the 

corresponding flow features that develop and reside at the top edge. 

Good agreement between computed and measured Cp values is maintained past the flap mid-span (row 6). 

Beyond row 7, the measured surface pressures display the presence of a rather large flow separation zone that 

extends throughout the tip. The simulated Cp values at row 9 (Fig. 25e) associated with the medium resolution grid 

display an oscillatory behavior that starts at the mid-chord region and ends near the flap trailing edge. The amplitude 

of the oscillations diminishes noticeably with increased resolution, with both grids failing to predict the correct 

surface pressures beneath the separation zone for the last 35% of the chord. We believe that this oscillatory feature 

in the time-averaged Cp values at rows 8 (not shown) and 9 is a remnant of low-frequency flow oscillations within 

the separation zone at these outboard locations; a substantially longer record is required for the time-averaging 

process to yield the proper steady values. The computed pressure distribution at the row closest to the outboard edge 

(row 11) is presented in Fig. 25f. At this row, although the overall character of the surface pressures was captured in 

the predictions, the simulated time-averaged Cp values substantially underestimate the broad suction region that 

occurs in the mid-chord region; the increased spatial resolution achieved with the fine grid mildly improves the 

comparison for the predicted values. A much larger under-prediction of the Cp values at row 11 is reported by 

Khorrami and Mineck
20

 who point to the possible shortcomings of the particular MDDES approach used in their 

study as the source of the observed discrepancies. The mid-chord suction region observed at the outboard tip is the 

footprint of the primary vortex that forms at the side edge (see Fig. 19).  The lateral position of this vortex greatly 

depends on how well the steady spanwise flap loading near the outboard tip is captured, which in turn depends on an 

accurate prediction of the large flow separation zone. Note that most turbulence models cannot predict correctly 

three-dimensional boundary layer separation on smooth surfaces. Even more challenging are flows subjected to 

severely adverse pressure gradients and containing confluent boundary layers, which is the case for a highly 

deflected flap. Thus, it is encouraging that the present lattice Boltzmann approach seems to be predicting somewhat 

better pressure distributions, as compared to those provided in Ref. 20.  

Deployment of the main landing gear only affects the time-averaged pressure field on the bottom surface of the 

wing (due to the gear cavity opening; row 3 in Fig. 2) and the region in the immediate vicinity of the flap inboard 

edge. Cp distributions for the two rows closest to the inboard edge (rows 1 and 2) are shown in Fig. 26. By the third 

flap row position (not shown), the differences in the surface pressure values for the configurations with and without 

the gear become negligible. Except for a localized, slight improvement in the prediction of upper surface pressures 

at row 1, the two grids produce nearly identical results. As was the case with the gear off configuration, good 

agreement with measurements is obtained except for the flap bottom surface at the inboard tip (in particular near the 

leading edge). The reasons for the over-prediction at this location are not clear to us. The favorable comparison 

displayed in Fig. 26 indicates that gear-flap interaction and its effect on the steady loading at the tip are well 

predicted. Our earlier observation that the wake of the gear is convected past the inboard portion of the flap, altering 

the tip loading, is confirmed by comparing the pressure coefficient plots shown in Figs. 25 and 26 for rows 1 and 2. 

Note that the row closest to the inboard flap side edge (row 1) exhibits an overall decrease in pressure difference 

between flap bottom and top surfaces, caused by the locally reduced inflow velocity within the gear wake. Also, 

observe that the location of vortex roll-up and coalescence on the suction side of the flap is shifted downstream by 

about 0.05c.    
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a) Flap row 1                                                                     b) Flap row 2 

Figure 26. Surface pressures at flap inboard edge for configuration with main gear on. 

C. Surface Pressure Fluctuations 
Accurate prediction of the surface pressure fluctuations in the vicinity of the flap side edges is critical for a 

proper assessment of airframe noise source location. Extensive comparisons between computed and measured 

fluctuating pressure fields for all dynamic probe locations revealed remarkable agreement at most measurement 

positions, with some probes displaying slightly better, and some others showing slightly worse, agreement than the 

power spectral density (PSD) plots presented next.  

