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Fully automated third molar development staging in

panoramic radiographs

Nikolay Banar · Jeroen Bertels · François

Laurent · Rizky Merdietio Boedi · Jannick

De Tobel · Patrick Thevissen · Dirk

Vandermeulen

Abstract Staging third molar development is commonly used for age assessment
in sub-adults. Current staging techniques are, at most, semi-automated and rely
on manual interactions prone to operator variability. The aim of this study was to
fully automate the staging process by employing the full potential of deep learning,
using convolutional neural networks (CNNs) in every step of the procedure. The
dataset used to train the CNNs consisted of 400 panoramic radiographs (OPGs),
with 20 OPGs per developmental stage per sex, selected in consensus between
three observers. The concepts of transfer learning, using pre-trained CNNs, and
data augmentation were used to alleviate the burden of a limited dataset. In this
work, a three-step procedure was proposed and the results were validated using
five-fold cross-validation. First, a CNN localized the geometrical center of the lower
left third molar, around which a square region of interest (ROI) was extracted.
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Second, another CNN segmented the third molar within the ROI. Third, a final
CNN used both the ROI and the segmentation to classify the third molar into its
developmental stage. The geometrical center of the third molar was found with an
average Euclidean distance of 63.3 pixels. Third molars were segmented with an
average Dice score of 93 %. Finally, the developmental stages were classified with
an accuracy of 54 %, a mean absolute error of 0.69 stages and a linear weighted
Cohen’s kappa coefficient of 79 %. Taking into account the limited dataset size, this
fully automated approach shows promising results compared to manual staging.

Keywords Dental age assessment · Third molar · Developmental stage ·

Localization · Segmentation · Classification.

1 Introduction

In forensic practice, dental age assessment is commonly conducted by well-trained
forensic odontologists using panoramic radiographs (OPGs). The registered degree
of development is classified using specific tooth development staging techniques
and correlated to age. However, the manually performed staging’s major draw-
back is a possible stage classification variability within and between observers. To
counter this drawback, automated age assessment methods have been proposed,
especially since recent applications of deep learning in the context of medical imag-
ing have shown to give promising results [2]. However, related work in the field
of automated dental age assessment is limited. By contrast, in the field of bone
age assessment, an automated method has been established and validated based
on hand-wrist radiographs. Hence, both fields were explored and conclusions were
drawn for the current study design.

1.1 Developmental stage assessment of teeth

De Tobel et al. [4] investigated different algorithms for the automated classification
of the lower left third molar into its developmental stage. Their deep learning ap-
proach was superior compared to other algorithms. The OPGs were preprocessed
using contrast-limited adaptive histogram equalization (CLAHE) [25]. The pre-
trained AlexNet [17] CNN architecture was retrained on a small dataset of 400
rectangular ROIs, carefully extracted by experts from their corresponding OPGs.
The authors did not report the age range of the study population, but the entire
developmental span of the third molar was covered. They reported a mean accu-
racy of 51 %, a mean absolute error (MAE) of 0.60 stages and a mean linearly
weighted kappa (LWK) of 82 %. Most misclassifications were found in neighbour-
ing stages.

In a follow-up study, Merdietio et al. [23] investigated the added value of manual
third molar segmentations for stage classification of the lower left third molar. In
the same study population as De Tobel et al. [4], contours of the lower left third
molar were manually delineated, removing the information around the tooth, which
might confuse the staging. Using a DenseNet201 [11] CNN, segmented third molar
information improved the stage classification accuracy from 54 % to 61 %, MAE
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decreased from 0.61 to 0.53 stages, and LWK improved by 2 % compared to rect-
angular ROI information.

Yuma Miki et al. [24] also utilized the AlexNet [17] CNN to classify ROIs, ex-
tracted from 52 dental cone-beam computed tomography images into seven tooth
types. First, the smallest possible bounding box enclosing a tooth was placed man-
ually on the CT volume. Then, the middle 60 % axial ROIs were used as input
for the CNN. The average classification accuracy was 89 %, and was comparable
to the non-deep learning method used by Hosntalab et al. [10]. Although the re-
sults of these studies were promising, the possibility to automatically classify the
developmental stages directly from the presented OPGs remained unexplored.