1. Fluctuations at Inboard Tip  

The simulated PSD values at four select probes placed along the edge on the flap top surface are presented in 

Fig. 27. As can be seen, medium and fine resolution grids produce very similar spectra at every probe location, with 

both solutions predicting correctly the measured spectrum in shape, frequency content, and energy levels. Closer to 

the flap leading edge (probe 67), where the flow features are expected to be minute, the simulated pressures are in 

remarkably good agreement with the measured data. The pressure spectra from representative locations (probes 4 

and 9) on the top surface away from the edge are shown in Fig. 28. These sensors are part of a larger collection of 

probes specifically placed to capture the post-merged tip vortex footprint on the flap top surface. At these surface 

locations, the computed and measured pressures agree quite well, especially at probe location 9, where very good 

agreement is obtained for frequencies up to 20 kHz. Also observe that the medium-density grid provides sufficient 

resolution in the aft section of the flap chord, which is a pleasant surprise since the tip vortex path at that location 

has already detached from the flap top surface.  

The pressure spectra from two of the probes (10 and 12) installed on the inboard edge-side wall are plotted in 

Fig. 29. Notice that the mild, broad tonal hump (400 – 1,200 Hz) present in the measured spectrum at the location of 

probe 10 is well matched by the simulations. The good agreement obtained at these two probes indicates that the 

sequence of fluid dynamic processes necessary for vortex inception at the edge was resolved appropriately.   

The fluctuating pressure field at two probe locations (probes 15 and 16) on the bottom surface of the flap is 

presented in Fig. 30. As was the case for most other probe locations sampled, good agreement between computed 

and measured PSD values is observed. As expected, the fluctuation energy levels on the bottom surface are 

significantly lower than those recorded on the side wall or on the top surface. The close agreement observed for 

probe 16 in the low to mid frequency range is surprising, since this probe is positioned inward from the bottom edge 

(see Fig. 4b). This probe is mostly exposed to the passage of a highly skewed accelerating boundary layer drawn to 

the edge by the presence of a large pressure suction region induced by the tip vortex. The most logical explanation 

for the good agreement seen in Fig. 30b would be that the boundary layer on the flap bottom surface was laminar 

during the test, and the fluctuating pressure field recorded in this area is the imprint of the radiating pressure waves 

produced at the inboard tip. The underlying source of the rise in the measured spectra for probe 16 beyond 5-6 kHz 

is unknown. The increased levels could be caused by hydrodynamic pressure fluctuations associated with the 

boundary layer on the bottom surface, or by self-noise resulting from the pinhole installation of the dynamic sensors. 
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a) Probe 67 location                                                         b)  Probe 1 location 

      

c)  Probe 2 location                                                               d) Probe 5 location 

Figure 27. Power spectral density of surface pressure fluctuations at flap inboard tip – top surface edge. 
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a)   Probe 4 location                                                                b) Probe 9 location 

Figure 28. Power spectral density of surface pressure fluctuations at flap inboard tip - top surface away from 

edge. 

 

      

a)   Probe 10 location                                                              b) Probe 12 location 

Figure 29. Power spectral density of surface pressure fluctuations at flap inboard tip - side-edge wall. 
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a)   Probe 15 location                                                                    b) Probe 16 location 

Figure 30. Power spectral density of surface pressure fluctuations at flap inboard tip - bottom surface. 

2. Fluctuations at Outboard Tip  

Prediction of the surface pressure fluctuations at the outboard tip was complicated by the difficulty in producing 

a realistic geometry of the bulb seal at the outboard tip that closely adhered to what was actually tested. In the 14x22 

wind tunnel tests, the tubular soft foam used to represent the bulb seal was hand glued to the lower interior surface 

of the cavity at the tip with roughly a third of the tube residing exterior to the cavity; thus, there is a level of 

uncertainty in correctly duplicating the position of the tubular foam in the simulated model geometry. During 

testing, the soft foam may have deformed slightly under aerodynamic loading; in contrast, the modeled tubular foam 

in the simulations was treated as a rigid cylinder. Due to the installed pressure tubes and sensors, the as built/tested 

tip cavity has many protrusions and depressions on its interior surfaces that are absent in the simulated geometry. 

Because of these subtle differences, accurately matching the surface pressure fluctuations at discrete locations near 

the outboard tip is problematic at best. The critical parameter used to judge the success of the simulations is how 

well the farfield acoustic behavior is predicted. As will be shown in the following section, very good agreement 

between the simulated and measured farfield noise spectra was achieved.    