1.2 Skeletal age assessment based on hand-wrist radiographs

Spampinato et al. [33] were the first to conduct research on automated skeletal
bone age assessment using deep learning. They tested several approaches on a
public dataset: (i) a CNN pre-trained on ImageNet [28] was used in a regression
framework; (ii) a fine-tuning of a pre-trained CNN; (iii) an ad-hoc CNN, BoNet
[33], trained from scratch. The assessment was conducted on the public Digital
Hand Atlas Database System (DHADS) [7] containing 1391 radiographs of the
left hands of children up to the age of 18 years. Compared to chronological age,
they reported an MAE of 1.15, 0.80 and 0.79 years for the three approaches, re-
spectively. The latter two outperformed state-of-the-art methods from previous
years.

Larson et al. [18] tested a pre-trained deep residual CNN with 50 layers for age
assessment from left hand radiographs. Their approach showed similar results com-
pared to human observers. The root mean squared error (RMSE) on the DHADS
was 0.73 years, slightly worse than the RMSE of 0.61 obtained by BoneXpert [39].

Lee et al. [20] developed an automated system for bone age assessment from radio-
graphs of left hand and wrist containing the following steps: (i) the LeNet-5 [19]
CNN was utilized for image segmentation to remove redundant information around
the hand; (ii) a classification CNN pre-trained on ImageNet was applied. A mean
accuracy of 57 and 60 %, and an RMSE of 0.93 and 0.82 years, was obtained for
males and females respectively. These numbers are somewhat comparable to the
upper limits of the inter-observer variation obtained with the Greulich and Pyle
(GP) method [8] in baseline Korean research [15].

Iglovikov et al. [12] also presented an automated framework for bone age assess-
ment. They applied deep learning to a dataset of left hand radiographs, labelled by
pediatric radiologists from a pediatric bone age challenge. First, radiographs were
segmented using a U-Net-like [27] CNN. They normalized image contrast and
aligned hands by detecting key points with VGG-net [32]. Both regression and
classification CNNs from the VGG-net family of CNNs were applied, with classi-
fication CNNs slightly outperforming regression CNNs. An ensemble of regional
CNNs showed superior performance with an MAE of 0.51 years. This result out-
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performed the state-of-the-art BoneXpert software with 0.65 years and the work
by Lee et al. [20], thereby obtaining an accuracy comparable to human observer
performance.

1.3 Study rationale and aim

Despite well performing software for automated age assessment based on hand-
wrist development, the implementation into forensic practice may be insufficient.
After all, development ceases around the age of 18 [8], while in most countries,
that age is the threshold from childhood to adulthood [30]. Thus, ideally, an age
indicator is used that helps to discern minors from adults. Therefore, international
guidelines state that besides development of the hand-wrist, also third molars and
the clavicles should be taken into account [29]. In the current study, our focus was
on third molars, whose developmental span has been described to start around the
age of 7 and end around the age of 21 [21]. With the upper end of the age range
beyond the threshold of 18, this anatomical site holds the potential to differenti-
ate better between minors and adults compared to the hand-wrist. The current
study aimed to develop a fully automated system to classify a third molar into its
developmental stage.

2 Materials and methods

2.1 Dataset

To develop and train the fully automated deep learning based system, a dataset
of annotated OPGs was required. The dataset of OPGs was collected at the Uni-
versity Hospitals Leuven, Belgium, and was first used by De Tobel et al. [4] and
later updated by Merdietio et al. [23]. The dataset consisted of 400 OPGs of vary-
ing sizes. These OPGs were selected in consensus between three observers, as to
obtain 20 OPGs per sex and per developmental stage of the lower left third molar.
Each stage was defined corresponding to a modified Demirjian et al. [5] staging
technique proposed by De Tobel et al. [4], with a total number of 10 ordinal de-
velopmental stages (i.e. 0 to 9; Fig. 1 - top rows). The resulting study population
ranged between 7 and 24 years old. The OPGs of different sizes and resolutions
were cropped and resampled automatically to a common size of 1600x800 pixels.
This explains the white and black spaces in the resulting ROIs (in all figures shown
as all-white spaces for illustrative purposes).
In order to evaluate the performance of the current method, five-fold cross-validation
was used. Therefore, the dataset was randomly split into five equally-large valida-
tion sets of 80 OPGs with four OPGs per sex and per developmental stage of the
lower left third molar. In each fold, the remaining 320 OPGs were used to train
the CNNs from the proposed procedure.
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Fig. 1 Representative example of each of the 10 developmental stages of the lower left third
molar (top rows) and their manual full segmentations according to Merdietio et al. [23] (bottom
rows).