Pressure fluctuations from selected probes along the edge on the flap top surface are presented in Fig. 31. In 

general, very good agreement between computed and measured spectra was attained along the upper edge. Unlike 

the pressures at the inboard tip (see Fig. 27), the spectra associated with the outboard edge contain several mild, 

broad tonal features that result from vortex-cavity interaction. In general, increased spatial resolution improves the 

predicted results. However, for probes 65 and 25, the better resolved pressure field displays mildly overpredicted 

energy levels for fluctuations within the 2 – 5 kHz range. Since results from the two grids are in close agreement at 

higher and lower frequency bands, the reason for this local increase is not yet clear to us and requires further 

investigation. At the location of probe 28, the added spatial resolution eliminates the overprediction in the 

fluctuating energy levels – the fine grid spectrum is almost coincident with the measured curve, closely matching the 

localized tonal character of the spectrum. Farther downstream, at probe 66, the tonal peak near 2 kHz and the sharp 

roll-off in the spectrum immediately after are well predicted.   

Pressure spectra from probes 29 and 30, situated on the top surface away from the edge, are shown in Fig. 32. As 

was the case for the inboard tip, these sensor positions were selected to extract the post-merged footprint of the tip 

vortex on the flap upper surface. At probe 29 location, the simulated PSDs are in very good agreement with the 

measured spectrum. At probe 30, which is downstream of probe 29 and farther away for the edge, the PSD levels are 

overpredicted by both grids although the results for the finer grid are closer to the measured values over the entire 

frequency range. The computed spectra from the two probes inside the tip cavity (probes 26 and 27) are presented in 

Fig. 33. At the location of probe 26, that is, close to the flap leading edge, the simulated spectra compare well with 

measurements. Increased spatial resolution improved the agreement for frequencies above 4 kHz.  As was the case 

for the simulated PSD at probes 65 and 25, the better resolved spectrum displays a marked increase in the pressure 

fluctuation intensity levels within the 200 Hz to 4 kHz frequency range. As noted earlier, the cause of this 
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discrepancy is unknown at the moment. However, observe that this anomaly only occurs at probes located at the 

outboard tip near the flap leading edge region.  Good agreement between computed and measured spectra was 

obtained for the second probe in the cavity (probe 27), which is located at about 0.60c from the leading edge. Notice 

that the computed spectra contain a tonal feature centered around 6.5 kHz, where a mild break in the slope of the 

measured data is observed; nevertheless, the more pronounced tonal feature centered around 1,200 Hz is missed by 

both simulations.  Spectra obtained from probes on the flap bottom surface (probes 32 through 35) are shown in Fig. 

34. For this surface as well, the simulated results are in remarkably good agreement with the measured data. Probe 

32, which is situated near the leading edge, displays overpredicted levels with grid refinement. In general, the 

fluctuation levels on the bottom surface are one to two orders of magnitude lower than those observed on the top 

surface. 

Overall, the pressure spectra predicted with PowerFLOW® at both inboard and outboard flap tips are in 

remarkably good agreement with the measured PSDs for the baseline configuration without the main landing gear. 

Since surface pressure fluctuations are essential to any noise prediction methodology, the close agreement obtained 

with these simulations is auspicious for accurate farfield noise computations.   

 

     

a) Probe 65 location                                                          b)  Probe 25 location 

      

c)   Probe 28 location                                                             d)  Probe 66 location 

Figure 31. Power spectral density of surface pressure fluctuations at flap outboard tip - top surface edge. 
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a)   Probe 29 location                                                                    b) Probe 30 location 

Figure 32. Power spectral density of surface pressure fluctuations at flap outboard tip - top surface away 

from edge. 

 

      

a)   Probe 26 location                                                           b) Probe 27 location 

Figure 33. Power spectral density of surface pressure fluctuations at flap outboard tip - cavity wall. 
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a)   Probe 32 location                                                              b) Probe 33 location 

      

c)   Probe 34 location                                                             d) Probe 35 location 

Figure 34. Power spectral density of surface pressure fluctuations at flap inboard tip – bottom surface. 