2.2 Three-step procedure

Based on recent work [4,12,18,20,33,23], the three-step procedure was proposed
as presented in Fig. 2. First, a CNN located the considered third molar’s center
and established an ROI around it in the OPG. Second, another CNN segmented
the third molar out of the established ROI. Third, a final CNN combined the
third molar’s ROI and its segmentation to classify the third molar’s developmen-
tal stage.

2.2.1 Third molar localization

The first step (Fig. 2 - top) automatically extracts a bounding box of the lower left
third molar. For each OPG, the full tooth manual segmentations as described in
[23] were used as the training segmentations of the lower left third molars (Fig. 1 -
bottom rows). The manual ROIs around the lower left third molar were obtained
by automatically extracting a 448x448 pixels bounding box parallel to the image
axes and centered around the geometrical center of the manual segmentations
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Fig. 2 A schematic overview of the proposed three-step procedure to automate third molar
development staging. STEP 1: A first CNN detects a rectangular ROI around the third molar
under assessment. STEP 2: Another CNN segments the third molar out of the established
ROI. STEP 3: A final CNN combines the third molar’s ROI and its segmentation to classify
the third molar’s developmental stage.

(annotated in yellow in Fig. 2). Unaligned ROIs of size 448x448 were used to trade
off spatial noise (e.g. surrounding teeth can trick the final staging) and localization
performance (e.g. larger ROIs have higher chances to capture a minimal surface of
the third molar). A YOLO-like [26] CNN architecture was therefore utilized with
minor modifications. Each image was divided into 25 cells and the cell containing
the third molar and its geometrical center within this cell was predicted. For feature
mapping, the DenseNet201 [11] CNN architecture, pre-trained on the ImageNet
[28] dataset with dense layers suitable for the problem, was used. Hence, the sum
of two mean squared error (MSE) objective functions - one for cell classification
and one for geometrical center regression - was minimized. The combined loss
function was optimized for the training set using the Adam optimizer [16] with
default Keras [3] settings. The mean absolute error (MAE; Eq. 1) and Euclidean
distance (Eq. 2) between the manual and predicted center coordinates in pixels
were calculated:

MAE =

P

N

i=1
|yi − ŷi|+ |xi − x̂i|

N
, (1)

Euclideandistance =

P

N

i=1

p

(yi − ŷi)2 + (xi − x̂i)2

N
, (2)

where xi and yi, and x̂i and ŷi refer to the manual x and y, and predicted x and
y coordinates of the geometrical center of the lower left third molar in the ith

OPG, respectively, and N=400 refers to the total number of OPGs. A qualitative
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localization measure of “good”, “poor” or “wrong” was further defined when the
predicted ROI captures the manual segmentation of the third molar completely,
partly or not, respectively.

2.2.2 Third molar segmentation

The second step (Fig. 2 - middle) automatically segments the lower left third mo-
lar, given a 448x448 bounding box around its geometrical center. For this purpose,
a U-Net-like [27] CNN architecture was used. This model has been proven to work
well across many segmentation tasks in medical imaging [27,13,1]. It processes
the input image by successively applying linear convolutions and non-linear acti-
vations. The latter are necessary to avoid creating linear, and thus simple, features
only. The convolutional kernels are of size 3x3 and leaky-ReLU [22] activations are
used to create non-linear activations. Before final classification (segmentation can
be seen as classifying each pixel as being foreground or background), this succes-
sive pattern should result in local and global features that are informative for the
state of a certain pixel.
In order to train the CNN, its internal parameters need to be optimized with
respect to a certain loss function (i.e. the optimization objective), which directly
compares the automatic and manual segmentations. There are many loss functions,
each having their own influence on how well the internal parameters converge to
a solution. For segmentation, cross-entropy (CE), soft Dice (SD) or their linear
combination (CS) are often used [1]. Here, a suitable loss function was identified
on the manual ROIs and their segmentations by analyzing the segmentation per-
formance in terms of pixel-wise accuracy (Eq. 3), precision (Eq. 4) and recall (Eq.
5), and the Dice score (Eq. 6) [1,34]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