3. Main Landing Gear  

The gear-flap interaction as it affects the fluctuating pressure field at the flap inboard tip is examined in this 

section.  We will probe a select number of locations where noticeable changes in the measured values were shown to 

occur in Ref. 10. The PSD comparison at various probe locations on the upper surface and side wall at the flap 

inboard tip are presented in Fig. 35. The predicted spectra are in excellent agreement with the measurements on the 

top surface and side-edge wall for the two grid resolutions shown. As observed from the experimental spectra, gear 

deployment noticeably increases the magnitude of the fluctuation levels at probes 1, 2, 4, and 12. The simulations 

capture this rise and the change in spectral shapes remarkably well. Although not shown, good agreement was also 

observed at other inboard probes. The predicted and measured spectra for the outboard tip were unaffected by the 

presence of the gear; therefore, they are not included here.     
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a) Probe 1 location                                                          b) Probe 2 location 

 

c)  Probe 4 location                                                            d) Probe 5 location 

 

e) Probe 10 location                                                           f) Probe 12 location 

Figure 35. Power spectral density of surface pressure fluctuations at flap inboard tip with main gear on. 
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Because of the bluff body nature of the various gear subcomponents, prediction of the measured surface pressure 

spectra at discrete locations is problematic at best. For example, the presence of a slightest flow angularity in the 

tunnel freestream velocity, and/or the differences between the free-field computational setup and the open-jet wind 

tunnel tests, have the potential to cause a significant shift in the location of flow separation and reattachment points. 

Computed surface pressure spectra at select locations on the gear primary subcomponents (struts, wheels, and door) 

are presented next. 

Measured and simulated surface pressure spectra for probes located on the front (36 and 37, see Fig. 8) and rear 

struts (39 and 40) are shown in Fig. 36. These probes were placed at strategic positions to capture flow separation 

from the gear main post and the impact of the free shear layer on the rear strut.  

 

 

a)  Probe 36 location                                                          b) Probe 37 location 

 

c) Probe 39 location                                                          d) Probe 40 location 

Figure 36. Power spectral density of surface pressure fluctuations on main gear front (a) and (b), and rear (c) 

and (d) struts. 

Except for the PSD values associated with probe 36, the computed spectra reveal mixed trends. The measured 

spectrum at probe 37 has a broad tonal feature with a peak frequency around 700 Hz. Based on the physical 

dimensions of the main post, most likely this tone represents mild vortex shedding from the post. The spectrum 

predicted at the location of probe 37 significantly under-estimates the energy level at all frequencies and fails to 

capture the tonal component of the measured data. The computed results for this probe are remarkably similar to the 
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FUN3D predicted PSD values reported in Ref. 20. This suggests that there is a substantial difference between the 

two independent simulations and the measurements regarding the location of boundary layer separation on the main 

post, possibly associated with the laminar to turbulent transitional behavior of the flow on the cylindrical struts, 

which is not taken into account in the simulation. An opposite trend is observed for probes 39 and 40. At these two 

locations, the computed PSD values show significant overprediction in energy levels at frequencies above 1,000 Hz; 

higher spatial resolution further increases the magnitude of the differences. A plausible cause for this overestimation 

may be a difference in the reattachment location for the detached shear layer on the rear strut between the 

computational and experimental setups. As mentioned earlier, the slightest movement of the separation point on a 

bluff body could have a profound effect on the shape and amplitude of the pressure fluctuation spectra. Recall that 

the ultimate test for the simulations is the accuracy of the far field noise prediction. 

Sample PSD plots for probes on the gear inner wheel (43 through 45) are presented in Fig. 37. Very good 

agreement is observed, with the predicted spectra closely tracking the measured data over most of the frequency 

range. Similarly close agreement was also observed at other probe locations on both wheels (not shown). In general, 

increased spatial resolution improves the agreement.   

 

 

a) Probe 43 location                                                           b) Probe 44 location 

 

      c) Probe 45 location 

Figure 37. Power spectral density of surface pressure fluctuations on main gear inner wheel. 
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Surface pressure fluctuation spectra at two locations on the gear door are shown in Fig. 38. The spectra at the 

selected probes are representative of those observed at other door locations. Notice that the pressure levels on the 

door are nearly two orders of magnitude lower than those on the other gear components. The simulated PSD curves 

capture the frequency content and the fluctuation levels up to frequencies approaching 7 kHz. At present, the 

underlying source of the rise in the measured spectra beyond 5 – 6 kHz is unknown. The increased levels could be 

caused by hydrodynamic pressure fluctuations associated with the detached flow over the door surface or by the 

self-noise associated with the pinhole installation of the dynamic sensors. Nevertheless, for this aircraft 

configuration, the gear door does not appear to be a major noise source and most likely acts as a reflector for the 

acoustic waves emanating from the flap inboard tip and/or the other components of the gear. As such, notice the 

presence of several major and minor tones on the door spectra. These tones are generated elsewhere and what is 

being measured on the door is the resultant radiated pressure field impinging on the surface. The simulations capture 

most of the tonal features in the measured spectra. 

 

 

a) Probe 57 location                                                      b) probe 55 location 

Figure 38. Power spectral density of surface pressure fluctuations on main gear door. 

D. Farfield noise prediction 
The farfield noise computation was conducted using an FWH propagation formulation

29
 on the solid surface of 

the complete semi-span model with and without the mounting beveled plate (Fig. 39), and  on four different 

permeable surfaces encompassing the complete aircraft, the flap and section of the wing, and both inboard and 

outboard flap tip regions, as depicted in Fig. 40. The porous surfaces were judiciously oriented in space so as to 

minimize the hydrodynamic fluctuations crossing through them. The data sampling frequency on the solid surface is 

200 kHz and on the porous surfaces is 100 kHz. A large volume with resolution supporting a data sampling 

frequency of 100 kHz, as shown in Fig. 39, was also included to allow direct propagation to the farfield microphone 

located 17.75 feet (5.334 m) from the model center of rotation. Based on previous investigations,
30

 proper wave 

propagation within the volume requires about 10 points per wavelength. Thus, the effective grid cut-off frequency 

for the FWH computations using the porous surfaces is expected to be approximately 10 times lower than the data 

sampling frequency. Due to the relatively large distance to the farfield microphone, the grid cut-off frequency for the 

directly simulated probe is expected to be even lower. 
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Figure 40. Porous surface around the complete aircraft and portion of 

the beveled plate (outlined geometry, middle) and around the flap and 

part of the wing excluding the wingtip (outlined geometry, right) and 

around the two flap tips (solid green and red cylinders, right) 

 

Acoustic propagation to the farfield probe for the configuration without the main gear is shown in Fig. 41. Good 

agreement between the FWH calculations using solid surface pressure fluctuations and directly simulated results is 

observed for frequencies up to the cut off frequency of the fluid volume, approximately 2.5 kHz. At higher 

frequencies, the comparison degrades because of insufficient spatial resolution of the directly calculated 

fluctuations. The favorable comparison indicates that reflection from the beveled plate and mean-flow convective 

effects are properly taken into account by the FWH computation. A comparison of three grids with increasing spatial 

resolution (global refinement factor of 1.5) is presented in Fig. 42 and indicates that the solution gradually 

approached a converged state. As expected, successively finer grids produce higher intensity levels at higher 

frequencies.  It is interesting to observe that, although the peak magnitude of a tonal feature around 1,500Hz was 

reduced in the finest resolution, the broadband levels in the medium and fine grids are in very good agreement up to 

about 10 kHz. Accordingly, the medium resolution grid with a total of 820 x 10
6
 voxels was considered to be 

sufficient for the extensive comparative evaluation of different noise reduction concepts that was conducted prior to, 

and in support of, testing of several airframe noise reduction concepts in the 14x22 wind tunnel at LaRC. Coverage 

of the computational effort devoted to that comparative evaluation is beyond the scope of the present paper and will 

be reported elsewhere in the future. 

 
 

 

 

Results presented in Fig. 43 provide ample evidence that both solid and porous formulations on the aircraft and 

the flap region (left plot) are comparable up to a frequency of about 7 kHz, with a slight offset in overall PSD level.  

The region around the flap alone produced almost the same spectrum as the full aircraft porous region and confirms 

that the flap region is the main noise source in the simulation. The comparison between the two porous FWH 

cylinders at the inboard and outboard tips (right plot) indicates that the inboard flap tip contributes more to the low 

frequency range, whereas the outboard flap tip region has a slightly larger effect on the higher frequency content of 

Figure 39. Solid surface, beveled 

plate, and far field probe 

location (red cross). The yellow 

outline region indicates the large 

high resolution volume. 

Figure 41. Predicted farfield noise by using 

solid FWH and direct probe. 

Figure 42. Predicted farfield noise by using 

solid FWH for different grid resolutions. 