Dice =
2TP

2TP + FP + FN
, (6)

where, TP, TN, FP and FN refer to the pixels labelled correctly as third molar or
background, or incorrectly as third molar or background, respectively. This way,
accuracy represents the proportion of pixels classified correctly, precision repre-
sents the number of pixels being classified as tooth correctly and recall represents
the fraction of tooth pixels that are correctly identified as being tooth. The Dice
score is a commonly used intersection-over-union measure used to compare two
segmentations (here manual and predicted) in the medical field of image analysis
[1].
The Adam optimizer [16] with default Keras [3] settings for 150 epochs was found
to work well for convergence. The initial learning rate was set at 10−3 and reduced
by a factor of 10 every 50 epochs. In a second experiment, the most promising loss
function was chosen to work directly forward on the localization output. That way,
pixel-wise accuracy, precision and recall, and the Dice score were calculated for
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each stage individually and with or without localization outliers.

2.2.3 Third molar classification

The third step (Fig. 2 - bottom) automatically classifies the lower left third molar
into its developmental stage. Hence, given the bounding box, the task is to classify
the ROI into one of 10 developmental stages. First, experiments were conducted
with the manual ROIs and segmentations with two CNNs: a simple ad-hoc CNN
with 10 layers and the more complex DenseNet201 [11] (as it was used in [23]).
Both CNNs process the information in a similar way and with the same principles
as explained in the previous section for U-Net. Before final classification - in this
case multi-class staging - informative image features should have been derived.
The more complex the CNN, the more complex patterns it could detect in the
input images but the more data is generally needed in order to prevent overfitting
on the training set. Comparing the results of the simple CNN with the results
of DenseNet201, sheds light on the interplay between these two aspects for this
particular dataset.
Apart from the CNN used for classification, experiments were conducted with three
types of input, as a way to incorporate the available information: the ROI only
(NO), and the ROI and segmentations concatenated (CO) or multiplied (MU).
Finally, the most promising of those methods on manual ROIs and segmentations
was chosen and reported on the staging accuracy, MAE and LWK on the predicted
ROIs and segmentations from the previous steps for each stage individually with
and without localization outliers. These are frequently used metrics when evalu-
ating staging performance and their definition can be found in [4].
For all experiments, the parameters of the CNN were optimized with respect to
the CE loss function for the training set using stochastic gradient descent (SGD)
for 150 epochs. The initial learning rate was set at 10−3 and reduced by a factor
of 10 every 50 epochs.

3 Results

The reported results were based on five-fold cross-validation of the complete pro-
cedure. For third molar segmentation and staging, the effect of different parameter
setups was studied, working with manual information. Subsequently, for the opti-
mal parameter setup, results of working with manual information were compared
with results obtained when using the output(s) of the automated three-step pro-
cedure.

3.1 Third molar localization

In Table 1 the localization results are given. The geometrical center of the third
molar is localized with an average MAE of 75.42 pixels and an average Euclidean
distance of 59.76 pixels. There is a trend for the detection algorithm to work better
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Table 1 Quantitative results of the automated detection.“Wrong” cases are excluded from
the results. Only the last column corresponds to the average performance with inclusion of
wrong cases.