10 dB/Hz 10 dB/Hz 
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the spectrum. This is expected due to the comparatively smaller geometrical size of the outboard flap tip with 

respect to the inboard one. Based on the relative contributions of each flap tip region, the mild peak in the aircraft 

PSD around 1,500Hz is most likely associated with the inboard flap tip and the other peak around 2,900Hz is more 

related to the outboard flap tip, and is not a harmonic of the first peak. Surface dB maps (band-integrated wall 

pressure fluctuations) on the flap tips depicted in Fig. 44 demonstrate that the first peak around 1,500Hz is related to 

the rather thick trailing edge of the wing and inboard flap section, and very likely associated with the vortex 

shedding frequency for this edge thickness. The feature at 2,900 Hz is not as easily identifiable on the surface 

pressure dB maps, but it could be related to the shear layer-cavity flow interaction at the outboard flap tip. 

   

Figure 43. Predicted farfield noise by using FWH for solid and porous formulations. 

 

           
 

           

Figure 44. Band-filtered surface pressure power for inboard (left) and outboard (right) flap tips, around 

1,500Hz (top) and 2,900Hz (bottom), for medium resolution grid. 

10 dB/Hz 

10 dB/Hz 
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To conduct a comparative study of predicted vs. measured noise, the FWH-based farfield acoustic computations 

were performed using pressure fluctuations on the model solid surface (excluding the wind tunnel floor). The 

simulated unsteady pressure fields on the entire surface of the 18% scale Gulfstream aircraft model were collected at 

every 32 time steps for the two baseline configurations, resulting in 51,900 time frames (0.3s record length). The 

PSD analyses were computed using a 20 Hz bandwidth, with each block overlapping the previous and following 

ones (when possible) by 50%. 

  The farfield noise for the 18% scale, semi-span Gulfstream aircraft model was obtained recently in the LaRC 

14x22 wind tunnel. As detailed in Khorrami et al., 
11

 extensive acoustic measurements were acquired using a phased 

microphone array.  The array was positioned on a set of tracks in the flyover direction 17.5 ft (5.334 m) away from 

the model, as shown in Fig. 1. During the test, the traversing array allowed measurements within the 50º to 110º 

polar angles. Noise spectra for θ = 90º (overhead) at the corresponding array position are plotted in Fig. 45. Two 

runs from the 14x22 test displaying the repeatability of the measured noise levels are used in this comparison.  The 

measured spectra were obtained from integration of the microphone array beamform maps corresponding to a region 

of the tunnel test section covering the entire semi-span model. Although the peak of the noise spectrum resides at 

frequencies below 200 Hz, the portion of the spectrum relevant to environmental noise concerns corresponds to 

model scale frequencies of 800 Hz and above. Because the microphone array was designed for an operational 

frequency range of approximately 1.5 kHz – 80 kHz, data measured below 1,000 Hz should be used with caution.  

The computed far field noise spectrum at the 90º flyover array position for the baseline case of 39º flap 

deflection with the main gear off is compared to the array measurements in Fig. 45. For completeness, the computed 

spectrum from the companion DES (FUN3D) simulations of Ref. 20 is also shown on the figure. The higher 

fluctuation amplitude apparent in the computed spectra is related mainly to the shortness of the simulated time 

records – not enough time segments are available to generate smoother averages that are comparable to those of the 

test results. Inspection of the far field noise data in Fig. 45 reveals that, for frequencies up to 8 kHz, excellent 

agreement was obtained between both simulations and between each and the measured spectrum – predicted 

spectrum averages lie within a dB of the experimental data. At higher frequencies, the PowerFLOW® predicted 

PSD spectrum closely tracks the broadband component of the farfield noise up to the highest frequency shown (25 

kHz). Notice the presence of a broad tonal feature in the measurements occurring between 7 kHz and 11 kHz with a 

peak near 8 kHz. This feature is associated with the cavity at the flap outboard tip. Both simulations fail to capture 

the tonal aspect of the measured spectrum. As stated earlier, precisely matching all the subtle but relevant 

geometrical details at the outboard tip of the tested model in the simulated geometry is a very difficult task. 

 

 

Figure 45. Comparison of farfield noise spectra for landing configuration with 39
o
 flap deflection and gear 

off.  Computed spectra are based on FWH approach using pressure data on model solid surfaces. 

A comparison among predicted and measured noise spectra for the baseline configuration with the main landing 

gear installed is provided in Fig. 46. As was the case for the flap only configuration, the PSD curves display very 

good agreement between the two computational approaches and between each simulation and the measured data. 
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With the main gear deployed, both computed spectra slightly over-predict the experimental values by about two 

decibels over most of the frequency range. The very prominent tone centered around 2.5 kHz in the present 

simulation is produced by the hollowed front post with the cavity opening being exposed at the knee joint. During 

the acoustic test, after the initial set of runs, this tone was eliminated by taping the cavity face at the joint. Similar 

action was taken during the grid development stages for the FUN3D-based simulations. For the present simulations, 

the cavity face was left open to determine how well such tones, in the context of geometries of highest degree of 

complexity, can be predicted.  The results presented in Figs. 45 and 46 provide ample evidence that accurate 

prediction of the broadband component of airframe noise for a full aircraft is clearly within reach. 

 

 

Figure 46. Comparison of farfield noise spectra for landing configuration with 39
o
 flap deflection and gear on.  

Computed spectra are based on FWH approach using pressure data on model solid surfaces. 

IV. Concluding Remarks 

The present work documents an extensive computational study aimed at advancing simulation-based airframe 

noise prediction to include a full aircraft geometry in landing configuration. In order to achieve that goal, the 

computational effort was centered on conducting high-fidelity, time-accurate simulations of an 18% scale aircraft 

model that was tested in the NASA LaRC 14x22 wind tunnel. The as-built model used in the present study is a close 

replica of a Gulfstream aircraft and features many of the finer details of the full scale geometry. 

 Exa Corporation’s PowerFLOW® lattice Boltzmann solver was used to perform the computations for free-air at 

a Mach number of 0.2. Experimental results for two baseline landing configurations consisting of 39º flap deflection 

with and without the main landing gear deployed were used to validate the computed solutions on medium and fine 

spatial resolution grids. The baseline configuration with main gear off was used during the initial set of simulations 

that targeted a) the development of a suitable grid, b) identification of proper mesh clustering/distribution in the 

critical regions, c) selection of appropriate mesh spacing for resolving pertinent unsteady flow features, and d) 

assessment of solution dependency on grid characteristics. 

Extensive comparisons with available aeroacoustic measurements were performed. The time-averaged surface 

pressures on the wing and winglet showed excellent agreement with the measured data. Very good agreement was 

also obtained for the steady pressures at the inboard tip and middle portion of the flap. The dual vortex system and 

the resulting surface pressure imprint at the inboard tip were well predicted. As in the experiment, the computed 

pressure coefficients showed a zone of flow separation in the vicinity of the flap outboard tip, with the time-

averaged pressures still containing remnants of low frequency fluctuations within the separation zone.  As a result, 

the agreement between measured and simulated pressures at the outboard tip was not as good as that obtained for the 

inboard tip. Some of the differences are thought to be caused by the cavity and associated bulb seal, which made 

duplication of the tested outboard tip geometry inherently difficult. 

Predicted surface pressure fluctuation spectra at the flap inboard tip were found to be in remarkably good 

agreement with the measured data regarding frequency content and spectral shape. Medium and fine spatial 
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resolution grids produced nearly the same pressure fluctuation field, indicating that sufficiently accurate predictions 

can be obtained with the less costly grid. 

The configuration with 39º flap deflection and main landing gear deployed was used to represent a more 

complete aircraft geometry during landing. Gear-flap interaction effects were shown to be limited to the flap inboard 

tip region, corroborating measurements of the model in the 14x22 wind tunnel at NASA LaRC. Changes in the flap 

steady loading at the inboard tip due to the presence of the gear were predicted accurately. The fluctuating surface 

pressure spectra at the inboard flap were found to be in excellent agreement with the measured data. As was 

observed in the experimental data, the computed surface pressure fluctuations on the inboard flap edge side wall and 

top surface showed elevated levels when the main gear was deployed. Comparison of the predicted fluctuating 

surface pressure spectra on the landing gear struts, wheels, and door with the measured data revealed good 

agreement for most of the probe locations shown. 

The success of any airframe noise simulation depends on how well the broadband farfield noise spectrum is 

predicted. For the configuration with the main gear off, the predicted farfield spectrum for the 90º overhead position 

was in remarkable agreement with the microphone array measurements. For most of the frequency range shown, the 

simulation-based acoustic intensities were within 1 dB of the measured values, falling well within the uncertainty 

limits of the microphone array. Computed farfield acoustic results for the landing configuration with the main gear 

on also compared well with measurements. For this configuration, the predicted values were within 2 dB of the 

experimental data. 
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