Stage → 0 1 2 3 4 5 6 7 8 9 all
Metric ↓

Euclidean distance (pixels) 77 89 56 52 48 47 57 52 58 62 63
MAE (pixels) 96 112 68 65 60 59 73 68 75 79 79

Fig. 3 Qualitative examples of detection (top row) and corresponding manual full segmenta-
tion (bottom row). The left column in each big box corresponds to the manual detection and
the right column corresponds to the automated detection. The left two columns correspond to
a “wrong” automated detection. In this case, the corresponding manual segmentation results
in an empty ROI. The middle two columns correspond to a “poor” detection, where only part
of the segmentation is retained within the automatically detected ROI. The right two columns
correspond to a “good” detection since the entire segmentation is captured.

for the middle stages. There are 393 good, 3 poor and 4 wrong localizations. In
Fig. 3 one example of each is shown. Poor localizations are possible because of the
following reasons: (i) the right cell (i.e. the left side of the patient) is misclassified
and the coordinates are predicted relative to the wrong cell; (ii) the regression
prediction is not bounded to the cell and, hence, it may lead to the coordinates
located far from the right cell.

3.2 Third molar segmentation

In Table 2 the segmentation results are given for both the manual ROIs and the
automatically predicted ROIs from the previous step. All cases were included in
the calculation. Considering the manual ROIs, the linear combination (CS) of
cross-entropy (CE) with soft Dice (SD) loss performed slightly superior compared
to the single losses (left side of Table 2). The use of this loss function for the
predicted ROIs reveals a slight decrease compared to the performance on manual
ROIs (right side of Table 2). Zooming in on the results for each stage individu-
ally highlights an inferior performance for stage 0. In Fig. 4 segmentation results
are illustrated for each stage, per quartile of the Dice score on the predicted ROIs.



10 N. Banar and J. Bertels et al.

Table 2 Quantitative results of the automated segmentation. On the manual ROIs and corre-
sponding segmentations three different loss functions (i.e. cross-entropy (CE), soft Dice (SD)
are tested and their sum (CS)) and the overall result are reported. For CS, the results are
analyzed for the predicted ROIs both overall and for each stage separately.

Experiment → manual ROIs predicted ROIs
Loss → CE SD CS CS

Stage → all all all 0 1 2 3 4 5 6 7 8 9 all
Metric ↓

Accuracy (%) 99 99 99 99 99 99 99 100 99 99 99 99 99 99
Precision (%) 95 95 95 88 95 92 97 97 95 96 95 96 96 95
Recall (%) 94 94 95 87 92 97 94 95 90 96 94 93 93 93
Dice (%) 94 94 94 85 93 94 95 96 91 96 95 93 93 93

3.3 Third molar staging

In Table 3 the staging results are given for manual ROIs with manual segmen-
tations and the automatically predicted ROIs with predicted segmentations from
the previous steps. All cases were included in the calculation and the segmentation
masks were combined with the detected ROIs in the following ways: (i) concate-
nation (CO); (ii) multiplication (MU); (iii) no combination (NO), hence, only the
detected ROI is used. Looking at the results on the manual ROIs with manual
segmentations (left side of Table 3), there is a clear increase in performance when
the segmentation is used (CO and MU compared to NO). MU seems to deliver
the most promising results. Using this method for the staging on predicted ROIs
with predicted segmentations, there is a drop in overall staging performance (right
side of Table 3) compared to manual results. Zooming in on the results for each
stage individually highlights the superior performance for lower stages. In Fig. 4
the staging output is illustrated for the segmentation examples.

Table 3 Quantitative results of the automated staging. On the manual ROIs and correspond-
ing manual segmentations three different combination types are tested (i.e. no combination
and thus only use of ROI (NO), concatenation (CO) and multiplication (MU; this type of
combination is performed in Fig. 4)) and the overall result are reported. For MU, the results
are analyzed for the predicted ROIs with corresponding predicted segmentations both overall
and for each stage separately.

Experiment → manual segm’s predicted segmentations
Method → NO CO MU MU

Stage → all all all 0 1 2 3 4 5 6 7 8 9 all
Metric ↓

Accuracy (%) 55 57 60 85 85 62 45 51 42 64 20 37 45 54
MAE (Stages) 0.62 0.58 0.51 0.55 0.25 0.62 0.60 0.54 0.75 0.67 1.20 0.78 0.98 0.69
LWK (%) 81 83 84 / / / / / / / / / / 79
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Fig. 4 Qualitative segmentation examples for each of the 10 developmental stages (rows; or-
dered top-bottom stage 0-stage 9). Left three, middle three and right three columns are the
results for the first, second and third quartile of the Dice score using the predicted segmenta-
tions, respectively. The manual ROI is given first, followed by the automatically predicted ROI
and finally the predicted ROI multiplied by the predicted segmentation. The blue contour of
the predicted segmentation is overlaid on the red contour of the manual segmentation. When
only blue is visible, the delineation is (almost) perfect. The resulting fully automated stage
prediction is annotated in white, while red indicates the manual stage when the predicted stage
was incorrect.

4 Discussion

4.1 Situation of findings in literature

Automated methods for skeletal age estimation have been used for over a decade
[39]. Recently, the RSNA Pediatric Bone Age Challenge using hand radiographs
demonstrated that different approaches to process the images can render similar
results [9]. Although localization and segmentation seemed to be commonly used
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in the automated approaches, stage classification - as is done by human observers -
was not described by most automated systems. Nonetheless, one might hypothesize
that adding the stage classification step might further ameliorate age estimation
performance. Starting from the stage classification, the automated method may
only need to interpret and further classify the sequence of developmental changes
within the considered stage, which might reduce the computational burden of the
automated system.

With a stage classification accuracy of 54 %, an MAE of 0.69 stages and a LWK
of 79 % the current fully automated system for stage classification performed
inferior compared to respectively 61 %, 0.53 stages and 84 % reported for the
semi-automated system proposed by Merdietio et al. [23]. They only automated
the final step (i.e. stage classification) while tooth localization and segmentation
were done manually, and where the latter is generally considered tedious and prone
to observer variability. Further optimization of all steps in the automated system
is therefore recommended before its final application in forensic age estimation
practice.

Moreover, to be applied in practice, the next step that needs to be added to the
proposed automated system is the age estimation step itself. Regarding skeletal
age assessment, the lowest MAE reached in the RSNA challenge was 4.26 months
(= 0.36 years) [9], based on the automated assessment of a hand-wrist radiograph.
Assessing hand-wrist MRI, Tang et al. [38] reported MAEs of 0.13 years for males
and 0.08 for females. However, their study population was very small, with only
79 individuals. Moreover, they only included participants between 12 and 17 years
old, while in forensic age estimation studies, a sufficient portion of the study pop-
ulation should be well over 18. Unfortunately, also the population of the RSNA
challenge only included a very small portion of adults. By contrast, Stern et al.
[37] studied hand-wrist MRIs of males between 13 and 25 years old. They reported
an MAE of 0.34 years in their total population, and 0.53 years in participants ≤

18 years. Note that the reported MAEs in [9,38,37] were errors between the auto-
matically estimated age and the bone age determined by radiologists. Conversely,
in forensic age estimation, the errors between estimated age and chronological age
are relevant. In their pilot paper, Stern et al. [35] reported an MAE of 0.85 years
compared to chronological age, when assessing hand-wrist MRI. More recently,
Stern et al. [36] combined hand-wrist MRI with clavicles and third molars MRI,
obtaining an MAE of 1.01 years. The larger error in the more recent paper might
seem unexpected, but can be explained by differences in study population: N =
56 and age 13-19 years in [35], N = 322 and age 13-25 years in [36]. Thus, the
latter study is more relevant to forensic age estimation. Moreover, it is the only
one presenting a fully automated system for dental age estimation in adolescents
and young adults, albeit embedded in the multi-factorial system. Unfortunately,
the studies by Stern et al. only included men, which poses their major shortcoming.
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4.2 Limitations and future prospects

The proposed three-step procedure for fully automated staging of the lower left
third molar has some shortcomings, which lend themselves for improvement and
should be addressed in future studies. First, the OPGs were of different sizes
and resolutions. Therefore, the OPGs have the white and black spaces due to
resampling and cropping (in all figures shown as all-white spaces for illustrative
purposes). This strategy might be considered suboptimal, and may have led to
incorrect predictions further downstream (e.g. the “wrong” localization in Fig. 3).
Second, the ROIs used in this work were quite large and not aligned, as opposed
to the ones used by De Tobel et al. [4] and Merdietio et al. [23]. This was necessary
to alleviate poor localization performance and retain sufficient segmentation area
within the ROI (as to reduce the number of “wrong” and “poor” localizations in
Fig. 3). Although a similar performance was obtained (note the results for manual
segmentations using the MU method in Table 3), which justified our choice, a bet-
ter localization step is necessary and may lead to an improved performance due to
expected superior segmentations (e.g. partly false segmentation in Fig. 4 - top left).

In work by Unterpirker at al. [40] a localization error of 3.55 ± 2.62 mm was
reported when detecting third molars as landmarks on MRI and using random re-
gression forests (RRFs). A further optimization of the currently used localization
step might be to predict the third molar’s location based on anatomical landmarks
of other structures. To achieve this, skeletal landmarks seem more suitable than
dental landmarks, since the former are broadly constant between individuals (e.g.
the presence of the inferior alveolar nerve and the foramen mentale), while the
latter are highly variable (e.g. extractions, restorations, tooth movement). In re-
cent work, Vinayalingam et al. [41] use the location of the inferior alveolar nerve
relative to the roots of lower third molars to study risk assessment of third molar
removal. In another study by Ebner et al. [6] a two-step procedure was proposed
with a landmark localization algorithm also using RRFs in hand MRI. Their two-
step procedure included a coarse RRF estimation followed by a refined estimation
of the landmark. Large anatomical variations were found on radius and ulna, cre-
ating the highest mean error of the evaluated hand MRI. The landmark was chosen
based on a constraint on the surrounding structures. This process could however
have limitations when applied to third molars, due to the large anatomical varia-
tion. Hence, choosing a consistent anatomical landmark will affect the localization
process and its quest is left for future research.

In light of stage classification, only simple combinations of concatenation and
multiplication were tested regarding the combination of the ROI with segmenta-
tion information, following the research by Merdietio et al. [23]. It may well be
that more advanced strategies lead to superior performance compared to the early-
fusion strategy explored in this work [14]. Discerning adjacent stages - especially
near the end of development (stages 7 to 9) - remains a challenging task, even
for an automated deep learning approach. Nonetheless, those final stages occur
around the age of 18, making them especially relevant in forensic age estimation,
when minors need to be discerned from adults. Thus, further optimization of the
classification step is desirable, which can only be achieved by adding more training
data. This will affect the learning process for stage classification directly, as well as
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indirect improvement due to related ameliorations in the automated segmentation.

It is clear that multiple factors may have led to an inferior performance com-
pared to the results in Merdietio et al. [23] with all manual information. However,
given that the entire workflow of detecting, segmenting and staging a third molar
has been automated, we believe these results are promising and ready to be used
before integrating the obtained third molar stage into an age assessment model.
An interesting part of future research will be to transfer this procedure to all third
molars (i.e 18, 28, and 48), and possibly to other developing permanent teeth in
younger individuals. Thus, increasing the number of age indicators, which in the
end might increase age estimation performance. Similarly, in older individuals, sev-
eral degenerative changes (e.g. secondary dentin, periodontosis, root resorption)
might be detected automatically, and their information might be combined auto-
matically to derive an age estimate.

Thus, future research should focus on complementing the proposed three-step pro-
cedure with an age estimation, rendering a comprehensive four-step procedure. The
reference population for such a study needs to represent all relevant age categories
uniformly. Recommendations state that at least ten individuals per sex per age
category of one year need to be included [31]. However, to train a deep CNN for
age estimation, the reference population should be as large as possible. For in-
stance, BoneXpert was based on 1559 hand/wrist radiographs [39]. Although the
numbers of cases per age category were not specified, the graphs in their original
paper reflect a more or less uniform age distribution.

5 Conclusion

In this work, we proposed and validated a fully automated three-step procedure
for third molar staging, directly starting from OPGs. The overall staging perfor-
mance was close to previous research by De Tobel et al. [4] and Merdietio et al.
[23], where only the final step was automated and manual ROI detection and third
molar segmentation were necessary.
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